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Abstract In this paper, we investigate divergence-form linear elliptic systems on bounded
Lipschitz domains in R

d+1, d ≥ 2, with L2 boundary data. The coefficients are assumed to
be real, bounded, and measurable. We show that when the coefficients are small, in Carleson
norm, compared to one that is continuous on the boundary, we obtain solvability for both
the Dirichlet and regularity boundary value problems given that the coefficients satisfy a
certain “pseudo-symmetry” condition.
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1 Introduction and Preliminaries

We consider second order elliptic systems of equations Lu = 0, where u = (u1, · · · , um),
m ≥ 1, and

L = LA = − ∂

∂xi

[
A

αβ
i,j (X)

∂

∂xj

]
(1.1)

is defined in R
d+1, d ≥ 2. Single equations correspond to the case m = 1.
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We will assume that the coefficient matrix A(X) = (A
αβ
i,j ), 1 ≤ α, β ≤ m, 1 ≤ i, j ≤

d + 1, is real, bounded, and satisfies the following ellipticity condition

λ−1|ξ |2 ≤ A
αβ
i,j (X)ξ

β
j ξα

i ≤ λ|ξ |2, (1.2)

for all X ∈ R
d+1 and ξ = (ξα

i ) ∈ R
(d+1)m, ξ �= 0, where λ > 0 is called the ellipticity of

L or A.
When A is real, let AT denote the matrix (AT )

αβ
i,j where (AT )

αβ
i,j = A

αβ
j,i . In this case, we

say that A satisfies the “pseudo-symmetry” condition if

A
αβ
i,j + A

αβ
j,i = A

βα
i,j + A

βα
j,i . (1.3)

Notice that this property is satisfied automatically when m = 1. Define GA = A + AT

2
,

and we have GA = (GA)∗, i.e. GA is symmetric. Note that if A has ellipticity constant λ,
so do AT and A∗.

As usual, the divergence form equation is interpreted in the weak sense, i.e. we say that
u ∈ W

1,2
loc (V ) is a solution to Lu = 0 in a domain V if∫

V

A∇u · ∇φ = 0, ∀φ ∈ C∞
0 (V ). (1.4)

Here, C∞
0 denotes the space of smooth functions with compact support. When there is a

possibility of confusion, we will specify the domain.

We will use the notations Dj , ∂xj
,

∂

∂xj

interchangeably. For a d +1-dimensional vectors

f = (fi)1≤i≤d+1, let f⊥, f‖ denote the normal and tangential components of f respectively.
We also use ∇‖, div‖, curl‖ to denote the differential operators acting only in the tangential
component.

The set W 1,p(E) is the usual Sobolev space of functions in Lp(E) whose first derivatives
(in the sense of distributions) are also in Lp(E), and the set W

1,p

loc consists of functions in
W 1,p(E′) for every compact subset E′ of E.

Denote by X = (x, t), Y = (y, s) points in R
d+1, with x, y ∈ R

d , t, s ∈ R. Let ϕ :
R

d → R be a Lipschitz function with Lipschitz constant ‖∇ϕ‖∞ = M . Throughout this
paper, let Dϕ be the domain above ϕ, i.e.

Dϕ = {X = (x, t) ∈ R
d+1 : t > ϕ(x)}.

When there is no ambiguity, we will drop the subscript ϕ. Then, for any r > 0 and Q =
(z, ϕ(z)) ∈ ∂D, define:

	r(Q) = 	(Q, r) = B(Q, r) ∩ ∂D = Tr(Q) ∩ ∂D, where

Tr(Q) = T (Q, r) = {X = (x, t) ∈ D : |x − z| < r, ϕ(x) < t < ϕ(x) + (1 + M)r}.
We now define a bounded Lipschitz domain following [32].

A bounded open set 
 ∈ R
d+1 is called a bounded Lipschitz domain if for each Q ∈ ∂
,

there exists a rectangular coordinate system (x, t), x ∈ R
d , t ∈ R, a neighborhood U(Q) ≡

U ⊂ R
d+1 containing Q, and a function ϕQ ≡ ϕ : Rd → R such that

(i) |ϕ(x) − ϕ(y)| ≤ CQ|x − y|, for all x, y ∈ R
d , CQ < ∞,

(ii) U ∩ 
 = {(x, t) : t > ϕ(x)} ∩ 
.

The coordinate systems (x, t) may always be taken to be a rotation and translation of the
standard rectangular coordinates for Rd+1. We will also only consider bounded Lipschitz
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domains with connected boundaries. We also use V to denote a general domain in R
d+1

without having specific properties like Dϕ or 
.
Denote by Z(X, r) an open, right circular, doubly truncated cylinder centered at X

with radius r . A coordinate cylinder, Z = Z(Q, r),Q ∈ ∂
 is defined by the following
properties.

(i) The bases of Z are some positive distance from ∂
.
(ii) There is a rectangular coordinate system for Rd+1, (x, t), x ∈ R

d , t ∈ R, with t-axis
containing the axis of Z.

(iii) There is an associated function ϕ = ϕZ : Rd → R, that is Lipschitz.
(iv) Z ∩ D = Z ∩ {(x, t) : t > ϕ(x)}
(v) Q = (0, ϕ(0)).

The pair (Z, ϕ) is called a coordinate pair. For any positive number R,RZ(Q, r) denotes
the dilation of Z by a factor of R.

By compactness, we can cover ∂
 with a finite number of coordinate cylinders
Z1, · · · , ZN . Moreover, it is also possible to do this in such a way that for each Zj there is
a coordinate pair (Z∗

j , ϕj ) with Z∗
j = RjZj , where Rj is some sufficiently large positive

number. For example, Rj > 10(1 + ‖∇ϕj‖∞)1/2. Whenever we cover ∂
 with coordi-
nate cylinders, we assume that Z∗

j exist. Observe also that ϕj can be taken to have compact
support.

For a bounded Lipschitz domain 
, there are numbers M < ∞ such that for any covering
of coordinate cylinders, the ϕj all have Lipschitz norm at most M . The smallest such number
is called the Lipschitz constant for 
.

We note that 	r(Q), Tr(Q) can then be defined for every Q ∈ ∂
 provided that r is
small enough.

For X ∈ 
, denote δ(X) = dist (X, ∂
), the distance from X to the boundary.
For the domain above a Lipschitz graph Dϕ , and Q = (z, ϕ(z)) ∈ ∂Dϕ , a cone at Q with

aperture α is defined to be

�α(Q) = {X ∈ Dϕ : |X − Q| ≤ (1 + α)(t − ϕ(z))},
and, in the special case ϕ = 0, i.e. D = R

d+1+ ,

�(x) = {(x, t) ∈ R
d+1+ : |x − y| < t}.

Note that the largest aperture α is determined by the Lipschitz constant ϕ.
In the case that 
 is a bounded Lipschitz domain, for Q ∈ ∂
, �α(Q) denotes an open,

circular, doubly truncated cone with one component in 
 and the other in R
d+1 \ 
. The

component interior to 
 is denoted by �α,i and the component exterior to 
 will be denoted
by �α,e. When the context is clear, we will drop the subscript i, e.

Assigning one cone, �(Q), to each Q ∈ ∂
, we call the resulting family {�(Q) : Q ∈
∂
} regular if there is a finite covering of ∂
 by coordinate cylinders, as described above,
such that for each (Z(Q, r), ϕ) there are three cones, α, β, and γ , each with vertex at the
origin and axis along the axis of Z such that

α ⊂ β \ {0} ⊂ γ,

and for all (x, ϕ(x)) = P ∈ ( 4
5Z∗ ∩ ∂
),

α + P ⊂ �(P ) ⊂ �(Q) \ {P } ⊂ β + P,

(γ + P)i ⊂ 
 ∩ Z∗, and (γ + P)e ⊂ Z∗ \ D.
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Towards the end of this paper, we will need to approximate a bounded Lipschitz domain
using the following result. The reader may consult [27, 28], or [31] for a proof.

Theorem 1.5 Let 
 ⊂ R
d+1 be a bounded Lipschitz domain. Then the following hold.

(1) There is a regular family of cones {�} for 
 as described above.
(2) There is a sequence of C∞ domains, 
j ⊂ R

d+1, and homeomorphisms, �j : ∂
 →
∂
j , such that supQ∈∂
 |Q − �j(Q)| → 0 as j → ∞ and for all j and all Q ∈
∂
, �j (Q) ∈ �i(Q).

(3) There is a covering of ∂
 by coordinate cylinders, Z, such that given a coordinate
pair, (Z, ϕ), Z∗ ∩∂
j is given, for each j , as the graph of a C∞ function φj such that
φi → ϕ uniformly, ‖∇φj‖∞ ≤ ‖∇ϕ‖∞, and ∇φi → ∇ϕ pointwise a.e. and in every
Lp(Z∗ ∩ R

d+1), 1 ≤ p < ∞.
(4) There are positive functions ωj : ∂
 → R+, which are bounded away from zero

and infinity, uniformly in j , such that for any measurable set E ⊂ ∂
,
∫
E

ωj dσ =∫
�j (E)

dσj , and that ωj → 1 pointwise a.e. and in every Lp(∂
), i ≤ p < ∞.

(5) The normal vectors to 
j , �N(�j (Q)), converges pointwise a.e. and in every
Lp(∂
), 1 ≤ p < ∞, to �N(Q). An analogous statement holds for locally defined
tangent vectors.

Let ‖f ‖L
p

1 (
) be the scale-invariant norm

‖f ‖L
p
1 (
) = |∂
|− 1

d ‖f ‖Lp(
) + ‖∇‖f ‖Lp(
).

Let u be a function integrable over a bounded set E, then we denote

We use the notation u → f non-tangentially (abbreviated by “n.t.”) to mean that for a.e.
Q ∈ ∂V, lim

X→Q
u(X) = f (Q), where the limit runs over X ∈ �i(Q).

Definition 1.6 An operator L = −div(A∇) is said to have the De Giorgi-Nash local Hölder
property if for any weak solution u to Lu = 0 in V , we have

(1.7)

and for some 0 < α0 = α0(λ, d,m) < 1, and 0 < r < R < δ(X).

It has been shown, in [15] for example, that Eq. 1.7 is equivalent to the following gradient
estimate ∫

Bρ(X)

|∇u|2 ≤ C
(ρ

r

)d−1+2α0
∫

Br (X)

|∇u|2, 0 < ρ < r. (1.8)

Estimates Eqs. 1.7 and 1.8 combined also imply the following Moser local boundedness
estimate

(1.9)

whenever B2r (X) ⊂ V .
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Remark 1.10 When m = 1, De Giorgi ([13]), and Nash ([26]) independently established
that solutions to the equation Lu = −div(A∇u) = 0, where A is assumed to be a real,
bounded, symmetric and elliptic matrix, automatically satisfy Eq. 1.7. Morrey ([25]) later
observed that this property (and many others) still holds even when symmetry is dropped.

Remark 1.11 We note that properties (1.7) and (1.9) are stable under small complex per-
turbation, as shown in Proposition 2.1 in [14]. Consequently, the same properties are stable
with respect to small Carleson norm perturbations, see [3] for example.

For the rest of this paper, we will use the terminology satisfying the “standard assump-
tions” to refer to an operator L = −div(A∇) whose coefficients are real, bounded,
measurable, and strongly elliptic, i.e. satisfying Eq. 1.2, and whose solutions to Lu = 0
satisfy the local Hölder condition (1.7).

For any point (x, t) ∈ Dϕ , its Whitney box is defined to be

W(x, t) = {(y, s) : |y − x| < t − ϕ(x),
1

2
(t − ϕ(x)) < s − ϕ(y) <

3

2
(t − ϕ(x))}.

Given a measurable function f : Rd+1+ → R
m, consider

N∗f (x) = sup
(z,t)∈�(x)

|f (z, t)|

fW (x, t) =
(∫∫

W(x,t)

|f (y, s)|2 dy ds

)1/2

and let the operators marked with a tilde stand for modifications of the functions above with
fW in lieu of f . For example,

Ñ∗f (x) = sup
(z,t)∈�(x)

|fW (z, t)|.

We remark here that the function Ñ∗f (x) and the following usual modified non-
tangential maximal function

have equivalent L2 norms. Similar definition can be made for a a bounded Lipschitz domain.
We are interested in the Dirichlet and regularity boundary value problems (BVPs) for

Lu = 0 in a bounded Lipschitz domain 
 whose boundary ∂
 is connected, with L2 data.
Specifically, we give the following definitions of solvability.

Definition 1.12 We say that the Dirichlet problem{
Lu = 0 in 


u = f ∈ L2(∂
,Rm) n.t. on ∂

(D2)

is solvable, i.e. Eq. D2 holds, if, whenever f ∈ C(∂
,Rm), there exists a solution u such
that Eq. D2 is satisfied, and ‖N∗u‖L2(∂
) ≤ C‖f ‖L2(∂
).

Definition 1.13 We say that the regularity problem{
Lu = 0 in 


u = f n.t. on ∂

(R2)
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is solvable, i.e. Eq. R2 holds, if, whenever f ∈ C(∂
,Rm) ∩ L2
1(∂
,Rm), there exists a

solution u such that Eq. R2 is satisfied, and the estimate ‖Ñ(∇u)‖L2(∂
) ≤ C‖f ‖L2
1(∂
)

holds.

To differentiate the case of a bounded Lipschitz domain to that of the upper-half space,
and by extension, the domain above a Lipschitz graph, we have the following definitions.

Definition 1.14 We say that the Dirichlet problem⎧⎨
⎩

Lu = 0 in R
d+1+

limt→0 u = f n.t.
‖N∗u‖L2(Rd ) < ∞

(RD2)

is solvable, i.e. Eq. RD2 holds, if, whenever f ∈ C∞
0 (Rd ,Rm), there exists a solution

u ∈ W
1,2
loc (Rd+1+ ,Rm) such that Eq. RD2 is satisfied, and we have the following estimates

‖N∗(u)‖L2(Rd ,Rm) ≤ C‖f ‖L2(Rd ,Rm), (1.15)

and (∫∫
R

d+1+
|∇u(x, t)|2 t dx dt

)1/2

≤ C‖f ‖2. (1.16)

Definition 1.17 We say that the regularity problem⎧⎨
⎩

Lu = 0 in R
d+1+

limt→0 u = f n.t
‖Ñ(∇u)‖L2(Rd ,R) < ∞

(RR2)

is solvable, i.e. Eq. RR2 holds, if, whenever f ∈ C∞
0 (Rd ,Rm), there exists a solution

u ∈ W
1,2
loc (Rd+1+ ,Rm) such that Eq. RR2 is satisfied, and

‖Ñ(∇u)‖L2(Rd ,Rm) ≤ C‖∇‖f ‖L2(Rd ,Rm).

We now review some history in this area. Most of the results we are going to state are
for single equations. Calderón studied BVPs for elliptic partial differential equations in a
smooth domain in the late 1950’s and early 1960’s using symbolic calculus. He also pio-
neered the use of harmonic analysis techniques in solving these BVPs with the proof of the
L2 boundedness of the Cauchy operator on C1 and Lipschitz curves with small Lipschitz
constant in [1]. Coifman, McIntosh, and Meyer then removed the restriction on the Lipschitz
constant in [6], paving the way for many works that follow. For the Laplacian, the solv-
ability of Eqs. D2 and R2 was established by Dahlberg in [7], and by Jerison and Kenig in
[19] respectively. Solvability of the same problems obtained through harmonic layer poten-
tials using the result in [6] is due to Verchota in [32]. For A real, symmetric, and radially
independent, solvability of these problems in the unit ball was established in [18] and [21].
However, the authors did not use layer potentials.

When A is not self-adjoint, solvability of Eq. D2 was obtained in [9] for small, complex
perturbation of constant elliptic matrices. Recently, in [2], Alfonseca et. al. used layer poten-
tials to show that if A0, A1 are complex, elliptic, and t-independent, and if the solutions to
L0u = 0,L∗

0v = 0 satisfy the De Giorgi-Nash estimate, then the solvability of the boundary
value problems for L0 implies that for L1 on the upper-half space for data in L2, provided
that ‖A1 − A0‖∞ < ε0 for some ε0 small depending only on the parameters associated to
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L0. Rosén then proved the same result for systems in [30] using functional calculus. Hof-
mann, Mitrea, and Morris ([17]) extended the perturbation result in [2] for data in other Lp ,
as well as showed perturbation results for BVPs with data in other spaces such as Cα, BMO.

We also remark that consideration of perturbation in Carleson norm is a natural one,
since Caffarelli, Fabes, and Kenig observed in [5] that some regularity is necessary in
the transversal direction. They showed that given any positive function ω(τ) such that∫ 1

0
(ω(τ))2 dτ/τ = +∞, there exists a real, symmetric, elliptic matrix A(x, t), whose mod-

ulus of continuity in the t-direction is controlled by ω, and for which the associated elliptic
harmonic measure and the surface measure are mutually singular, i.e. the Dirichlet problem
with data in Lp, p > 1 is not solvable. However, Fabes, Jerison, and Kenig showed in [9]
that (D2) holds, provided that the transverse modulus of continuity

ω(τ) ≡ sup
x∈Rd ,0<t<τ

|A(x, t) − A(x, 0)| (1.18)

satisfies the square Dini condition ∫ 1

0

ω2(τ )

τ
dτ < +∞, (1.19)

and that A(x, 0) is sufficiently close to a constant matrix. Dahlberg ([8]) then introduced a
scale-invariant version of the square Dini condition, which was further explored by Feffer-
man, Kenig, and Piper ([10]), as well as Kenig and Piper in [21, 22]. They proved that for
real, symmetric operators L1 = −div(A1∇) and L0 = −div(A0∇), the solvability BVPs
for L0 with data in Lp implies that of BVPs for L1 with data in (possibly some other) Lp

under the assumption that

dμ(x, t) =
(

sup
W(x,t)

|A1 − A0|
)2

dx dt

t
(1.20)

is a Carleson measure.

Definition 1.21 The modified Carleson norm of a function g in R
d+1+ is defined to be

‖g‖C =
(

sup
Q

1

|Q|
∫∫

Q×(0,l(Q))

sup
W(x,t)

|g|2 dx dt

t

)1/2

,

where Q is any cube in R
d and l(Q) is its length.

Recently, in [16], the authors proved Lp solvability results on the upper half-plane for
divergence form elliptic equations with complex, bounded coefficients that are small pertur-
bations of t-independent coefficients, as measured by the Carleson measure norm condition,
i.e. ‖A0 − A1‖C is sufficiently small and A0 is t-independent. They also proved the same
results for other data spaces. The examples in [10] show that such smallness condition is
absolutely essential in preserving solvability for L1.

In this paper, we will establish the following result.

Theorem 1.22 Let 
 be a bounded Lipschitz domain with Lipschitz constant M . Consider
A, Ā such that A, Ā are real, bounded measurable, and elliptic, and Ā is continuous on ∂
,
i.e. there exists a δ̄ > 0 so that for any P,Q ∈ ∂
, |P − Q| < δ̄ implies |Ā(P ) − Ā(Q)| <

ε0, where ε0 is a small constant depending on d, m,M , and the ellipticity of Ā. Assume
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further that Ā satisfies the pseudo-symmetry condition (1.3). Let ∂
 be covered by a finite
number of coordinate pairs (Zj (Qj , R), ϕj ), for 1 ≤ j ≤ N . For each coordinate pair
(Zj (Qj , R), ϕj ) where Qj = (0, ϕj (0)), define

ε(x, t) = sup
W(x,t)

|A(Y ) − Ā(y, ϕj (y))|,

and

hj (8R,Qj ) = sup
	r(P )⊆	8R(Qj )

1

|	r(P )|
∫∫

Tr (P )

ε2(X)

δ(X)
dX.

Assume that the coordinate pairs satisfy the following conditions

(i) {( 1
8Zj (Qj ,R), ϕj ), 1 ≤ j ≤ N} cover ∂
,

(ii) R ≤ 1

2
√

M2 + 1
δ̄,

(iii) hj (8R,Qj ) <
ε

Cd
, where ε is another small constant depending on d,m, M , and

the ellipticity of Ā, and C is a constant depending only on the geometry of 
.

Then, (D2) and (R2) are solvable for A.

We note here that the main difference in our work compared to the aforementioned is
that our BVPs are posed for bounded Lipschitz domains. Consequently, the bulk of our
work revolves around localization arguments. We also note here that the assumption that
Ā is continuous is essential as there are counterexamples for the Dirichlet and regularity
problems in [20] and [23] respectively.

In the next sections, we will develop tools needed to prove this theorem. While Theorem
1.22 encompasses the single equation case, we will outline the steps showing the same result
using different tools, which are only available when m = 1, in the last section.

We end this chapter with the following remark which explains how the results that are
stated for the upper-half space R

d+1+ , e.g. Theorem 1.1 and 7.1 in [30], can be generalized
to the case of a domain above a Lipschitz graph with, of course, the additional dependence
of the constants on the Lipschitz constant of the graph.

Remark 1.23 Let Dϕ be the domain above the Lipschitz graph ϕ. Consider the pull back
ρ : Rd+1+ → Dϕ defined by ρ(x, t) = (x, ϕ(x) + t). Given a function ũ : Dϕ → C, its
pull back u = ũ ◦ ρ is a function on R

d+1+ . The chain rule gives ∇u = ρ∗(∇ũ), where
ρ∗(f )(x)α = ρt (x)f α(ρ(x)), and ρt denotes the transpose of the Jacobian matrix ρ. If ũ

satisfies the equation div(Ã∇ũ) = 0 in Dϕ , with coefficient Ã being bounded, complex,
accretive and t-independent, then u is a solution to the equation div(A∇u) = 0, where

A(X) = |J (ρ)(X)|(ρ(X))−1Ã(ρ(X))(ρt (X))−1,

and J (ρ) is the Jacobian determinant of ρ. Observe that A satisfies the same conditions Ã

does. In addition, if the solutions ũ to L
Ã
ũ satisfy the estimates Eqs. 1.7 and 1.9 in Dϕ then

the solutions u to Lu = 0 satisfy the same estimates in R
d+1+ .

Observe also that the Dirichlet and regularity condition ũ → f̃ n.t. on ∂D is equivalent
to the Dirichlet and regularity condition u = f on R

d+1+ on R
d , where f = f̃ ◦ ρ.
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2 Constant Coefficients

Consider the domain above a Lipschitz graph D = Dϕ = {(x, t) ∈ R
d+1 : t > ϕ(x)}. To

our knowledge, the following result and its proof have not been presented in the literature.

Theorem 2.1 Let L = −div(A∇) be an operator whose matrix of coefficients A is real,
constant, elliptic, i.e. satisfying Eq. 1.2, and pseudo-symmetric as in Eq. 1.3. Then, SA :
L2(∂D) → L̇2

1(∂D) is invertible, and (RD2) and (RR2) are solvable for L on D.

Recall that GA = A + AT

2
is bounded, elliptic, and symmetric. Let �N(Q) =

(n1(Q), · · · , nd(Q)) be the outward unit normal vector on ∂D. Then, the conormal and
modified conormal derivatives associated to A are defined to be(

∂u

∂νA

)α

= (∂νA
u)α = niA

αβ
i,j ∂j u

β, and

(
∂u

∂ν̃A

)α

= ni

A
αβ
i,j + A

αβ
j,i

2
∂ju

β

respectively.
Since A is constant, the fundamental matrix solution �A associated to L exists. Note also

that if u is a solution to Lu = 0, then for each α = 1, · · · ,M ,

0 = (div(A∇u))α = ∂i(A
αβ
i,j ∂j u

β) = A
αβ
i,j ∂ij u

β = A
αβ
j,i∂jiu

β

= (div(AT ∇u))α =
[

div

(
1

2
(A + AT )∇u

)]α

= (div(G∇u))α.

This means that LA = −div(A∇),LAT = −div(AT ∇) and LG = −div(G∇) share the
same matrix of fundamental solutions �A = �AT = �G. Since G∗ = G, we have �A =
�AT = �G = �G∗ = �A∗ = �(A∗)T . Furthermore, �A(X, 0) is even and homogeneous of
degree 1 − d in X, and we have the following additional properties.

�
αβ
A (X, Y ) = �

βα
A (X, Y )

|∇N
X �A(X, Y )| ≤ C|X − Y |1−d−N

∂

∂xi

�A(X, Y ) = − ∂

∂yi

�A(X, Y )

for all integers N ≥ 0, 1 ≤ α, β ≤ m, and C depending only on d,m, λ,N .

For f ∈ Lp(∂D,Rm), the single layer potential S(f ) = SA(f ) = (u1, · · · , um) is
defined by

uα(X) =
∫

∂D

�
αβ
A (X,Q)f β(Q) dσ(Q),

and the modified double layer potential D̃(f ) = D̃A(f ) = (w1, · · · , wm), is defined by

wα(X) =
∫

∂D

(
∂

∂ν̃A∗
�α

A∗(Q,X)

)γ

f γ (Q) dσ(Q)

= 1

2

∫
∂D

ni(Q)
(
A

βγ

i,j + (AT )
βγ

i,j

) ∂

∂qj

�
αβ
A (X,Q)f γ (Q) dσ(Q).

Clearly, S(f ) and D̃(f ) are both solutions to Lu = 0 in R
d+1 \ ∂D. Furthermore, as A

is constant, S(f ),N∗(∇(S(f ))), N∗(D̃f ) also belong to Lp(∂D,Rm), and their norms are
bounded by Cp‖f ‖Lp , where Cp depends only on d,m, λ, p, and the Lipschitz constant
of D.
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Proof of Theorem 2.2 It suffices to show that SA : L2(∂D) → L̇2
1(∂D) is invertible.

Let u = SA(f ) for some f ∈ L2(∂D,Rm). Since A is constant, we get the following
trace formula for almost every P ∈ ∂D (see [24])(

∂uα

∂xi

)
±

(P ) = ±1

2
ni(P )bαβ(P )f β(P ) + p.v.

∫
∂D

∂

∂pi

�
αβ
A (P,Q)f β(Q) dσ(Q),

where (bαβ(P ))m×m is the inverse matrix of (A
αβ
i,j nj (P )ni(P ))m×m =

〈
A �N, �N

〉m×m

. It fol-

lows that ‖∇T (SAf )‖2 ≤ C‖f ‖2, where C depends on d, m, λ and the Lipschitz constant
of D. Consequently

SA : L2(∂D) → L̇2
1(∂D)

is bounded. Furthermore,

nj

(
∂uα

∂xi

)
+

− ni

(
∂uα

∂xj

)
+

= nj

(
∂uα

∂xi

)
−

− ni

(
∂uα

∂xj

)
−

,

meaning (∇T u)+ = (∇T u)− on ∂D. Moreover,(
∂u

∂ν̃A

)α

±
(P ) = 1

2
ni(A

αβ
i,j + A

αβ
j,i)

(
∂uβ

∂xj

)
±

= ni(P )G
αβ
i,j

(
±1

2
nj (P )bβγ f γ (P )

+p.v.
∫

∂D

∂

∂pj

�
βγ

A (P,Q)f γ (Q) dσ(Q)

)

= ±1

2
f α(P )+p.v.

∫
∂D

1

2
ni(P )(A

αβ
i,j + A

αβ
j,i)

∂

∂pj

�
βγ

A (P,Q)f γ (Q) dσ(Q)

since (ni(P )G
αβ
i,j nj (P ))m×m = (A

αβ
i,j ni(P )nj (P ))m×m by properties of the (real) inner

product.

Thus,

(
∂u

∂ν̃A

)
±

= (±1

2
I + KA)(f ), where

(KA(f )(P ))α = p.v.
∫

∂D

K
αβ
A (P,Q)f β(Q) dσ(Q),

and

K
αβ
A (P,Q) = 1

2
ni(P )(A

αγ

i,j + A
αγ

j,i )
∂

∂pj

�
γβ

A (P,Q)

= niG
αγ

i,j

∂

∂pj

�
γβ

A (P,Q).

From this, we obtain ‖KA(f )‖2 ≤ C‖f ‖2, where C depends on d,m, λ, and the
Lipschitz constant of D. (See [11], for example.) We also have the following jump relation

f =
(

∂u

∂ν̃A

)
+

−
(

∂u

∂ν̃A

)
−

.

Assume that u is a solution to LAu = 0 in D. Then, u is also a solution to LGu = 0 in
D. Let ed+1 be the unit vector in the xd+1 direction, we have

div(ed+1〈G∇u(X),∇u(X)〉) = 2〈∂t∇u(X),G∇u(X)〉
= 2div(∂tuG∇u(X)).
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Thus, the divergence theorem gives
∫

∂D

〈ed+1, �N〉〈G∇u(Q),∇u(Q)〉 dσ(Q) = 2
∫

∂D

〈ed+1,∇u(Q)〉〈G∇u(Q), �N〉 dσ(Q).

By ellipticity of G and the fact that 1 ≥ 〈ed+1, �N〉 ≥ C > 0, where C depends only on
the Lipschitz constant of D, we have

∫
∂D

|∇u|2 dσ(Q) ≤ C‖∂tu‖2

∥∥∥∥ ∂u

∂νG

∥∥∥∥
2

= C‖∂tu‖2

∥∥∥∥ ∂u

∂ν̃A

∥∥∥∥
2
,

whence by Cauchy inequality with an ε, we have

‖∇T u‖2 ≤ ‖∇u‖2 ≤ C‖∂ν̃A
u‖2.

Now, note that∫
∂D

〈ed+1, �N〉〈G∇u, ∇u〉 dσ = 2
∫

∂D

[
〈ed+1, �N〉〈G∇u, ∇u〉−〈ed+1, ∇u〉〈G∇u, �N〉

]
dσ

= 2
∫

∂D

〈
∇u, 〈ed+1, �N〉G∇u − 〈G∇u, �N〉ed+1

〉
dσ.

Since
〈
〈ed+1, �N〉G∇u − 〈G∇u, �N〉ed+1, �N

〉
= 0, 〈ed+1, �N〉G∇u − 〈G∇u, �N〉ed+1 is

tangential to ∂D. Again, the fact that 〈ed+1, �N〉 together with ellipticity of G imply

‖∇u‖2 ≤ C‖∇T u‖2,

which means ‖∂ν̃A
u‖2 ≤ C‖∇T u‖2. Thus, ‖∂ν̃A

u‖2 ≈ ‖∇T u‖2. The same comparability
holds in D− = {(x, t) ∈ R

d+1 : t < ϕ(x)}. We now apply these relationships to u = SAf

to get

‖f ‖2 =
∥∥∥∥
(

∂u

∂ν̃A

)
+

−
(

∂u

∂ν̃A

)
−

∥∥∥∥
2

≤
∥∥∥∥
(

∂u

∂ν̃A

)
+

∥∥∥∥
2

+
∥∥∥∥
(

∂u

∂ν̃A

)
−

∥∥∥∥
2

≈ ‖(∇T u)+‖2 + ‖(∇T u)−‖2 ≈ ‖∇T (SAf )‖2.

Hence, SA : L2(∂D,Rm) → L̇2
1(∂D,Rm) is one-to-one.

For 0 ≤ s ≤ 1, consider the operators Ls = −div(As∇), where As = sA + (1 − s)I ,
and I the identity operator. Then, As is constant for each s ∈ [0, 1]. Furthermore, the
ellipticity constants of As is uniformly controlled. Hence, by the preceding argument, SAs :
L2(∂D) → L̇2

1(∂D) is bounded uniformly in s. Also, SAs is one-to-one for each s ∈ [0, 1].
Note that L0 = 	 so by [12], SA0 is invertible. Lastly, for each s, Ls satisfies the standard
assumptions, and ‖As − A0‖∞ = s‖A − I‖∞. Hence, by Theorem 7.1 in [30], SAs is
invertible for 0 < s < ε0/λ

′ where λ′ is the uniform control for the ellipticity constants of
As . We then obtain the invertibility of SA1 = SA by iterating this process a finite number
of times.

3 Proof of The Main Result

In this section, we will be proving the results needed in the proof of Theorem 1.22. We
remark here that the proof uses some of the results in [30] and [17]. We first remark some
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of the implications of Theorem 7.1 in [30] that are useful to us here. Note that Rosén uses

the notation ∇Au =
[

∂νA
u

∇‖u

]
, and

SA
t f =

∫
Rd

�
αβ
A (X, (y, 0))f β(y) dy

.

Remark 3.1 Since A → ∇ASA
t is a holomorphic map and ∇ASA

t depends locally Lipschitz
continuously on A, we have

‖∇SA
t |t=0f − ∇SA′

t |t=0f ‖2 ≤ C‖A − A′‖∞‖f ‖2.

Secondly,

|∇SA
t f |2 = |∇‖SA

t f |2 + |∂tSA
t f |2

≤ C
(
|∇‖SA

t f |2 + |∂νA
SA

t f |2
)

where C = C(λ, ‖A‖∞). As a result, the estimate ‖Ñ(∇ASA
t f )‖2 ≤ C‖f ‖2 from

this theorem gives ‖Ñ(∇SA
t f )‖2 ≤ C‖f ‖2, uniformly in t . By the same reasoning,

sup
t>0

‖∇SA
t f ‖2 ≤ C‖f ‖2.

Next, we state a result that can be obtained from Theorem 7.1 in [30] via a quick
argument.

Theorem 3.2 Suppose that L0 = −div(A0∇) and L1 = −div(A1∇) are operators whose
coefficients A0, A1 are real, bounded measurable, elliptic, and t-independent. Suppose fur-
ther that solutions toL0u = 0 andL∗

0w = 0 satisfy the local Hölder boundedness condition

(1.7). Assume also that SA0

0 and SA0,∗
0 : L2(Rd) → L̇2

1(R
d) are invertible. Then, there

exists an ε0 > 0 depending on d,m, λ, and the constants associated to L0 and L∗
0 such that

(RD2) and (RR2) hold for L1 and L∗
1 provided that

‖A0 − A1‖∞ < ε0.

Proof First, we note that since ‖A0 − A1‖∞ < ε0, solutions to L1u = 0 and L∗
1w = 0

also satisfy the estimate (1.7). Furthermore, the real ellipticity condition (1.2) implies the
accretiveness condition used in [30].

From Remark 3.1 , we have that SA1

t : L2(Rd) → L̇2
1(R

d) are bounded, uniformly in t ,
and

‖∇SA
t |t=0f − ∇SA′

t |t=0f ‖2 ≤ C‖A0 − A1‖∞‖f ‖2,

from which the invertibility of SA1

0 = SA1

t |t=0 : L2 → L̇2
1 follows by the method of

continuity, i.e. an argument similar to that used at the end of the proof of Theorem 2.1.
Similarly, SA1,∗

0 : L2 → L̇2
1 is invertible.

Now, consider f ∈ L̇2
1(R

d), and set u(x, t) = SA1

t

[(
(SA1

0 )−1f
)

(x)
]
. Then, L1u = 0.

Again, by Remark 3.1, ‖Ñ(∇u)‖2 ≤ C

∥∥∥(SA1

0 )−1f

∥∥∥
2

≤ C‖∇‖f ‖2. By Theorem 4.3 in



The Dirichlet and regularity problems 179

[2], which still holds for systems since the argument is exactly the same, u → f n.t. Thus,
(RR2) holds for L1.

Similar argument yields solvability of (RD2) for L1.

Then, given the results in [30], we also observe that Theorem 1.12 in [16] still holds for
systems satisfying the same assumptions.

By Remark 1.23, many results, such as Theorem 7.1 in [30], and Theorems 1.12 and
1.35 in [16], still hold under the domain above a Lipschitz graph, Dϕ setting.

Before we proceed with the proof of Theorem 1.22, we need the following two results.
We first state the result on boundedness of the single layer potential on bounded Lipschitz
domains.

Lemma 3.3 Assume the hypotheses of Theorem 1.22. Let SA,
(f ) be the single layer
potential associated to L on 
. Then, ‖Ñ(∇SA,
f )‖2 � ‖f ‖2.

Proof Note that from the comment following the definition of a bounded Lipschitz domain,
we can choose the coordinate pairs so that (8Zj (Qj ,R), ϕj ) is still a coordinate pair for
each j , i.e.

8Zj (Qj ,R) ∩ 
 = 8Zj (Qj , R) ∩ {(x, t) : t > ϕj (x)}.
In other words, T8R(Qj ) ⊂ 8Zj (Qj , R).

Pick one of these Qj , i.e. in the coordinate pair (Zj (Qj , R), ϕj ),Qj = (0, ϕj (0)), and
consider the domain

Dj = {(x, t) : t > ϕj (x)}.
Let θ ∈ C∞

0 (Rd) be such that 0 ≤ θ ≤ 1, θ(y) ≡ 1 if y ∈ 	R(0) and θ(y) ≡ 0 if
y ∈ [	2R(0)]C . Define

A1(Y ) = A1(y, s) = θ(y)Ā(y, ϕj (y)) + (1 − θ(y))Ā(Qj ).

It is clear that A1 is real, bounded, measurable, elliptic, and is independent in the vertical
direction. In addition, ellipticity of A1 implies accretiveness as defined in [30]. Observe also
that

‖A1 − Ā(Qj )‖∞ = θ(y)‖Ā(y, ϕj (y)) − Ā(Qj )‖∞ < ε0

since in supp θ = 	2r ,

|(y, ϕj (y)) − Qj | =
√

|y|2 + (ϕj (y) − ϕj (0))2 ≤
√

1 + M2|y| < 2r
√

1 + M2 < δ̄.

Since Ā(Qj ) is constant, the solutions to LĀ(Qj )u = 0 satisfy Eq. 1.7 and Eq. 1.9, and

so do solutions to LA1u = 0. Thus, by Theorem 7.1 in [30], ‖Ñ(∇SA1f )‖2 � ‖f ‖2.
Let ψ ∈ C∞

0 (R) be such that ψ(s) ≡ 1 if 0 < s < R and ψ(s) ≡ 0 if s ≥ 2R, and define

A2(Y ) = A2(y, s)= ψ(s−ϕj (y))[θ(y)A(Y )+(1−θ(y))Ā(Qj )]+[1−ψ(s−ϕj (y))]A1(Y ).

Then, we have

A2(Y ) − A1(Y ) = ψ(s − ϕj (y))θ(y)[A(Y ) − Ā(y, ϕj (y))].
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We will proceed to show that ‖A2 − A1‖C is small. Define

b(r, x0) = 1

|	r(x0)|
∫∫

Tr (x0)

ε′2(X)

δ(X)
dX,

where ε′(X) = sup
W(x,t)

|A2(Y ) − A1(Y )|.
Consider any X = (x, t) ∈ R

d+1+ , and any Y = (y, s) ∈ W(x, t). Then, if X ∈
[T6R(0)]C , we have

s − ϕj (y) >
1

2
(t − ϕj (x)) ≥ 3R.

This means A2(Y ) − A1(Y ) = 0, which implies ε′(X) = 0. Thus, for any x0 ∈ R
d , and

r > 0

b(r, x0) = 1

|	r(x0)|
∫

T6R(0)∩Tr (x0)

ε′2(X)

δ(X)
dX.

We now look at the following cases:

• r ≥ 2R: For any x0 ∈ R
d , we have

b(r, x0) ≤ Cd

|	6R(0)|
∫

T6R(0)

ε2(X)

δ(X)
dX ≤ Cdh(8R, 0),

where ε and h were defined in the statement of Theorem 1.22.
• r < 2R: Here we look at the following possibilities:

– |x0| ≥ 6R: For any (x, t) ∈ Tr(x0), if Y = (y, s) ∈ W(x, t) then |y| > 2R,
which means ε′(x, t) = 0, and so b(r, x0) = 0.

– |x0| < 6R: In this case, we see that Tr(x0) ⊂ T8R(0) so

b(r, x0) ≤ h(8R, 0).

Consequently, ‖A2−A1‖C ≤ Cd supr>0,x0∈Rd b(r, x0) ≤ Cdh(8R, 0) < ε. By Theorem

1.12 in [17], ‖Ñ(∇SA2f )‖2 � ‖f ‖2. Since A2 = A in T2R , the desired result then follows
from a partition of unity and rotation of coordinate systems.

Next, we state and prove a lemma on localization of the regularity problem (see [24] e.g.)

Lemma 3.4 Assume the hypotheses and notations of Lemma 3.3. Further assume that
(RR)2 and (RD)2 are solvable for L2 and L∗

2 on Dj , where L2 = −div(A2∇). Then, for
r < R/8, f ∈ L2

1(	4r (Qj )), and u = SA,
(f )(X), we have∫
	(Qj ,r)

|∂νu|2 dσ ≤ C

r

∫
T (Qj ,2r)

|∇u|2 dX + C

∫
	(Qj ,2r)

|∇T f |2 dσ.

Proof For ease of notation, we will denote 	(Qj , r) by 	r and T (Qj , r) by Tr .
From Lemma 3.3, we have ‖Ñ(∇u)‖2 � ‖f ‖2. Thus, by Theorem 4.3 in [2], ∂νu exists.
Consider two cutoff functions ϕ, η ∈ C∞

0 (Dj ) such that ϕ ≡ 1 on T3r/2 ∪ 	3r/2, ϕ ≡ 0
on [T2r ∪	2r ]C, |∇ϕ| ≤ C/r , and η ≡ 1 on T2r ∪	2r so that ηϕ ≡ ϕ. Let v be the solution
to the regularity problem for L2 on Dj with data ηf . Let w = ϕ(u − v). Then, on 	2r , we
have

w = ϕ(f − f η) = f (ϕ − ηϕ) = 0,
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whence w ≡ 0 on ∂Dj . Thus, by properties of the Green’s function, we have

w(X) =
∫

Dj

GA∗
2
(Y,X)L2w(Y ) dY =

∫
Dj

GA2(X, Y )L2w(Y ) dY.

But

L2w = −div(A2∇(ϕ(u − v))) = −div(A2(∇ϕ)(u − v)) − div(ϕA2∇(u − v))

= −div(A2(∇ϕ)(u − v)) − A2∇(u − v)∇ϕ − ϕdiv(A2∇(u − v)).

Recall that A2 = A on TR . Since, supp ϕ ⊂ (T2r ∪ 	2r ) � (TR ∪ 	R), the third term
vanishes to give

L2w = −div(A2(∇ϕ)(u − v)) − A2∇(u − v)∇ϕ.

Since the Green’s function vanishes on the boundary, this means

w(X) = −
∫

Dj

GA2(X, Y )div(A2(∇ϕ)(u−v))(Y ) dY −
∫

Dj

GA2(X, Y )A2∇(u−v)∇ϕ dY

=
∫

Dj

A2(Y )(∇ϕ)(Y )(u − v)(Y )∇Y GA2(X, Y ) dY

−
∫

Dj

GA2(X, Y )A2(Y )∇(u − v)(Y )∇ϕ(Y ) dY.

Now, consider h ∈ L2(	2r ) with supp h ⊂ 	2r , and let � be the solution to the Dirichlet
problem for L∗

2 in Dj with datum h. Then, by changing the order of integration, we get

∫
∂Dj

∂w

∂νA2

(x)h(x) dx =
∫

Dj

(u − v)A2(Y )∇ϕ(Y )∇Y

(∫
∂Dj

∂

∂ν
GA2(x, Y )h(x) dx

)
dY

−
∫

Dj

A2(Y )∇(u − v)(Y )∇ϕ(Y )

(∫
∂Dj

∂

∂ν
GA2(x, Y )h(x) dx

)
dY

=
∫

Dj

A2(Y )(u − v)∇ϕ(Y )∇�(Y) dY

−
∫

Dj

A2(Y )∇(u − v)(Y )∇ϕ(Y )�(Y ) dY = I + II.

We now estimate each term. For II , since supp ∇ϕ ⊂ T2r \ T3r/2 ∪ (	2r \ 	3r/2), and
|∇ϕ| ≤ C/r , we have

II ≤ Cr−1
(∫

T2r

|∇(u − v)(Y )|2 dY

)1/2 (∫
T2r

|�(Y )|2 dY

)1/2

≤ Cr−1
(∫

T2r

|∇(u − v)(Y )|2 dY

)1/2 (∫
T2r

|N∗�(x)|2 ds dy

)1/2

≤ Cr−1/2
(∫

T2r

|∇(u − v)(Y )|2 dY

)1/2

‖h‖L2(	2r )
,

where we have used pointwise estimate in the second inequality, and the fact that � is a
solution to the Dirichlet problem with datum h to get the third.
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To estimate I , let Y = (y, s). Again, since supp ∇ϕ ⊂ T2r \ T3r/2 ∪ (	2r \ 	3r/2),
Schwarz inequality gives

I =
∫

Dj

A2(Y )∇ϕ(Y )
(u − v)(Y )

δ(Y )
∇�(Y)δ(Y ) dY

≤ Cr−1

(∫
T2r

|(u − v)(Y )|2
δ2(Y )

dY

)1/2 (∫
T2r

s2|∇�(y, s)|2 dy ds

)1/2

≤ Cr−1/2

(∫
T2r

|(u − v)(Y )|2
δ2(Y )

dY

)1/2 (∫ ∞

0

∫
Rd

s|∇�(y, s)|2 dy ds

)1/2

≤ Cr−1/2
(∫

T2r

|∇(u − v)(Y )|2 dY

)1/2

‖h‖L2(	2r )
,

where we have used the version of Hardy’s inequality that was shown in [4] since on
	2r , u − v = f − ηf = 0, as well as the solvability of (RD)2 for L∗

2. Since the choice for
h was arbitrary, we obtain the estimate∥∥∥∥ ∂w

∂νA2

∥∥∥∥
L2(	2r )

≤ Cr−1/2
(∫

T2r

|∇(u − v)(Y )|2 dY

)1/2

by duality. Observe that

∂w

∂νA2

= ∂

∂νA2

[ϕ(u − v)] = ϕ
∂(u − v)

∂νA2

+ (u − v)
∂ϕ

∂νA2

= ϕ
∂(u − v)

∂ν

since u − v ≡ 0 on 	2r , ∂νA2
ϕ ≡ 0 on [	2r ]C , and A = A2 on TR . Hence,∥∥∥∥∂u

∂ν

∥∥∥∥
L2(	r )

≤
∥∥∥∥∂(u − v)

∂ν

∥∥∥∥
L2(	r )

+
∥∥∥∥∂v

∂ν

∥∥∥∥
L2(	r )

≤
∥∥∥∥ϕ

∂(u − v)

∂ν

∥∥∥∥
L2(	2r )

+
∥∥∥∥∂v

∂ν

∥∥∥∥
L2(	2r )

=
∥∥∥∥ ∂w

∂νA2

∥∥∥∥
L2(	2r )

+
∥∥∥∥∂v

∂ν

∥∥∥∥
L2(	2r )

≤ Cr−1/2
(∫

T2r

|∇(u − v)(Y )|2 dY

)1/2

+ C ‖∇T f ‖L2(	2r )
,

where the last bound for
∂v

∂ν
comes from the fact that v is a solution to the regularity problem

for L2 on Dj .

We are ready to present the proof of the main theorem.

Proof of Theorem 1.22 It suffices to show that SA,
 : L2(∂
) → L2
1(∂
) is invertible.

Note that if we denote by ·∗ quantities involving the adjoint operators, then we have
h∗

j (8R,Qj ) < ε
Cd .

We continue to use the same notations in the proof of Lemma 3.3 in this proof. Recall
from there that for each coordinate pair (Zj (Qj , R), ϕj ), ‖A1 − Ā(Qj )‖∞ < ε0. Since
Ā(Qj ) is constant, elliptic, and pseudo-symmetric, SĀ(Qj ) : L2(∂Dj ) → L̇2

1(∂Dj )

is invertible by Theorem 2.1. The same result holds for SĀ(Qj )∗ . By Theorem 3.2,
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(RD2), (RR2) are solvable for L1 = −div(A1∇) on Dj . Analogously, (RD2), (RR2) are
solvable for L∗

1 on Dj .
By Theorem 1.35 in [16], (RD2) and (RR2) hold for L2,L∗

2 in Dj . By Lemma 3.4, we
obtain the following.∫

	R/8(Qj )

|∂νu|2 dσ ≤ C

∫
	3R/8(Qj )

|∇‖f |2 dσ + C

R

∫
T3R/8(Qj )

|∇u|2 dX.

Since {( 1
8Zj (Qj ,R), ϕj )} cover ∂
, we have∫

∂


|∂νu|2 dσ ≤
∫

∪N
j=1	R/8(Qj )

|∂νu|2 dσ

≤ C

(∫
∂


|∇T f |2 dσ +
∫∫

∪N
j=1T3R/8(Qj )

|∇u|2 dX

)

≤ C

(∫
∂


|∇T f |2 dσ +
∫∫




|∇u|2 dX

)
.

Recall that u∂
 denote the average of u on ∂
. Since u is a solution to Lu = 0, we have∫



|∇u|2 dX =
∫




|∇(u − u∂
)|2 dX ≤
∫




A∇(u − u∂
) · ∇(u − u∂
) dX

=
∫

∂


[u − u∂
]∂νu dσ

≤ C

ε

∫
∂


|u − u∂
|2 dσ + Cε

∫
∂


|∂νu|2 dσ

≤ C

ε

∫
∂


|∇T f |2 dσ + Cε

∫
∂


|∂νu|2 dσ,

where we have used Cauchy’s inequality with an ε as well as Poincaré’s inequality.
Choosing ε sufficiently small, we get∫

∂


|∂νu|2 dσ ≤ C

∫
∂


|∇T f |2 dσ.

Analogously, we get ∫
∂


|(∂νu)−|2 dσ ≤ C

∫
∂


|(∇T f )−|2 dσ.

Furthermore, for u = SA,
f , we have

‖f ‖2 =
∥∥∥∥
(

∂u

∂ν

)
+

−
(

∂u

∂ν

)
−

∥∥∥∥
2

≤ C‖(∇T u)+‖2 + ‖(∇T u)−‖2 = C‖∇T u‖2.

So SA : L2(∂
) → L2
1(∂
) is one-to-one. An argument similar to that at the end of the

proof of Theorem 2.1 gives the invertibility of SA : L2(∂
) → L2
1(∂
).

We end this section with a uniqueness result.

Lemma 3.5 Let A be real, bounded, and elliptic and u be a solution to the equation LAu =
0 in
, a bounded Lipschitz domain with connected boundary, such thatN∗(∇u) ∈ L2(∂
).
Assume further that u = 0 nontangentially on ∂
. Then, u = 0 in 
.
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Proof First, observe that if N∗(∇u) ∈ L2(∂
) then N∗(u) ∈ L2(∂
). This is because for a
fixed Q ∈ ∂
 and any X ∈ �(Q), fundamental theorem of calculus and the fact that u = 0
nontangentially on ∂
 give:

u(X) =
∫

γ [Q,X]
∇u(Y ) dY ≤ diam(
)N∗(∇u)(Q),

where γ [Q, X] is the straight line path connecting Q and X.
Now, let 
k ↑ 
 be a sequence of smooth domains approximating 
 from the inside. We

will use the notations from Theorem (1.5) in the remainder of this proof. Denote by �Nk the

outer unit normal vector on ∂
k ,

(
∂u

∂νk

)α

(P ) = �Nk
i (P )A

αβ
i,j

∂uβ

∂Pj

, and dσk the surface mea-

sure on ∂
k . By the uniform boundedness away from 0 of the Jacobians ωk corresponding
to the homeomorphisms �k ,∫

∂


uα(Q)
∂uα

∂ν
(Q) dσ ≥ C

∫
∂


uα(Q)
∂u

∂ν
(Q)ω−1

k (Q) dσ

=
∫

∂
k

uα(�k(Q))
∂u

∂νk

(�k(Q)) dσk

=
∫


k

A
αβ
i,j

∂uβ

∂xj

∂uα

∂xi

dX,

where we have used the fact that Lu = 0 in 
k in the last step. Thus,∫



A
αβ
i,j (X)

∂uβ

∂xj

∂uα

∂xi

dX = lim
k→∞

∫

k

A
αβ
i,j (X)

∂uβ

∂xj

∂uα

∂xi

dX

≤
∫

∂


uα(Q)
∂uα

∂ν
(Q) dσ = 0.

This implies
∫




A
αβ
i,j (X)

∂uβ

∂xj

∂uα

∂xi

dX = 0, whence, by ellipticity of A, ‖∇u‖L2(
) = 0.

Consequently, u is constant in 
. By connectedness of 
, and u = 0 n.t. on ∂
, it must
follow that u = 0 in 
.

This lemma gives unique solvability of (D2) and (R2) in Theorem 1.22. For the latter,
uniqueness is obtained modulo constants.

4 Single Equations, I.E. m = 1

For single equations, we have more tools such as harmonic measure associated to LA as
well as its estimates in terms of the Green’s function associated to LA available to us.
Consequently, the proof of Theorem 1.22 can be obtained via a localization argument pio-
neered by Kenig and Pipher in [21]. We give a sketch of the proof for when m = 1
here. The notations are the same as in Lemma 3.3 and 3.4, as well as in the proof of
Theorem 1.22.

Step 1: SQ̄ : L2(∂Dj ) → L̇2
1(∂Dj ) is invertible by Theorem 2.1. By Theorem 3.2, (RD2)

and (RR2) are solvable for L1 and L∗
1 on Dj .

Step 2: By Theorem 1.35 in [16], (RD2) and (RR2) are solvable for L2 and L∗
2 on Dj .

Step 3: Prove the following localization argument for the regularity problem.
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Theorem 3.2 LetL = −div(A∇)whereA is real, bounded, and elliptic. Suppose
that (RR2) is solvable for L, and (RD2) is solvable for L∗ in R

d+1+ . Let u ∈
W 1,2(T8r (x0)) be a weak solution to Lu = 0 in T8r (x0) such that Ñr (∇u) ∈
L2(	4r (x0)) and u = f ∈ L2

1(	4r (x0)) ∩ C(	4r (x0)) on 	4r (x0). Then

∫
	r(x0)

|Ñr/2(∇u)|2 dx ≤ C

{∫
	3r (x0)

|∇T f |2 dx + 1

r

∫
T3r (x0)

|∇u|2 dX

}
.

(1.1)

Step 4: Use estimate (1.1) to obtain
∫

∂


|Ñ(∇u)|2 dσ ≤ C

∫
∂


|∇‖f |2 dσ , thus proving

solvability of (R2).
Step 5: Show that solvability of (R2) for LA∗ implies solvability of (D2) for LA on 
.
Step 6: Prove uniqueness.

For detailed arguments for Steps 3-5 as well as an alternative argument for Step 6, refer
to [29].
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