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Abstract We give a representation of the solution of the Neumann problem for the Laplace
operator on the n-dimensional unit ball in terms of the solution of an associated Dirichlet
problem. The representation is extended to other operators besides the Laplacian, to smooth
simply connected planar domains, and to the infinite-dimensional Laplacian on the unit ball
of an abstract Wiener space, providing in particular an explicit solution for the Neumann
problem in this case. As an application, we derive an explicit formula for the Dirichlet-to-
Neumann operator, which may be of independent interest.
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For a smooth bounded domain D ⊂ R
n (n ≥ 1), consider the corresponding Dirichlet and

Neumann problems for the Laplacian in D{
�u = 0 in D

u = ϕ on ∂D
(1)

and {
�U = 0 in D
∂U
∂ν

= φ on ∂D
, (2)

where ν is the outward unit normal to the boundary of D.
As it is known, for continuous boundary data, the Dirichlet problem (1) has a unique

solution and the Neumann problem (2) has a solution, unique up to additive constants, if
we require in addition the condition

∫
∂D

φ (z) σ (dz) = 0. Note that this is a necessary
condition for the existence of a solution, since by Green’s first identity we have∫

∂D

φ (z) σ (dz) =
∫

∂D

1
∂U

∂ν
(z) σ (dz) =

∫
D

1�U (z) + ∇1 · ∇U (z) dz = 0.

There are several representations of the solutions of the Dirichlet and Neumann problems
above in the literature: by single / double layer potentials (see for example [7], Theorem
3.40), by spherical harmonics ([7], Theorem 2.60), or even by probabilistic methods (see
Theorem 2.1 in [2] for the Dirichlet problem, and [5, 11], or Theorem 5.3 in [3] for the
Neumann problem).

It is usually agreed that the Neumann problem is in general “harder” than the Dirichlet
problem. In the present paper, we derive explicit relations between the solutions of (1) and
(2), which do not seem to appear in the literature. This shows that the Dirichlet and Neumann
problems are equivalent in this case (equally “hard”), in the sense that solving one of them
leads to the solution of the other one.

Remark 1 Although there are various connections between the Neumann and the Dirichlet
problems in the literature, they are not explicit. For example, it is known (see e.g. [13, Chap.
7, Sect. 11]) that the Neumann problem (2) can be reduced to the Dirichlet problem (1) for
the choice of ϕ given by φ = �nϕ, where �n denotes the Dirichlet-to-Neumann operator
for D ⊂ R

n (see also Section 1.3). In turn, this requires to invert the operator�n, without an
explicit form being given. Alternately, following the same reference, the previous condition
is shown to be equivalent to (I − N)ϕ = −2Sφ, where the operators S, N are related
to single and double layer potentials on D (see [13, Proposition 7.11.1]). Again, in order
to relate the Neumann problem (2) to the Dirichlet problem (1), this requires to invert the
operator I − N , without an explicit form being given.

Our main result in Theorem 1 (and its extensions given in Theorems 2, 5, and 6) provide
an explicit relation between the solution(s) of (2) and (1), in the sense that the normalized
solution of (2) can be found as a weighted average of the solution of (1). As noted above,
this is equivalent to inverting the Dirichlet-to-Neumann operator, and as an application we
provide an explicit form of the inverse in the case of the unit ball in R

n (see Section 1.3).
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The results are interesting in their own respect. The result in Theorem 1 shows that in
the case of the unit ball in R

n (n ≥ 1) we can find the solution of the Neumann problem by
solving the Dirichlet problem with the same boundary values. Probabilistically, this result
has an interesting consequence, since the solution of the Neumann problem can be repre-
sented by Brossamler’s formula (see [3, 5]) in terms of the reflecting Brownian motion,
while the solution of the Dirichlet problem (see e.g. [2, Sect. 2.2]) is given in terms of the
killed Brownian motion. The result in Theorem 1 shows therefore that the expected value
of certain functionals of reflected Brownian motion can be computed alternately in terms of
the expected value of the killed Brownian motion in the same domain, a result which may
be of independent interest. From a different prospective, in terms of extensions of Dirichlet
spaces, the connection between the killed and the reflecting Brownian motion (and more
general processes) have been pointed out in the recent monograph [6, Chap. 6,7].

The structure of the paper is as follows. In Section 1, we consider the case of the unit
ball in Rn (n ≥ 1). We begin with the heuristics which led us to the result (Section 1.1), and
then we give the main theorem in this case, Theorem 1. The result can be extended to other
operators besides the Laplacian, and in Theorem 2 we present such an extension.

As an application, in Section 1.3 we derive an explicit representation of the inverse of the
Dirichlet-to-Neumann operator (a particular case of the Poincaré-Steklov operator, which
encapsulates the boundary response of a system modelled by a certain partial differential
equation). The result could be relevant to people working in this area of research (Calderon’s
problem, domain decomposition methods, a.s.o.).

In Section 2, we use the method of conformal maps to extend the result obtained in the
case of the unit disk to the general case of smooth bounded simply connected domains. We
point out that the linear operators which appear in Theorem 1 and Theorem 5 (the operator
T (u) = U which establishes the correspondence between the solution u of the Dirichlet
problem and the solutionU of the Neumann problem, given by Eq. 4, respectively by Eq. 20)
transform the Dirichlet boundary condition of the input into a Neumann boundary condition
for the output, and thus may be of further interest besides the case of Laplace operator.

We conclude with the a connection between the Dirichlet and the Neumann problem
for the Laplacian in the case of the infinite-dimensional ball on an abstract Wiener space.
Under the appropriate conditions, in Theorem 6 we establish the same connection between
the two problems as in the finite dimensional case. An interesting byproduct of this result is
that it provides an (explicit) solution for the Neumann problem for the infinite-dimensional
Laplacian.

In what follows, we will identify as usual the complex plane C with R
2, that is we

identify the vector (x, y) ∈ R
2 with the complex number z = x + iy ∈ C. In particular, the

dot product of two vectors a, b ∈ R
2 will be written in terms of multiplication of complex

numbers as a · b = Re
(
ab
)
, and for a complex number z ∈ C we denote the real part and

the imaginary part of z by Re(z), respectively Im(z). Also, for a function u defined on a
subset D of R2 (or C), we will write equivalently u (x, y) or u (z), where z = x + iy ∈ D.

For a smooth bounded domain we will be denote by σ(·) and σ0(·) the surface measure
on its boundary, respectively the surface measure normalized to have total mass 1.

1 The Case of the Unit Ball U ⊂ R
n

In this section we consider the Dirichlet and Neumann problems for the Laplace operator in
the particular case D = U = {z ∈ R

n : |z| < 1} of the unit ball in Rn, n ≥ 1.
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1.1 Heuristics

Assume for the moment that the dimension of the space is n = 2. It is known that if u

is a solution to the Dirichlet problem (1), then u is the real part of an analytic function
G = u+iv inU (if u is known, the function v can be determined from the Cauchy-Riemann
equations for the function G). So we may interpret the Dirichlet problem (1) as the problem
of finding an analytic function in U (continuous up to the boundary), with prescribed values
ϕ on the boundary for its real part.

Similarly, if U is a solution of the Neumann problem (2), then U is the real part of an
analytic function F = U + iV . Since in the case of the unit disk the outward unit normal
to ∂U is ν (z) = z, z = x + iy ∈ ∂U, we can write the Neumann boundary condition for U

using the Cauchy-Riemann equations for F , as follows

φ (z) = ∂U

∂ν
(z) = xUx (z) + yUy (z) = xUx (z) − yVx (z) = Re

(
zF ′ (z)

)
.

If we set G(z) = zF ′ (z), z ∈ U , it follows that G is analytic in U and has boundary
values φ for its real part on ∂U. The Neumann problem (2) is therefore equivalent to finding
the analytic function G in U (continuous up to the boundary) with prescribed values φ for
its real part on ∂U. Once G is determined, we can find F by complex integration as follows

F (z) = F (0) +
∫ z

0

G (ξ)

ξ
dξ, z ∈ U, (3)

and we can then determine the solution of the Neumann problem (2) as U (z) = ReF (z),
z ∈ U.

The above heuristics show that both the Dirichlet and Neumann problems (at least in the
case of the unit disk) are equivalent to finding an analytic function in U, continuous up to
the boundary, with prescribed values on the boundary for its real part. This shows that the
Dirichlet and Neumann problems are “equally hard” in this case.

Formula (3) also suggests a direct way of finding the solution U = ReF of the Neumann
problem from the solution u = ReG of the Dirichlet problem, by circumventing the problem
of finding the corresponding analytic functions F and G. Integrating in (3) along the line
segment from 0 to z ∈ U, we have ξ (ρ) = ρz with 0 ≤ ρ ≤ 1, and we obtain

F (z) = F (0) +
∫ 1

0

G (ρz)

ρz
zdρ = F (0) +

∫ 1

0

G(ρz)

ρ
dρ,

and taking real parts we get U (z) = U(0) +
∫ 1

0

u (ρz)

ρ
dρ, z ∈ U.

1.2 The results

The results in the previous section lead us to the following.

Theorem 1 Assume φ : ∂U → R is continuous and satisfies
∫
∂U

φ (z) σ0 (dz) = 0. If u is
the solution of the Dirichlet problem (1) with boundary condition ϕ = φ on ∂U, then

U (z) =
∫ 1

0

u (ρz)

ρ
dρ, z ∈ U, (4)

is the solution to the Neumann problem (2) with U (0) = 0.
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Proof The heuristics above could serve as a proof in the particular case n = 2, provided we
show that the analytic functions F , G and their derivatives can be extended continuously to
the boundary of U. We will not do this, and instead we will provide a direct proof of (4) in
the general case n ≥ 1.

First note that since u is harmonic in U and continuous on U, by bounded convergence
theorem we have

u (0) = lim
r↗1

∫
∂(rU)

u (z) dσ0 (z) =
∫

∂U

u (z) dσ0 (z) =
∫

∂U

φ (z) dσ0 (z) = 0,

which in particular shows that the integrand in (4) is continuous at the origin:
limρ→0

u(ρz)
ρ

= limρ→0
u(ρz)−u(0)

ρ
= ∇u(0) · z.

Since u is harmonic in U, it is C∞(U), and therefore the integrand in (4) and its second
order partial derivatives are continuous functions of ρ ∈ [0, 1]. Differentiating under the
integral sign in (4), we obtain

�zU (z) =
∫ 1

0
�z

u (ρz)

ρ
dρ =

∫ 1

0
ρ�u (ρx, ρy) dρ = 0,

for any z ∈ U, where we denoted by �z the Laplace operator
∑n

i=1
∂2

∂z2i
.

To see that U has the prescribed normal derivative on ∂U , fix z0 ∈ ∂U and recall that
we are using the outward normal ν(z0) = z0 to the boundary of ∂U. We have

∂U

∂ν
(z0) = lim

ε↗0

U(z0 + εν(z0)) − U(z0)

ε
= lim

ε↗0

1

ε

(∫ 1+ε

0

u (ρz0)

ρ
dρ −

∫ 1

0

u (ρz0)

ρ
dρ

)

= lim
ε↗0

1

ε

∫ 1+ε

1

u (ρz0)

ρ
dρ = lim

ε↗0

u (ρ∗z0)
ρ∗

= u (z0) ,

by the continuity of u in U, where ρ∗ ∈ (1 + ε, 1) denotes the intermediate point given
by the mean value theorem. This shows that the values of the normal derivative ∂U

∂ν
on ∂U

coincide with the boundary values of u on ∂U, concluding the proof.

With only cosmetic changes, the proof of the previous theorem can also be applied to
other operators besides the Laplacian. For example, if L is the operator

Lf (z) =
n∑

i,j=1

aij (z)
∂2f

∂zi∂zj

(z) +
n∑

i=1

ai (z)
∂f

∂zi

(z) , (5)

where the coefficients aij are smooth and homogeneous of degree k ∈ [0, 1], i.e.

aij (ρz) = ρkaij (z) , 0 ≤ ρ ≤ 1, z ∈ U, 1 ≤ i, j ≤ n, (6)

and the coefficients ai are also smooth and homogeneous of degree k − 1 , i.e.

ai (ρz) = ρk−1aij (z) , 0 ≤ ρ ≤ 1, z ∈ U, 1 ≤ i ≤ n, (7)

and if u and U are related by (4), then

LU (z) =
∫ 1

0
ρ1−kLu (ρz) dρ, z ∈ U,

and
∂U

∂ν
(z) = u (z) , z ∈ U.

The previous observation leads us to the following more general result.
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Theorem 2 Assume φ : ∂U → R is continuous and satisfies
∫
∂U

φ (z) σ0 (dz) = 0. If u is
the solution of the Dirichlet problem {

Lu = 0 in U

u = φ on ∂U
(8)

where L is the operator given by (5) which satisfies (6) and (7), then

U (z) =
∫ 1

0

u (ρz)

ρ
dρ, z ∈ U, (9)

is the solution to the Neumann problem{LU = 0 in U

∂U
∂ν

= φ on ∂U
, (10)

with U (0) = 0.

A result similar to the one in Theorem 1 can be given for the other direction, from the
Neumann to the Dirichlet problem. As it is known, for a harmonic function the Laplacian
and the partial derivatives commute. This observation allows to write the solution of the
Dirichlet problem in terms of the solution of the Neumann problem, as follows.

Theorem 3 Assume ϕ : ∂U → R is continuous and let U be the solution of the Neumann
problem (2) with boundary condition φ = ϕ − ∫

∂U
ϕ (ξ) σ0 (dξ). If we define

u (z) = z · ∇U(z) +
∫

∂U

ϕ (ξ) σ0 (dξ) , z ∈ U, (11)

then u is the solution to the Dirichlet problem (1).

Proof The function φ satisfies the necessary condition for the existence of a solution of the
Neumann problem. Using the previous observation it is not difficult to see that

�u(z) = 2�U(z) + z · ∇ (�U(z)) = 0, z ∈ U,

so u is harmonic on U. Since u also assumes the correct boundary values ϕ, it is the solution
of the Dirichlet problem (1), concluding the proof.

1.3 A Representation of the Dirichlet-to-Neumann Operator in the Case
of the Unit Ball in R

n

As an application of Theorem 1, we derive an explicit representation of the inverse of the
Dirichlet-to-Neumann operator �n (see e.g. [10, Sect. 5.0]) in the case of the unit ball
U ⊂ R

n (n ≥ 2), defined formally as follows.
For ϕ ∈ C (∂U), let uϕ be the solution to the Dirichlet problem for the Laplacian on U

with boundary values ϕ on ∂U. The Dirichlet-to-Neumann operator �n : C (∂U) → C (∂U)

is a particular case of a Poincaré-Steklov operator, which maps the Dirichlet boundary
values ϕ of a harmonic function uϕ in U to the corresponding Neumann boundary values
φ = ∂uϕ

∂ν
on ∂U, more precisely

�n (ϕ) = ∂uϕ

∂ν

∣∣∣∣
∂U

, (12)

where ν (z) = z denotes the outward unit pointing normal to the boundary of U.
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The operator �n is not injective since �n(ϕ + c) = �n(ϕ), for any constant c ∈ R.
Conversely, if �n(ϕ1) = �n(ϕ2) then ϕ1 − ϕ2 is constant in U, by the uniqueness
up to additive constant of the solution of the Neumann problem. Identifying the class
{ϕ ∈ C(∂U) : �n(ϕ) = φ} with the representant ϕ of it satisfying the normalization
condition

∫
∂U

ϕ(ξ)σ0(ξ) = 0 (or equivalent uϕ(0) = 0), the Dirichlet-to-Neumann ope-
rator �n becomes an injective operator. It follows that if we consider the restriction of the
Dirichlet-to-Neumann operator

�n :
{
ϕ ∈ C(∂U) :

∫
∂U

ϕ(ξ)σ0(ξ) = 0

}
→

{
φ ∈ C(∂U) :

∫
∂U

φ(ξ)σ0(ξ) = 0

}
, (13)

then �n is a bijective operator, and we will use this definition in the sequel.
Using the connection between the solutions of the Dirichlet and Neumann problems for

the Laplacian given in Theorem 1, we can derive an explicit representation of the inverse of
the operator �n as follows.

Theorem 4 Assume φ : ∂U → R is continuous and satisfies
∫
∂U

φ (ξ) σ (dξ) = 0. We have

�−1
n (φ) (z) =

∫
∂U

φ (ξ) kn(z, ξ)σ0(dξ), z ∈ ∂U, (14)

where kn(z, ζ ) =
∫ 1

0

1

ρ

(
1 − ρ2

|ρz − ξ |n − 1

)
dρ, z, ξ ∈ ∂U.

Explicitly, k2(z, ξ) = −2 ln |z − ξ |, k3(z, ξ) = 2
|z−ξ | − 2 + ln 2 − ln

( |z−ξ |2
2 + |z − ξ |

)
,

and for n > 4 the kernel kn(z, ξ) can be computed using the recurrence formulae (17) –
(18) below.

Proof Let u = uφ be the solution of the Dirichlet problem (1) with boundary condition
ϕ = φ on ∂U. By Theorem 1 it follows that the function U defined by

U (z) =
∫ 1

0

u (ρz)

ρ
dρ, z ∈ U, (15)

is the solution to the Neumann problem (2) with boundary values φ on ∂U and U (0) = 0.
Consider now z ∈ ∂U arbitrarily fixed and r ∈ (0, 1). Combining the above with the

Poisson integral formula for the ball, and using that u (0) = ∫
∂U

φ (ξ) σ0(dξ) = 0, we
obtain

U (rz) =
∫ 1

0

u (ρrz) − u (0)

ρ
dρ =

∫ 1

0

1

ρ

∫
∂U

(
1 − ρ2r2

|ρrz − ξ |n − 1

)
ϕ (ξ) σ0(dξ)dρ. (16)

For arbitrary ξ ∈ U\ {±z} and ρ ∈ (0, 1], denoting by θ1 ∈ (0, π) the angle between z
and ξ , we have∣∣∣∣∣ϕ (ξ)

1

ρ

(
1 − ρ2r2

|ρrz − ξ |n − 1

)∣∣∣∣∣ ≤ ‖ϕ‖∞
ρ |ρrz − ξ |n−2

(∣∣∣∣∣
1 − ρ2r2

|ρrz − ξ |2 − 1

∣∣∣∣∣ +
∣∣∣1 − |ρrz − ξ |n−2

∣∣∣
)

≤ ‖ϕ‖∞
ρ
√

(ρr − cos θ1)
2 + sin2 θ1

n−2

(
2ρr |ρr − cos θ1|

ρ2r2 − 2ρr cos θ1 + 1
+ 2ρr

(
2n−2 − 1

))

≤ 2r ‖ϕ‖∞
|sin θ1|n−2

(
2

(1 − ρr cos θ1)
2

+ 2n−2 − 1

)
≤ 2nr ‖ϕ‖∞

|sin θ1|n−2 (1 − r)2
.
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The last expression is integrable on ∂U× [0, 1]. To see this, consider spherical coordi-
nates (θ1, . . . , θn−1) ∈ [0, π ]n−2 × [0, 2π ], with θ1 chosen to denote the angle between z

and ξ . Since the expression above depends only on θ1, integrating in the remaining (n − 2)
variables we obtain the area ωn−1 |sin θ1|n−2 of the (n − 1)-dimensional sphere of radius
|sin θ1|, and therefore
∫

∂U

∫ 1

0

2nr ‖ϕ‖∞
|sin θ1|n−2 (1 − r)2

dρσ0 (dξ) = 2nr ‖ϕ‖∞
(1 − r)2

∫ π

0

1

|sin θ1|n−2

ωn−1 |sin θ1|n−2

ωn

dθ1

= 2nπrωn−1 ‖ϕ‖∞
ωn (1 − r)2

< ∞.

The argument above shows that the integrand in (16) is absolutely integrable for any
r ∈ (0, 1), and using Tonelli-Fubini theorem we obtain the representation

U (rz) =
∫

∂U

ϕ (ξ) kn (rz, ξ) σ0(dξ), z ∈ ∂U, r ∈ (0, 1) .

The claim (14) of the theorem follows from the above, once we show that we can take
limits with r ↗ 1.

Note that for any r ∈ (0, 1) we have

kn (rz, ξ) =
∫ 1

0

1

ρ

(
1 − ρ2r2

|ρrz − ξ |n − 1

)
dρ =

∫ r

0

1

ρ

(
1 − ρ2

|ρz − ξ |n − 1

)
dρ,

and therefore using the inequality |ρz − ξ | ≥ max {1 − ρ, sin θ1}, we obtain

|kn (rz, ξ) − kn (z, ξ)| =
∣∣∣∣∣
∫ 1

r

1

ρ

(
1 − ρ2

|ρz − ξ |n − 1

)
dρ

∣∣∣∣∣ ≤
∫ 1

r

1

ρ

1 − ρ2

|ρz − ξ |n dρ − ln r

≤ − ln r + 1

r |sin θ1|n−3/2

∫ 1

r

2 (1 − ρ)

(1 − ρ)3/2
dρ = − ln r + 4

√
1 − r

r |sin θ1|n−3/2
.

Using the above inequality and passing to spherical coordinates as in the proof above,
we conclude
∣∣∣∣U (rz) −

∫
∂U

ϕ (ξ) kn (z, ξ) σ0 (dξ)

∣∣∣∣ =
∣∣∣∣
∫

∂U

ϕ (ξ) (kn (rz, ξ) − kn (z, ξ)) σ0 (dξ)

∣∣∣∣
≤ −‖ϕ‖∞ ln r + 4

√
1 − r ‖ϕ‖∞

r

∫
∂U

1

|sin θ1|n−3/2
σ0 (dξ)

= −‖ϕ‖∞ ln r + 4
√
1 − r ‖ϕ‖∞

r

∫ π

0

1√|sin θ1|
ωn−1

ωn

dθ1

= −‖ϕ‖∞ ln r + 4
√
1 − r ‖ϕ‖∞

r
2
√
2K

(
1
2

) ωn−1

ωn

,

where K
(
1
2

)
≈ 1.854 is the complete integral of the first kind. Passing to the limit with

r ↗ 1 and using the fact that limr→1 U (rz) = U (z) = �−1 (φ) (z) proves the first claim
of the theorem.
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To prove the second claim, denoting by a = z · ξ , we have

k2 (z, ξ) = −
∫ 1

0

2ρ − 2a

ρ2 − 2aρ + 1
dρ = − ln

(
ρ2 − 2aρ + 1

)∣∣∣ρ=1

ρ=0
= − ln (2 − 2a)

= −2 ln |z − ξ | ,
and

k3 (z, ξ) =
∫ 1

0

−2ρ + 2a(
ρ2 − 2aρ + 1

)3/2 dρ +
∫ 1

0

1

ρ2

(
1(

1 − 2a/ρ + 1/ρ2
)1/2 − ρ

)
dρ

= 2(
ρ2 − 2aρ + 1

)1/2
∣∣∣∣∣
1

0

−
∫ 1

∞
1(

t2 − 2at + 1
)1/2 − 1

t
dt

= 2√
2 − 2a

− 2 +
⎛
⎝ln

(
t − a + √

t2 − 2at + 1
)

t

⎞
⎠
∣∣∣∣∣∣
t=∞

t=1

= 2

|z − ξ | − 2 + ln 2 − ln

(
|z − ξ |2

2
+ |z − ξ |

)
,

where in the second integral we have used the substitution 1
ρ

= t .
Finally, using algebraic manipulations and integration by parts, for n > 4 we obtain the

recurrence formula

kn (z, ξ) = kn−2 (z, ξ) + 2
(
1 − |z − ξ |n−2)

(n − 2) |z − ξ |n−2
− 1 − |z − ξ |n−4

(n − 4) |z − ξ |n−4
+
(
1 − |z − ξ |2

2

)

×Jn−2 (z, ξ) , (17)

where Jn (z, ξ) =
∫ 1

0

1

|ρz − ξ |n dρ satisfies the recurrence formula

Jn (z, ξ) = 4 (n − 3) Jn−2 (z, ξ)

(n − 2)
(
4 − |z − ξ |2) |z − ξ |2 + 2

(
1 + 4 |z − ξ |n−4 − |z − ξ |n−2)

(n − 2)
(
4 − |z − ξ |2) |z − ξ |n−2

. (18)

2 The Case of a Smooth Planar Domain D

Using conformal mapping arguments, we can extend the results in the previous section to
the general case of a smooth bounded simply connected domain D ⊂ C (C1,α boundary
with 0 < α < 1 will suffice), as follows.

Fix w0 ∈ D and let f : U → D be the conformal map of the unit disk U onto D

with f (0) = w0, arg f ′ (0) = 0, and let g = f −1 denote its inverse. It is known (see e.g.
[12, Chap. 3]) that ifD is smooth (C1,α boundary with 0 < α < 1, or Dini-smooth boundary
suffices), then f, f ′ have continuous extensions to U, and moreover f ′ �= 0 in U. The
geometric interpretation of the complex derivative f ′ (z) (local rotation by arg f ′ (z) and
local scaling by

∣∣f ′ (z)
∣∣ at z under the map f ) shows that f preserves the angles between

curves at any point z ∈ U. In particular, this allows us to reduce the Neumann problem in
D to an equivalent Neumann problem in the disk. Combining this with the results of the
preceding section we are led to the following.
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Theorem 5 Let D ⊂ C be a smooth bounded simply connected domain (C1,α boundary
with 0 < α < 1 will suffice), and for an arbitrarily fixed w0 ∈ D let f : U → D be
the conformal map of the unit disk U onto D with f (0) = w0, arg f ′ (0) = 0, and let
g = f −1 : D → U be its inverse.

Assume φ : ∂D → R is continuous and satisfies
∫
∂D

φ (w) σ (dw) = 0. If u is the
solution of the Dirichlet problem (1) with boundary condition

ϕ (w) = 1

|g′ (w)|φ (w) , w ∈ ∂D, (19)

then

U (w) =
∫ 1

0

u (f (ρg (w)))

ρ
dρ, w ∈ D, (20)

is the solution to the Neumann problem (2) with U (w0) = 0.

Proof Under the assumption on the smoothness of D, f has a conformal extension to U,
and therefore u ◦ f is harmonic in U and continuous on U. We have

u (w0) = u (f (0)) = 1

2π

∫ 2π

0
u
(
f
(
reiθ

))
dθ,

for any 0 < r < 1. Passing to the limit with r ↗ 1 and using the dominated convergence
theorem we obtain

u (w0) = 1

2π

∫ 2π

0
u
(
f
(
eiθ

))
dθ = 1

2π

∫ 2π

0

1∣∣g′ (f (
eiθ

))∣∣φ
(
f
(
eiθ

))
dθ

= 1

2π

∫ 2π

0
φ
(
f
(
eiθ

)) ∣∣∣f ′ (eiθ
)∣∣∣ dθ =

∫
∂D

φ (w) σ (dw)

= 0,

by hypothesis. In particular, this shows that the integrand in (20) is continuous at the origin:
limρ→0

u(f (ρg(w)))
ρ

= limρ→0
u(f (ρg(w)))−u(f (0))

ρ
= (∇u ◦ f ) (g(w)) · g(w).

The functions f , g, and u are infinitely differentiable, and therefore the integrand in (20)
has continuous second order partial derivatives. Differentiating inside the integral, for any
w ∈ D we have

�wU (w) =
∫ 1

0
Δw

u (f (ρg (w)))

ρ
dρ =

∫ 1

0

1

ρ
Δw

(
u
(
hρ (w)

))
dρ

=
∫ 1

0

1

ρ

∣∣h′
ρ (w)

∣∣2 (Δu)
(
hρ (w)

)
dρ = 0,

since u is assumed harmonic in D, where Δw represents the Laplace operator with respect
to the real variables Re(w) and Im(w), and hρ denotes the analytic function hρ = f ◦(ρg) :
D → D.

Similarly, using the Cauchy-Riemann equations for hρ = f ◦ (ρg), we obtain

∇wU (w) = ∇w

∫ 1

0

u (f (ρg (w)))

ρ
dρ =

∫ 1

0

1

ρ
∇w

(
u
(
hρ (w)

))
dρ

=
∫ 1

0

1

ρ
(∇u)

(
hρ (w)

)
h′

ρ (w)dρ =
∫ 1

0
(∇u)

(
hρ (w)

)
f ′ (ρg (w)) g′ (w)dρ,
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for w ∈ D. Since the outward unit normal to ∂U at z ∈ ∂U is νU (z) = z, the geometric
interpretation of the argument of f ′ (z) shows that the unitary outward pointing normal to
∂D at f (z) is ν (f (z)) = z

f ′(z)
|f ′(z)| , z ∈ ∂U.

From the last two relations, for w = f (z) ∈ ∂D we obtain

∂U

∂ν
(w) = ∇wU (f (z)) · z

f ′ (z)
|f ′ (z)| = Re

(
∇wU (f (z))

(
z

f ′ (z)
|f ′ (z)|

))

= Re
∫ 1

0
(∇u)

(
hρ (f (z))

)
f ′ (ρg (f (z))) g′ (f (z))

(
z

f ′ (z)
|f ′ (z)|

)
dρ

= 1

|f ′ (z)|
∫ 1

0
Re

(
(∇u) (f (ρz)) zf ′ (ρz)

)
dρ = 1

|f ′ (z)|
∫ 1

0

d

dρ
(u (f (ρz))) dρ

= 1

|f ′ (z)|u (f (ρz))

∣∣∣ρ=1

ρ=0
= 1

|f ′ (z)| (u (f (z)) − u (f (0)))

= 1

|f ′ (z)|
(

1

|g′ (f (z))|φ (f (z))

)
= φ (f (z)) = φ (w) ,

which shows that U has the prescribed boundary values φ on ∂D, concluding the proof.

3 The Case of the Infinite-dimensional Ball

The result in Section 1.2 can be extended to the case of Dirichlet and Neumann problems
for the infinite-dimensional ball on an abstract Wiener space. In order to give the result, we
begin with some preliminaries.

Following [9] and [8], let (H, B) be an abstract Wiener space, i.e. (H, 〈·〉) is a separable
real Hilbert space with corresponding norm | · |, which is continuously and densely em-
bedded into a Banach space (B, ‖ · ‖), and let (Wt )t≥0 be the standard Wiener process with
state space B. For an open set V ⊂ B we will denote by τV

x = inf{t ≥ 0 : x + Wt /∈ V }
the first exit time from V of the Brownian motion (x + Wt)t≥0 starting at x. In particular,
if V = Ur (0) = {x ∈ B : ‖x‖ < r} we will write τ

(r)
x for τ

Ur (0)
x , and if r = 1 we will omit

the upper index and write τx for τ
(1)
x . Also, if x = 0 we will omit the lower index 0 in the

preceding notations.
For a Borel measurable function f : Sr (x) → R, consider the average (Arf )(x) of f

over Sr (x) (see [8]) defined by

(Arf ) (x) =
∫
Sr (0)

f (x + y)πr(dy), (21)

whenever the integral exists, where Sr (x) = ∂Ur (x) denotes the boundary of the ball Ur (x)

of radius r > 0 centered at x in B, and πr is the central hitting measure defined on the
Borel subsets of Sr (0) by πr(E) = P(Wτ(r) ∈ E).

Also recall ([8]) that a function f : V ⊂ B → R defined on an open subset V of the
Wiener space (H, B) is called harmonic if it is locally bounded, Borel measurable, finely
continuous, and there exists ρ > 0 such that (Arf )(x) = f (x), for every 0 < r < ρ for
which Ur (x) ⊂ V .
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The generalized Laplacian ([9, Definition 4]) of a Borel measurable function f : V ⊂
B → R defined on (H,B) at the point x ∈ V is defined by

�f (x) = 2 lim
r↘0

(Arf )(x) − f (x)

Eτ (r)
, (22)

if this limit exists.

Remark 2 The strong Markov property of the infinite-dimensional Brownian motion shows
(see for example Corollary 1.2 and Remark 3.4 in [9]) that if V is strongly regular and if
f : ∂V → R is bounded and continuous, the stochastic solution of the Dirichlet problem
for V with boundary values f given by

u(x) = E
(
f (x + WτV

x
)1τV

x <∞
)

, x ∈ V, (23)

is a continuous, harmonic function in V, and has limiting boundary values f on ∂V .
There are known sufficient conditions under which the generalized Laplace operator

�f (x) defined above coincides with the usual trace D2f (x) operator for a smooth function
f (see for example [9, Corollary 8.1]).

We consider the corresponding generalized Dirichlet and Neumann problems for the
generalized Laplace operator � on a smooth open set V ⊂ B as the problem of finding a
continuous function u : V → R satisfying{

Δu = 0 in V

u = ϕ on ∂V
, (24)

respectively {
Δu = 0 in V
∂u
∂ν

= φ on ∂V
, (25)

where ν(x) denotes the outward unit normal to the boundary of V at x ∈ ∂V .

Remark 3 Remark 2 above shows that in the case V = U1(0) of the unit sphere, the infinite-
dimensional Dirichlet problem (24) above has at least a solution, namely the stochastic
solution. In turn, as we will see in the next theorem, this will allow us to construct a solution
for the infinite-dimensional Neumann problem (25).

In order to carry out the infinite-dimensional analogue of the correspondence between
Dirichlet and Neumann problem presented in the previous sections, in the sequel we will
restrict to the particular case of Hilbert spaces. More precisely, for the remaining part of
this section we will assume that the Banach space (B, ‖ · ‖) is also a Hilbert space, with
corresponding inner product denoted by 〈·, ·〉B , and we will also assume that the inclusion
H ⊂ B is Hilbert-Schmidt.

Although the above additional assumptions may not be necessary for the validity of the
main theorem below, we could not find a simple proof for the Hölder continuity of the
stochastic solution of the Dirichlet problem in the general setup of abstract Wiener spaces
(see Lemma 1 and Corollary 1 below), and, in order not to obscure the general idea, we
have chosen the case of Hilbert spaces.

The additional hypotheses on the Wiener space (H, B) show (as in [4], Section 3, or [1],
Proposition 3.5) that there exists an orthonormal basis {en : n ≥ 1} ofH contained in B ′ and
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a sequence of positive numbers (λn)n≥1 with
∑∞

n=1 λn < ∞, such that {en = en√
λn

: n ≥ 1}
is an orthonormal basis of B satisfying

λnB ′ 〈en, z〉B = 〈en, z〉B, n ≥ 1, z ∈ B. (26)

With the above preparation we can now state the extension of Theorem 1 to this infinite-
dimensional setting, as follows.

Theorem 6 Assume φ : S1(0) → R satisfies
∫
S1(0)

φ (z) π1 (dz) = 0 and is Lipschitz
continuous. If u is the stochastic solution of the Dirichlet problem (24) for V = U1(0) with
boundary condition ϕ = φ on S1(0), then

U (z) =
∫ 1

0

u (ρz)

ρ
dρ, z ∈ U1(0), (27)

is a solution to the Neumann problem (25) for V = U1(0) with U (0) = 0.

Before proceeding with the proof, we will first show that under the hypotheses of the
theorem, the function U given by (27) is well-defined. We begin with the following lemma
which shows that with high probability, an infinite-dimensional Brownian motion starting
near the boundary of the unit sphere will exit from it near its starting point.

Lemma 1 Let (Wt )t≥0 be an infinite-dimensional Brownian motion starting at W0 = x ∈
U1 (0) \ {0} and let τ = inf {t ≥ 0 : Wt /∈ U1 (0)}. Setting ε = 1 − ‖x‖, we have

P
(‖Wτ − W0‖ ≤ 5 4

√
ε
) ≥ 1 − √

ε. (28)

Proof For z ∈ B ′\ {0}, denote by Hz = {y ∈ B : 〈z, y − z〉B = 0}, by Hz+ =
{y ∈ B :< z, y − z〉B ≥ 0} the closed half-space delimited by Hz which contains 2z, and
by Sz = ∂S1 (0) ∩ H+

z the hyperspherical cap with base centered z (see Fig. 1).
For x ∈ U1 (0) \ {0} arbitrarily fixed, consider xn = ∑n

k=1B ′ 〈ek, x〉Bek , n ≥ 1. Since
x �= 0, without loss of generality we may assume that B ′ 〈xn, x〉B > 0 for all n ≥ 1.

The projection Bn
t =B ′ 〈 1

|xn|xn,Wt 〉B , t ≥ 0, of the Brownian motion (Wt )t≥0 on the

direction of the unitary vector x∗
n = 1

|xn|xn of H is a 1-dimensional Brownian motion

starting Bn
0 = 1

|xn|B ′ 〈xn, x〉B .
Using that {en : n = 1, 2, . . .} ⊂ B ′ ⊂ H is an orthonormal basis in H and B ′ 〈b, h〉B =

〈b, h〉 for b ∈ B ′ and h ∈ H , we obtain

0 < B ′ 〈xn, x〉B =
n∑

k=1

B ′ 〈ek, x〉2B =
n∑

k=1

B ′ 〈ek, xn〉2B =
n∑

k=1

〈ek, xn〉2 ≤ |xn|2 ,

by Bessel’s inequality.
Also,

0 < B ′ 〈xn, x〉B =
n∑

k=1

B ′ 〈ek, x〉2B =
n∑

k=1

〈
ek√
λk

, xn

〉
2
B ≤ ‖x‖2 ,

again by Bessel’s inequality, since
{
ek = ek√

λk
: k = 1, 2, . . .

}
is an orthonormal basis of B.

Combining the last two inequalities above we conclude 0 < B ′ 〈xn, x〉B ≤ |xn| ‖x‖, and
therefore εn = 1 − Bn

0 = 1 − B ′ 〈 1
|xn|xn, x〉B ∈ (1 − ‖x‖ , 1) ⊂ (0, 1) for all n ≥ 1.

The continuity of the paths of Brownian motion show that if the Brownian motion Bn

exits the interval
(
1 − εn − √

εn, 1
)
through the endpoint 1, the Brownian motion W will
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Fig. 1 The half-spaceHxn and the hyperspherical cap Sxn in the proof of Lemma 1

exit from the sphere U1 (0) through the hyperspherical cap Sx∗
n

⊂ S1 (0) with base vertex at

x∗
n = 1−εn−√

εn

‖xn‖ xn and height ‖x∗
n − 1

‖xn‖xn‖ = εn + √
εn, and therefore we obtain

P
(
Wτ ∈ Sx∗

n

) ≥ P
(
Bn

τ ′ = 1
)
. (29)

where τ ′ = inf
{
t ≥ 0 : Bn

t /∈ (
1 − εn − √

εn, 1
)}

is the exit time of the 1-dimensional
Brownian motion Bn from the interval

(
1 − εn − √

εn, 1
)
.

Since {en = en√
λn

: n ≥ 1} is an orthonormal basis of B and using (26), we obtain

〈
1

‖xn‖xn, x

〉
B

= 1√
n∑

k=1
〈ek, x〉2B

n∑
k=1

〈ek, x〉2B =
√√√√ n∑

k=1

〈ek, x〉2B ↗ ‖x‖

as n → ∞, and therefore for n large enough we have

∥∥∥∥ 1

‖xn‖xn − x

∥∥∥∥ =
√

‖x‖2 + 1 − 2

〈
1

‖xn‖xn, x

〉
B

≤ 2(1 − ‖x‖) = 2ε.

It follows that for n large enough and all y ∈ Sx∗
n
we have

‖y − x‖ ≤
∥∥∥∥y − Bn

0
1

‖xn‖xn

∥∥∥∥ +
∥∥∥∥Bn

0
1

‖xn‖xn − 1

‖xn‖xn

∥∥∥∥ +
∥∥∥∥ 1

‖xn‖xn − x

∥∥∥∥
≤

√
1 + εn − (

1 − εn − √
εn

)2 + εn + 2ε,
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and combining with (29) we obtain

P

(
‖Wτ − W0‖ ≤

√
1 + εn − (

1 − εn − √
εn

)2 + εn + 2ε

)
≥ P

(
Bn

τ ′ = 1
)
.

Since (Bt∧τ ′)t≥0 is a bounded martingale, using Doob’s optional stopping and dominated
convergence theorems we obtain

1 − εn = EBn
0 = EBn

τ ′ = (
1 − εn − √

εn

)
P
(
Bn

τ ′ = 1 − εn − √
εn

) + P
(
Bn

τ ′ = 1
)
,

and therefore

P
(
Bn

τ ′ = 1
) = 1

1 + √
εn

≥ 1 − √
εn.

Together with the previous inequality this shows that

P

(
‖Wτ − W0‖ ≤

√
1 + εn − (

1 − εn − √
εn

)2 + εn + 2ε

)
≥ 1 − √

εn. (30)

Using the inequality√
1 + x − (

1 − x − √
x
)2 + x ≤

√
2x + 2

√
x + x ≤ 2 4

√
x + x ≤ 3 4

√
x, (31)

valid for x ∈ [0, 1], we obtain

P
(‖Wτ − W0‖ ≤ 3 4

√
εn + 2ε

) ≥ 1 − √
εn, n ≥ 1. (32)

Note that

lim
n→∞ |xn|2 = lim

n→∞〈xn, xn〉 = lim
n→∞ B ′ 〈xn, xn〉B

= lim
n→∞

n∑
k=1

B ′ 〈ek, x〉2B = lim
n→∞

n∑
k=1

〈ek, x〉2B =
∞∑

k=1

〈ek, x〉2B

= ‖x‖2
and

lim
n→∞ B ′ 〈xn, x〉B = lim

n→∞

n∑
k=1

B ′ 〈ek, x〉2B = lim
n→∞

n∑
k=1

〈ek, x〉2B =
∞∑

k=1

〈ek, x〉2B = ‖x‖2 ,

by Parseval’s identity, and therefore

lim
n→∞ εn = 1 − lim

n→∞ B ′
〈

1

|xn|xn, x

〉
B

= 1 − ‖x‖ = ε.

Passing to the limit in (32) with n → ∞ we obtain

P
(‖Wτ − W0‖ ≤ 5 4

√
ε
) ≥ P

(‖Wτ − W0‖ ≤ 3 4
√

ε + 2ε
) ≥ 1 − √

ε,

concluding the proof of the lemma.

Assume now that φ : S1 (0) → R is a Lipschitz continuous function with Lipschitz
constant K , i.e.

|φ (x) − φ (y)| ≤ K ‖x − y‖ , x, y ∈ S1 (0) , (33)

and satisfies the normalization condition
∫
S1(0)

φ (z) π1 (dz) = 0. Let u be the stochastic
solution of the Dirichlet problem (24) for V = U1 (0) with boundary values φ, that is

u (x) = Eφ (x + Wτ) , x ∈ U1 (0) ,
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where E denotes the expectation with respect to the infinite-dimensional Brownian motion
(Wt )t≥0 starting at the origin and τx = inf {t ≥ 0 : x + Wt /∈ U1 (0)} is the exit time of
x + W from U1 (0).

Since by hypothesis u (0) = ∫
S1(0)

φ (z) π1 (dz), for x ∈ U1 (0) − {0} arbitrarily fixed,
we have

|u (x)| = |u (x) − u (0)| = ∣∣E (
φ
(
Wτx

)) − φ
(
Wτ0

)∣∣ ,
Considering the event A = {∥∥(x + Wτx − Wτ0)

∥∥ ≥ 5 4
√‖x‖}, and using the hypothesis

(33) on φ, we obtain

|u (x)| ≤ KE
(∥∥x + Wτx − Wτ0

∥∥) (34)

≤ KE
(∥∥x + Wτx − Wτ0

∥∥ 1Ac

) + KE
(∥∥x + Wτx − Wτ0

∥∥ 1A

)
≤ 5K 4

√‖x‖ + 2KP (A) .

To estimate the probability of the event A, we use the strong Markov property of the
infinite-dimensional Brownian motion (see [9, Remark 3.4]) at the a.s. finite stopping time
τ0 ∧ τx and Lemma 1 above, as follows

P (A) = E
(
E
(
1A|Fτ0∧τx

)) = E
(
1τ0<τx ψ

(
x + Wτ0

) + 1τx<τ0ψ
(
Wτx

))
, (35)

where ψ (y) = P y
(∥∥∥W ′

τ ′
y
− W ′

0

∥∥∥ > 5 4
√
1 − ‖y‖

)
denotes the probability that an infinite-

dimensional Brownian motion
(
W ′

t

)
t≥0 starting at y ∈ U1(0) will exit U1 (0) at a distance

greater than 5 4
√
1 − ‖y‖ from its starting point.

Note that on the event {τ0 < τx} we have dist
(
x + Wτ0 , ∂U1 (0)

) ≤∥∥(x + Wτ0) − Wτ0

∥∥ = ‖x‖, so using Lemma 1 we obtain

ψ
(
x + Wτ0

) ≤ P x+Wτ0

(∥∥∥W ′
τx+Wτ0

− W ′
0

∥∥∥ > 5 4
√
dist

(
W ′

0, ∂U1 (0)
))

(36)

≤
√
dist

(
W ′

0, ∂U1 (0)
) =

√
dist

(
x + Wτ0 , ∂U1 (0)

)
≤ √‖x‖.

Similarly, on the event {τ0 < τx} we obtain ψ
(
Wτx

) ≤ √‖x‖, and using (34) – (36) we
conclude

|u (x)| ≤ 5K 4
√‖x‖ + 4K

√‖x‖, x ∈ U1 (0) . (37)

The inequality above is sufficient to prove that the function U given by (27) is well
defined, since under the hypothesis on φ the function u is continuous on U1 (0), and

lim
r↘0

∣∣∣∣
∫ r

0

u (ρx)

ρ
dρ

∣∣∣∣ ≤ lim
r↘0

∫ r

0

5K 4
√

ρ ‖x‖ + 4K
√

ρ ‖x‖
ρ

dρ

= lim
r↘0

(
20K 4

√
r ‖x‖ + 8K

√
r ‖x‖

)

= 0,

so that the integral in (27) is well defined for all z ∈ U1 (0).
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Remark 4 We believe that the function U given by (27) is also well-defined under the
weaker hypotheses of just continuity and boundedness of φ on S1 (0) (rather than the
Lipschitz continuity hypothesis), but we were unable to find a proof of this fact.

The proof above shows that |u(x) − u(0)| ≤ 9K 4
√‖x‖ for x ∈ U1(0). The same proof,

but with Brownian motions starting at x and y instead of x and 0, shows that

|u(x) − u(y)| ≤ 9K‖x − y‖1/4, x, y ∈ U1(0),

and we obtain the following.

Corollary 1 The stochastic solution of the Dirichlet problem (24) for V = U1(0),
with Lipschitz continuous Dirichlet boundary condition ϕ : S1(0) → R satisfying∫
S1(0)

ϕ (z) π1 (dz) = 0 is Hölder continuous of order 1
4 in U1(0).

Proof of Theorem 6. For arbitrarily fixed x ∈ U1(0) and 0 < r < 1 − ‖x‖, the inequality
(37) shows that for any ρ ∈ (0, 1] and y ∈ Sr (0) we have

u(ρ(x + y))

ρ
≤ 1

ρ

(
5K 4

√‖ρ(x + y)‖ + 4K
√‖ρ(x + y)‖

)
≤ 5Kρ−3/4 + 4Kρ−1/2,

and therefore the function u(ρ(x+y))
ρ

is integrable on Sr (0)×[0, 1]with respect to the product
measure πr(dy)×dρ. Note that the scaling invariance of the infinite-dimensional Brownian
motion (see e.g. [9, Remark 3.3]) implies that πr(dy) = πrρ(d(ρy)). Using this, Fubini’s
theorem and the substitution y′ = ρy, we obtain

ArU(x) =
∫
Sr (0)

∫ 1

0

u(ρ(x + y))

ρ
dρπr(dy) =

∫ 1

0

1

ρ

∫
Sr (0)

u(ρx + ρy)πr(dy)dρ

=
∫ 1

0

1

ρ

∫
Srρ (0)

u(ρx + y′)πrρ(dy′)dρ =
∫ 1

0

1

ρ
Arρu(ρx)dρ =

∫ 1

0

u(ρx)

ρ
dρ

= U(x),

since u is a harmonic function in U1(0) (see Remark 2). It follows that U is also harmonic
in U1(0), so in particular �U = 0 in U1(0).

The outward unit normal to the boundary of U1(0) at x ∈ S1(0) is ν(x) = x. For an
arbitrary x ∈ U1(0) we have

∂U

∂ν
(x) = lim

ε↗0

U(x + εν(x)) − U(x)

ε
= lim

ε↗0

1

ε

(∫ 1

0

u (ρ(1 + ε)x)

ρ
dρ −

∫ 1

0

u (ρx)

ρ
dρ

)

= lim
ε↗0

1

ε

(∫ 1+ε

0

u
(
ρ′x

)
ρ′ dρ′ −

∫ 1

0

u (ρx)

ρ
dρ

)
= lim

ε↗0

1

ε

∫ 1+ε

1

u (ρx)

ρ
dρ

= lim
ε↗0

u (ρ∗x)

ρ∗
= u (x) ,

by the continuity of u in U1(0), where ρ∗ ∈ (1 + ε, 1) denotes the intermediate point given
by the mean value theorem. This shows that the values of the normal derivative ∂U

∂ν
on

∂U1(0) coincide with the boundary values of u on ∂U1(0), concluding the proof.
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