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Abstract Let (X, d, μ) be a RCD∗(K,N) space with K ∈ R and N ∈ [1, ∞). We derive
the upper and lower bounds of the heat kernel on (X, d, μ) by applying the parabolic Har-
nack inequality and the comparison principle, and then sharp bounds for its gradient, which
are also sharp in time. For applications, we study the large time behavior of the heat kernel,
the stability of solutions to the heat equation, and show the Lp boundedness of (local) Riesz
transforms.
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1 Introduction and Main Results

Let M be a complete (smooth) Riemannian manifold with dimension n ≥ 2, and let pt be
the heat kernel. Denote the length in the tangent space by | · |. It is well-known from Li and
Yau [25] that, if M has nonnegative Ricci curvature, then for any ε > 0, there exist positive
constants C(ε) and C1(ε), such that

1

C(ε)μ(B(y,
√

t))
exp

(
−d2(x, y)

(4 − ε)t

)
� pt (x, y) � C(ε)

μ(B(y,
√

t))
exp

(
−d2(x, y)
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)
,

and

|∇xpt (x, y)| ≤ C1(ε)√
tμ(B(y,

√
t))

exp

(
−d2(x, y)

(4 + ε)t

)
,

for all t > 0 and all x, y ∈ M .
It is known that the upper and lower bounds of pt (x, y) has been extended by Sturm

[34, 35] to the Dirichlet space (X,E, μ) supporting a (weak) local Poincaré inequality and
the doubling measure μ, where X is a locally compact separable Hausdorff space, E is a
strongly local, regular symmetric Dirichlet form and μ is a positive Radon measure. Note
that here the distance is the so-called intrinsic distance induced by the Dirichlet form E . For
the case of the non-symmetric and time-dependent Dirichlet form in the similar framework,
see the recent paper [26].

Throughout this work, let (X, d, μ) be a metric measure space, such that (X, d) is a
complete and separable metric space and μ is a locally finite (i.e., finite on bounded sets)
Borel regular measure with support the whole space X.

Recently, in the metric measure space (X, d, μ), Erbar et al. [17] and Ambrosio et al.
[8] introduced the Riemannian curvature-dimension condition, denoted by RCD∗(K,N),
which is a generalization of the “Ricci curvature lower bound” for the non-smooth setting
and a strengthening of the curvature-dimension condition introduced by Lott and Villani
[27] and Sturm [36, 37]. The RCD∗(K,N) space resembles more a Riemannian structure
in the sense that Cheeger energy and Sobolev spaces are Hilbertian. We refer the reader to
[1, 3–5, 7, 17] for more details (see also Section 2 below). In this work, we study the sharp
heat kernel bounds on RCD∗(K,N) spaces with K ∈ R and N ∈ [1, ∞), and then give
some applications.

Notice that Sturm’s results in [33–35] are valid for a metric measure space (X, d, μ) sat-
isfying the RCD∗(0, N) condition with N ∈ [1, ∞), since in these cases doubling property
and Poincaré inequality hold; see e.g. [17, 29]. However, for example, the constant in the
exponential term in the Gaussian lower bound in [35] is not sharp. The first main result
below gives a sharper lower bound of pt (x, y). The approach is adapted from Strum [32]
in the Riemannian setting, by applying the Laplacian comparison principle established by
Gigli in [19] and the parabolic Harnack inequality established by Garofalo and Mondino
[18] and the first named author [22].

Theorem 1.1 Let (X, d, μ) be a RCD∗(0, N) space with N ∈ [1, ∞). Given any ε > 0,
there exists a positive constant C1(ε) such that

1

C1(ε)μ(B(y,
√

t))
exp

(
−d2(x, y)

(4 − ε)t

)
≤ pt (x, y) ≤ C1(ε)

μ(B(y,
√

t))
exp

(
−d2(x, y)

(4 + ε)t

)
(1.1)

for all t > 0 and all x, y ∈ X.
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Combining this, and the Li–Yau inequality from [18, 22], we can immediately derive a
sharp bound for the gradient of the heat kernel. Here, we denote the minimum weak upper
gradient of a function f : X → R by |∇f | (assume its existence at present).

Corollary 1.1 Let (X, d, μ) be a RCD∗(0, N) space with N ∈ [1, ∞). Given any ε > 0,
there exists a positive constant C1(ε) such that

|∇pt (x, ·)|(y) ≤ C1(ε)√
tμ(B(y,

√
t))

exp

(
−d2(x, y)

(4 + ε)t

)
. (1.2)

for all t > 0 and μ-a.e. x, y ∈ X.

Notice that in [22], the author used similar forms of Eqs. 1.1 and 1.2 but with implicit
constants in the exponential terms to obtain the Li-Yau inequality. The strength of Theorem 1.1
and Corollary 1.1 is that we obtain the sharp constants in the exponential terms.

We shall then establish the following heat kernel bounds on general RCD∗(K,N) spaces
with K < 0 and N ∈ [1, ∞).

Theorem 1.2 Let (X, d, μ) be a RCD∗(K,N) space with K < 0 and N ∈ [1, ∞). Given
any ε > 0, there exist positive constants C1(ε), C2(ε), depending also on K,N , such that

1

C1(ε)μ(B(y,
√

t))
exp

(
−d2(x, y)

(4 − ε)t
− C2(ε)t

)
≤ pt (x, y)

≤ C1(ε)

μ(B(y,
√

t))
exp

(
−d2(x, y)

(4 + ε)t
+ C2(ε)t

)
(1.3)

for all t > 0 and all x, y ∈ X.

Corollary 1.2 Let (X, d, μ) be a RCD∗(K,N) space with K < 0 and N ∈ [1, ∞). Given
any ε > 0, there exist positive constants C1(ε), C2(ε) such that

|∇pt (x, ·)|(y) ≤ C1(ε)√
tμ(B(y,

√
t))

exp

(
−d2(x, y)

(4 + ε)t
+ C2(ε)t

)
. (1.4)

for all t > 0 and μ-a.e. x, y ∈ X.

Notice that in [28, Lemma 3.3], by using an elementary argument, Mondino and Naber
obtained sharp lower and upper bounds of heat kernels pt (x, y) for x, y ∈ X for x, y

satisfying d(x, y) < 10
√

t , and an upper bound for the quantity
∫
X\B(x,r)

pt (x, y) dμ(y).
In a forthcoming paper, the second named author will use a dimensional free Harnack

inequality (cf. [23, 38]) to investigate heat kernel bounds on RCD(K, ∞) spaces (cf. [1, 3,
5]).

The following result generalizes the large time behavior of heat kernels in the Rieman-
nian manifold established by Li [24, Theorem 1] to the present setting with also sharp
form.
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Theorem 1.3 Let (X, d, μ) be a RCD∗(0, N) space with N ∈ N and N ≥ 2. Let x0 ∈ X.
If there exists θ ∈ (0, ∞) such that lim infR→∞ μ(B(x0,R))

RN = θ , then for any x, y ∈ X, it
holds that

lim
t→∞ μ(B(x0,

√
t))pt (x, y) = ω(N)(4π)−N/2,

where ω(N) is the volume of the unit ball in RN .

According to Xu [39], on an N -dimensional Riemannian manifold with non-negative
Ricci curvature, if the volume is not maximal growth (i.e., lim infR→∞ μ(B(x0,R))

RN = 0),

then the limit of μ(B(x0,
√

t))pt (x, y) as t → ∞ does not necessarily exist.
For applications of the bounds on the heat kernel and its gradient, we shall consider

stability of solutions to the heat equation, and the boundedness of (local) Riesz transforms.
The paper is organized as follows. In Section 2, we give some basic notations and notions

for Sobolev spaces, differential structures, curvature-dimension conditions and heat kernels,
and recall some known results. In Section 3, we will provide the proofs of heat kernel and
its gradient estimates.

In Section 4, we will prove Theorem 1.3. Stability of solutions to the heat equation
will be studied there as well. Notice that, since the approach depends on the comparison
results between a RCD∗(0, N) space and the Euclidean space R

N , we can only obtain
the result when N ∈ N and N ≥ 2. The arguments essentially follows from Li [24] with
some necessary modifications to our non-smooth context, since e.g. there seems no effective
Gauss–Green type formula available so far.

In Section 5, we will establish the boundedness of the Riesz transform |∇(−�)−1/2|
and its local version on Lp(X) for all p ∈ (1, ∞), where � is the Laplacian (see
Definition 2.5 below). The approach follows from the known one in Riemannian manifolds.
In the smooth setting, since the Riesz transform of smooth functions with compact supports
is well defined, and this class of functions is dense in Lp(X) for each p ∈ (1, ∞), one only
needs to deal with smooth functions with compact support. However, in our non-smooth
setting, by applying the results from [9, 14], the main issue left should be to find a suitable
acting class for the Riesz transform.

We should mention that, all the results we get generalize the known ones in the Rieman-
nian manifold with Ricci curvature bounded below, and hold in the Alexandrov space with
Ricci curvature bounded from below; see [41].

Finally, we make some conventions on notation. Throughout the work, we denote by
C, c positive constants which are independent of the main parameters, but which may vary
from line to line. The symbol B(x,R) denotes an open ball with center x and radius R with
respect to the distance d, and CB(x, R) = B(x,CR). The space Lip (X) denotes the set of
all Lipschitz functions on X.

2 Preliminaries

In this section, we recall some basic notions and several auxiliary results.

2.1 Sobolev Spaces and Differential Structures

Let (X, d) be a complete and separable metric space and let C([0, 1], X) be the space
of continuous curves on [0, 1] with values in X equipped with the sup norm. For
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t ∈ [0, 1], the map et : C([0, 1], X) → X is the evaluation at time t defined
by

et (γ ) := γt .

A curve γ : [0, 1] → X is in the absolutely continuous class ACq([0, 1], X) for some
q ∈ [1, ∞], if there exists g ∈ Lq([0, 1]) such that,

d(γs, γt ) ≤
∫ t

s

g(r) dr, for any s, t ∈ [0, 1] satisfying s < t. (2.1)

It is true that, if γ ∈ ACp([0, 1]; X), then the metric slope

lim
δ→0

d(γr+δ, γr )

|δ| ,

denoted by |γ̇r |, exists for L1-a.e. r ∈ [0, 1], belongs to Lp([0, 1]), and it is the minimal
function g such that Eq. 2.1 holds (see Theorem 1.1.2 in [2]). The length of the absolutely
continuous curve γ : [0, 1] → X is defined by

∫ 1
0 |γ̇r | dr . We call that (X, d) is a length

space if

d(x0, x1) = inf

{∫ 1

0
|γ̇r | dr : γ ∈ AC1([0, 1], X), γi = xi, i = 0, 1

}
, ∀ x0, x1 ∈ X.

Let μ be a locally finite (i.e., finite on bounded sets) Borel regular measure on (X, d)

with support the whole space X. Throughout the work, we call the triple (X, d, μ) the metric
measure space.

Definition 2.1 (Test Plan). Let π ∈ P(C([0, 1], X)). We say that π is a test plan if there
exists a constant C > 0 such that

(et )	π ≤ Cμ, for all t ∈ [0, 1],
and ∫ ∫ 1

0
|γ̇t |2 dt dπ(γ ) < ∞.

Definition 2.2 (Sobolev Space). The Sobolev class S2(X) (resp. S2
loc(X)) is the space of

all Borel functions f : X → R, for which there exists a non-negative function G ∈ L2(X)

(resp. G ∈ L2
loc(X)) such that, for each test plan π, it holds∫

|f (γ1) − f (γ0)| dπ(γ ) ≤
∫ ∫ 1

0
G(γt )|γ̇t | dt dπ(γ ). (2.2)

It then follows from a compactness argument that, for each f ∈ S2(X) there exists a
unique minimal G in the μ-a.e. sense such that Eq. 2.2 holds. We then denote the minimal
G by |∇f | and call it the minimal weak upper gradient following [6].

The inhomogeneous Sobolev space W 1,2(X) is defined as S2(X)∩L2(X) equipped with
the norm

‖f ‖W 1,2(X) :=
(
‖f ‖2

L2 + ‖|∇f |‖2
L2(X)

)1/2
.

The local Sobolev space W
1,2
loc (
) for an open set 
 ⊂ X, and the Sobolev space with

compact support W
1,2
c (X) can be defined in an obvious manner. The relevant Sobolev

spaces have been studied in [6, 12, 30].
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The following terminologies and results are mainly taken from [5, 19].

Definition 2.3 (Infinitesimally Hilbertian Space). Let (X, d, μ) be a metric measure space.
We say that it is infinitesimally Hilbertian, provided W 1,2(X) is a Hilbert space.

Notice that, from the definition, it follows that (X, d, μ) is infinitesimally Hilbertian if
and only if, for any f, g ∈ S2(X), it holds

‖|∇(f + g)|‖2
L2(X)

+ ‖|∇(f − g)|‖2
L2(X)

= 2
(
‖|∇f |‖2

L2(X)
+ ‖|∇g|‖2

L2(X)

)
.

Definition 2.4 Let (X, d, μ) be an infinitesimally Hilbertian space, 
 ⊂ X an open set and
f, g ∈ S2

loc(
). The map 〈∇f, ∇g〉 : 
 → R is μ-a.e. defined as

〈∇f, ∇g〉 := inf
ε>0

|∇(g + εf )|2 − |∇g|2
2ε

,

with the infimum being intended as μ-essential infimum.

We shall sometimes write 〈∇f, ∇g〉 as ∇f · ∇g for convenience. The inner product
〈∇f, ∇g〉 is linear, and satisfies the Cauchy–Schwarz inequality, the chain rule and the
Leibniz rule (see e.g. [19]).

With the aid of the inner product, we can define the Laplacian operator as below. Notice
that the Laplacian operator is linear due to (X, d, μ) being infinitesimally Hilbertian.

Definition 2.5 (Laplacian). Let (X, d, μ) be an infinitesimally Hilbertian space. Let f ∈
W

1,2
loc (X). We call f ∈ Dloc(�), if there exists h ∈ L1

loc(X) such that, for each ψ ∈
W

1,2
c (X), it holds ∫

X

〈∇f, ∇ψ〉 dμ = −
∫

X

hψ dμ.

We will write �f = h. If f ∈ W 1,2(X) and h ∈ L2(X), we then call f ∈ D(�).

From the Leibniz rule, it follows that if f, g ∈ Dloc(�) ∩ L∞
loc(X) (resp. f, g ∈ D(�) ∩

L∞
loc(X) ∩ Lip (X)), then fg ∈ Dloc(�) (resp. fg ∈ D(�)) satisfies �(fg) = g�f +

f �g + 2∇f · ∇g.

2.2 Curvature-dimension Conditions and Consequences

Let (X, d, μ) be an infinitesimally Hilbertian space. Denote by Ht the heat flow et�

corresponding to the Dirichlet form
(
E, W 1,2(X)

)
, defined by

E(f, g) =
∫

X

〈∇f, ∇g〉 dμ, f, g ∈ W 1,2(X).

From (X, d, μ) being infinitesimally Hilbertian, it follows that Ht is linear and the Dirichlet
form

(
E,W 1,2(X)

)
is strongly local.

Now we recall the definition of RCD∗(K,N) spaces. See e.g. [17, Sections 3 and 4] for
other equivalent characterizations. Here and in what follows, for K = 0, K/(e2Kt − 1) :=
limK→0 K/(e2Kt − 1) = 1/(2t).
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Definition 2.6 Let K ∈ R and N ∈ [1, ∞), and let (X, d, μ) be a length, infinitesimally
Hilbertian space satisfying:

(a) for some constants C, c > 0 and some point o ∈ X,

μ(B(o, r)) ≤ Cecr2
, for every r > 0,

(b) each function f ∈ W 1,2(X) with |∇f | ≤ 1 admits a continuous representative,
(c) for every f ∈ W 1,2(X) and every t > 0,

|∇Htf |2 + 4Kt2

N(e2Kt − 1)
|�Htf |2 ≤ e−2KtHt (|∇f |2), μ-a.e. in X. (2.3)

Then we call (X, d, μ) a RCD∗(K,N) space.

On the RCD∗(K,N) space (X, d, μ), the measure μ satisfies the local doubling (global
doubling, provided K ≥ 0) property, which we present in the next lemma (see e.g. [17,
Section 3]).

Lemma 2.1 Let (X, d, μ) be a RCD∗(K,N) space with K ≤ 0 and N ∈ [1, ∞), and let
x ∈ X and 0 < r ≤ R < ∞.

(i) If K = 0, then

μ (B(x,R)) ≤
(

R

r

)N

μ (B(x, r)) .

(ii) If K < 0, then

μ (B(x,R)) ≤ lK,N (R)

lK,N(r)
μ (B(x, r)) ,

where (0, ∞) � t �→ lK,N (t) is a continuous function depending on K and N , and
lK,N (t) = O(etC(K,N)) as t tends to ∞ for some constant C(K,N) depending on K

and N .

From the definition of the RCD∗(K,N) space, we know that (X, d) is a length space.
The (local) doubling property immediately implies that every bounded closed ball in (X, d)

is totally bounded. Since (X, d) is also complete, it is then proper and geodesic. Recall that
a metric space (X, d) is proper if every bounded closed subset is compact. The properness
also implies that the Dirichlet form (E, W 1,2(X)) is indeed regular.

By [5, Theorem 3.9], we see that the intrinsic metric induced by the Dirichlet form
(E, W 1,2(X)), defined as

dE (x, y) = sup{ψ(x) − ψ(y) : ψ ∈ W 1,2(X) ∩ C(X), |∇ψ | ≤ 1 μ-a.e. in X},
for every x, y ∈ X, coincides with the original one, i.e.,

dE (x, y) = d(x, y), ∀ x, y ∈ X.

Hence, we can work indifferently with either the distance d or dE .
Recently, Rajala [29] proved that an L1 weak local Poincaré inequality holds on

RCD∗(K,N) spaces, and hence also an L1 strong local Poincaré inequality holds by the
doubling and geodesic properties and by applying [21, Theorem 1]. By using the Hölder
inequality, we know that the Lp weak local Poincaré inequality holds for all p ∈ (1, ∞).
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Lemma 2.2 Let (X, d, μ) be a RCD∗(K,N) space with K ≤ 0 and N ∈ [1, ∞). Then for
every x ∈ X and every R > 0, there exists a positive constant C := C(K,N,R) such that
for any r ∈ (0, R),

∫
B(x,r)

|f − fB |2 dμ ≤ Cr2
∫

B(x,r)

|∇f |2 dμ, for all f ∈ W 1,2(X), (2.4)

where fB = 1
μ(B(x,r))

∫
B(x,r)

f dμ. In particular, if K = 0, then Eq. 2.4 holds with constant
C := C(K,N) independent of R.

Now we can apply the results from Sturm [34, Proposition 2.3] to immediately deduce
that there exists a heat kernel, i.e., a measurable map (0, ∞) × X × X � (t, x, y) �→
pt (x, y) ∈ [0, ∞) such that, for any t > 0, f ∈ L1(X) + L∞(X) and each x ∈ X,

Htf (x) =
∫

X

f (y)pt (x, y) dμ(y);

for all s, t > 0 and all x, y ∈ X,

pt+s(x, y) =
∫

X

pt (x, z)ps(z, y) dμ(z);

the function u : (t, y) �→ pt (x, y) is a solution of the equation �u = ∂
∂t

u on (0, ∞) × X

in the weak sense. By the symmetry of the semi-group, pt is also symmetric, i.e., for every
t > 0, pt (x, y) = pt (y, x) for all (x, y) ∈ X × X. The doubling property and the local L2

Poincaré inequality imply that the function x �→ pt (x, y) is Hölder continuous for every
(t, y) ∈ (0, ∞) × X, by a standard argument; see e.g. [35, Section 3]. Moreover, Ht is
stochastically complete (see e.g. [33, Theorem 4]), i.e.,

∫
X

pt (x, y) dμ(y) = 1, ∀t > 0 and ∀x ∈ X.

3 Heat Kernel Bounds

In this section, we shall prove the main results on the heat kernel bounds. We shall follow
the approach of Sturm [32], by applying the Laplacian comparison principle established by
Gigli [19] (see Lemma 3.1 below) and the parabolic Harnack inequality in [18, 22] as our
main tools.

In what follows, let dx0(x) := d(x0, x) be the distance function for each x0.

Lemma 3.1 Let (X, d, μ) be a RCD∗(K,N) space with K ≤ 0 and N ∈ [1, ∞). Then the
distance function dx0 ∈ D loc (�, X \ x0), and

�dx0 |X\x0 ≤ NτK,N(dx0) − 1

dx0

.

Above, τK,N ≡ 1 if K = 0, and τK,N(θ) = θ
√−K/Ncotanh

(
θ
√−K/N

)
for θ ∈ [0, ∞).
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The following parabolic Harnack inequalities are established in [18, 22].

Lemma 3.2 (Parabolic Harnack Inequality). Let (X, d, μ) be a RCD∗(K,N) space with
K ∈ R and N ∈ [1, ∞). Then for each 0 ≤ f ∈ ∪1≤q<∞Lq(X), all 0 < s < t < ∞ and
x, y ∈ X, it holds that

(i) if K = 0,

Hsf (x) ≤ Htf (y) exp

{
d(x, y)2

4(t − s)

} (
t

s

)N/2

;

(ii) if K < 0,

Hsf (x) ≤ Htf (y) exp

{
d(x, y)2

4(t − s)e2Kt/3

}(
1 − e2Kt/3

1 − e2Ks/3

)N/2

.

Now we begin to prove Theorem 1.1.

Proof of Theorem 1.1 (i) The inequality

pt (x, y) ≤ C1(ε)

μ(B(y,
√

t))
· exp

(
−d2(x, y)

(4 + ε)t

)

follows from Sturm [34, Corollary 2.5], by using the doubling property in Lemma 2.1 and
the L2 Poincaré inequality in Lemma 2.2.

To prove the reverse inequality, we set N1 := min{m ∈ N| m � N}. Since N �
N1, the space (X, d, μ) satisfies also RCD∗(0, N1). By applying the same argument in
[32, p158-p159] with Lemma 3.1, we conclude that there exists a constant C(N1) such
that

∫
B(y,

√
t)

pt (x, z)dμ(z) � C(N1) · exp

(
− d2(x, y)

4(1 − ε)t
− 1 + ε−1

2

)
, (3.1)

for all t > 0 and all x, y ∈ X. Indeed, the argument only used the Laplacian comparison
principle for X in Lemma 3.1 and an explicit calculation for the heat kernel on Euclidean
space R

N1 of dimension N1 (see [32, (3.1)]).
Fix any ε > 0. According to Lemma 3.2 (i), we have

p(1+ε)t (x, y) � μ−1
(
B(y,

√
t)

)
·
∫

B(y,
√

t)

pt (x, z)dμ(z) · exp(− 1

4ε
) · (1 + ε)−N1/2

(3.1)

� C(ε,N1) · μ−1
(
B(y,

√
t)

)
· exp

(
− d2(x, y)

4(1 − ε)t

)
,

for all t > 0 and all x, y ∈ X. This implies the desired estimate.

Proof of Corollary 1.1 It follows from the Li–Yau inequality

|∇ log pt (x, ·)|2(y) − ∂

∂t
log pt (x, y) ≤ N

2t
, for μ-a.e. x, y ∈ X,
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in [18, 22] and Theorem 1.1 that, for each ε > 0,

|∇pt (x, ·)|2(y) ≤ N

2t
pt (x, y)2 + pt (x, y) |�pt(x, ·)(y)|

≤ C1(ε)

tμ(B(y,
√

t))2
· exp

(
−2

d2(x, y)

(4 + ε)t

)
,

as desired.

We now turn to prove Theorem 1.2. To this end, in particular, we derive a parabolic
Harnack inequality for the heat kernel pt from Lemma 3.2 (ii).

Lemma 3.3 Let (X, d, μ) be a RCD∗(K,N) space with K < 0 and N ∈ [1, ∞). For any
0 < s < s + 1 ≤ t < ∞ and x, y, z ∈ X, it holds

pt (x, y) ≥ ps(x, z) exp

{
−d(y, z)2

2e2K/3

} (
1 − eK/3

1 − e2K/3

)N/2 (
1 − e2Ks/3

1 − e2K(t−1/2)/3

)N/2

.

Proof Write pt (x, y) = H1(pt−1(x, ·))(y). Then it follows, from Lemma 3.2 (ii) that

pt (x, y) = H1(pt−1(x, ·))(y)

≥ H1/2(pt−1(x, ·))(z) exp

{
−d(y, z)2

2e2K/3

}(
1 − eK/3

1 − e2K/3

)N/2

= pt−1/2(x, z) exp

{
−d(y, z)2

2e2K/3

} (
1 − eK/3

1 − e2K/3

)N/2

≥ ps(x, z) exp

{
−d(y, z)2

2e2K/3

}(
1 − eK/3

1 − e2K/3

)N/2 (
1 − e2Ks/3

1 − e2K(t−1/2)/3

)N/2

,

as desired.

The following lemma is a particular case of Sturm [34, Lemma 1.7].

Lemma 3.4 Let (X, d, μ) be a RCD∗(K,N) space with K ∈ R and N ∈ [1, ∞). Suppose
that ψ ∈ W 1,2(X) ∩ L∞(X) with |∇ψ |2 ≤ γ 2, and u is a solution to the heat equation
∂
∂t

u = �u on X × [0, ∞). Then for all 0 ≤ s < t < ∞, it holds

‖eψu(·, t)‖L2(X) ≤ eγ 2(t−s)‖eψu(·, s)‖L2(X).

We can prove Theorem 1.2 now. We should mention that the idea of the establishment of
the upper bound comes from [34, Theorem 2.4] and the lower bound from [32].

Proof of Theorem 1.2

(i) The upper bounds. Let ε ∈ (0, 1
2 ), t > 0 and x, y ∈ X. By the parabolic Harnack

inequality (Lemma 3.2 (ii)), it follows that, for each z ∈ B(y,
√

t), it holds

pt (x, y) ≤ p(1+ε)t (x, z) exp

{
d(y, z)2

4εte2K(1+ε)t/3

}(
1 − e2K(1+ε)t/3

1 − e2Kt/3

)N/2

, (3.2)
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and, if t ≥ 1/ε, then, by Lemma 3.3,

pt (x, y) ≤ p(1+ε)t (x, z) exp

{
d(y, z)2

2e2K/3

}(
1−e2K/3

1−eK/3

)N/2(
1−e2Kt(1+ε)/3

1−e2Kt/3

)N/2

. (3.3)

Let β ∈ R, 0 ≤ f ∈ L2(X) and let ψ be a Lipschitz cut-off function with |∇ψ |2 ≤
1 μ-a.e. in X. Set u(x, t) := Ht(e

−βψf ).
Suppose at first that t < 1/ε. By Lemma 3.2 (ii), we find that, for all z ∈ B(y,

√
t),

it holds

Ht+tε (e
−βψf )(y)2 ≤ Ht+2εt (e

−βψf )(z)2 exp

{
d(y, z)2

4εte2K(1+2ε)t/3

} (
1 − e2K(1+2ε)t/3

1 − e2K(1+ε)t/3

)N/2

.

This implies that

(3.4)

where in the last estimate we used Lemma 3.4.
On the other hand, since

Ht+tε(e
−βψf )(y)2 =

[∫
X

pt+tε(y, z)e−βψ(z)f (z) dμ(z)

]2

≥
[∫

B(x,
√

t)

pt+tε(y, z)e−βψ(z)f (z) dμ(z)

]2

≥ e−2βψ(x)−2|β|√t

[∫
B(x,

√
t)

pt+tε(y, z)f (z) dμ(z)

]2

,

which, together with Eq. 3.4, and taking supremum with respect to ‖f ‖L2(B(x,
√

t)) ≤
1, yields that

e−2βψ(x)−2|β|√t‖pt+tε(y, ·)‖2
L2(B(x,

√
t))

≤ C(K, ε)e−KNεt e−2βψ(y)+2|β|√t e2β2tμ(B(y,
√

t))−1. (3.5)

A similar argument as in Eq. 3.4, by applying the parabolic Harnack inequality (3.2),
yields,

(3.6)
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Let β = d(x,y)
2t

, and choose ψ such that ψ(x) − ψ(y) is sufficiently close
to −d(x, y). Combining the estimates (3.5) and (3.6), we find

pt (x, y)2 ≤ C(K, ε)
exp

{−2KNεt + 4β
√

t + 2β(ψ(x) − ψ(y)) + 2β2t
}

μ(B(x,
√

t))μ(B(y,
√

t))

≤ C(K, ε)
exp

{
−2KNεt + 2d(x,y)√

t
− d(x,y)2

2t

}
μ(B(x,

√
t))μ(B(y,

√
t))

.

On the other hand, by the local doubling property (Lemma 2.1 (ii)) and t < 1/ε, we
have

μ(B(y,
√

t)) ≤ μ(B(x,
√

t + d(x, y))) ≤ C exp
{
C(K,N)(d(x, y) + √

t)
}

μ(B(x,
√

t))

≤ C(ε) exp

{
C(K, N, ε)

d(x, y)√
t

}
μ(B(x,

√
t)).

Combining the above two estimates and the Young inequality, we conclude that

pt (x, y) ≤ √
C(K, ε)

exp
{
−KNεt + d(x,y)√

t
− d(x,y)2

4t
+ C(K, N, ε)

d(x,y)√
t

}
μ(B(y,

√
t))

≤ C1(ε)
1

μ(B(y,
√

t))
exp

{
C2(ε)t − d(x, y)2

(4 + ε)t

}
. (3.7)

For the case t ≥ 1/ε, by using the parabolic Harnack inequality (3.3) instead of
Eq. 3.2 in the proof of Eq. 3.6, we can conclude that Eq. 3.7 also holds. This completes
the proof of upper bounds.

(ii) The lower bounds. Set N1 := min{m ∈ N| m � N}. Since N � N1, the met-
ric measure space (X, d, μ) satisfies also RCD∗(K,N1). By applying the Laplacian
comparison theorem (Lemma 3.1), and the parabolic maximum principle, we conclude
that, there exists a constant C(N1) such that

∫
B(y,

√
t)

pt (x, z)dμ(z) ≥ C(K,N1, ε) · exp

(
− d2(x, y)

4(1 − ε)t
− C2(ε)t

)
(3.8)

for all t > 0 and all x, y ∈ X. Notice that, the argument only used the Laplacian
comparison theorem (Lemma 3.1), and an explicit calculation for heat kernel on the
hyperbolic space Ek,N1 of dimension N1 and constant sectional curvature k = K

N1−1 ;
see [32, Corollary 3.6].

For t < 1/ε, by the parabolic Harnack inequality (3.2), we have

(3.9)
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Suppose now t ≥ max{1, 1/ε}. By the parabolic Harnack inequality (3.3), we
conclude that

The proof is completed.

Proof of Corollary 1.2 Notice that by [22, Theorem 1.2], it holds for each f ∈ L1(X) and
each t > 0 that,

|∇ log Htf |2 ≤ e−2Kt/3 �Htf

Htf
+ NK

3

e−4Kt/3

1 − e−2Kt/3
, μ-a.e..

This gives, when 0 < t ≤ 1, that

|∇pt (x, ·)|2(y) ≤ C(K)|�pt(x, ·)(y)|pt (x, y) + C(K)t−1pt (x, y)2. (3.10)

If t > 1, by writing pt (x, y) = H1(pt−1(x, ·))(y), we can also conclude that

|∇pt (x, ·)|2(y) = |∇H1(pt−1(x, ·))|2(y) ≤ C(K)|�pt(x, ·)(y)|pt (x, y)+C(K)pt (x, y)2,

Notice that, by using Davies [15, Theorem 4] and Theorem 1.2, we see that for each
t > 0, and almost all x, y ∈ X,∣∣∣∣ ∂

∂t
pt (x, y)

∣∣∣∣ ≤ C(ε)

tμ(B(y,
√

t))
exp

{
C2(ε)t − d(x, y)2

(4 + ε)t

}
. (3.11)

This, together with Theorem 1.2 again, yields

|∇pt (x, ·)|(y) ≤ C(ε)√
tμ(B(y,

√
t))

exp

{
C2(ε)t − d(x, y)2

(4 + ε)t

}
,

as desired.

Gong and Wang [20] established a characterization of compactness of Riemannian man-
ifolds by using heat kernel bounds. Their arguments work also in our RCD∗(K,N) setting.
We omit the details of the proof here, but just mention that the heat flow satisfies the
semi-group Poincaré inequality (see [5, Corollary 2.3]): for every f ∈ W 1,2(X) and every
t > 0,

Ht(f
2) − (Htf )2 ≤ 1 − e−2Kt

K
Ht(|∇f |2), μ-a.e. in X,

and the mass preserving property (see [4, Section 4]): for every t > 0 and every f ∈
L1(X) ∩ L2(X), ∫

X

Htf dμ =
∫

X

f dμ,

and for every ball B(x, r) ⊂ X, the bottom of the spectrum of the operator −� in
L2(B(x, r)) is bounded above by a positive constant C(K,N,R) with R > r , independent
of x, by applying Lemma 2.1 (see [35, Proposition 2.1]).
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Theorem 3.1 Let (X, d, μ) be a RCD∗(K,N) space with K ∈ R and N ∈ [1, ∞). Then
the following conditions are equivalent.

(i) (X, d) is compact;
(ii) There exist x ∈ X and t0 > 0 such that

∫
X

pt0(x, y)−1 dμ(y) < ∞;
(iii) There exists t0 > 0 such that

∫
X

pt0(x, x) dμ(x) < ∞.

4 Stability of Solutions to the Heat Equation

In this section, we apply the heat kernel bounds (Theorem 1.1) to the study of large time
behaviors of the heat kernel and stability of solutions to the heat equation. Our arguments
will be based on the method of Li [24] with some necessary modifications, due to lacking
of the Stokes’ formula (or the Gauss–Green formula).

Definition 4.1 (Boundary measure). For a fixed x0 ∈ X and r ∈ [0, ∞), define

s(x0, r) := lim sup
δ→0+

1

δ
μ (B(x0, r + δ) \ B(x0, r)) .

We remark here that, in the Riemannian manifold M with μ being the volume measure,
it is immediate to see that s(x0, r) is equal to the (n − 1)-dimensional Hausdorff measure
of ∂B(x0, r), for every B(x0, r) in M .

The first part in the next lemma is known (see e.g. [37, Theorem 2.3]), and the second
part is immediate from the last definition and the local Lipschitz continuity of the function
r �→ μ(B(x0, r)) in (0,∞), for each x0 ∈ X (see e.g. [37, p.148]).

Lemma 4.1 Let (X, d, μ) be a RCD∗(0, N) spaces with N ∈ (1, ∞). Then for all x0 ∈ X

and 0 < r < R < ∞, it holds

s(x0, R)

s(x0, r)
≤

(
R

r

)N−1

,

and

μ(B(x0, R)) =
∫ R

0
s(x0, r) dr.

Lemma 4.2 Let (X, d, μ) be a RCD∗(0, N) spaces with N ∈ (1, ∞). If there exists x0 ∈
X, and θ ∈ (0,∞) such that

lim inf
R→∞

μ(B(x0, R))

RN
= θ.

Then for each R > 0, it holds

s(x0, R) ≥ NθRN−1.

Proof From Lemma 4.1, it follows the function R �→ s(x0,R)

RN−1 is non-increasing on (0, ∞).

Hence, if there exists R0 ∈ (0, ∞) such that s(x0, R0) < NθRN−1
0 , then for all R > R0, it

holds s(x0, R) < NθRN−1. This together with Lemma 4.1 implies that for each R > R0,

μ(B(x0, R) \ B(x0, R0)) =
∫ R

R0

s(x0, r) dr < θ
(
RN − RN

0

)
,
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and hence

lim inf
R→∞

μ(B(x0, R))

RN
< lim inf

R→∞
θ

(
RN − RN

0

) + μ(B(x0, R0))

RN
= θ.

This contradicts with the assumption. Therefore, for each R > 0, we see that s(x0, R) ≥
NθRN−1, as desired.

Definition 4.2 (Boundary Integral). Let x0 ∈ X and r ∈ [0, ∞). Suppose f ∈ L∞
loc (X).

Define the integral of f on ∂B(p, r) as

|f |∂B(x0,r) := lim sup
δ→0+

1

δ

∫
B(x0,r+δ)\B(x0,r)

f (x) dμ(x).

Lemma 4.3 Let (X, d, μ) be a RCD∗(K,N) space with K ∈ R and N ∈ (1, ∞). Let
x0 ∈ X and R ∈ (0, ∞). Then for each f ∈ L∞

loc (X), it holds∫
B(x0,R)

f (x) dμ(x) =
∫ R

0
|f |∂B(x0,r) dr.

Proof Notice that, for each fixed x0 ∈ X, the function r �→ μ(B(x0, r)) is locally Lipschitz
continuous on (0, ∞). From this, we conclude that, for each f ∈ L∞

loc (X), the function

r �→
∫

B(x0,r)

f dμ

is locally Lipschitz continuous on (0, ∞), and hence, the required equality holds.

Proof of Theorem 1.3 It is shown in [22, Theorem 1.4] that

lim
t→∞ tN/2pt (x, y) = C(θ), (4.1)

for some constant C(θ) ∈ (0,∞). Let us prove that θC(θ) = ω(N)(4π)−N/2.
Following [32, Proof of Theorem 4.5], by applying the Laplacian comparison theorem

(Lemma 3.1), and the parabolic maximum principle, it follows that, for all x ∈ X and
t, r > 0, ∫

B(x,r)

pt (x, y) dμ(y) ≥
∫

B(xr ,r)

1

(4πt)N/2
exp

{
−|z|2

4t

}
dz, (4.2)

where xr = (r, 0, · · · , 0) ∈ R
N . This, together with Eq. 4.1, implies that

μ(B(x, r))C(θ) = lim
t→∞ tN/2

∫
B(x,r)

pt (x, y) dμ(y) ≥ ω(N)rN

(4π)N/2
.

Letting r → ∞, we find that

θC(θ) ≥ ω(N)

(4π)N/2
. (4.3)

Let us prove the upper bound of θC(θ). For any δ > 0 and all x, y ∈ X , the parabolic
Harnack inequality in Lemma 3.2 (i) yields

pt (x, x)2 ≤ p(1+δ)t (x, y)2 exp

{
d(x, y)2

2δt

}
(1 + δ)N ,
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which implies that, for all r, ε > 0,

pt (x, x)2 μ(B(x, r + ε) \ B(x, r))

ε

≤ exp

{
(r + ε)2

2δt

}
(1 + δ)N

1

ε

∫
μ(B(x,r+ε)\B(x,r))

p(1+δ)t (x, y)2 dμ(y).

Letting ε → 0 and applying Lemma 4.2, we conclude that for a.e. r > 0,

(1 + δ)N |p(1+δ)t (x, ·)2|∂B(x,r) ≥ exp

{
− r2

2δt

}
s(x, r)pt (x, x)2

≥ NθrN−1 exp

{
− r2

2δt

}
pt (x, x)2. (4.4)

Integrating over (0, ∞), and applying Lemma 4.1 and Lemma 4.3, we find that

(1 + δ)N tN/2p2(1+δ)t (x, x) = (1 + δ)N tN/2
∫

X

p(1+δ)t (x, y)2 dμ(y)

= (1 + δ)N tN/2
∫

(0,∞)

|p(1+δ)t (x, ·)2|∂B(x,r) dr

≥ tN/2Nθpt (x, x)2
∫ ∞

0
rN−1 exp

(
− r2

2δt

)
dr

= θtN

ω(N)
(2πδ)N/2pt (x, x)2,

where in the last inequality, we used Eq. 4.4. With Eq. 4.1, letting t → ∞, we derive that(
1 + δ

2

)N/2

C(θ) = lim
t→∞

(
1 + δ

2

)N/2

(2(1 + δ)t)N/2p2(1+δ)t (x, x)

≥ lim
t→∞

(2πδ)N/2

ω(N)
θtNpt (x, x)2 = (2πδ)N/2

ω(N)
θC(θ)2,

and hence,

θC(θ) ≤ ω(N)

(2πδ)N/2

(
1 + δ

2

)N/2

.

Letting δ → ∞ and using Eq. 4.3, we have

θC(θ) = ω(N)

(4π)N/2
,

which implies that

lim
t→∞ μ(B(x0,

√
t))pt (x, y) = lim

t→∞
μ(B(x0,

√
t))

tN/2
tN/2pt (x, y) = θC(θ) = ω(N)

(4π)N/2
,

and hence, we complete the proof.

The existence of the large time limit of heat kernels yields the following stability property
of solutions to the heat equation. The proof is a slightly modification of the proof of [24,
Theorem 3] to our non-smooth context.
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Theorem 4.1 Let (X, d, μ) be a RCD∗(0, N) space with N ∈ N and N ≥ 2. Let x0 ∈ X.
Suppose that there exists a constant θ ∈ (0, ∞) such that lim infR→∞ μ(B(x0,R))

RN = θ . Then,
for each f ∈ L∞(X), and for any x ∈ X, the limit limt→∞ Ht(f )(x) exists, if and only if,
the limit

exists; moreover, it holds

Proof It follows from Theorem 1.3 that for each x ∈ X,

lim
t→∞ tN/2pt (x, x) = ω(N)

θ(4π)N/2
=: C(θ).

This, together with the parabolic Harnack inequality

ps(x, x) ≤ pt (x, y) exp

{
d(x, y)2

4(t − s)

}(
t

s

)N/2

,

for all x, y ∈ X and 0 < s < t , yields that there exists ε(s) > 0 satisfying ε(s) → 0 as
s → ∞ such that

pt (x, y) ≥ (C(θ) − ε(s))t−N/2 exp

{
−d(x, y)2

4(t − s)

}
.

For any 0 ≤ g ∈ L∞(X) and each x ∈ X, it holds

Ht(g)(x) ≥ (C(θ) − ε(s))t−N/2
∫

X

exp

{
−d(x, y)2

4(t − s)

}
g(y) dμ(y)

≥ (C(θ) − ε(s))t−N/2
∫ ∞

1
exp

{
− r2

4(t − s)

}
|g|∂B(x,r) dr.

Let 0 ≤ g ∈ L∞(X) and let z ∈ R
N . We set for each x ∈ X,

ḡx(z) := |g|∂B(x,|z|)
Nω(N)|z|N−1

χ{|z|≥1}(z), z ∈ R
N .

By Lemma 4.1, we have

0 ≤ ḡx(z) ≤ ‖g‖L∞(X)

s(x, |z|)
Nω(N)|z|N−1

χ|z|≥1(z) ≤ ‖g‖L∞(X)

s(x, 1)

Nω(N)
< ∞.

Hence, 0 ≤ ḡx ∈ L∞(RN).
Let Ht be the heat semigroup on R

N . Then for each x ∈ X, it follows that

Ht(g)(x) ≥ (C(θ) − ε(s))

(
4π(t − s)

t

)N/2

Ht−s(ḡx)(0). (4.5)

For a function f ∈ L∞(X), we may assume |f | ≤ 1. By setting g1 := 1 + f and
g2 := 1 − f , we then conclude from Eq. 4.5 that

1 + Ht(f )(x)≥(C(θ)−ε(s))

(
4π(t − s)

t

)N/2[
Ht−s(1̄x)(0)+Ht−s(f̄x)(0)

]
, (4.6)
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and

1 − Ht(f )(x) ≥ (C(θ) − ε(s))

(
4π(t − s)

t

)N/2[
Ht−s(1̄x)(0)−Ht−s(f̄x)(0)

]
.(4.7)

Using Lemma 4.2 and the definition of 1̄, we find that

1̄x(z) = s(x, |z|)
Nω(N)|z|N−1

χ{|z|≥1}(z) ≥ θ

ω(N)
χ{|z|≥1}(z), ∀ z ∈ R

N

which, together with Eqs. 4.6 and 4.7, implies that

1 − (C(θ) − ε(s))

C(θ)

(
t − s

t

)N/2

Ht−s(χ{|z|≥1})(0)

≥ (C(θ) − ε(s))

(
4π(t − s)

t

)N/2

Ht−s(f̄x)(0) − Ht(f )(x)

≥ (C(θ) − ε(s))

C(θ)

(
t − s

t

)N/2

Ht−s(χ{|z|≥1})(0) − 1.

Letting s = √
t and t → ∞, we find that

lim
t→∞

[
Ht(f )(x) − C(θ)(4π)N/2Ht−√

t (f̄x)(0)
]

= 0,

since ε(
√

t) → 0 and Ht−√
t (χ{|z|≥1})(0) → 1, as t → ∞. Hence, limt→∞ Ht(f )(x)

exists, if and only if, limt→∞ Ht−√
t (f̄x)(0) exists. From the proof of [24, Theorem 3], it

follows that the limit limt→∞ Ht−√
t (f̄x)(0) exists, if and only if,

exists. Notice that, for R > 1,

Since limR→∞ μ(B(x,R))

RN = θ , we find that, the limit exists, if

and only if, exists.

Hence, we see that the limit limt→∞ Ht(f )(x) exists, if and only if,

exists. Similar arguments as in the proof of [24, Theorem 3]
imply that the two limits must equal, if they exist. The proof is therefore completed.

5 Riesz Transforms

In this section, we consider the boundedness of the Riesz transform |∇(−�)−1/2| and the
local version |∇(−� + a)−1/2| for some a > 0. For simplicity, we only consider the case
μ(X) = ∞, the case μ(X) < ∞ follows from minor modifications.
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In what follows, we shall let aK = 0 if K = 0, and let aK > 0 large enough for K < 0.
Since −� + aK is a non-negative self-adjoint operator, we can define fractional powers of
−� + aK as

(−� + aK)−1/2 =
√

π

2

∫ ∞

0
e−aKses� ds√

s
,

and

(−� + aK)1/2 =
√

π

2

∫ ∞

0
e−aKs(� + aK)es� ds√

s
.

We refer the readers to Yosida [40, Chapter 9.11] for more details.
In smooth settings, it is easy to see that (−�+ aK)−1/2f and (−�+ aK)−1/2f are well

defined if f is a smooth function with compact support; see, e.g., [9, 14]. In the non-smooth
cases, we need a bit work to show that these two operators are well-defined on some dense
spaces.

Definition 5.1 (Acting Class). The acting class V(X) of the Riesz transform |∇(−� +
aK)−1/2| is defined as

V(X) := {f ∈ L1(X) ∩ L∞(X) : (−� + aK)−1/2f ∈ D(�)}.

Remark 5.1 If μ(X) < ∞, we need to consider the subclass L
p

0 (X) of Lp(X), where the
elements f are required to satisfy f ∈ Lp(X) and

∫
X

f dμ = 0. In this case, we need to
redefine the acting class V(X) as

V(X) :=
{
f ∈ L∞(X) :

∫
X

f dμ = 0, (−� + aK)−1/2f ∈ D(�)

}
.

Lemma 5.1 Let (X, d, μ) be a RCD∗(K,N) space with K ∈ R and N ∈ [1, ∞). For each
p ∈ [1, ∞), V(X) is dense in Lp(X).

To prove this lemma, let us recall the following mapping property established in [22].

Proposition 5.1 Let (X, d, μ) be a RCD∗(K,N) space, where K ∈ R and N ∈ [1, ∞).

(i) For each t > 0 and p ∈ [1, ∞], the operator Ht is bounded on Lp(X) with
‖Ht‖p,p ≤ 1.

(ii) If K ≥ 0, then, for each t > 0, the operators
√

t |∇Ht | and t�Ht are bounded on
Lp(X) for all p ∈ [1, ∞]. Moreover, there exists C > 0, such that, for all t > 0 and
all p ∈ [1, ∞],

max
{
‖√t |∇Ht |‖p,p, ‖t�Ht‖p,p

}
≤ C.

(iii) If K < 0, then, for each t > 0, the operators
√

t |∇Ht | and t�Ht are bounded on
Lp(X) for all p ∈ [1, ∞]. Moreover, there exists C > 0, such that, for all t > 0 and
all p ∈ [1, ∞],

max
{
‖√(t ∧ 1)|∇Ht |‖p,p, ‖(t ∧ 1)�Ht‖p,p

}
≤ C.

We can now prove Lemma 5.1.

Proof of Lemma 5.1 We only need to show that, for each f ∈ L1(X)∩L∞(X), there exists
{fk}k∈N ⊂ V(X) such that fk → f in Lp(X) as k → ∞.
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For each ε > 0, define

fε := e−aKεHε(f ) − e−aK/εH1/ε(f ).

From the property of the heat semi-group, it follows that fε ∈ L1(X) ∩ L∞(X), and
e−aKεHε(f ) → f in Lp(X) as ε → 0. From the heat kernel bounds in Theorems 1.1 and
1.2, it follows that for each x ∈ X,

|e−aK/εH1/ε(f )|(x) ≤ C1e
−aK/ε

μ(B(x,
√

1/ε))

∫
X

exp

(
−d2(x, y)

5/ε
+ C2/ε

)
|f (y)| dμ(y)

≤ C1e
−aK/ε+C2/ε

μ(B(x,
√

1/ε))
‖f ‖L1(X),

which tends to 0 as ε → 0, where we choose aK > C2 > 0 if K < 0. This implies that
e−aK/εH1/ε(f ) → 0 in Lp(X), and hence, fε → f in Lp(X), as ε → 0.

Let us show that fε ∈ V(X). By the analytic property of the heat semi-group, and the fact

(−� + aK)−1/2fε =
∫ 1/ε

ε

√
s(−� + aK)1/2es(�−aK)(f )

ds√
s
,

we conclude that

‖(−� + aK)−1/2fε‖L2(X) ≤ C(ε)‖f ‖L2(X),

for some constant C(ε) > 0.
To show that (−� + aK)−1/2fε ∈ D(�), we write

(−� + aK)−1/2fε =
√

π

2

∫ ∞

0

∫ 1/ε

ε

(−� + aK)e(s+t)(�−aK)(f ) dt
ds√
s
.

If K = 0, then by using Theorem 1.1, the Minkowski inequality and Proposition 5.1, we
find

‖∇(−�)−1/2fε‖L2(X) ≤
√

π

2

∫ ∞

0

∫ 1/ε

ε

‖∇(−�)e(s+t)�(f )‖L2(X) dt
ds√
s

≤ C

∫ ∞

0

∫ 1/ε

ε

‖∇e
(s+t)

2 �(−�)e
(s+t)

2 �(f )‖L2(X) dt
ds√
s

≤ C

∫ ∞

0

∫ 1/ε

ε

1

(s + t)3/2
‖f ‖L2(X) dt

ds√
s

≤ C(ε)‖f ‖L2(X),

and

‖�(−�)−1/2fε‖L2(X) ≤
√

π

2

∫ ∞

0

∫ 1/ε

ε

‖�(−�)e(s+t)�(f )‖L2(X) dt
ds√
s

≤
√

π

2

∫ ∞

0

∫ 1/ε

ε

1

(s + t)2
‖f ‖L2(X) dt

ds√
s

≤ C(ε)‖f ‖L2(X),

for some constant C(ε) > 0. These show that fε ∈ V(X) when K = 0.
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Suppose now K < 0. Using Theorem 1.2, the Minkowski inequality and Proposition 5.1,
we find

‖∇(−� + aK)−1/2fε‖L2(X) ≤
√

π

2

∫ ∞

0

∫ 1/ε

ε

‖∇(−�+aK)e(s+t)(�−aK)(f )‖L2(X) dt
ds√
s

≤
√

π

2

∫ ∞

0

∫ 1/ε

ε

e−aK(t+s)

[(s + t) ∧ 1]3/2
‖f ‖L2(X) dt

ds√
s

≤ C(ε, aK)‖f ‖L2(X),

and

‖�(−� + aK)−1/2fε‖L2(X) ≤
√

π

2

∫ ∞

0

∫ 1/ε

ε

‖�(−� + aK)e(s+t)(�−aK)(f )‖L2(X) dt
ds√
s

≤
√

π

2

∫ ∞

0

∫ 1/ε

ε

e−aK(t+s)

[(s + t) ∧ 1]2
‖f ‖L2(X) dt

ds√
s

≤ C(ε, aK)‖f ‖L2(X),

for some constant C(ε, aK) > 0. Hence, we can conclude now that fε ∈ V(X) for each
ε > 0.

Therefore, V(X) is dense in Lp(X) for each p ∈ [1, ∞). The proof is completed.

Now we present the main results of this section. The first theorem is on the Lp bounded-
ness of the Riesz transform |∇(−�)−1/2|. We recall that a sub-linear operator T is of weak
type (1, 1) if, for any f ∈ L1(X), there exists a constant C > 0 such that

sup
λ>0

λμ({x ∈ X : |Tf (x)| > λ}) ≤ C‖f ‖L1(X).

Theorem 5.1 Let (X, d, μ) be a RCD∗(0, N) space with N ∈ [1, ∞). Then, the Riesz
transform |∇(−�)−1/2|, initially defined onV(X), extends to a sub-linear operator of weak
type (1, 1) and it is also bounded on Lp(X), for each p ∈ (1, ∞).

The next one is the local version of Theorem 5.1.

Theorem 5.2 Let (X, d, μ) be a RCD∗(K,N) space with K < 0 and N ∈ [1, ∞). Then,
for large enough aK > 0, the local Riesz transform |∇(−� + aK)−1/2|, initially defined on
V(X), extends to a bounded sub-linear operator on Lp(X), for each p ∈ (1, ∞).

Notice that, as pointed out by [11, p.6], although the results from [9] were stated in
manifolds, their method of proofs indeeds work on metric measure spaces. Therefore,
Theorem 5.1 and Theorem 5.2 follow directly from [9, Theorem 1.4] and [9, Theorem 1.7]
by using Corollary 1.1 and Corollary 1.2, respectively.

In what follows, we outline two different proofs of these results, since the proofs are
basically identical to [9, 14].

5.1 Proofs by Using Heat Kernel Gradient Estimates

Now we begin the proof of the main results by combing the heat kernel gradient estimate in
Corollaries 1.1 and 1.2, and applying the original method of [14] and [9].
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Proof of Theorem 5.1 For each f ∈ V(X), it follows from the definition of V(X) that,

‖∇(−�)−1/2(f )‖L2(X) =
(∫

X

(−�)−1/2(f )(x)(−�)1/2(f )(x) dμ(x)

)1/2

= ‖f ‖L2(X).

Then by Lemma 5.1, we conclude that |∇(−�)−1/2| is bounded on L2(X). Following
the method in [14] and [9], we divide the proof into two cases, namely, p ∈ (1, 2) and
p ∈ (2,∞).

Following the proofs in [14, Sections 2 and 3], by applying the Calderón–Zygmund
decomposition (see, e.g., [14, pp.1154–1155]) for functions and the Marcinckiewicz inter-
polation theorem, in order to show the boundedness of |∇(−�)−1/2| on Lp(X) for all
p ∈ (1, 2), we only need to prove that |∇(−�)−1/2| is of weak type (1, 1). It will fol-
low from by using the heat kernel estimate in Theorem 1.1 and by showing that, there exist
constants C, c > 0 such that for all s, t > 0 and μ-a.e. x ∈ X,∫

d(x,y)≥t1/2
|∇ps(x, ·)|(y) dμ(y) ≤ Ce−ct/ss−1/2.

Indeed, by using the gradient estimate (1.2) and the doubling property in Lemma 2.1 (i), we
see that∫

d(x,y)≥t1/2
|∇ps(x, ·)|(y) dμ(y) ≤

∞∑
k=1

Cμ
(
B(x, 2k

√
t) \ B(x, 2k−1√t)

)
√

sμ(B(x,
√

s))
exp

{
−22kt

20s

}

≤ C exp

{
− t

10s

}
s−1/2.

Hence, |∇(−�)−1/2| is bounded on Lp(X), for all 1 < p < 2.
For the remaining case that p ∈ (2, ∞), combining the estimate of heat kernel in

Theorem 1.1 and its gradient estimate (1.2) and the real variable result on singular inte-
grals in [9, Theorem 2.1], and following the proof in [9, pp.936-938], we conclude that
|∇(−�)−1/2| is bounded on Lp(X) for all p ∈ (2,∞), which completes the proof.

Now we begin to prove Theorem 5.2.

Proof of Theorem 5.2 For each f ∈ V(X), it follows from the definition of V(X) that,

‖∇(−� + aK)−1/2(f )‖2
L2(X)

+ aK‖(−� + aK)−1/2(f )‖2
L2(X)

=
∫

X

〈(−� + aK)(−� + aK)−1/2(f ), (−� + aK)−1/2(f )〉 dμ

= ‖f ‖2
L2(X)

.

Hence, |∇(−� + aK)−1/2| is bounded on L2(X) with

‖∇(−� + aK)−1/2(f )‖L2(X) ≤ ‖f ‖L2(X).

The rest of the proof follows from similar proofs in the cases p ∈ (1, 2) and p ∈ (2, ∞)

as in [9, 14], by noticing that

|∇(−� + aK)−1/2f | ≤
√

π

2

∫ ∞

0
|∇et(�−aK)(f )| dt√

t
,

and combining the estimates of the heat kernel and its gradient in Theorem 1.2 and in
Corollary 1.2, respectively. The proof is then finished.
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5.2 Proofs Without Explicit Heat Kernel Gradient Estimates

In fact, also by the method in [9, 14], the Lp boundedness of the Riesz transform
|∇(−�)−1/2| and the local Riesz transform |∇(aK − �)−1/2| for every p ∈ (1, ∞) can
be shown without using the explicit heat kernel gradient estimates (1.2) and (1.4) . The
approach demands the following main ingredients: (1) doubling property, (2) stochastic
completeness, (3) L2 version of the local weak Poincaré inequality, (4) Caccioppoli type
inequalities, (5) Lp boundedness of

√
t |∇Ht |, (6) Davies–Gaffney type estimates, and (7)

L2 boundedness of the Riesz transform.
Now we are going to establish the missing parts (4)–(6) one by one and then give another

proof of Theorems 5.1 and 5.2.
The Caccioppoli type estimate for the semi-group Ht can be deduced from the following

inequality (see [5, Corollary 2.3]), for every t > 0 and f ∈ L2(X),

e2Kt − 1

K
|∇Htf |2 + e2Kt − 2Kt − 1

NK2
(�Htf )2 ≤ Ht(f

2) − (Htf )2, μ-a.e. in X.(5.1)

Here and in the next proposition, N = ∞ is allowable.

Proposition 5.2 Let (X, d, μ) be a RCD∗(K,N) space with K ∈ R and N ∈ [1, ∞) and
let p ∈ [2, ∞]. For any t > 0, it holds

‖|∇Htf |‖Lp(X) ≤
√

K

e2Kt − 1
‖f ‖Lp(X), for every f ∈ L2 ∩ Lp(X); (5.2)

in particular, for K ≥ 0, it holds

‖|∇Htf |‖Lp(X) ≤ 1√
2t

‖f ‖Lp(X), for every f ∈ L2 ∩ Lp(X), (5.3)

and for K < 0, it holds

‖|∇Htf |‖Lp(X) ≤ 1√
2(t ∧ 1)

‖f ‖Lp(X), for every f ∈ L2 ∩ Lp(X). (5.4)

Proof By Eq. 5.1, it is immediate to get, for every t > 0 and f ∈ L2(X),

|∇Htf |2 ≤ K

e2Kt − 1
Ht(f

2), μ-a.e. in X. (5.5)

Note that for t > 0, Ht is a contraction in all Lp(X) with p ∈ [1, ∞]. For p = ∞, the
proof of Eq. 5.2 is obvious by Eq. 5.5. Now take p ∈ [2, ∞) and f ∈ L2 ∩ Lp(X). Then,
by Eq. 5.5, we have

‖|∇Htf |‖Lp(X) ≤
√

K

e2Kt − 1

(∫
X

(
Htf

2
) p

2
dμ

) 1
p

≤
√

K

e2Kt − 1
‖f ‖Lp(X),

which is just Eq. 5.2. For K ≥ 0, (5.3) is immediately implied by Eq. 5.2 and the elementary
inequality e2Kt ≥ 1 + 2Kt . For K < 0, (5.4) follows from the fact that the function

t �→ e2Kt−1
K

is decreasing in [0, ∞) with maximum value 2 at t = 0.

The first Davies–Gaffney type estimate can be established by the same proof of [10,
Lemma 3.6] with minor modifications. In fact, if we let

�(f, g) = 〈∇f, ∇g〉, for every f, g ∈ W 1,2(X),



624 R. Jiang et al.

then � : W 1,2(X) × W 1,2(X) → L1(X) is a carré du champ. The second one can be
established by the general method since (Ht )t≥0 is an analytic semi-group in Lp(X) for
every p ∈ (1, ∞); see [10, Lemma 3.7]. We present them in the next lemma and omit the
details here.

Lemma 5.2 Let (X, d, μ) be a RCD∗(K,N) space with K ∈ R and N ∈ [1, ∞). For
every closed subsets E,F of X, every t > 0 and every function f ∈ L2(X) with support in
E, it holds

‖Htf ‖L2(F ) ≤ e− d2(E,F )
4t ‖f ‖L2(E), (5.6)

and there exists a constant C > 0, such that

‖t�Htf ‖L2(F ) ≤ Ce− d2(E,F )
6t ‖f ‖L2(E).

Remark 5.2 One may also use two side heat kernel bounds, Theorem 1.1 and Theorem 1.2,
and Phragmén-Lindelöf theorem (cf. [13, Proposition 2.1]) to show that

‖Htf ‖L2(F ) ≤ e− d2(E,F )
5t ‖f ‖L2(E).

Notice that in the above estimate the constant in the exponential term is larger than in
Eq. 5.6.

Applying the similar argument as the proof of Eq. 5.6, we can prove the following
corollary, which is in fact equivalent to Eq. 5.6.

Corollary 5.1 Let (X, d, μ) be a RCD∗(K,N) space with K ∈ R and N ∈ [1, ∞). For
every t > 0 and fi ∈ L2(Bi) with support in two balls Bi := B(xi, ri) in X, i = 1, 2, it
holds ∫

X

(Htf1)f2 dμ ≤ e− d2(B1,B2)

4t ‖f1‖L2(B1)
‖f2‖L2(B2)

. (5.7)

In order to establish the third Davies–Gaffney type estimates, we need to construct the
Lipschitz cut-off function with quantitative estimate on its gradient in X, which is possible
since for fixed x ∈ X, the function y �→ d(x, y) is Lipschitz continuous in X with respect
to the distance d itself.

Lemma 5.3 Let ε > 0. For a closed subset F of X, there exists a function χ ∈ Lip (X)

such that χ ∈ [0, 1], χ ≡ 1 on F (ε/2) and χ ≡ 0 in X \ F (ε), and satisfying

|∇χ | ≤ 2

ε
, μ-a.e. in X,

where F (ε) := {x ∈ X : d(x, F ) < ε} is the ε-neighborhood of F with respect to d.

Proof Choose

χ(x) =
(

ε
2 − d(x, F (ε/2))

)+
ε
2

∧ 1, x ∈ X,

where d(x,A) := infy∈A d(x, y) for a subset A in X. We complete the proof.
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The third Davies–Gaffney type estimate is presented in the next lemma. The key
ingredient in the proof is the following inequality: for every t > 0,

t

∫
X

χ2|∇Htf |2 dμ ≤ ‖t�Htf ‖L2(F̄ (ε))‖Htf ‖L2(X)

+2

(
t

∫
X

|∇χ |2(Htf )2 dμ

) 1
2
(

t

∫
X

χ2|∇Htf |2 dμ

) 1
2

,

where F̄ (ε) is the closure of F (ε) and χ is the cut-off function constructed in Lemma 5.3, and
then apply the first two Davies–Gaffney type estimates in Lemma 5.2 (see [10, Lemma 3.10]
for the smooth manifold case). We also omit the details here.

Lemma 5.4 Let (X, d, μ) be a RCD∗(K,N) space with K ∈ R and N ∈ [1, ∞). For
every closed sets E,F ⊂ X, every t > 0 and every function f ∈ L2(X) with support in E,
there exist constants C > 0 and β > 0 such that

√
t‖|∇Htf |‖L2(F ) ≤ Ce−β

d2(E,F )
t ‖f ‖L2(E).

Now we are in position to present another proof of Theorem 5.1.

Proof of Theorem 5.1 for p ∈ (1, 2) As the proof given in Section 5.1, we only need to
show that |∇(−�)−1/2| is of weak type (1, 1), which is implied by combining Theorem
1.1, the doubling property in Lemma 2.1(i) and the third Davies–Gaffney type estimate in
Lemma 5.4.

Remark 5.3 The result that the Riesz transform |∇(−�)−1/2| is bounded in Lp(X) for all
p ∈ (1, 2) is in fact can also be shown following the proof of [31, Theorem 5], once we let
α = 1

2 , L = � and A = |∇·| in the aforementioned theorem and combine with Theorem 1.1
and Corollary 5.1.

Proof of Theorem 5.1 for p ∈ (2, ∞) Following the method in [9, Sections 2 and 3], we
only need to combine Lemma 2.1(i), the first part of Lemma 2.2, Proposition 5.2,
Lemma 5.2 and Lemma 5.4, and then complete the proof.

As for Theorem 5.2, by the localization technique in [16, Section 5] (see also
[9, Section 4] in the Riemannian setting), the local case can be proved as in the global case.

Acknowledgments The authors would like to thank the referee for the very detailed and valuable report,
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