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Abstract Let �P = (p1, . . . , pm) with 1 < p1, . . . , pm < ∞, 1/p1 + · · · + 1/pm = 1/p
and �w = (w1, . . . , wm) ∈ A �P . In this paper, we investigate the weighted bounds with
dependence on aperture α for multilinear square functions Sα,ψ( �f ). We show that

‖Sα,ψ( �f )‖Lp(ν �w) ≤ C
n,m,ψ, �P αmn[ �w]max( 12 ,

p′
1

p
,...,

p′
m

p
)

A �P

m∏

i=1

‖fi‖Lpi (wi).

This result extends the result in the linear case which was obtained by Lerner in 2014. Our
proof is based on the local mean oscillation technique presented firstly to find the weighted
bounds for Calderón–Zygmund operators. This method helps us avoiding intrinsic square
functions in the proof of our main result.
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1 Introduction

The problem of the optimal quantitative estimates for the Lp(w) norm of a given operator
T in terms of the Ap constant of the weight w has been very challenging and interesting in
the last decades.

First, the problem for the Hardy–Littlewood maximal operator was solved by S. Buckley
[1] who proved

‖M‖Lp(w) ≤ Cp [w]
1

p−1
Ap

, (1.1)

where Cp is a dimensional constant. We say that (1.1) is a sharp estimate since the exponent
1/(p − 1) cannot be replaced by a smaller one.

However, for singular integral operators the question was much more complicated. In
2012, T. Hytönen [17] proved the so-calledA2 theorem, which asserted that the sharp depen-
dence of the L2(w) norm of a Calderón–Zygmund operator on theA2 constant of the weight
w was linear. More precisely,

‖T ‖Lp(w) ≤ CT,n,p[w]max
(
1, 1

p−1

)

Ap
, 1 < p < ∞. (1.2)

Shortly after that, A.K. Lerner gave a much simpler proof [20] of the A2 theorem proving
that every Calderón–Zygmund operator is bounded from above by a supremum of sparse
operators. Namely, if X is a Banach function space, then

‖T (f )‖X ≤ C sup
D,S

‖AD,S(f )‖X, (1.3)

where the supremum is taken over arbitrary dyadic grids D and sparse families S ⊂ D , and

AD,S(f ) =
∑

Q∈S

(
−
∫

Q

f
)
χQ.

The interested readers can consult [18] for a survey on the history of the proof.
The versatility of Lerner’s techniques is reflected in the extension of Eq. 1.3 and the A2

theorem to multilinear Calderón–Zygmund operators in [8]. Later on, Li, Moen and Sun in
[25] proved the corresponding sharp weighted A �P bounds for multilinear sparse operators.
In other words, if 1 < p1, . . . , pm < ∞ with 1

p1
+ · · · + 1

pm
= 1

p
and �w ∈ A �P , then

‖AD,S( �f )‖Lp(ν �w) � [ �w]max(1,
p′
1

p
,...,

p′
m

p
)

A �P

m∏

i=1

‖fi‖Lpi (wi), (1.4)

whereAD,S denotes the multilinear sparse operators

AD,S( �f )(x) =
∑

Q∈S

(
m∏

i=1

(fi)Q

)
χQ(x),

and the other notation is explained in Section 2. The readers are referred to [7, 25] to observe
that from Eq. 1.4, we can derive the multilinear A �P theorem for 1/m < p < ∞. More
precisely, if T is a multilinear Calderón–Zygmund operator, 1 < p1, . . . , pm < ∞, 1

p1
+

· · · + 1
pm

= 1
p
and �w = (w1, . . . , wm) ∈ A �P , then

‖T ( �f )‖Lp(ν �w) ≤ C
n,m, �P ,T

[ �w]max(1,
p′
1

p
,...,

p′
m

p
)

A �P

m∏

i=1

‖fi‖Lpi (wi). (1.5)
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For further details on the theory of multilinear Calderón–Zygmund operators, we refer to
[14, 15] and the references therein.

Let Sα,φ be the square function defined by means of the cone �α in R
n+1+ of aperture

α > 1, and a standard kernel φ as follows

Sα,φ(f )(x) =
( ∫

�α(x)

|f � φt (y)|2 dydt

tn+1

)1/2
,

where φt (x) = t−nφ(x/t) and � refers to convolution operation of two functions. In [22],
Lerner by applying intrinsic square functions, introduced in [29], proved sharp weighted
norm inequalities for Sα,φ(f ). Later on, Lerner himself improved the result— in the sense
of determination of sharp dependence on α — in [21] by using the local mean oscillation
formula. More precisely,

‖Sα,φ‖Lp(w) � αn[w]max
(
1
2 , 1

p−1

)

Ap
, 1 < p < ∞. (1.6)

Motivated by these works, the main aim of this paper is to investigate the weighted
bounds for certain multilinear square functions. Let us recall the definition of multilinear
square functions considered in this paper.

Let ψ(x, �y) be a locally integrable function defined away from the diagonal x = y1 =
. . . = ym in R

n×(m+1). We assume that there are positive constants δ and A so that the
following conditions hold.

Size condition:

|ψ(x, �y)| ≤ A

(1 + |x − y1| + · · · + |x − ym|)mn+δ
. (1.7)

Smoothness condition: There exists γ > 0 so that

|ψ(x, �y) − ψ(x + h, �y)| ≤ A|h|γ
(1 + |x − y1| + · · · + |x − ym|)mn+δ+γ

, (1.8)

whenever |h| < 1
2 maxj |x − yj |, and

|ψ(x, y1, . . . , yi , . . . , ym)−ψ(x, y1, . . . , yi +h, . . . , ym)| ≤ A|h|γ
(1 + |x − y1| + · · · + |x − ym|)mn+δ+γ

,

(1.9)

whenever |h| < 1
2 |x − yi | for i ∈ {1, . . . , m}.

For �f = (f1, . . . , fm) ∈ S(Rn) × · · · × S(Rn) and x /∈ ⋂m
j=1 supp fj we define

ψt( �f )(x) = 1

tmn

∫

(Rn)m
ψ

(x

t
,
y1

t
, . . . ,

ym

t

) m∏

j=1

fj (yj )dyj .

For λ > 2m, α > 0, the multilinear square functions g∗
λ,ψ and Sψ,α associated to ψ(x, �y)

are defined by

g∗
λ,ψ( �f )(x) =

( ∫

R
n+1+

( t

t + |x − y|
)nλ|ψt( �f )(y)|2 dydt

tn+1

)1/2
,

and

Sα,ψ( �f )(x) =
( ∫

�α(x)

|ψt( �f )(y)|2 dydt

tn+1

)1/2
,

where �α(x) = {(y, t) ∈ R
n+1+ : |x − y| < αt}.
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These two mutilinear square functions were introduced and investigated in [6, 27, 30].
The study on the multilinear square functions has important applications in PDEs and other
fields. For further details on the theory of multilinear square functions and their applications,
we refer to [2–6, 9–12, 16, 30] and the references therein.

In this paper, we assume that there exist some 1 ≤ p1, . . . , pm ≤ ∞ and some 0 <

p < ∞ with 1
p

= 1
p1

+ · · · + 1
pm

, such that g∗
λ,ψ maps continuously Lp1(Rn) × · · · ×

Lpm(Rn) → Lp(Rn). Under this condition, it was proved in [30] (see also [27]) that g∗
λ,ψ

maps continuously L1(Rn) × · · · × L1(Rn) → L1/m,∞(Rn) provided λ > 2m. Moreover,
since Sα,ψ is dominated by g∗

λ,ψ , we also get that Sα,ψ maps continuously L1(Rn) × · · · ×
L1(Rn) → L1/m,∞(Rn). The next theorem gives the weighted bounds depending on α for
multilinear square functions Sα,ψ( �f ).

Theorem 1.1 Let �P = (p1, . . . , pm) with 1 < p1, . . . , pm < ∞ and 1/p1 +· · ·+1/pm =
1/p. Let α ≥ 1. If �w = (w1, . . . , wm) ∈ A �P , then

‖Sα,ψ( �f )‖Lp(ν �w) ≤ C
n,m,ψ, �P αmn[ �w]max( 12 ,

p′
1

p
,...,

p′
m

p
)

A �P

m∏

i=1

‖fi‖Lpi (wi). (1.10)

For the weighted bounds for g∗
λ,ψ functions, we have the following result.

Theorem 1.2 Let λ > 2m, �P = (p1, . . . , pm) with 1 < p1, . . . , pm < ∞ and 1/p1 +
· · · + 1/pm = 1/p. If �w = (w1, . . . , wm) ∈ A �P , then

‖g∗
λ,ψ( �f )‖Lp(ν �w) ≤ C

n,m,ψ, �P [ �w]max( 12 ,
p′
1

p
,...,

p′
m

p
)

A �P

m∏

i=1

‖fi‖Lpi (wi). (1.11)

We would like to point out that in the linear case, Theorem 1.1 gives the sharp weighted
bounds with sharp dependence on α whereas Theorem 1.2 provides sharp weighted bounds
for square functions. See for example [20, 21]. Our conjecture is that these bounds are
sharp but the sharpness problem in terms of the aperture α and the weight may be more
challenging. This may be involved in extending some deep results of Fefferman [13] to
multilinear case.

The outline of this paper will be as follows. In Section 2 we establish the notation that
we will follow as well as some background which will be helpful in the sequel. Also, the
weighted estimates of the operators Aγ

D,S , which have key roles in the proof of the main
result of this paper, will be obtained. In Section 3, we study weak (p, p) estimates for
square functions. Finally, Section 4 contains the proofs of the main results i.e. Theorem 1.1,
Theorem 1.2 and Theorem 2.1.

Throughout this paper A � B will denote A ≤ CB, where C will denote a positive
constant independent of the weight which may change from one line to other.

2 Preliminaries

2.1 Multiple Weight Theory

For a general account on multiple weights and related results we refer the interested reader
to [24]. In this section we briefly introduce some definitions and results that we will need.
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Consider m weights w1, . . . , wm and denote −→w = (w1, . . . , wm). Also let 1 <

p1, . . . , pm < ∞ and p be numbers such that 1
p

= 1
p1

+ · · · + 1
pm

and denote
−→
P =

(p1, . . . , pm). Set

ν �w :=
m∏

i=1

w

p
pi

i .

We say that �w satisfies the A �P condition if

[ �w]A �P := sup
Q

( 1

|Q|
∫

Q

ν �w
) m∏

j=1

( 1

|Q|
∫

Q

w
1−p′

j

j

)p/p′
j

< ∞. (2.1)

When pj = 1,
(

1
|Q|

∫
Q

w
1−p′

j

j

)p/p′
j
is understood as (inf

Q
wj )

−p. This condition, introduced

in [24], was shown to characterize the classes of weights for which the multilinear maximal
functionM is bounded from Lp1(w1) × · · · × Lpm(wm) into Lp(ν �w) (see [24, Thm. 3.7]).

2.2 Dyadic Grids and Sparse Families

For the notion of general dyadic grid D we refer to previous papers (e.g. [19] and [18]).
The collection {Q} is called a sparse family of cubes if there are pairwise disjoint subsets
E(Q) ⊂ Q with |Q| ≤ 2|EQ|.

Let σ ∈ A∞ where A∞ is the class of Muckenhoupt weights. We now define the dyadic
maximal function with respect to σ

MD
σ (f )(x) = sup

Q�x,Q∈D

1

σ(Q)

∫

Q

|f |σ.

By different proofs (see e.g. [26]), it is well-known that

‖MD
σ f ‖Lp(σ) ≤ p′‖f ‖Lp(σ), 1 < p < ∞. (2.2)

Finally, given a sparse family S over a dyadic grid D and γ ≥ 1, a multilinear sparse
operator is an averaging operator over S of the form

Aγ

D,S( �f )(x) =
[ ∑

Q∈S

( m∏

i=1

(fi)Q

)γ

χQ(x)
]1/γ

.

These operators verify the following multilinear Ap theorem that was proved in [8] and
[25, Thm. 3.2.] for γ = 1. In Section 4, we prove the similar estimate for γ ≥ 1.

Theorem 2.1 Suppose that 1 < p1, . . . , pm < ∞ with 1
p1

+ · · · + 1
pm

= 1
p
and �w ∈ A �P .

Then

‖Aγ

D,S( �f )‖Lp(ν �w) � [ �w]max( 1
γ

,
p′
1

p
,...,

p′
m

p
)

A �P

m∏

i=1

‖fi‖Lpi (wi).

2.3 A Local Mean Oscillation Formula

The key ingredient to prove our main results is Lerner’s local oscillation formula from [19].
We will need to introduce the following notions to understand his result.

By a median value of a measurable function f on a set Q we mean a possibly nonunique,
real number mf (Q) such that

max
(|{x ∈ Q : f (x) > mf (Q)}|, |{x ∈ Q : f (x) < mf (Q)}|) ≤ |Q|/2.
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The decreasing rearrangement of a measurable function f on Rn is defined by

f ∗(t) = inf{α > 0 : |{x ∈ R
n : |f (x)| > α}| < t} (0 < t < ∞).

The local mean oscillation of f is

ωλ(f ; Q) = inf
c∈R

(
(f − c)χQ

)∗(
λ|Q|) (0 < λ < 1).

Observe that it follows from the definitions that

|mf (Q)| ≤ (f χQ)∗(|Q|/2). (2.3)

Given a cube Q0, the dyadic local sharp maximal function m
#,d
λ;Q0

f is defined by

m
#,d
λ;Q0

f (x) = sup
x∈Q′∈D(Q0)

ωλ(f ; Q′).

The following theorem was proved by Hytönen [18, Theorem 2.3] in order to improve
Lerners formula given in [19] by getting rid of the local sharp maximal function.

Theorem 2.2 Let f be a measurable function on Rn and let Q0 be a fixed cube. Then there
exists a (possibly empty) sparse family S of cubes Q ∈ D(Q0) such that for a.e. x ∈ Q0,

|f (x) − mf (Q0)| ≤ 2
∑

Q∈S
ω 1

2n+2
(f ; Q)χQ(x). (2.4)

3 Weak (p, p) Estimate for Square Functions

For a measurable function F ∈ R
n+1+ , we define

Sα(F )(x) =
( ∫

�α(x)

|F(y, t)|2 dydt

tn+1

)1/2
,

where �α(x) = {(y, t) ∈ R
n+1+ : |x −y| < αt}. We prove the following result on weak type

(p, p) estimate for Sα .

Lemma 3.1 Let α ≥ 1. Then for 0 < p < 2 there exists cp so that

‖Sα(F )‖Lp,∞ ≤ cpαn/p‖S1(F )‖Lp,∞ .

Proof Note that the case p = 1 was proved in [21]. We now adapt the argument in [21] to
our present situation.

For λ > 0 we set

�λ = {x : S1(F )(x) > λ} and Uλ = {x : Mχ�λ(x) > 1/(2α)n},
where M is the Hardy-Littlewood maximal function. Then by [28, p. 315], we have

∫

Rn\Uλ

Sα(F )(x)2dx ≤ 2αn

∫

Rn\�λ

S1(F )(x)2dx.

This in combination with the weak type (1, 1) estimates ofM and Chebyshev’s inequality
implies that

|{x : Sα(F )(x) > λ}| ≤ |Uλ| + |{x ∈ R
n\Uλ : Sα(F )(x) > λ}|

≤ cnα
n |{x : S1(F )(x) > λ}| + 1

λ2

∫
Rn\Uλ

Sα(F )(x)2dx

≤ cnα
n |{x : S1(F )(x) > λ}| + 2αn

λ2

∫
Rn\�λ

S1(F )(x)2dx.
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On the other hand, we have

2αn

λ2

∫
Rn\�λ

S1(F )(x)2dx ≤ 4αn

λ2

∫ λ

0 t |{x : S1(F )(x) > t}|dt

≤ 4αn

λ2
‖S1(F )‖p

Lp,∞
∫ λ

0 t1−pdt

≤ cp
αn

λp ‖S1(F )‖p
Lp,∞ .

Therefore,

λp |{x : Sα(F )(x) > λ}| ≤ cnα
n[λp |{x : S1(F )(x) > λ}| + ‖S1(F )‖p

Lp,∞],
which implies that

‖Sα(F )‖Lp,∞ ≤ cpαn/p‖S1(F )‖Lp,∞ .

This completes our proof.

4 Proof of Main Results

Proof of Theorem 2.1 To prove this theorem, we borrow some ideas in [25, Theorem 3.2].
However, we refine the argument in [25, Theorem 3.2] to provide a direct proof.

Throughout the proof, let σi = w
1−p′

i

i , �f σ = (f1σ1, . . . , fmσm) and fi ≥ 0. Since we
may assume that w ∈ A �P , we have σi, ν �w ∈ A∞ (see [24, Theorem 3.6]).

It suffices to prove that

‖Aγ

D,S( �f σ)‖Lp(ν �w) � [ �w]max( 1
γ

,
p′
1

p
,...,

p′
m

p
)

A �P

m∏

i=1

‖fi‖Lpi (σi ). (4.1)

Let q = min{p, γ }. We get

‖Aγ

D,S( �f σ)‖q

Lp(ν �w) =
(∫

Rn

[ ∑
Q∈S

(∏m
i=1

1
|Q|

∫
Q

fiσi

)γ

χQ(x)
] p

γ
ν �w

) q
p

≤
(∫

Rn

[ ∑
Q∈S

(∏m
i=1

1
|Q|

∫
Q

fiσi

)q

χQ(x)
] p

q
ν �w

) q
p

,

where we used the fact q ≤ γ . Thus

‖Aγ

D,S( �f σ)‖q

Lp(ν �w) ≤ ‖[Aq

D,S( �f σ)]q‖Lp/q (ν �w). (4.2)

Denote β = max( 1
q
,

p′
1

p
, . . . ,

p′
m

p
). Also assume that g ∈ L(p/q)′(ν �w) and g ≥ 0.

We have
∫

Rn

[Aq

D,S( �f σ)]qgν �w =
∑

Q∈S

∫

Q

gν �w ×
( m∏

i=1

1

|Q|
∫

Q

fiσi

)q

.

From this and the definition of [ �w]A �P , we obtain

∑
Q∈S

∫
Q

gν �w ×
( ∏m

i=1
1

|Q|
∫
Q

fiσi

)q

≤ [ �w]βq
A �P

∑
Q∈S

|Q|mq(βp−1)

ν �w(Q)βq−1
∏m

i=1 σi (Q)
q(βp/p′

i
−1)

×
(

1
ν �w(Q)

∫
Q

gν �w
)

×
(∏m

i=1
1

σi (Q)

∫
Q

fiσi

)q

≤ 2mq(βp−1)[ �w]βq
A �P

∑
Q∈S

|EQ|mq(βp−1)

ν �w(EQ)βq−1
∏m

i=1 σi (EQ)
q(βp/p′

i
−1)

×
(

1
ν �w(Q)

∫
Q

gν �w
)

×
(∏m

i=1
1

σi (Q)

∫
Q

fiσi

)q
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where in the last inequality we used the facts ν �w(Q) ≥ ν �w(EQ), σi(Q) ≥ σi(EQ) and the
positivity of the exponents. On the other hand, by Hölder’s inequality, we have

|EQ| =
∫

EQ

ν
1

mp

�w
m∏

i=1

σ

1
mp′

i

i ≤ ν �w(EQ)
1

mp

m∏

i=1

σi(EQ)

1
mp′

i . (4.3)

Insert this into the estimate above to conclude that
∑

Q∈S

∫

Q

gν �w ×
( m∏

i=1

1

|Q|
∫

Q

fiσi

)q

≤ 2mq(βp−1)[ �w]βq
A �P

∑

Q∈S

[( 1

ν �w(Q)

∫

Q

gν �w
)
ν �w(EQ)

1
(p/q)

′
]

×
[

m∏

i=1

( 1

σi(Q)

∫

Q

fiσi

)
σi(EQ)

1
pi

]q

which together with Hölder’s inequality and the disjointness of the family {EQ}Q∈S gives

∑
Q∈S

∫
Q

gν �w ×
(∏m

i=1
1

|Q|
∫
Q

fiσi

)q ≤ 2mq(βp−1)[ �w]βq
A �P

[ ∑
Q∈S

(
1

ν �w(Q)

∫
Q

gν �w
)(p/q)′

ν �w(EQ)
] 1

(p/q)′

× ∏m
i=1

[ ∑
Q∈S

(
1

σi (Q)

∫
Q

fiσi

)pi

σi (EQ)
]q/pi

≤ 2mq(βp−1)[ �w]βq
A �P

‖MD
ν �w (g)‖

L(p/q)′ (ν �w)
× ∏m

i=1 ‖MD
σi

(fi )‖q

Lpi (σi )

� 2mq(βp−1)[ �w]βq
A �P

‖g‖
L(p/q)′ (ν �w)

× ∏m
i=1 ‖fi‖q

Lpi (σi )
,

where to get the last inequality we applied (2.2). Hence,

‖Aγ

D,S( �f σ)‖q

Lp(ν �w)

(4.2)≤ ‖[Aq

D,S( �f σ)]q‖Lp/q (ν �w)

≤ sup‖g‖
L(p/q)′ (ν �w)

=1
∫
Rn [Aq

D,S( �f σ)]qgν �w
≤ 2mq(βp−1)[ �w]βq

A �P
× ∏m

i=1 ‖fi‖q

Lpi (σi )
.

This proves (4.1).

In order to prove Theorem 1.1, we use the approach of [21]. Let � be a fixed Schwartz
function such that

χB(0,1)(x) ≤ �(x) ≤ χB(0,2)(x).

We define

S̃α,ψ ( �f )(x) =
( ∫

R
n+1+

�
(

x−y
tα

)
|ψt( �f )(y)|2 dydt

tn+1

)1/2
.

It easy to see that
Sα,ψ( �f )(x) ≤ S̃α,ψ ( �f )(x) ≤ S2α,ψ( �f )(x). (4.4)

As a generalization of [21, Lem. 3.1] for multilinear case, we have

Proposition 4.1 For any cube Q ⊂ R
n, α ≥ 1 and δ0 < min{δ, 1/2}, we have

ωλ(S̃α,ψ ( �f )2; Q) ≤ cm,n,λ,ψα2mn
∞∑

l=0

1

2lδ0

( m∏

i=1

1

|2lQ|
∫

2lQ

|fi(y)|dy
)2

.

Proof of Proposition 4.1 Without the loss of generality we may assume that δ < 1/2.
For a cube Q ⊂ R

n we set T (Q) = Q × (0, �(Q)). We then write

S̃α,ψ ( �f )2(x) = ∫
T (2Q)

�
(

x−y
αt

)
|ψt( �f )(y)|2 dydt

tn+1 + ∫
R

n+1+ \T (2Q)
�

(
x−y
αt

)
|ψt( �f )(y)|2 dydt

tn+1

= E( �f )(x) + F( �f )(x).
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We set �f 0 = (f1χQ∗ , . . . , fmχQ∗), where Q∗ = 8Q. For each i = 1, . . . , m, we set
f 0

i = fiχQ∗ and f ∞
i = fiχ(Q∗)c . Then we have

E( �f )(z) ≤ 2mE( �f 0)(z) + 2m
∑

�α∈I0

E
[
(f

α1
1 , . . . , f αm

m )
]
(z), (4.5)

where I0 := {�α = (α1, . . . , αm) : αi ∈ {0, ∞}, and at least one αi = 0}. We denote the
vector �α by �0 if αi = 0 for all 1 ≤ i ≤ m. Therefore,

(E( �f )χQ)∗(λ|Q|) ≤ 2m
{
(E( �f 0)χQ)∗(λ|Q|/2m) +

∑

�α∈I0

[
E(f

α1
1 , . . . , f αm

m )χQ

]∗
(λ|Q|/2m)

}
.

Due to Eq. 4.4 and Lemma 3.1, ‖S̃α,ψ ( �f )‖L1/m,∞ ≤ cm,nα
mn‖S1,ψ ( �f )‖L1/m,∞ . This

together with the fact that S1,ψ maps continuously from L1 × . . . × L1 into L1/m,∞ yields
that

(E( �f 0)χQ)∗(λ|Q|/2m) ≤ (S̃α,ψ( �f 0)χQ)∗(λ|Q|/2m)2

≤ cn,m,λ,ψα2mn
(∏m

j=1
1

|Q∗|
∫
Q∗ |fj |

)2
.

On the other hand, for each �α ∈ I0 we have
[
E(f

α1
1 , . . . , f αm

m )χQ

]∗
(λ|Q|/2m) ≤ 2m

λ|Q|
∫

Rn

∫

T (2Q)

�
(x − y

αt

)∣∣∣ψt (f
α1
1 , . . . , f αm

m )(y)

∣∣∣
2 dydt

tn+1
dx.

This along with the fact that
∫

Rn

�
(x − y

αt

)
dx ≤ cn(αt)n

implies that
[
E(f

α1
1 , . . . , f αm

m )χQ

]∗
(λ|Q|/2m) ≤ cn

2m

λ|Q|
∫

T (2Q)

(αt)n|ψt(f
α1
1 , . . . , f αm

m )(y)|2 dydt

tn+1
.

Hence for y ∈ 2Q and (α1, . . . , αm) ∈ I0, by Eq. 1.7,
|ψt(f

α1
1 , . . . , f

αm
m )(y)| ≤ A

∫
(Rn)m

tδ

(t+|y−z1|+···+|y−zm|)mn+δ

∏m
j=1 |f αj

j (zj )|d(zj )

≤ A
∫
(Rn)m

tδ

(|y−z1|+···+|y−zm|)mn+δ

∏m
j=1 |f αj

j (zj )|d(zj )

≤ A(t/�(Q))δ
∫
(Rn)m

�(Q)δ

(|y−z1|+···+|y−zm|)mn+δ

∏m
j=1 |f αj

j (zj )|d(zj )

≤ A(t/�(Q))δ
[ ∫

(8Q)m
· · · + ∑

k≥3

∫
(2k+1Q)m\(2kQ)m

. . .
]

≤ cn(t/�(Q))δ
∑∞

k=0
1
2kδ

(∏m
j=1

1
|2kQ|

∫
2kQ

|fj |
)
.

These two estimates give that for �α ∈ I0
[
E(f

α1
1 , . . . , f

αm
m ) χQ

]∗
(λ|Q|/2m)

≤ cn

[ ∑∞
l=0

1
2lδ

( ∏m
j=1

1
|2lQ|

∫
2lQ

|fj |
)]2

2m

λ|Q|
∫
T (2Q)

(αt)n(t/�(Q))2δ
dydt

tn+1

≤ cn,λ,ψαn
[ ∑∞

l=0
1
2lδ

( ∏m
j=1

1
|2lQ|

∫
2lQ

|fj |
)]2

≤ cn,λ,ψαn
∑∞

l=0
1
2lδ

( ∏m
j=1

1
|2lQ|

∫
2lQ

|fj |
)2

where in the last inequality we used Hölder’s inequality.
Therefore,

(E( �f )χQ)∗(λ|Q|) ≤ cn,m,λ,ψα2mn
∞∑

l=0

1

2lδ

( m∏

j=1

1

|2lQ|
∫

2lQ

|fj |
)2

.
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To complete the proof, we will claim that

|F( �f )(x) − F( �f )(xQ)| ≤ cn,λ,ψα2mn
∞∑

l=0

1

2lδ

( m∏

j=1

1

|2lQ|
∫

2lQ

|fj |
)2

, (4.6)

for all x ∈ Q, where xQ is the center of Q.
Once we can prove (4.6), the conclusion of the proposition follows immediately by using

the fact that

ωλ(S̃α,ψ ( �f )2; Q) ≤ (E( �f )χQ)∗(λ|Q|) + ‖F( �f ) − F( �f )(xQ)‖L∞(Q).

We now prove (4.6). We first write

|F( �f )(x) − F( �f )(xQ)| ≤
∞∑

l=1

∫

T (2l+1Q)\T (2lQ)

∣∣∣�
(x − y

αt

)
− �

(xQ − y

αt

)∣∣∣ |ψt ( �f )(y)|2 dydt

tn+1
.

Note that if t < 2l−1
4α �(Q) then min{|x − y|, |xQ − y|} > 2αt for all (y, t) ∈

T (2l+1Q)\T (2lQ) and x ∈ Q. Hence,

�
(x − y

αt

)
− �

(xQ − y

αt

)
= 0.

As a consequence, we have

|F( �f )(x) −F( �f )(xQ)|
≤ ∑∞

l=1

∫
T (2l+1Q)\T (2lQ)

∣∣∣�
(

x−y
αt

)
− �

(
xQ−y

αt

)∣∣∣ |ψt ( �f )(y)|2χ[ 2l−1
4α �(Q),2l+1�(Q))

(t)
dydt

tn+1

≤ ∑∞
l=1

∫
T (2l+1Q)\T (2lQ)

∣∣∣�
(

x−y
αt

)
− �

(
xQ−y

αt

)∣∣∣ |ψt ( �f )(y)|2χ[ 2l−3
α

�(Q),2l+1�(Q))
(t)

dydt

tn+1 .

It is easy to see that for x ∈ Q we have

∣∣∣�
(x − y

αt

)
− �

(xQ − y

αt

)∣∣∣ ≤ cn,�

|x − xQ|
αt

≤ cn,�

�(Q)

αt
.

Now we set �f 0 = (f1χQl
, . . . , fmχQl

), where Ql = 2l+2Q. For each i = 1, . . . , m, we set
f 0

i = fiχQl
and f ∞

i = fiχ(Ql)
c . Denote

F �α( �f ) =
∞∑

l=1

(�(Q)/α)

∫

2l+1Q

∫ 2l+1�(Q)

2l−3
α

�(Q)

|ψt(f
α1
1 , . . . , f αm

m )(y)|2 dydt

tn+2
.

Therefore,

|F( �f )(x) − F( �f )(xQ)| ≤ ∑∞
l=1(�(Q)/α)

∫
2l+1Q

∫ 2l+1�(Q)

2l−3
α

�(Q)
|ψt( �f )(y)|2 dydt

tn+2

≤ 2mF
�0( �f )(x) + 2m

∑
�α∈I0

F �α( �f )(x).

For the first term, using Eq. 1.7 to get that

F
�0( �f )(x)

≤ A
∑∞

l=1(�(Q)/α)
∫
2l+1Q

∫ 2l+1�(Q)

2l−3
α

�(Q)

∣∣∣
∫
(2l+2Q)m

tδ

(t+|y−z1|+···+|y−zm|)mn+δ

∏m
j=1 |fj (zj )|dzj

∣∣∣
2

dydt

tn+2 ,
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which along with the fact that

∫
2l+1Q

∣∣∣ tδ

(t+|y−z1|+···+|y−zm|)mn+δ

∣∣∣
2
dy

= 1
t2mn−n

∫
2l+1Q

1
tn

[
t

(t+|y−z1|+···+|y−zm|)
]2mn+2δ

dy

≤ 1
t2mn−n

∫
2l+1Q

1
tn

(
t

t+|y−z1|
)2mn+2δ

dy

≤ 1
t2mn−n

∫
Rn

1
tn

(
t

t+|y−z1|
)n+δ

dy

≤ cn

t2mn−n

and Minkowski’s inequality implies that

F
�0( �f )(x) ≤ cn

∑∞
l=1(�(Q)/α)

[ ∫
(2l+2Q)m

( ∫ 2l+1�(Q)

2l−3
α

�(Q)

dt

t2mn+2

)1/2 ∏m
j=1 |fj (zj )|dzj

]2

≤ cn

∑∞
l=1(�(Q)/α)

[ ∫
(2l+2Q)m

( ∫ ∞
2l−3

α
�(Q)

dt

t2mn+2

)1/2 ∏m
j=1 |fj (zj )|dzj

]2

≤ cn

∑∞
l=1(�(Q)/α)

[ ∫
(2l+2Q)m

(
α

2l−3�(Q)

)mn+1/2 ∏m
j=1 |fj (zj )|dzj

]2

≤ cnα
2mn

∑∞
k=1

1
2k

(∏m
j=1

1
|2kQ|

∫
2kQ

|fj |
)2

≤ cnα
2mn

∑∞
k=1

1
2kδ

( ∏m
j=1

1
|2kQ|

∫
2kQ

|fj |
)2

.

For the second term
∑

�α∈I0
F �α( �f )(x), similar to previous computation, using Eq. 1.7 we

get that, for (α1, . . . , αm) ∈ I0 and (y, t) ∈ T (2l+1Q),

|ψt(f
α1
1 , . . . , f

αm
m )(y)| ≤ A

∫
(Rn)m

tδ

(t+|y−z1|+···+|y−zm|)mn+δ

∏m
j=1 |f αj

j (zj )|d(zj )

≤ A
[ ∫

(2l+1Q)m
· · · + ∑

k≥1

∫
(2l+k+1Q)m\(2l+kQ)m

. . .
]

≤ cn,ψ(t/�(Q))δ
∑∞

k=0
1

2(k+l)δ

(∏m
j=1

1
|2k+lQ|

∫
2k+lQ

|fj |
)

≤ cn,ψ(t/�(Q))δ
∑∞

k=0
1
2kδ

(∏m
j=1

1
|2kQ|

∫
2kQ

|fj |
)
.

Plugging this estimate into the expression of F �α( �f )(x) and by a straightforward calculation
we obtain

∑
�α∈I0

F �α( �f )(x) ≤ cn,ψαn−2δ ∑∞
l=1

22lδ

2l

( ∑∞
k=l

1
2kδ

∏m
j=1

1
|2kQ|

∫
2kQ

|fj |
)2

≤ cn,ψαn−2δ ∑∞
k=1

1
2kδ

( ∏m
j=1

1
|2kQ|

∫
2kQ

|fj |
)2

provided δ < 1/2.
This completes our proof.

The conclusion in Theorem 1.1 follows immediately from Theorem 2.1 and the following
result.

Proposition 4.2 Let w be a weight, 0 < p < ∞ and α ≥ 1. Then for any function with
compact support �f , we have

‖Sα,ψ( �f )‖Lp(w) ≤ c(m, n,ψ)αmn sup
D,S

‖A2
D,S(| �f |)‖Lp(w).
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Proof Assume that supp fi ⊂ Q0 ∈ D for all i. From Theorem 2.2 and Proposition 4.1,
we can pick a sparse family in Q0 which is denoted by S = S(Q0) ⊂ D so that

|Sα,ψ( �f )(x)2 −m
Sα,ψ ( �f )2

(Q0)|
≤ cn,m,ψα2mn

{∑
Q∈S(Q0)

∑∞
l=0 2

−lδ
(∏m

i=1
1

|2lQ|
∫
2lQ

|fi(y)|dy
)2

χQ(x)
}

for a.e. x ∈ Q0
Since Sα,ψ maps L1 × · · · × L1 into L1/m,∞, we have

|m
Sα,ψ ( �f )2

(Q0)| ≤
(

2

|Q0|
)2m

‖Sα,ψ( �f )χQ0‖2L1/m,∞

�‖Sα,ψ‖L1×...×L1→L1/m,∞
( m∏

i=1

1

|Q0|
∫

Q0

|fi(y)|dy
)2

.

Therefore, adding the median term to the right hand side and relabelling we obtain

Sα,ψ( �f )(x)2 ≤ cn,m,ψα2mn
{ ∞∑

l=0

2−lδ(T 2
S(Q0),l

( �f )(x))2
}
,

for a.e. x ∈ Q0, where

T γ

S,l(
�f )(x) =

[ ∑

Q∈S

( m∏

i=1

1

|2lQ|
∫

2lQ

|fi(y)|dy
)γ

χQ(x)
]1/γ

,

for γ ≥ 1 and sparse family S ⊂ D . We now observe that

T 2
S(Q0),�

�f =
[
T 1
S(Q0),�

( �f , �f )
]1/2

.

On the other hand, the argument in Sections 11–13 in [23] shows that there exists 3n dyadic
grids Dj , j = 1, . . . , 3n and 3n sparse families Sj ⊂ Dj , j = 1, . . . , 3n such that

∑∞
l=0 2

−lδT 1
S(Q0),l

( �f , �f )(x) ≤ cm,n,δ

∑3n

j=1A1
Dj ,Sj

(| �f |, | �f |)(x)

≤ cm,n,δ

∑3n

j=1[A2
Dj ,Sj

(| �f |)(x)]2.
Hence, we obtain that

Sα,ψ( �f )(x)2 ≤ cn,m,ψα2mn

3n∑

j=1

[
A2

Dj ,Sj
(| �f |)(x)

]2
a.e. x ∈ Q0 (4.7)

As a consequence,

‖Sα,ψ( �f )‖Lp(w) ≤ cm,n,ψαmn sup
D,S

‖A2
D,S(| �f |)‖Lp(w).

This completes our proof.

Proof of Theorem 1.2: Assume that supp fi ⊂ Q0 ∈ D for all i. We first observe that

g∗
λ,ψ( �f )(x)2 ≤

∞∑

k=1

2−knλS2k,ψ ( �f )(x)2,
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which together with Eq. 4.7 implies that

g∗
λ,ψ( �f )(x)2 ≤ cn,m,ψ

∑∞
k=1 2

−knλ22kmn
{∑3n

j=1

[
A2

Dj ,Sj
(| �f |)(x)

]2 }

≤ cn,m,ψ

{ ∑3n

j=1

[
A2

Dj ,Sj
(| �f |)(x)

]2 }
,

for a.e. x ∈ Q0. provided λ > 2m.
This implies that for �w ∈ A �P and p > 0 we have

‖g∗
λ,ψ( �f )‖Lp(ν �w) ≤ cn,m,ψ sup

D,S
‖A2

D,S(| �f |)‖Lp(ν �w).

The conclusion in Theorem 1.2 follows immediately from Theorem 2.1.
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8. Damián, W., Lerner, A.K., Pérez, C.: Sharp weighted bounds for multilinear maximal functions and

calderón-zygmund operators. J. Fourier Anal. Appl. 21(1), 161–181 (2015)
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