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Abstract In this paper we give various characterizations of quasiopen sets and quasicon-
tinuous functions on metric spaces. For complete metric spaces equipped with a doubling
measure supporting a p-Poincaré inequality we show that quasiopen and p-path open sets
coincide. Under the same assumptions we show that all Newton-Sobolev functions on
quasiopen sets are quasicontinuous.
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1 Introduction

When studying Sobolev spaces and potential theory on an open subset €2 of R” (or of a
metric space), there are two natural Sobolev capacities one can consider. One defined using
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the global Sobolev norm and the other one using the Sobolev norm on 2. When €2 is open,
these two capacities are easily shown to have the same zero sets. We shall show that the
same holds also if €2 is only quasiopen, i.e. open up to sets of arbitrarily small capacity, see
Proposition 4.2 for the exact details.

To consider Sobolev spaces and capacities on nonopen sets is natural e.g. in fine
potential theory. Such studies were pursued on quasiopen sets in R” by Kilpeldinen—
Maly [22], Latvala [24] and Maly—Ziemer [25]. In the last two decades, several types
of Sobolev spaces have been introduced on general metric spaces by e.g. Cheeger [11],
Hajtasz [14] and Shanmugalingam [28]. Using this approach one just regards subsets as
metric spaces in their own right, with the metric and the measure inherited from the under-
lying space. This makes it possible to define Sobolev type spaces on even more general
subsets.

We shall use the Newtonian Sobolev spaces, which on open subsets of R are known
to coincide with the usual Sobolev spaces, see Theorem 4.5 in Shanmugalingam [28] and
Theorem 7.13 in Hajtasz [14]. This equivalence is true also for open subsets of weighted
R” with p-admissible weights, p > 1, see Propositions A.12 and A.13 in [4]. See also
Heinonen—Koskela—Shanmugalingam—Tyson [19] for more on Newtonian spaces.

It is well known that every equivalence class of the classical Sobolev spaces contains
better-than-usual, so-called quasicontinuous, representatives. In metric spaces this is only
known to hold under certain assumptions. Roughly speaking, quasicontinuity means con-
tinuity outside sets of arbitrarily small capacity, see Definition 3.1. The Sobolev capacity
plays a central role when defining quasicontinuity, and there are actually two types of quasi-
continuity that one can consider on €2, one for each of the two capacities mentioned above.
As far as we know this subtle distinction has not been discussed in the literature. It is not
difficult to show that these two notions of quasicontinuity are equivalent if €2 is open, and
examples show that for general sets this is not true.

We shall show in Proposition 3.4 that the equivalence holds for functions defined on
quasiopen sets. The proof is more involved than for open sets, but still rather elementary,
and it holds in arbitrary metric spaces (only assuming that balls have finite measure). In
Proposition 3.3 we obtain a similar equivalence for two notions of quasiopenness. These two
results (and also Proposition 4.2) complement the restriction result from Bjorn—Bjorn [5,
Proposition 3.5], stating that if U C X is p-path open and measurable, then the minimal
p-weak upper gradients with respect to X and U coincide in U. All these results show
the equivalence between a global property and the corresponding property localized to a
quasiopen or p-path open set.

It was shown by Shanmugalingam [29, Remark 3.5] that quasiopen sets in arbitrary met-
ric spaces are p-path open, i.e. that p-almost every rectifiable curve meets such a set in
a relatively open 1-dimensional set. We shall show that under the usual assumptions on
the metric space (and in particular in R"), the converse implication is true as well. More
precisely, we prove the following result.

Theorem 1.1 Assume that the metric space X equipped with a doubling measure | is com-
plete and supports a p-Poincaré inequality. Then every p-path open set in X is quasiopen
(and in particular measurable).

Under the same assumptions it was recently shown by Bjorn-Bjorn-Latvala [8, Theo-
rem 1.4] that a set is quasiopen if and only if it is a union of a finely open set and a set with
zero capacity, generalizing a similar result from R”, see Adams—Lewis [1, Proposition 3].
Thus we now have two characterizations of quasiopen sets.
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In Example 4.7 we show that in more general metric spaces it can happen that not all
p-path open sets are measurable, let alone quasiopen.

As a consequence of Theorem 1.1 we obtain the following characterization of quasicon-
tinuous functions.

Theorem 1.2 Assume that the metric space X equipped with a doubling measure | is
complete and supports a p-Poincaré inequality. Let U C X be quasiopen.

Then u : U — [—o00, 00] is quasicontinuous if and only if it is measurable and finite
g.e., and u o y is continuous for p-a.e. curve y :[0,1,] — U.

In Proposition 3.4, we also provide a characterization of quasicontinuity using quasiopen
sets in the spirit of Fuglede [13, Lemma 3.3]. In [8, Theorem 1.4] yet another characteriza-
tion of quasicontinuity was given, this time in terms of fine continuity, see also [13, Lemma,
p. 143].

Newtonian functions are defined more precisely than the usual Sobolev functions (in
the sense that the classes of representatives are narrower), and under the assumptions of
Theorem 1.1 it was shown in Bjorn—Bjorn—Shanmugalingam [10] that a/l Newtonian func-
tions on X and on open subsets of X are quasicontinuous. Moreover, the recent results in
Ambrosio—Colombo-Di Marino [2] and Ambrosio—Gigli—-Savaré [3] imply that the same
holds if X is a complete doubling metric space and 1 < p < oo.

Using the characterization in Theorem 1.2 we can extend the quasicontinuity result from
[10] to quasiopen sets as follows. See also Bjorn—-Bjorn—Latvala [7] and Remark 4.6.

Theorem 1.3 Assume that the metric space X equipped with a doubling measure | is
complete and supports a p-Poincaré inequality. Let U C X be quasiopen. Then every

. 1, . . .
function u € Nlocp (U) is quasicontinuous.

In the last section we weaken the assumptions in Theorem 1.1 and replace the dou-
bling property and the Poincaré inequality by the requirement that bounded Newtonian
functions are quasicontinuous, which is a much weaker assumption. In particular, we
obtain the following result. In Section 5 we give a more general version using coanalytic
sets.

Theorem 1.4 Assume that X is complete, and that every bounded u € N'“P(X) is
quasicontinuous. Then every Borel p-path open set U C X is quasiopen.

We also prove a similar modification of Theorem 1.2, see Proposition 5.1. Our proofs
of these generalized results (without doubling and Poincaré assumptions) are based on
the following result which guarantees measurability of certain functions defined by their
upper gradients. It may be of independent interest, and generalizes Corollary 1.10 from
Jarvenpdd-Jarvenpai—Rogovin—-Rogovin—Shanmugalingam [20], where a similar measura-
bility result was proved in the singleton case X \ U = {xp}.

Proposition 1.5 Assume that X is complete and separable, and that U is a coanalytic set.
For every Borel function p : X — [0, oo] define

up(x):yienlf /pds,
xJy
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where Ty is the family of all rectifiable curves y : [0, 1,,] — X (including constant curves)
such that y(0) = x and y (I,) € X \ U. Then u,, is measurable.

The paper is organized as follows. In Section 2 we recall the necessary background on
Newtonian spaces. Section 3 deals with the two notions of quasicontinuity. The results in
that section are valid in arbitrary metric spaces. Theorems 1.1-1.3 are proved in Section 4.
In Section 5 some partial generalizations of the results from Section 4 are proved without
the Poincaré and doubling assumptions. We also formulate two open problems about Borel
representatives of Newtonian functions.

2 Notation and Preliminaries

We assume throughout this paper that 1 < p < oo and that X = (X, d, ) is a metric space
equipped with a metric d and a positive complete Borel measure p such that u(B) < oo for
all open balls B C X.

A curve is a continuous mapping from an interval, and a rectifiable curve y is a curve
with finite length /,,. We will only consider curves which are compact and rectifiable. Unless
otherwise stated they will also be nonconstant and parameterized by arc length dss.

For a family of curves I on X, we define its p-modulus

Mod,, (") := inf/ ofdu,
X

where the infimum is taken over all nonnegative Borel functions p such that f pds > 1
for all y € I'. A property is said to hold for p-almost every curve if it fails only for a curve
family I" with zero p-modulus. Following Heinonen—Koskela [18], we introduce upper
gradients as follows (they called them very weak gradients).

Definition 2.1 A nonnegative Borel function g on X is an upper gradient of an extended
real-valued function f on X if for all nonconstant, compact and rectifiable curves y :
[0, ly] - X,

Lf (v () = fr @)l S/gds, 2.1)
14

where we follow the convention that the left-hand side is oo whenever at least one of the
terms therein is infinite. If g is a nonnegative measurable function on X and if Eq. 2.1 holds
for p-almost every curve, then g is a p-weak upper gradient of f.

Note that a p-weak upper gradient need not be a Borel function, it is only required to
be measurable. The p-weak upper gradients were introduced in Koskela—MacManus [23].
It was also shown there that if g € L?(X) is a p-weak upper gradient of f, then one can
find a sequence {g,-}?":1 of upper gradients of f such that g; — g in LP(X). If f has
an upper gradient in L?(X), then it has a minimal p-weak upper gradient gy € LP(X)
in the sense that for every p-weak upper gradient g € L?(X) of f we have g5 < g ae,,
see Shanmugalingam [29] and Hajtasz [14]. The minimal p-weak upper gradient is well
defined up to a set of measure zero in the cone of nonnegative functions in L? (X). Follow-
ing Shanmugalingam [28], we define a version of Sobolev spaces on the metric measure
space X.
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Definition 2.2 Let for measurable f,

1/p
I flineex) = (f |f|pd,u+inff gpdl/«> ;
X s Jx

where the infimum is taken over all upper gradients g of f. The Newtonian space on X is
NYPOO = {f 1 f vnrexy < 00)

The space N'-7(X)/~, where f ~ h if and only if || f — hllytrxy = 0, is a Banach
space and a lattice, see Shanmugalingam [28]. In this paper we assume that functions in
NLP(X) are defined everywhere, not just up to an equivalence class in the corresponding
function space. Nevertheless, we will still say that & is a representative of u if i ~ u.

Definition 2.3 The Sobolev capacity of an arbitrary set E C X is

Cp(E) = inf [lull 1, -

where the infimum is taken over all u € N''7(X) such thatu > 1 on E.

The capacity is countably subadditive. A property holds guasieverywhere (q.e.) if the
set of points for which the property does not hold has capacity zero. The capacity is the
correct gauge for distinguishing between two Newtonian functions. If u € NP (X) and v
is everywhere defined, then v ~ u if and only if v = u q.e. Moreover, Corollary 3.3 in
Shanmugalingam [28] shows that if u, v € N7(X) and u = v ae., then u = v q.e. In
particular, i is a representative of u if and only if #Z = u q.e.

We thus see that the equivalence classes in NP (X)/~ are more narrowly defined
than for the usual Sobolev spaces. In weighted R"” (with a p-admissible weight and
p > 1), NLP(R")/~ coincides with the refined Sobolev space as defined in Heinonen—
Kilpeldinen—Martio [17, p. 96], see Bjorn—-Bjorn [4, Appendix A.2] (or [28] and Bjorn—
Bjorn—Shanmugalingam [10] for unweighted R").

For a measurable set U C X, the Newtonian space N'-”(U) is defined by consider-
ing (U, d|y, n|ly) as a metric space in its own right. It comes naturally with the intrinsic
Sobolev capacity that we denote by C ]l,] .

The measure w is doubling if there exists a doubling constant C > 0 such that for all
balls B = B(xg,r) :={x € X : d(x, x9) <r}in X,

0<u@2B) <Cu(B) < oo,

where 6 B = B(xg, 6r). A metric space with a doubling measure is proper (i.e. such that
closed and bounded subsets are compact) if and only if it is complete. See Heinonen [16]
for more on doubling measures.

We will also need the following definition.

Definition 2.4 The space X supports a p-Poincaré inequality if there exist constants C > 0

and A > 1 such that for all balls B C X, all integrable functions f on X and all (p-weak)
upper gradients g of f,

1/p
][ |f — feldpn < Cdiam(B)<][ gpdu) .
B AB
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where fp 1= fp fdu =[5 fdu/in(B).

See Bjorn—-Bjorn [4] or Heinonen—Koskela—Shanmugalingam-Tyson [19] for further
discussion.

3 Quasicontinuity and Quasiopen Sets

We are now ready to define the two notions of quasicontinuity considered in this paper. We
let C), denote the Sobolev capacity taken with respect to the underlying space X and Cg
will be the intrinsic Sobolev capacity taken with respect to U, i.e. with X in Definition 2.3
replaced by U.

Definition 3.1 Let U C X be measurable. A function u : U — R := [—00, 00] is Cll,]—
quasicontinuous (resp. Cp-quasicontinuous) if for every ¢ > 0 there is a relatively open set
G C U such that C,l,] (G) < & (resp. an open set G C X such that C,,(G) < ¢) and such
that u|y\ ¢ is finite and continuous.

This distinction was tacitly suppressed in Bjorn—Bjorn—Shanmugalingam [10], Bjérn—
Bjorn [4] and Bjorn-Bjorn—Latvala [6-8]. The first two deal only with quasicontinuous
functions on open sets, and in this case the two definitions are relatively easily shown to
be equivalent. In this note we show that the same equivalence holds also for quasiopen
U (see Definition 3.2 below), which were considered in [6-8]. The proof of this is more
involved, although still rather elementary. The equivalence holds without any assumptions
on the metric space other than that the measure of balls should be finite. On the other hand,
the assumption that U be quasiopen cannot be dropped, see Example 3.6.

Definition 3.2 A set U C X is quasiopen if for every ¢ > 0 there is an open set G C X
such that C,,(G) < ¢ and G U U is open.

Quasiopen sets are measurable by Lemma 9.3 in Bjorn-Bjorn [5]. It is also quite easy
to see that every (C g or Cp)-quasicontinuous function on a measurable set (and thus in
particular on a quasiopen set) is measurable.

The quasiopen sets do not (in general) form a topology. This is easily seen in unweighted
R” with p < n as all singleton sets are quasiopen, but not all sets are quasiopen. We shall
prove the following characterizations of quasiopen sets.

Proposition 3.3 Let U C X be a quasiopen set and V C U. Then the following statements
are equivalent:

(a) V is quasiopen (in X);

(b) Vis Cp-quasiopen in U, i.e. for every & > 0 there is a relatively open set G C U such
that C,(G) < & and G UV is relatively open in U;

) Vis Cg-quasiopen in U, ie. for every ¢ > 0 there is a relatively open set G C U
such that C[()j (G) < eand G UV is relatively open in U.

Even though the quasiopen sets do not (in general) form a topology, we still have the
characterization (iii) below of quasicontinuity using quasiopen sets.
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Quasiopen and p-path open sets, and quasicontinuity 187

Proposition 3.4 Let u : U — R be a function on a quasiopen set U C X. Then the
following statements are equivalent:

(i) wuis Cg-quasicontinuous;
(ii) u is Cp-quasicontinuous.

Moreover, if X is locally compact then these statements are equivalent to the following
statement:

(i) u is finite g.e. and the sets Uy, = {x € U : u(x) > a}and V, = {x € U :
u(x) < o}, @ € R, are quasiopen (in any of the equivalent senses (a), (b) and (c) of
Proposition 3.3).

Remark 3.5 The local compactness assumption is only needed when showing that there is
an open neighbourhood of {x : |u(x)| = oo} with small capacity when proving (iii) =
(ii). In particular (i) < (ii) <> (iii) holds without this assumption for real-valued functions
u:U — R

Example 3.6 The equivalence between the two types of quasicontinuity does not hold for
arbitrary measurable subsets: To see this let e.g. U = (R \ Q) as a subset of (unweighted)
R?and u = X[o.v/2P Then any relatively open set G C U such that u|y\g is continuous

must contain at least one point on each line {(x,y) : x = ¢} for0 < ¢ < V2,1 ¢ Q. It
follows, by projection, that C,(G) > C,(([0, V2] \ Q) x {0}) > 0 and thus u is not C,-
quasicontinuous. On the other hand, let E = UN(([0, v/2]x {~/2DU({~/2} x[0, +/2])). Then
u|y\g is continuous. Since w(E) = 0, the regularity of the measure shows that, for every
e > 0, there is a relatively open subset G of U such that E C G and u(G) < €. As there
are no nonconstant curves in U, we have C,l,] (G) = wu(G), and thus u is Cll,]-
quasicontinuous.

In Fuglede [13, Lemma 3.3], a characterization similar to (iii) was obtained for gen-
eral capacities on topological spaces. The definitions of quasiopen sets and quasicontinuity
therein differ however somewhat from ours. More precisely, in [13], a set V is called qua-
siopen if for every ¢ > 0 there exists an open set 2 such that the symmetric difference
(V\ ) U (22\ V) has capacity less than ¢. If the capacity is outer then this notion is easily
shown to be equivalent to our definition, but in general Fuglede’s definition allows for more
quasiopen sets.

Similarly, in the definition of quasicontinuity in [13], it is not in general required that
the removed exceptional set G be open (though for outer capacities this can always be
arranged) and continuity does not require finiteness. In other words, Fuglede’s definition
of quasicontinuity corresponds to the weak quasicontinuity considered (on open sets) in
Bjorn-Bjorn [4, Section 5.2], less the requirement that continuous functions be finite.
Fuglede’s notion of quasicontinuity is in [13, Lemma 3.3] proved to be equivalent to the
fact that the sets U, and V,, o € R, in Proposition 3.4 are quasiopen (in the sense of [13]).

Since our definitions do not exactly agree with those in [13], and moreover we consider
quasicontinuity and quasiopenness with respect to two different capacities (C,, and C f,/ ) and
two possible underlying spaces (X and U), we present here for the reader’s convenience full
proofs of these results.

The proof of Proposition 3.4 can be easily modified to show that on quasiopen sets weak
quasicontinuity is the same with respect to C, and Cg.
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Proof of Proposition 3.3 (a) = (b) For every ¢ > 0 there ex1sts an open G C X such that
Cp(G) < eand Q := V UG is open. Then G := GNU and Q := = QNU are relatively
open in U and C (G) < g,1i.e. (b) holds.

(b) = (c) ThlS is straightforward, since Cll,] is majorized by C,.

(c) = (a) We may assume that J = U # X.Lete > 0be arbitrary. Since U is quasiopen,
there is an open set G such that C,,(G) < ¢ and such that Q2 := U UG # X is open. Hence
there is w € N7 (X) such that xg < w < 1 and lwll?, pory <

Using that V is Cg -quasiopen, we can find, for each j = 1,2, ..., a relatively open set
G; C U such that V U G| is relatively open in U and CU(G ) <égji= 277 j~Pg. There is

thusv; € € N“P(U) such that X6; <v; <1inU and ||vJ|| < gj. Next, let xg € €,

NLP(U)
Q;={xeQ:dist(x, X\ Q) >1/jandd(x,x0) < j}, j=12,...,

and n;(x) = (1 — jdist(x, ;). (If 2; = ¥ we let n; = 0). Define the functions
min{l—w, max vjr;j} inU, .

Pk I=j<k and ¢ = lim ¢.

0, otherwise, k—o0

Then ¢y has bounded support and ¢ € N7 (U). Since
0 <@ <min{l —w, g} € Né’p(U) ={f:f¢€ N]’p(X) and f = 0 outside U},

Lemma 2.37 in [4] implies that ¢y € N(:’p(U) C NVP(X). Next,

k k
/go,fduf E /vfd,u< E gj <e. 3.1
X — Jx ‘

Jj=1 j=1

By Lemma 1.52 in [4], g := sup; g, is a p-weak upper gradient of ¢. For a.e. x € U
we either have g = gy, = guw Or § = gy, = gu;y; =< &v; + jv; for some j and k (see
[4, Theorem 2.15 and Corollary 2.21]). Hence

/gpduff pdu—l—ZZp lf(gp +]pvp)du<8+22p L jlej <e+2P¢,
X X

Jj=1 Jj=1
which together with Eq. 3.1 shows that [|¢||” <2e+2P¢.

Next, set

NLP(X) =

o0
H=Gul]JG,;nQ),
j=1
which is open by the choice of G as Uj‘;l (GjN ;) isrelatively openin U. Then w +¢ >
xH and hence

Cp(H) < |w+o|” <27 ' (lw|? ) <2P7'(3e + 27¢).

NIP(X) Nlp(x)+ ||(P||N1p(x)

It remains to show that V U H is open in X. If x € V, then x € € for some k, and as

V U Gy is relatively open in U (and thus G U V U Gy is open in X), we can find a ball B,
such that

XxXEB, C(GUVUGHNQ,CVUGU(GrNRy) CVUH.
For x € H, we can instead choose x € By C H C VU H. O
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Proof of Proposition 3.4 (ii) = (i) This is straightforward, since CI[)] is majorized by C),.

(i) = (ii)) We may assume that ) = U # X.Lete > Obearbitrary. Foreach j = 1,2, ...,
there is a relatively open set G; C U such that CJ/(G) < &; := 27/ j~P¢ and such that
ulong, is finite and continuous in U.

Next construct the open sets G, H and Q, k = 1,2, ..., as in the proof of Proposi-
tion 3.3, (c) = (a). Then C(,(H) < 2P=1(3g 4+ 2P¢). If x € U \ H, then there is k such that
x € . Since uly\g, is finite and continuous at x, it thus follows that u |y g is finite and
continuous at x. Hence u|y\ g is finite and continuous, and u is C-quasicontinuous.

Now assume that X is locally compact.

(ii) = (iii) Let € > 0. Since U is quasiopen we can find an open set G such that G U U
isopen and Cp,(G) < €. As u is Cp-quasicontinuous, there is an open set H C X such that
C,(H) < € and uly\ g is continuous. Thus, for every o € R, Uy \ H is relatively open in
U\ H.Hence U, U(G U H) isopenand C,(G U H) < 2¢, showing that U, is quasiopen.
That V, is quasiopen follows similarly, whereas u is finite g.e. by definition.

(iii) = (i) Let e > Oand E = {x € U : |u(x)| = oo}. By assumption, C,(E) = 0
and thus there is an open set H D E such that C,(H) < &, by Proposition 1.4 in Bjorn—
Bjorn—Shanmugalingam [10] and Proposition 4.7 in Bjorn-Bjorn—Lehrbéck [9]. Next let
{q j}?o: | be an enumeration of Q. By assumption there are open G such that Uy, U G;
and V,; U G; are open and C,(Gj) < 27Je. Let G = H U Uj’;l G j, which is open
and such that C,(G) < 2e. Moreover, Uy, \ G is relatively open in U \ G. For « € Rit
follows that

U \G= | W\

Qa3g>a

is relatively open in U \ G. Similarly V;, \ G is relatively openin U \ G, and thus u|y\¢ is
finite and continuous. O

Theorem 1.1 shows that under certain assumptions on X, p-path open sets are quasiopen,
and thus Propositions 3.3 and 3.4 hold for p-path open sets in that case. In general, p-path
open sets need not be measurable, see Example 4.7 below. It would therefore be interesting
to know if the conclusions of Propositions 3.3 and 3.4 hold for measurable p-path open sets
U (or even measurable p-path almost open sets U, see Bjorn—Bjorn [5]) without additional
assumptions on X. In Section 5 some partial results are obtained for p-path open sets which
are Borel. Note that in the situation described in Example 4.7 below, the conclusions of
Propositions 3.3 and 3.4 do hold for measurable p-path open sets.

4 p-Path Open and Quasiopen Sets

Definition 4.1 A set G C X is p-path open (in X) if for p-almost every curve y : [0,1,,] —
X, the set y~1(G) is (relatively) openin [0, [, ].

The arguments proving Propositions 3.3 and 3.4 can also be used to show that Cj, and
Cg have the same zero sets for quasiopen U. Using a different approach we can obtain this
more generally for p-path open sets.
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Proposition 4.2 Let U be a measurable p-path open set and E C U. Then C,(E) = 0 if
and only ing(E) =0.

For open U this is well-known, see e.g. Lemma 2.24 in Bjorn—Bjorn [4]. To prove this
proposition we will need the following lemma.

Lemma 4.3 Let Fg be the set of curves y : [0,1,] — U which hit E C U, i.e. y~UE) #
0. If U is p-path open and E C U, then Mod,(T'Y) = Mod,,(I'}).

If U is not p-path open, then this is not true in general: Consider, e.g., E = {0} C R and
U = Q, in which case Modp(Fg) =0< ModP(FE).

Proof Since Fg c I'X, we have Mod,, (Fg) < Mod,,(l“fé).

Conversely, as U is p-path open, p-almost every curve y € l"fé is such that y ~1(U) is
relatively open in [0, [, ] (and we can ignore the other curves in I" g). Moreover y_l W) >
y N (E) # @. Hence y~'(U) is a nonempty countable union of relatively open intervals of
[0, I, ], at least one of which contains a point ¢ € y‘l (E). We can thus find a small compact
interval [a,b] 5 1,0 < a < b < I, such that [a, b] C y~'(U). Then y |45 € T'Y, and
Lemma 1.34 (c) in [4] implies that Mod,,(I'¥) < Mod,,(I'Y). O

Proof of Proposition 4.2 Assume that C,l,] (E) = 0. Proposition 1.48 in [4], applied with U
as the underlying space, implies that «(E) = 0 and that p-almost every curve in U avoids
E. Since U is p-path open, it follows from Lemma 4.3 that also p-almost every curve in X
avoids E. Thus, by Proposition 1.48 in [4] again (this time with respect to X), Cp,(E) = 0.

The converse implication is trivial. O

The p-path open sets were introduced by Shanmugalingam [29, Remark 3.5]. It was also
shown there that every quasiopen set is p-path open. We are now going to prove Theo-
rem 1.1 which says that the converse is true under suitable assumptions on X. In particular,
this holds in R".

Proof of Theorem 1.1 Let U C X be p-path open. Then the family I" of curves y in X, for
which y ~1(U) is not relatively open, has zero p-modulus, i.e. there exists p € L”(X) such
that fy pds = oo forevery y € .

Assume to start with that U is bounded and let B be a ball containing U. Define, for
x e X,

u(x) = min{l, irj}f/(p + )(B)ds}, 4.1)
Y

where xp is the characteristic function of B and the infimum is taken over all rectifiable
curves ¥ : [0,1,] — X (including constant curves) such that y(0) = x and y([,) €
X\U.Thenu = 0in X \ U and Lemma 3.1 in Bjorn—-Bjorn—Shanmugalingam [10] (or
[4, Lemma 5.25]) shows that u has p + xp as an upper gradient. Since the measure p is
doubling and X is complete and supports a p-Poincaré inequality, we can conclude from
Theorem 1.11 in Jirvenpdi—Jirvenpdd—Rogovin—Rogovin—Shanmugalingam [20] that u is
measurable. As U is assumed to be bounded and p € L”(X), it follows that u € Nl’P(X).

We claim that u > 0 in U, ie. that U = {x € X : u(x) > 0} is a superlevel set
of a Newtonian function. The assumptions on X guarantee that u is quasicontinuous (by
[10, Theorem 1.1] or [4, Theorem 5.29]), which then directly implies that U is quasiopen,
see Proposition 3.4.
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To prove the claim, let x € U and assume for a contradiction that #(x) = 0. Then there
exist curves y; connecting x to X \ U such that

(p+xp)ds <277, j=1,2,.... 4.2)
Vi
In particular, Zyj <2 forallj=1,2,....
We define a curve y as a recursive concatenation of all y; and their reversed reparame-
terizations as follows. Let Lo = 0,

and
5 (1) = yjtt —Lj—1), Lj1<t=<Lj1+1l,, j=12...,
YW=y -0, ifLj 1410, <t<Lj j=12,....
Then)7:[O,L]—>X,f(L):xand]?(Lj—i—l,,H,)eX\U,j:l,Z,....Sinceer

and L; + lyj+1 — L, as j — oo, this shows that 77_1(U) is not relatively open in [0, L]
and hence y € I'. But Eq. 4.2 implies that

o0 o0
fpds 522/ (p+xp)ds <2y 277 =2,
1% j=1 Yi

j=1
contradicting the choice of p. We can therefore conclude that u(x) > 0 for all x € U, which
finishes the proof for bounded U'.

If U is unbounded, then the above argument shows that U N B; is quasiopen, j =

1,2,..., where {B; }?O: | is a countable cover of X by (open) balls. In particular, given ¢ > 0,

there exists for every j = 1,2,... an open set G; such that C,(G;) < 27Jg and (U N
Bj)UG | is open. Setting G = Uj’ozl Gj,weseethat C,(G) < eand UUG = U?":I((Uﬂ
B;) U G/) is open, which concludes the proof. O

We now turn to Theorem 1.2 and restate it in a more general form.

Proposition 4.4 Assume that X is locally compact and that every measurable p-path open
set in X is quasiopen. Let u : U — R be a function on a quasiopen set U. Then the
following are equivalent:

(a) u is quasicontinuous (with respect to C), or C ;[7]);

(b) u is measurable and finite g.e., and u o y is continuous (on the set where it is defined)
for p-a.e. curve y : [0,1,] - X;

(c) u is measurable and finite q.e., and u o y is continuous for p-a.e. curve y : [0,1,] —
U.

The assumptions of Proposition 4.4 are guaranteed by Theorem 1.1, but there are also
other situations when they hold, see e.g. Example 4.7 below and Example 5.6 in [4].

As seen from the proof below and Remark 3.5, no assumptions on X are needed for
the implications (a) = (b) < (c) in Proposition 4.4. Also, if we know that every p-path
open set is quasiopen (and thus measurable), then the measurability assumption for # can be
dropped, cf. the proof of Theorem 1.1 where measurability of u# follows from Theorem 1.11
in Jarvenpdid—Jarvenpdd—Rogovin—Rogovin—Shanmugalingam [20].
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For real-valued u, the assumption of local compactness here and in Corollary 4.5 below
can be omitted, see Remark 3.5.

Proof (a) = (b) Assume thatu : U — Ris quasicontinuous. Proposition 3.4 shows that it
is finite g.e. and the sets Uy, :={x € U : u(x) > a}and V, :={x e U : u(x) < o}, ¢ € R,
are quasiopen. Remark 3.5 in Shanmugalingam [29] implies that U, U, and V,, o € R, are
p-path open. Hence, for p-a.e. curve y : [0,1,] — X, the set [, = y 1 (U) is a relatively
open subset of [0, [,/ ], and so are the level sets

y_](Uo,) ={tel, :(uoy)t) >a} and y_l(Va) ={tel,:(uoy)t) <a}, (43)

for all « € Q. This implies thatu oy : I, — R is continuous for p-a.e. curve y.

(b) = (c¢) This is trivial.

(c) = (b) Let I" be the family of exceptional curves y : [0,/,] — U for whichu o y is
not continuous. As U is quasiopen, and thus p-path open by Remark 3.5 in [29], y ~'(U) is
open for p-a.e. curve y : [0,/,] — X. By Lemma 1.34 in [4], p-a.e. such curve y does not
have a subcurve in I'. For such a y, the composition u o y is continuous on the relatively
open subset of [0, /,,] where it is defined.

(b) = (a) Since U is quasiopen, and thus p-path open by Remark 3.5 in [29], for p-a.e.
curve y : [0,1,] = X, theset [, = y~1(U) is a relatively open subset of [0, lyJandu oy
is continuous on /,,. For such y, and all o« € R, the level sets in Eq. 4.3 are relatively open
in I, and thus in [0, [, ]. It follows that the level sets U, := {x € U : u(x) > a} and
Vo :={x € U : u(x) < o}, @ € R, are p-path open and measurable (as u is measurable),
and thus quasiopen by the assumption. Proposition 3.4 now concludes the proof. O

Proof of Theorem 1.2 Theorem 1.1 guarantees that the assumptions of Proposition 4.4 are
satisfied, from which the result follows. O

As a consequence of the characterization in Proposition 4.4 we obtain the following
generalization of Theorem 1.3 and partial converse of Theorem 1.4.

Corollary 4.5 Assume that X is locally compact and that every measurable p-path open set
in X is quasiopen. Let U C X be quasiopen. Then all u € N]lo'cp (U) are quasicontinuous.

Note that in particular we may let U = X.

Proof Since every Newtonian function is measurable, finite g.e. (by [4, Proposition 1.30])
and absolutely continuous on p-a.e. curve, by Shanmugalingam [28, Proposition 3.1] (or
[4, Theorem 1.56]), this follows directly from Proposition 4.4. O

Proof of Theorem 1.3 This follows directly from Theorem 1.1 and Corollary 4.5. (|

Remark 4.6 Theorem 1.3 was recently obtained by Bjorn-Bjorn—Latvala [7]. The proof
given here is very different from that in [7] and appears as an immediate corollary of other
results. In particular, it does not use the fine topology and the quasi-Lindelof principle,
whose proof in [7] relies on the vector-valued, so-called Cheeger, differentiable structure.
The assumptions of our Corollary 4.5 are weaker than those of the version of Theorem 1.3
in [7]. On the other hand, in [7], quasicontinuity is deduced for a larger local space than

NIL’CP(U ). See [7] for more details and the precise definitions of the local spaces considered

therein.
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The following example shows that p-path open sets need not be quasiopen in general.

Example 4.7 Assume that there are no nonconstant rectifiable curves in X. For example,
consider R with the snowflaked metric d(x, y) = |x — y|*, 0 < @ < 1, and the Lebesgue
measure.

Then every set is p-path open, while Lemma 9.3 in Bjorn-Bjorn [5] shows that qua-
siopen sets must be measurable. Any nonmeasurable set U C X is thus p-path open
but cannot be quasiopen. Indeed, the function u constructed in the proof of Theorem 1.1
is Xy, which has zero as an upper gradient, but it is not measurable and thus not in
NP (X).

Note that in this case the zero function is an upper gradient of every function and
thus N''P(X) = LP(X) and C, is the extension of the measure p to all subsets of
X as an outer measure. It thus follows that the quasiopen sets are just the measur-
able sets, and hence every measurable p-path open set is quasiopen. Thus Corollary 4.5
applies in this case, but this already follows (in this particular case) from Luzin’s
theorem.

The same argument applies also if the family of nonconstant rectifiable curves has zero
p-modulus. (In this case “upper gradient” should be replaced by ““p-weak upper gradient”
above). In fact, this assumption is equivalent to the equality N'"7(X) = LP(X) as sets of
functions, see L. Maly [26, Lemma 2.5].

5 Outside the Realm of a Poincaré Inequality

The doubling condition and the Poincaré inequality are standard assumptions in analysis on
metric spaces. In particular, they guarantee that Lipschitz functions are dense in N7 (X),
which in turn (together with completeness) implies the quasicontinuity of Newtonian func-
tions used in the proof of Theorem 1.1. On the other hand, there are plenty of spaces
where the Poincaré inequality fails or the doubling condition is violated, but where Newto-
nian functions are quasicontinuous. Therefore, in this section we relax the assumptions of
Theorem 1.1 and obtain Theorem 1.4.

We postpone the proof of Theorem 1.4 to the end of this section. Meanwhile, we
formulate some consequences of it. First, we have the following characterization of quasi-
continuity among Borel functions, analogous to Proposition 4.4. Note that the assumption of
quasiopenness of p-path open sets can be deduced using Theorem 1.4, or its generalization
Theorem 5.7 below, under the assumptions therein.

Proposition 5.1 Assume that X is locally compact and that every Borel p-path open set
in X is quasiopen. Let u : U — R be a Borel function on a quasiopen set U. Then the
following are equivalent:

(a) u is quasicontinuous (with respect to C, or C Il,]);

(b) u is finite q.e. and u o y is continuous (on the set where it is defined) for p-a.e. curve
y:10,1,] = X;

(¢) uis finite g.e. and u o y is continuous for p-a.e. curve y : [0,1,] — U.

Proof As mentioned before the proof of Proposition 4.4, the proof of (a) = (b) < (c)
therein holds without any assumptions on X and therefore applies also here.
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(b) = (a) Replace the word “measurable” by “Borel” twice in the proof of this
implication in the proof of Proposition 4.4. O

Corollary 5.2 Assume that X is complete and locally compact. Consider the following
statements:

(a) every boundedu € N Lr(Xx)is quasicontinuous;

(b) everyu € NIL‘CP (X) is quasicontinuous;

(c) every Borel p-path open setin X is quasiopen;

(d) ifU is quasiopen, then every Borel function u € NIL’CP (U) is quasicontinuous.

Then (a) < (b) = (c) = (d).
Moreover, if every bounded function u € N“P(X) has a Borel representative ii €
NYP(X), then all the statements are equivalent.

Recall that # is termed a representative of u if both functions belong to the same
equivalence class in N7 (X)/~ (or, equivalently, if i = u q.e., see Section 2).

Proof (a) = (b) Letu € Nli)‘cp(X). Fix xo € X and let n; € Lip(X) be such that n; = 1 on
B(xo, j) and n; = 0 outside B(xq, 2j). Thenu; := un; € N]’P(X) and also arctanu; €
NP (X). By assumption arctan u j 18 quasicontinuous. As u; is finite g.e., Proposition 1.4
in [10] and Proposition 4.7 in [9] show that also u; is quasicontinuous in X. Hence u is
quasicontinuous in B(xg, j) for each j, and it follows from Lemma 5.18 in [4] that u is
quasicontinuous in X.

(b) = (a) This is trivial.

(a) = (c) This is Theorem 1.4.

(c)= () Letu € NIL’CP (U) be a Borel function. Then it is finite g.e. and absolutely
continuous on p-a.e. curve (see Shanmugalingam [28, Proposition 3.1] or Proposition 1.30
and Theorem 1.56 in [4]). The quasicontinuity of u then follows from Proposition 5.1.

Finally, assume that every bounded function u € N7 (X) has a Borel representative i €
N'-P(X) and that (d) holds with U = X. Letu € N'“P(X) be bounded and & € N!'7(X)
be a Borel representative of u. By assumption i is quasicontinuous. As X is locally com-
pact, Proposition 1.4 in Bjorn—-Bjérn—Shanmugalingam [10] (or [4, Proposition 5.27]) and
Proposition 4.7 in Bjorn-Bjorn—Lehrbick [9] show that also u is quasicontinuous. Hence
(a) holds. O

The following open problems are natural in view of Corollary 5.2 and the comment after
it.

Open problem 5.3 Does every (bounded) u € N L.P(X) have a Borel representative?

Note that if every bounded u € N Lr(X) has a Borel representative, then also every
unbounded v € N'?(X) has a Borel representative. Indeed, if # = arctan v has a Borel
representative i (which we may require to have values in (—m /2, r/2)), then tan & becomes
a Borel representative of v.

Since any quasiopen set can be written as a union of a Borel set and a set of capacity zero
(cf. [8, Lemma 9.5]), Proposition 3.4 shows that the answer to Open problem 5.3 is positive
for a particular space X if all Newtonian functions on X are quasicontinuous.
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Open problem 5.4 Can “Borel” in Theorem 1.4 be replaced by “measurable”? Example 4.7
shows that it cannot be omitted altogether.

It would follow that a version of Corollary 5.2 with “Borel” replaced by “measurable”
would also be possible, and since all Newtonian functions are measurable, the equivalence
of (a)—(d) therein would follow in that case.

We now proceed to the proof of Theorem 1.4. For this, we will need Proposition 1.5
about measurability of the function u# in Eq. 4.1, which does not rely on any Poincaré
inequality.

Recall that a subset of a complete separable metric space is analytic (or Suslin) if it is a
continuous image of a complete separable metric space, see e.g. Kechris [21, Definitions 3.1
and 14.1]. By Theorem 14.11 (Suslin’s theorem) therein, every Borel subset of a complete
separable space is analytic. (In fact, it shows that Borel sets are exactly those analytic sets
which are also coanalytic, i.e. whose complements are analytic).

Proposition 14.4 in [21] tells us that countable unions and countable intersections of ana-
lytic sets are analytic. Moreover, if f : ¥ — Z is a Borel mapping between two complete
separable metric spaces, then images and preimages under f of analytic sets are analytic
(also by Proposition 14.4 in [21]). By Theorem 21.10 in [21] (Luzin’s theorem), every ana-
Iytic subset of a complete separable metric space Y is v-measurable for every o -finite Borel
measure v on Y.

When proving Theorem 1.4 we will need Proposition 1.5 with a lower semicontin-
uous o only, in which case the proof can be considerably simplified (in particular the
use of Lemma 5.5 can be avoided). As we find it interesting that Proposition 1.5 is
true also for Borel functions we give a proof of the more general result, for which we
need the following result from Jarvenpé—Jiarvenpi—Rogovin—Rogovin—Shanmugalingam
[20, Lemma 2.4].

Lemma 5.5 Let Z be a metric space and let ) be a class of functions p : Z — [0, 0o] such
that the following properties hold:

(a) Y contains all continuous p : Z — [0, co];
(b) ifpjeYandpj /' pthenp e},

(¢) ifp,o0€YVandr,s € R thenrp +so € ),
d) ifpeYandO<p<I1lthenl—pe).

Then Y contains all Borel functions p : Z — [0, o).

Proof of Proposition 1.5 For o > 0, let L, consist of all continuous curves y : [0, 1] —> X
with Lipy < «. (In this proof we want all curves parameterized on the same interval, and
do not assume that they are parameterized by arc length). Then L, is a metric space with
respect to the supremum norm. Since X is complete, it follows from Ascoli’s theorem that
Ly is complete. (See e.g. Royden [27, p. 169] for a version of Ascoli’s theorem valid for
metric space valued equicontinuous functions).

As X is separable, it is easily verified that L, is separable. Indeed, let U be a count-
able base of the topology on X and let P be the family of all finite sequences Q =
(1, U1y ...y (Im, Up)), where I; C [0, 1] are closed intervals with rational endpoints and
U, are selected from 4. Then P is countable. For each Q = ((I1, Uy), ..., (I,, Uy)) € P,
let Lo be the family of all y € L, such that y(f;) C U;,i = 1, ..., m. Choosing one curve
from every nonempty Lo provides us with a countable dense system in L.
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Let YV, be the collection of all p : X — [0, oo] for which the functional ®, : £, —
[0, oo] defined by

d>p:yr—>/,ods
Y

is Borel. Lemma 2.2 in Jdrvenpéd-Jarvenpi—Rogovin—Rogovin—Shanmugalingam [20]
shows that if p is continuous then p € V. If p; € YV and p; /* p then the monotone
convergence theorem implies that for all y € L,

cbp,(y):/p,-ds/fpds:cbp(y),
Y Y

i.e. that @, is a limit of Borel functions on L, and hence Borel. Thus, p € ), . In particular,
(a) and (b) in Lemma 5.5 are satisfied by ). The properties (c) and (d) therein follow from
the linearity of the integral.

We can thus conclude from Lemma 5.5 that for every « > 0 and every Borel p : X —
[0, oo], the functional &, : L, — [0, o] is Borel. Let p : X — [0, oo] be a fixed Borel
function and a > 0 be arbitrary. We shall prove that the set G = {x € X : u,(x) < a}is
measurable.

First, assume that p > § for some § > 0. Note that if x € G, then for every y €
I'y with f v pds < o, we have [, < «/8 and hence the reparameterized curve y(t) :=
y (I, 1) belongs to Ly/s. It follows that for x € G, the infimum in the definition of u, can
equivalently be taken over all y € T'x N L,/5. We define

F]:{yeﬁa/g:/pds<a} and Tr={y eLys:y() ¢ U}
14

Alsolet f; : Ly/s — X be the evaluation maps given by f;(y) = y(j), j = 0, 1, which
are clearly 1-Lipschitz, and thus Borel.

By the above, the functional ®,, : Ea/g — [0, oo] is Borel, and thus I'y = CD;I (10, @)) is
a Borel subset of L,/s. The set I'; is the preimage of the analytic set X \ U under the Borel
mapping f1, and thus I'; is analytic by Proposition 14.14 in Kechris [21]. It thus follows
from Proposition 14.4 in [21] that "1 N T", is analytic. Since G = fo(I'1 NI[';), we conclude
that G is analytic, and thus measurable, by Luzin’s theorem [21, Theorem 21.10].

Now, let p : X — [0, co] be arbitrary and set p; = p +1/j, j = 1,2,...,. By the
above, each u,, i is measurable. We shall show that u, = lim; o u, ;> which implies the
measurability of u,,.

Given x € X and ¢ > 0, there exists y € I'y such that fy pds < uy(x)+ . Since y is
rectifiable, we have

Up(x) < up;(x) < f

l
deSE/(p-i-l/j)ds <up(x)+g+7)f,
4 14

Letting j — oo and then ¢ — 0 shows that u,(x) = lim;_, Up; (x) forall x € X, and
we conclude that u, is measurable. (I

We are now ready to prove Theorem 1.4. It will be obtained in a more general form,
using coanalytic sets. For separable X we have the following result.

Theorem 5.6 Assume that X is complete and separable, and that every bounded u €
NLP(X)is quasicontinuous. Then every coanalytic p-path open set U C X is quasiopen.

@ Springer



Quasiopen and p-path open sets, and quasicontinuity 197

For nonseparable spaces we use the fact that supp u is always separable, by Propo-
sition 1.6 in [4]. This way we can avoid nonseparable analytic (Suslin) sets and reduce
our considerations to separable spaces where Suslin and analytic sets are the same, cf.
Hansell [15] and Kechris [21]. The following result is primarily designed for nonseparable
spaces. However, it improves the criterion also for separable spaces, since we do not impose
any assumptions on U \ supp p.

Theorem 5.7 Assume that supp ju is complete, and that every bounded u € NP (X) is
quasicontinuous. Then every p-path open set U C X, such that supp pu \ U is analytic (in
supp w), is quasiopen.

Theorem 5.6 is a special case of Theorem 5.7, but we will prove Theorem 5.6 first and
then use it to prove Theorem 5.7.

Remark 5.8 By Theorem 1.1 in Bjorn—Bjorn—Shanmugalingam [10] (or [4, Theorem 5.29])
and the comments after Proposition 4.7 in Bjorn—Bjorn-Lehrbéck [9], the assumptions in
Theorem 5.7 hold in particular if X (or more generally supp ) is complete and locally
compact, and continuous functions are dense in N'-7(X) or equivalently in N7 (supp ).
The last equivalence follows from Lemma 5.19 in [4], which also implies that every
(bounded) function in N7 (X) is quasicontinuous if and only if every (bounded) function
in NP (supp w) is quasicontinuous.

At this point we would also like to mention that it follows from the recent results in
Ambrosio—Colombo-Di Marino [2] and Ambrosio—Gigli—Savaré [3] that, if supp p is a
complete doubling metric space and 1 < p < oo, then Lipschitz functions are dense in
NP (X). Thus, the assumptions on X in Theorem 5.7 hold if X (or supp u) is a complete
doubling metric space and 1 < p < oo. Itis easily verified that such a space is automatically
locally compact.

Proof of Theorem 5.6 We follow the proof of Theorem 1.1. Let p € L?(X) be as therein.
The Vitali—Carathéodory theorem (Proposition 7.14 in Folland [12]) provides us with a
lower semicontinuous pointwise majorant of p which also belongs to L”(X). We can
therefore without loss of generality assume that p is lower semicontinuous.

The measurability of the function u in Eq. 4.1 is now guaranteed by Proposition 1.5 and
the assumption that U is coanalytic, rather than by the p-Poincaré inequality and Theo-
rem 1.11 in [20]. Also, since quasicontinuity of bounded Newtonian functions is assumed,
it need not be concluded from the p-Poincaré inequality. The rest of the proof goes through
verbatim. O

Proof of Theorem 5.7 Let Y = supp . It follows from Proposition 1.6 in [4] that Y is
separable. Let U C X be a p-path open set such that ¥ \ U is analytic. It follows from
Proposition 1.53 in [4] that p-almost no curve intersects X \ Y, and thus U NY is also p-path
open.

Hence, as all bounded u € NP(Y) are quasicontinuous by Lemma 5.19 in [4], Theo-
rem 5.6 implies that UNY is quasiopenin Y, i.e. for every ¢ > 0 there is a relatively open set

G CYsuchthat UNY C G and C},’(G \ U) < ¢. Thus there exists v € N'”(Y) such that
p

NLP(Y)
extending v by 1 to X \ ¥ shows that C,,(G \ U) < ||v]|

v > xg\v and v < ¢&. Since p-almost no curve intersects X \ ¥ and u(X \Y) =0,

p — p
Nl'p(X) - ”v”N]‘p(Y) <é&.
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Let G’ = G U (X \ Y), which is open and contains U. By Proposition 1.53 in [4] we see
that Cp,(X \ Y) = 0 and hence

Cp(G'\U) = Cp(G\U) + Cp(X\Y) = C,(G\U) <,
showing that U is quasiopen in X. O

Proof of Theorem 1.4 This is a special case of Theorem 5.7. O
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