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Abstract To obtain groups with bounded harmonic functions (which are amenable), one
of the most frequent way is to look at some semi-direct products (e.g. lamplighter groups).
The aim here is to show that many of these semi-direct products do not admit harmonic
functions with gradient in �p, for p ∈ [1, ∞[.
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In [5] and [6], the author showed that many groups do not have non-constant harmonic
functions with gradient in �p (for p ∈ [1, ∞[): e.g. Liouville groups, lamplighters on Z

d

with amenable lamp states, groups with infinitely many finite conjugacy classes, ... The aim
of this short paper is to show that many semi-direct products (including lamplighter groups
on bigger spaces) also have this property. This contrasts with the fact that all groups admit
non-constant harmonic functions with gradient in �∞ (i.e. Lipschitz) and that the groups
under consideration have many non-constant bounded harmonic functions.

The graphs � = (X,E) considered here will always be the Cayley graphs of finitely
generated groups. The gradient of f : X → R is ∇f : E → R defined by ∇f (x, y) =
f (y) − f (x). The space of p-Dirichlet functions is Dp(�) = {f : X → R | ∇f ∈
�p(E)} and the space of harmonic functions is H(�) = ker(∇∗∇). Harmonic functions
with gradient in �p(E) are denotedHDp(�) = H(�)∩Dp(�), and BHDp(�) = HDp(�∩
�∞(X) is the subspace of bounded such functions.

Although these spaces depend a priori on the generating set, an abuse of notation will
be made by replacing the Cayley graph � by the finitely generated group it represents: for

� Antoine Gournay
antoine.gournay@unine.ch
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a group H and a finite generating set, Dp(H) is to be understood as the Dp space on the
associated Cayley graph.

Theorem 1 Let H be of growth at least polynomial of degree d ≥ 2p and, if H is of
superpolynomial growth, assume that only constant functions belong to BHDq(H) for some
q > p. Let C be a group which is not finitely generated, assume G = C �φ H is finitely
generated and assume the hypothesis (TC) hold. Then HDp(G) contains only constant
functions.

The results actually holds for any graph quasi-isometric to a Cayley graph of G.
The hypothesis (TC) (see Section 1.3) means that elements in C which are “far away”

commute where “far away” can intuitively be thought of as that in order to make some spe-
cific subgroup which contain them intersect, one needs to apply a φh with h ∈ H large. This
hypothesis always holds for Abelian C and in some other interesting examples (see Exam-
ple 10). The author is inclined to believe that other methods could weaken this hypothesis,
however D. Osin pointed out to the author it may not be removed.

Particular examples are lamplighter groups L 	H , as long as H has no bounded harmonic
functions (and d ≥ 2p). Using [6, §4], one can check that iterated wreath products (e.g.
Z 	 (Z 	Z)) have a trivialHDp . This gives a partial answers to a problem of Georgakopoulos
[4, Problem 3.1], see Section 2.1. See also Section 2.2 below for more details and [7] for
more results on lamplighter groups.

Together with [5, Theorem 1.4], this results indicates that some extension operations
should be avoided to construct groups with harmonic functions with gradient in �p out
of groups which do not have them. In fact, using [5, Theorem 1.2], an open question of
Gromov can be stated as: is it true that any finitely generated amenable group G has only
constant functions inHDp(G) (for any p ∈]2, ∞[. For further questions and comments see
Section 2.2 below.

Lemma 5 shows there are no harmonic functions with gradient in c0 in groups of poly-
nomial growth. It would be nice to have an amenable groups where this fails. Recall that for
p = 2, this result can be interpreted in terms of [reduced] �2-cohomology in degree one (or
first �2-Betti numbers). For links between the current results and [reduced] �p-cohomology
[in degree 1], the reader is directed to [5].

1 Proof

1.1 Boundary Values

The following lemma, taken from [5], will come in handy. Let BDp(�) = Dp(�) ∩ �∞(X)

be the space of bounded functions in Dp.

Lemma 2 Let g ∈ Dp(H) and H be a group of growth at least polynomial of degree
d > 2p. Let PH be the random walk operator on H (for some finite generating set). Then
g̃ = limn→∞ P n

H g exists and there is a constant K1 depending on the isoperimetric profile
(in particular, possibly on d) such that

‖g − g̃‖�∞ ≤ K1‖g‖Dp .

Furthermore g̃ ∈ Dq(H) for all q ∈ [ pd
d−2p ,∞]

. If g ∈ BDp(H) then g̃ ∈ BDq(X).
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Proof Let gn = P ng, then

g − gn = g − P ng =
n−1∑

i=0

P ig − P i+1g =
n−1∑

i=0

P i(I − P)g =
n−1∑

i=0

P i(−�g).

But if g ∈ Dp(H) then �g ∈ �p(H).
Let p(i) = P iδe where δe is the Dirac mass at the identity element of H . Note that the

above expression reads g − gn = (−�g) ∗ (∑n−1
i=0 p(i)

)
.

On the other hand if H has polynomial growth of degree at least d then ‖p(i)‖�r ≤
Kn−d/2r ′

where r ′ is the Hölder conjugate of r . Indeed, use Varopoulos to have a bound
on the �∞ norm: ‖p(n)‖�∞ ≤ K2n

−d/2. The �1-norm is always 1. Interpolate to get the �r

norm:

‖p(n)‖r
�r =

∑
p(n)(γ )r ≤ ‖p(n)‖r−1∞ ‖p(n)‖1 ≤ Kr−1

2 n
−d
2 (r−1)

Recall that for r, r1, r2 ∈ R≥1 ∪ {∞} satisfying 1 + 1
r

= 1
r1

+ 1
r2
, Young’s inequality (see

[13, Theorem 0.3.1]) gives ‖f ∗ g‖r ≤ ‖f ‖r1‖g‖r2 . Applying this inequality to g − gn =
p(n) ∗ (−�g), one deduces convergence (of g − gn in �q -norm) and

‖g − g̃‖�q ≤ K1(q)‖g‖Dp

for q ∈ [ pd
d−2p ,∞]

and K1(q) is the product of the norm of ∇∗ (from �p of the edges �p of
the vertices) and of Green’s kernel (from �p(H) → �q(H)). Thus

‖g − g̃‖�∞ ≤ K1‖g‖Dp ,

where K1 = K1(∞). For the last assertion, note that g̃ is harmonic bounded (given g is
bounded) and has gradient in �q (being the sum of a function in Dp(H) and a function in
�q(H)).

1.2 Some Slicing and a Reduction

Take G = C �φ H . Assume H is finitely generated (by SH ) and there is a finite set SC

such that φH (SC) := {φz(c) | z ∈ H, c ∈ SC} generates C. For G, consider the generating
set {eC} × SH ∪ SC × {eH }. This will turn out to be unimportant but makes the proof much
simpler.

Recall c0 is the closure of finitely supported functions in �∞: for some countable set Y ,

c0(Y ) := {f : X → R | ∀ε > 0, ∃F ⊂ Y finite such that ‖f ‖�∞(X\F < ε}.
For z ∈ H let |z| be the word length of z (for SH ). Let φF (SC) := {φz(c) | z ∈ F, c ∈

SC}. For c ∈ C, let |c| be the word length for [the infinite alphabet] φH (SC). Let

�c� := min{r ∈ Z≥0 | c belongs to the subgroup generated by φSr
H
(SC)}.

Let supp c be union of the sets F ⊂ H such that c belongs to the group generated by
φF (SC), F is minimal with respect to inclusion and maxf ∈F |f | ≤ �c�.

Lemma 3 Let f ∈ Dp(�). There exists a sequence ε′
n of positive real numbers tending to 0

∀c ∈ C, ∀s ∈ SC |f (c, z) − f (c · φz(s), z)| < ε′|z|.
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Proof Writing the terms in ∇f gives

‖f ‖p

Dp(G) =
∑

z∈Z

∑

c∈C

( ∑

s∈SC

|f (c · φz(s), z) − f (c, z)|p +
∑

s∈SH

|f (c, z · h) − f (c, z)|p
)

This implies that
∑

c∈C,s∈SC
|f (c · φz(s), z) − f (c, z)|p tends to 0 in z. Since �p ⊂ c0, one

has that |f (c · φz(s), z) − f (c, z)| tends to 0 uniformly in c and s ∈ SC .

Similarly:

Lemma 4 Let f ∈ Dp(�). There exists a sequence εn of positive real numbers tending to
0 so that

‖f (c, ·)‖Dp(H) ≤ ε�c�.

Proof ∀c ∈ C, f (c, ·) ∈ Dp(H), and ‖f ‖p

Dp(G) ≥ ∑
c∈C ‖f (c, ·)‖p

Dp(H). Again, the terms
in this sum tend to 0 (formally, we use again that �p ⊂ c0).

The following lemma is probably well-known.

Lemma 5 Assume H has polynomial growth. Then there are no harmonic functions with
gradient in c0.

Proof It is known by the works of Colding & Minicozzi [3] (see also Kleiner [10, Theo-
rem 1.4]) that groups of polynomial growth have a finite dimensional space of harmonic
functions with gradient in �∞. Recall that λγ f (x) := f (γ x). Since left-multiplication is an
isometry of the Cayley graph, λγ f is harmonic if and only if f is. Furthermore, their gra-
dients are the same up to this shift. Given f non-constant with gradient in c0, the aim is to
show that the λγ f span a vector space of arbitrarily large dimension.

To do this, note that there is some edge e ∈ E so that, up to multiplying f by a con-
stant, ∇f (e) = 1 (this is possible since f is non-constant). For any ε, let γ1 be so that
|∇(λγ1f )(e)| < ε/2, |∇f (γ −1

1 e)| < ε/2. This is possible since ∇f ∈ c0(E). Pick γ2 so
that λγ2f has gradient < ε/4 at e and γ −1

1 e while f and λγ1f have gradient < ε/4 at γ −1
2 e.

Continue this similarly to get a sequence γi with “errors” ε/2i . Restricting to the edges
γ −1
i e one sees vectors of the form:

1 ε/2 ε/4 ε/8 . . .

ε/2 1 ε/4 ε/8 . . .

ε/4 ε/4 1 ε/8 . . .

ε/8 ε/8 ε/8 1 . . .
...

...
...

...
. . .

Now if L : RN → R
N is a linear map such that ‖L�ei −�ei‖�2(N) ≤ ε for {�ei}1≤i≤N the usual

basis of RN . Then a standard exercises shows dim kerL ≤ ε2N .
Indeed, let {�vi}1≤i≤N be an orthogonal basis of RN , and M : R

N → R
N be a linear

map such that M �vi = �vi for 1 ≤ i ≤ k then k ≤ ‖M‖2
�2(N2)

. This is because the �2(N2)

norm for these matrices can also be expressed by TrMTM and is consequently independent
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of the choice of orthogonal basis. As M �vi = �vi for 1 ≤ i ≤ k, a simple computation yields
k ≤ TrMtM = ‖M‖2

�2(N2)
.

Let dim kerL = k and M = L − Id. Since there is an orthogonal basis of RN such
that the first k elements actually form a basis of kerL, this implies ‖M‖2

�2(N2)
≥ k.

On the other hand, ‖M‖2
�2(N2)

= ∑
i ‖M�ei‖2�2(N)

≤ Nε2. It follows that k ≤ ε2N as
claimed.

This means that the space spanned by {λγi
f }Ni=1 is of dimension at least (1 − ε2)N .

In particular there is an infinite dimensional space of Lipschitz harmonic functions. This
implies the group is not of polynomial growth.

The preceding lemma does not a priori exclude the existence of non-constant harmonic
functions with sublinear growth (see either Hebisch & Saloff-Coste [9, Theorem 6.1] or
Meyerovitch, Perl, Tointon & Yadin [12, Theorem 1.3]).

Remark 6 Before moving on, it is necessary to note that groups of polynomial growth are
Liouville, i.e. they have no non-constant bounded harmonic functions. Thus for such groups
H , BHDq(H) � R for any q ∈ [1, ∞]. In fact, if q < ∞, then HDq(H) contains only
constants, by Lemma 5.

If H has growth at least polynomial of degree d > 2p and q ∈ ] dp
d−2p , ∞]

, [5, The-
orem 1.2] shows that BHDq(H) � R implies HDp(H) � R. In particular, if H has
superpolynomial growth, q > p and BHDq(H) � R impliesHDp(H) � R.

1.3 Constant at Infinity

Let us state the hypothesis (TC) that is required on φ and C. It states that for any finite
F ⊂ H , there are infinitely many z so that there exists a s satisfying φz(s) is not in the
subgroup generated by φF (SC) and

for all w ∈ F and s′ ∈ SC, [φz(s), φw(s′)] = 1. (TC)

The easiest case where this hypothesis hold is when C is Abelian. For another common
example see Example 10.

Assume H is either of polynomial growth or has superpolynomial growth and
BHDq(H) � R for some q > p. For f ∈ Dp(G) and c ∈ C, let f̃ (c, ·) = lim

n→∞ P n
H f (c, ·),

where P n
H is the random walk operator restricted to H . Thus, by Lemma 4, Lemma 2 and

Remark 6, ‖f (c, ·) − cstc‖�∞(H) ≤ K1ε�c�, where cstc is the constant function f̃ (c, ·).
Given a set F ⊂ H , let F = {z ∈ H | φz(SC) ⊂ φF (SC)}. If C is not finitely generated,

then H \ F is infinite for any finite set F .

Theorem 7 Let H be as above (i.e. either of polynomial growth d > 2p or of superpoly-
nomial growth and BHDq(H) � R for some q > p). Assume C is not finitely generated.
Let f ∈ Dp(�), and define f̄ : C → R by f̄ (c) is equal to the constant of the constant
function f̃ (c, ·). Then

|f̄ (c1) − f̄ (c2)| ≤ K1(ε�c1� + ε�c2�).

In particular, lim�c�→∞ f̄ (c) exists.
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Proof We need to show that the constants cstci
corresponding to c1 and c2 ∈ C are close.

Let |c−1
2 c1| be the distance from c1 to c2 (in the infinitely generated Cayley graph of C for

the generating set φH (SC)).
Fix some ε > 0 and assume for simplicity that K1 ≥ 1.
Let z be so that ν := max(ε′|z|, ε|z|) < ε/K1(3|c−1

2 c1| + 5) and z lies outside � where

� = supp c1∪supp c2. Since, for some s ∈ SC and any c with supp c ⊂ �, �c ·φz(s)� ≥ |z|,
by Lemmas 4 and 2,

|f (c · φz(s), w) − cstc·φz(s)| < K1ν for any w ∈ H and any c with supp c ⊂ �.

Also, by Lemma 3, for any c ∈ C, |f (c, z)− f (c ·φz(s), z)| < ν. Thus, for any s′ ∈ SC ,
for any w ∈ � and any c with supp c ⊂ �,

|cstc·φw(s′)·φz(s) − cstc·φz(s)|
≤ |cstc·φw(s′)·φz(s) − f (c · φw(s′) · φz(s), w)|

+|f (c · φw(s′) · φz(s), w) − f (c · φz(s), w)|
+|f (c · φz(s), w) − cstc·φz(s)|

≤ K1ν + |f (c · φz(s) · φw(s′), w) − f (c · φz(s), w)| + K1ν.

≤ 2K1ν + ν.

where the above estimate as well as hypothesis (TC) was used in the second inequality and
Lemma 4 was used in the third inequality. Hence, one has

|cstc1·φz(s) − cstc2·φz(s)| ≤ 3K1|c−1
2 c1|ν.

Finally,

|cstci ·φz(s) − cstci
| ≤ |cstci ·φz(s) − f (ci · φz(s), z)|

+|f (ci · φz(s), z) − f (ci, z)|
+|f (ci, z) − cstci

|
≤ (K1 + 1)ν + K1ε�ci�.

So

|cstc1 − cstc2 | ≤ K1
[
(3|c−1

2 c1| + 4)ν + ε�c1� + ε�c2�
]

< K1
(
ε + ε�c1� + ε�c2�

)
.

Since the above holds for any ε > 0, the conclusion follows.
To see the limit exists, note that the sequence is Cauchy.

Proof of theorem 1 First, the proof is done for the generating set build with SC and SH . Let
Bn be a sequence of balls centred at the identity in G. Say a function has only one value at
infinity if, up to changing f by a constant function, f (Bc

n) ⊂] − σn, σn[ for some sequence
of positive numbers σn tending to 0.

Take f ∈ HDp(G). If f takes only one value at infinity, then f is constant (by the
maximum principle).

Thus, the theorem follows if we show any f ∈ Dp(G) has one value at infinity (it is
not even required that f be harmonic). Change f by a constant so that the function f̄ from
Theorem 7 tends to 0 as �c� → ∞. This implies

|f (c, z)| = |f (c, z) − cstc + cstc| ≤ 3K1ε�c�,
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by bounding the first term as in the proof of Theorem 7 and the second by the result of
Theorem 7. It remains to check that f (c, z) also tends to 0 as |z| → ∞. Assume z /∈ S

�c�
H

(i.e. |z| > �c�), then, using the same bounds and Lemma 3,

|f (c, z)| ≤ |cstc·φz(s)| + |cstc·φz(s) − f (c · φz(s), z)|
+|f (c · φz(s), z) − f (c, z)|

≤ 2K1ε|z| + K1ε|z| + ε′|z|
≤ 3K1ε|z| + ε′|z|.

Thus f has only one value at infinity.
If one considered another generating set, then a simple way is to do as follows. Note that

G is not virtually nilpotent, hence satisfies a d-dimensional isoperimetric profile for any d.
By [5, Theorem 1.4], for any Cayley graph � of G, one has: the reduced �p-cohomology
in degree one of � is non-trivial for some p ∈ [1, ∞[ if and only if HDq(�) �� R for
some q ∈ [1, ∞[. Since the reduced �p-cohomology in degree one is an invariant of quasi-
isometry (in particular, of the choice of generating set) the result follows for other generating
sets.

2 Some Examples and Questions

2.1 Examples

Le us rewrite Theorem 1.

Corollary 8 Let G = C �φ H , assume C is not finitely generated but G is and that
hypothesis (TC) holds.

• If H has polynomial growth of degree d, then, for all p ∈ [1, d/2[, HDp(G) contains
only constant functions.

• IfH has intermediate growth, then, for all p ∈ [1, ∞[,HDp(G) contains only constant
functions.

• If H has exponential growth and p ∈ [1, ∞[ and let 1 ≤ p < q ≤ ∞. Then
BHDq(H) � R impliesHDp(G) � R. AlsoHDp(H) � R impliesHDp(G) � R.

Example 9 The classical example is to take L finitely generated group (“lamp state”) and
C = ⊕H L with H acting by shifting the index. C is the “lamp configuration group”, and
the semi-direct product is called a lamplighter group. If H and L are finitely generated, then
SC can be picked to be the generating set of L (at the index eH ).

Georgakopoulos [4] showed lamplighter graphs do not have harmonic functions with
gradient in �2. His methods extends to harmonic functions with gradient in �p . However,
the lamp groups must be finite.

Using Theorem 1, [6, §4], [11, Theorem.(iv)] and work of Georgakopoulos [4], one may
readily check that the only lamplighter groups for which it is not proven thatHDp(�) � R

for any p ∈ [1, ∞[ are those where L is infinite amenable and either 1- H is of polynomial
growth and not virtually Abelian or 2- H hasHDp(H) �� R.

Though the proof was not done in this generality, Theorem 1 extends almost verbatim to
the case of lamplighter graphs. The correct hypothesis is that the graph H must have ISd for
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d > 2p and either: 1- HDp(H) � R or 2- BHDq(H) � R for some q ∈ ] dp
d−2p ,∞]

. This
gives a partial answer to a problem raised by Georgakopoulos [4, Problem 3.1].

Example 10 Another classical example is to take SymH to be the permutations H → H

which are not the identity only on a finite set. There is a natural action (say, on the right)
of H on itself by permutation. This gives G = SymH �φ H which is finitely generated
(although SymH is not finitely generated).

2.2 Further Comments and Questions

A simple way to show that the gradient of a harmonic function is not in �p is to think in
terms of electric currents. This is essentially the method used by Georgakopoulos [4] to
show lamplighter graph do not have harmonic functions with gradient in �2. Indeed, if one
exhibits “many” paths which are “not too long” between points where the potential is ≥ 5/8
and points where its ≤ 3/8, then one gets a lower bound on the gradient.

Note that, for groups, using [5, Theorem 1.2], it is sufficient to consider the case of
bounded harmonic functions. Still, assume for simplicity that f is a bounded harmonic
function. Then, up to normalisation, its values are between 0 and 1. Let N = f −1[0, 3/8]
and P = f −1[5/8, 1] (both are infinite sets). Let kn be the maximal number of edge-disjoint
paths of length ≤ n between N and P . Then the �p norm of the current is at least

1

4

∑

paths

1

length of the paths
≥ kn

np

Let pc := inf{p | HDp(�) �� R}. Then, ∀ε > 0, lim
n→∞

kn

npc+ε = 0. This gives an amusing
view of the critical exponent from �p-cohomology, see Bourdon, Martin & Valette [1] or
Bourdon & Pajot [2].

Question 11 Given a group of exponential growth and divergence rate n �→ nd , is it
possible to show that kn grows exponentially?

Indeed, there are always two geodesic rays {xn} and {yn} with f (xn) → 1 and f (yn) →
0. If the divergence does not grow too quickly, then there should be [exponentially] many
paths of distance roughly Kn1/d between those (for some K > 0).

Acknowledgments I wish to thank an anonymous referee for many useful comments and important
corrections, as well as D. Osin for pointing out an example where (TC) cannot be removed.
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