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Abstract It is shown that the parabolic Harnack property stands as an intrinsic feature of the
Monge-Ampère quasi-metric structure by proving Harnack’s inequality for non-negative
solutions to the linearized parabolic Monge-Ampère equation under minimal geometric
assumptions.
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1 Introduction and Main Result

The results in this article constitute the parabolic part of a program started in [7, 9] (where
the elliptic case was treated) with the dominant theme of establishing Harnack’s property
within the Monge-Ampère quasi-metric structure under minimal geometric assumptions.
As a consequence, the Harnack property is shown to hold as an intrinsic feature of the
Monge-Ampère quasi-metric space (see more on this below). The rest of this section will
be devoted to a detailed description of our main result, the plan of the proof, and the dis-
tinguishing features of the techniques involved.
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Throughout the article ϕ : Rn → R will be a strictly convex, twice continuously diffe-
rentiable function with D2ϕ(x) > 0 for every x ∈ R

n. We will be concerned with the typi-
cally degenerate and singular parabolic operator

Lϕ(u) := ut − trace((D2ϕ)−1D2u). (1.1)

The natural measure-theoretic and geometric objects for understanding Lϕ are dictated by
ϕ as well. The Monge-Ampère measure associated to ϕ is dμϕ(x) := detD2ϕ(x) dx and,
given x ∈ R

n and r > 0, a section of ϕ centered at x with height r is the open bounded
convex set

Sϕ(x, r) := {y ∈ R
n : ϕ(y) − ϕ(x) − 〈∇ϕ(x), y − x〉 < r}.

Our main result is the following:

Theorem 1 (Parabolic Harnack inequality) Assume μϕ ∈ (DC)ϕ . There exist geometric
constants CH ,CK ≥ 1 such that for every (x0, t0) ∈ R

n+1, every R > 0, and every non-
negative solution u to

Lϕ(u) = 0 in Sϕ(x0, CKR) × (t0 − 3R/2, t0 + 2R],
we have

sup
Q−

u ≤ CH inf
Q+ u,

where Q+ := Sϕ(x0, R) × (t0 + R, t0 + 2R] and Q− := Sϕ(x0, R) × (t0 − R, t0].

Based on the pioneering work of L. Caffarelli and C. Gutiérrez [1, 2] in the elliptic
context, Q. Huang successfully implemented a program to prove Theorem 1 in [6] under the
stronger hypothesis μϕ ∈ (μ∞) (see [6, Theorem 1.1]). Thus, as the primary purpose of this
article, we establish Theorem 1 under the weaker (and minimal) assumption μϕ ∈ (DC)ϕ .
A brief comment on the hypotheses μϕ ∈ (μ∞) versus μϕ ∈ (DC)ϕ follows.

The hypothesis μϕ ∈ (μ∞) corresponds to a Coifman-Fefferman-type property for μϕ .
That is, μϕ ∈ (μ∞) if and only if there exist constants 0 < α ≤ 1 ≤ C such that for every
section S := Sϕ(x0, r) and every Borel set E ⊂ S it holds true that

μϕ(E)

μϕ(S)
≤ C

( |E|
|S|

)α

, (1.2)

where |F | denotes the Lebesgue measure of a set F ⊂ R
n. Property (1.2) has been

extensively used by Caffarelli-Gutiérrez [2] and Huang [6] in order to obtain Harnack’s
inequalities in the degenerate elliptic and parabolic settings, respectively. Following [2, 5]
we write μϕ ∈ (DC)ϕ if there exist constants α0 ∈ (0, 1) and C0 ≥ 1 such that

μϕ(Sϕ(x, r)) ≤ C0 μϕ(α0Sϕ(x, r)) ∀x ∈ R
n,∀r > 0, (1.3)

where α0Sϕ(x, r) is the α0-contraction of Sϕ(x, r) with respect to its center of mass (the
center of mass being computed with respect to Lebesgue measure). Constants depending
only on α0 and C0 in Eq. 1.3, as well as on dimension n, will be called geometric constants.

It turns out that μϕ ∈ (μ∞) implies μϕ ∈ (DC)ϕ (with the reverse implication not being
true in general) and that the difference between properties (1.2) and (1.3) can be regarded
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as the one between Muckenhoupt’s A∞ weights and doubling weights. In particular, notice
how, as opposed to Eq. 1.2, condition (1.3) requires no a priori regularity with respect to
Lebesgue measure. (For a more detailed comparison between (DC)ϕ and (μ∞), see [3,
Section 3].) More importantly, the condition μϕ ∈ (DC)ϕ turns out to be equivalent to a
quasi-metric structure associated to ϕ (see Section 2) that requires no a priori intervention of
Lebesgue measure or Euclidean balls. Thus, the relevance of Theorem 1 stems from placing
the parabolic Harnack inequality as an intrinsic feature of the Monge-Ampère quasi-metric
structure.

In both the elliptic and parabolic settings treated in [2, 6], the method for obtaining
Harnack’s inequality was modeled after the work of N. Krylov and M. Safonov on uni-
formly elliptic and parabolic operators in non-divergence form which consists of three basic
steps: a mean-value property for positive sub-solutions, a double-ball property for posi-
tive super-solutions, and a suitable covering lemma to obtain a power-like decay of the
distribution function of a positive solution. Despite the degeneracy of the linearized ellip-
tic and parabolic Monge-Ampère operators, this method was carried out in [2, 6] with the
hypothesis μϕ ∈ (μ∞) playing a key role in overcoming such degeneracy. In this work we
use the same approach, but with different techniques that overcome the degeneracy under
μϕ ∈ (DC)ϕ only.

1.1 Plan of the Proof of Theorem 1

In Q. Huang’s implementation of the method above in the parabolic case, the mean-value
property for positive sub-solutions (a combination of Lemma 4.2 and Theorem 4.2 in [6]) is
obtained just under μϕ ∈ (DC)ϕ . More precisely, the computations from [6, pp. 2051–53]
imply the following mean-value inequality for sub-solutions under the assumption μϕ ∈
(DC)ϕ only.

Theorem 2 ([6, pp. 2051–53]) Assume μϕ ∈ (DC)ϕ . For every q > 0 and 0 < τ ′ < τ ,
there exists a constant K9 > 0, depending only on geometric constants as well as on q and
τ ′/τ , such that for every (x0, t0) ∈ R

n+1, every R > 0, and every u ≥ 0 satisfying Lϕ(u)

≤ 0 in Qτ(K), where

Qτ(K) := Sϕ(x0,KR) × (t0 − τR, t0]
(and K is as in Eq. 2.12), we have

sup
Q′

u ≤ K9

⎛
⎜⎝ 1

M(Qτ (K))

∫∫
Qτ (K)

uq dM

⎞
⎟⎠

1
q

, (1.4)

where Q′ := S(x0, τ
′R/τ) × (t0 − τ ′R, t0].

On the other hand, the hypothesis μϕ ∈ (μ∞) was used in [6] twice: once to build a
Calderón-Zygmund covering lemma based on parabolic cylinders (see [6, Theorem 2.1])
and then to prove the so-called double-ball property for positive super-solutions (see [6,
Lemma 3.3]). In turn, those results led to a power-like decay property for solutions, see
Theorem 4.1 and Corollary 4.1 in [6]. As mentioned, in this work the hypothesis μϕ ∈ (μ∞)

is bypassed and, after suitable preparations, in Section 6 we prove.
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Theorem 3 Assume μϕ ∈ (DC)ϕ . There exist geometric constantsK10 > 0 and 0 < δ1 < 1
such that every positive solution u of

Lϕ(u) = 0 in Sϕ(x0, 8K
2R) × (t0 − 3R/2, t0 + 2R]

satisfies
⎛
⎜⎝ 1

M(Q−)

∫∫
Q−

uδ1 dM

⎞
⎟⎠

1
δ1

≤ K10 inf
Q+ u. (1.5)

Thus, Theorem 3 encompasses Theorem 4.1 and Corollary 4.1 in [6] and Theorem 1
follows from Theorem 2 and Theorem 3.

The proof of Theorem 3 relies on taking advantage of the variational side of Lϕ . The
connection between the divergence and non-divergence forms for Lϕ comes from the fact
that Aϕ(x), the matrix of co-factors of D2ϕ(x)

Aϕ(x) := D2ϕ(x)−1 detD2ϕ(x) ∀x ∈ R
n,

possesses the null-Lagrangian property; namely,

div(Aϕ∇h)(x) = trace(Aϕ(x)D2h(x)), (1.6)

for every function h that is twice-differentiable function at a point x ∈ R
n. The identity

(1.6) follows from fact that the columns of Aϕ are divergence-free.
Indeed, Eq. 1.6 will allow us to deal with Lϕ as a divergence-form operator whose dege-

neracy will be addressed by Poincaré-type inequalities adapted to ϕ (see Section 2.1). That
is, as opposed to the techniques in [2, 6] based on the ABP maximum principle, our tech-
niques will hinge upon Poincaré-type inequalities and integration by parts. This approach
was introduced in [7, 9] in the elliptic Monge-Ampère setting.

The rest of the article is organized as follows: In Section 2 the notation and basic pro-
perties for the Monge-Ampère quasi-metric structure are recorded. In Section 3, and always
under the hypothesis μϕ ∈ (DC)ϕ only, we prove a uniform “size-transfer”, from parabo-
lic cylinders to sections, for positive super-solutions. Meaning that whenever a positive
super-solution is large in a portion of a parabolic cylinder, then, in a shorter time range and
as functions of the space variable only, they remain uniformly above zero in a portion of
an inner section (see Theorem 8). Then, by means of Poincaré-type inequalities and inte-
gration by parts, in Section 4 we prove an arbitrarily sensitive critical-density property (see
Theorem 10).

In Section 5, it is shown how Theorem 10, along with a suitable calibration of some cons-
tants, implies the double-ball property for positive super-solutions (see Theorem 11). Also,
a new proof for Lemma 3.3 in [6], but under μϕ ∈ (DC)ϕ only, is included in the form of
Corollary 12.

Theorem 3 is proved in Section 6 where the role of the Calderón-Zygmund covering lem-
ma in [6] is played by the so-called crawling ink spots theorem. To achieve this, the approach
implemented by Schwab-Silvestre [10, Section 6] in the context of parabolic integro-
differential equations with very irregular kernels has been adapted to the Monge-Ampère
setting.
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Throughout the article one can assume that the sub- and super-solutions under considera-
tion are classical ones, keeping in mind that all constants involved will always be geo-
metric constants, in particular, they depend on neither the smoothness of the sub- and
super-solutions nor the largest or smallest eigenvalues of the Hessian D2ϕ.

2 Preliminaries and Notation

For x, y ∈ R
n set

δϕ(x, y) := ϕ(y) − ϕ(x) − 〈∇ϕ(x), y − x〉. (2.7)

Then, for x ∈ R
n and r > 0, the section Sϕ(x, r) = {y ∈ R

n : δϕ(x, y) < r}. Notice that,
due the strict convexity of ϕ, δϕ(x, y) = 0 if and only if x = y.

The parabolic Monge-Ampère measure in R
n+1 is defined by

dM(x, t) := detD2ϕ(x) dx dt ∀(x, t) ∈ R
n+1. (2.8)

The condition μϕ ∈ (DC)ϕ implies the existence of a geometric constant Kd ≥ 1 such
that

μϕ(Sϕ(x, 2r)) ≤ Kd μϕ(Sϕ(x, r)) ∀x ∈ R
n, ∀r > 0. (2.9)

By setting ν := log2 Kd , Eq. 2.9 yields

μϕ(Sϕ(x, R2)) ≤ Kd

(
R2

R1

)ν

μϕ(Sϕ(x, R1)) ∀x ∈ R
n, ∀ 0 < R1 < R2. (2.10)

Also, for a geometric constant K ≥ 1, we have

δϕ(x, y) ≤ Kδϕ(y, x) ∀x, y ∈ R
n (2.11)

as well as the following symmetrized K-quasi-triangle inequality which holds true for every
x, y, z ∈ R

n

δϕ(x, y) ≤ K
(
min{δϕ(z, x), δϕ(x, z)} + min{δϕ(z, y), δϕ(y, z)}) . (2.12)

Conversely, if Eqs. 2.11 and 2.12 hold true for some K ≥ 1, then so does Eq. 1.3 with
some constants α0 and C0 depending only on K and dimension n. That is, the condition
μϕ ∈ (DC)ϕ exactly determines when the pair (Rn, δϕ) becomes a quasi-metric space (in
the sense of Eqs. 2.11 and 2.12). Hence, the condition μϕ ∈ (DC)ϕ is referred to as a
minimal geometric hypothesis, in the sense that a quasi-metric space represents a minimal
platform on which real-analysis techniques can be carried out. See [2, 3, 5], [4, Chapter
3], and references therein, for more on the Monge-Ampère quasi-metric structure and its
related real analysis.

In Sections 3 and 4 it will be necessary to deal with measures of “thin annuli” of the
form Sϕ(x0, R) \ Sϕ(x0, βR) with 0 < β < 1 and β close to 1. To this end we resort to the
following lemma by Caffarelli-Gutiérrez in [1].

Lemma 4 ([1, Lemma 2]) Suppose that μϕ satisfies the doubling condition (2.9). Then,
given R > 0 and ε > 0 there exists ξ ∈ (1, 2], depending only on R and ε, such that
ξ − ε ≥ 1 and

μϕ(Sϕ(x0, ξR) \ Sϕ(x0, (ξ − ε)R))

μϕ(Sϕ(x0, ξR))
≤ ε logKd. (2.13)
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Remark 5 Lemma 4 will be used in the following way: for every x0 ∈ R
n, R > 0, and β ∈

(0, 1) we have that

μϕ(Sϕ(x0, R
′)) ≤ μϕ(Sϕ(x0, βR′))

1 − 2(1 − β) logKd

, (2.14)

with R′ := ξR and ξ = ξ(R, β) ∈ (1, 2]. Indeed, given x0 ∈ R
n, R > 0, and β ∈ (0, 1),

set ε := 2(1 − β). Then, let ξ = ξ(R, ε) be as in Lemma 4 so that putting R′ := ξR and
ε′ := ε/ξ , Eq. 2.13 means

μϕ(Sϕ(x0, R
′) \ Sϕ(x0, (1 − ε′)R′))

μϕ(Sϕ(x0, R′))
≤ ξε′ logKd. (2.15)

Next, by setting β ′ := 1 − ε′ = 1 − ε/ξ we have

1 − ε < 1 − ε/ξ = β ′ ≤ 1 − ε/2 = β

and Eq. 2.15 gives

μϕ(Sϕ(x0, R
′)) = μϕ(Sϕ(x0, R

′) \ Sϕ(x0, β
′R′)) + μϕ(Sϕ(x0, β

′R′))
≤ ε logKd μϕ(Sϕ(x0, R

′)) + μϕ(Sϕ(x0, β
′R′)),

so that Eq. 2.14 follows from

μϕ(Sϕ(x0, R
′)) ≤ μϕ(Sϕ(x0, β

′R′))
1 − ε logKd

≤ μϕ(Sϕ(x0, βR′))
1 − 2(1 − β) logKd

.

2.1 Poincaré-Type Inequalities

The appropriate notion of gradient is also adapted to the convex function ϕ. Given a function
v differentiable at a point x ∈ R

n we define

∇ϕv(x) := D2ϕ(x)−
1
2 ∇v(x). (2.16)

Poincaré and Sobolev inequalities for the Monge-Ampère quasi-metric structure (that is,
under the assumption μϕ ∈ (DC)ϕ only) with respect to ∇ϕ have been proved in [7, 8].
The next theorem extends the Poincaré-type inequalities from [7] to allow for averages of
functions on arbitrary measurable subsets of the Monge-Ampère sections.

Theorem 6 Assume μϕ ∈ (DC)ϕ . There exist geometric constants K3, K5, K0 ≥ 1 such
that for every section S := Sϕ(x0, r) and every (Lebesgue-measurable) subset N ⊂ S, the
following Poincaré-type inequalities hold true:

(i) For every h ∈ C1(S) we have
∫

S

|h − hN | dx ≤ K3
|S|
|N |

(
r|S|

∫
S

|∇ϕh|2 dx

) 1
2

, (2.17)

where hN := 1
|N |

∫
N h(x) dx.

(ii) For every h ∈ C1(Sϕ(x0,K
2
0 r)) we have

∫
S

|h − h
ϕ
N | dμϕ ≤ K5

μϕ(S)

μϕ(N )

⎛
⎜⎜⎝r μϕ(S)

∫

Sϕ(x0,K
2
0 r)

|∇ϕh|2 dμϕ

⎞
⎟⎟⎠

1
2

, (2.18)

where h
ϕ
N := 1

μϕ(N )

∫
N h(x) dμϕ(x).
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The proof of Theorem 6 proceeds as the one for Theorem 1.3 in [7] and we briefly sketch
it. Starting with an affine transformation T that normalizes S so that T (N ) ⊂ T (S) ⊂ B

(0, 1) and T (S) is convex. For h ∈ C1(S) define h̄ ∈ C1(T (S)) as

h̄(y) := h(T −1y) ∀y ∈ T (S).

By the usual Poincaré inequality on convex sets (see, for instance, Lemma 5.2.1 [11, p.146]),
there exists a constant C∗ ≥ 1, depending only on dimension n, such that

∫
T (S)

|h̄(y) − h̄T (N )| dy ≤ C∗ diam(T (S))n+1

|T (N )|
∫

T (S)

|∇h̄(y)| dy, (2.19)

with

hT (N ) := 1

|T (N )|
∫

T (N )

h̄(y) dy.

Then Eq. 2.17 follows by reasoning along the lines of the proof of Theorem 1.3 in [7, Section
5] and, by means of the convex conjugate of ϕ, so does Eq. 2.18. See [7, Section 5] and
[8, Section 4] for further details.

3 A Uniform Estimate from Parabolic Cylinders to Sections

From this point on we fundamentally depart from the non-variational techniques (based on
maximum principles) used in [2] and [6]. Instead, we implement a mix of techniques from
the context of divergence-form parabolic operators (see, for instance, [11, Section 5.2] on
Harnack’s inequality for the heat equation) and from [7, 9] where the degeneracy of the
linearized elliptic Monge-Ampère operator has been dealt with by exploring the variational
side of the operator.

We start by mentioning the following lemma whose proof can be found, for instance, in
[11, p.148].

Lemma 7 ([11, p.148]) There exists a twice continuously differentiable function g : (0, ∞)

→ [0, ∞) such that

(i) g′(s) ≤ 0 for every s > 0,
(ii) g′′(s) ≥ (g′(s))2 − g′(s) for every s > 0,
(iii) g satisfies

g(s) = log

(
1 − e−1

1 − e−s

)
∀s ∈ (0, 1/2),

(iv) g(s) = 0 for every s ≥ 1.

As mentioned in the introduction, the next theorem quantifies the fact that whenever a
non-negative super-solution u is large in a portion of a parabolic cylinder, then, for t in a
shorter time range, the functions u(·, t) remain uniformly above zero in a portion of an inner
section.

Theorem 8 Assume μϕ ∈ (DC)ϕ . Given (x0, t0) ∈ R
n+1 and R > 0, suppose that u

satisfies Lϕ(u) ≥ 0 and u > 0 in Q2R where

Q2R(x0, t0) := Sϕ(x0, 2R) × (t0 − 2R, t0].
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Let α, β, ε, and σ be any numbers satisfying 0 < σ < ε < β < 1 and

(1 − ε)

(1 − σ)
< (1 − α)[1 − 2(1 − β) logKd ], (3.20)

in particular, β needs to be close enough to 1 so that 1 − 2(1 − β) logKd > 0. Let us put

QR′ := Sϕ(x0, R
′) × (t0 − R′, t0]

with R′ := ξR ∈ (R, 2R] and ξ = ξ(R, β) as in Remark 5.
Then, there is a constant λ ∈ (0, 1), depending only on geometric constants as well as

on α, β, ε, and σ , such that the inequality

M({(x, t) ∈ QR′ : u(x, t) ≥ 1}) ≥ εM(QR′) (3.21)

implies that

μϕ({x ∈ Sϕ(x0, βR′) : u(x, t) ≥ λ}) ≥ α μϕ(Sϕ(x0, βR′)) ∀t ∈ (t0 − σR′, t0]. (3.22)

Proof Set S := Sϕ(x0, R
′). Take ζ ∈ C1

0 (S) (independent of time t) to be specified later
and any t1, t2 ∈ R such that t0 − R′ ≤ t1 < t2 ≤ t0. For a function G : (0, ∞) → [0, ∞)

satisfying
G ∈ C2(0, ∞), G′ ≤ 0, and G′′ ≥ (G′)2, (3.23)

also to be fixed later, multiply the inequality Lϕ(u) ≥ 0, which means

ut − trace((D2ϕ)−1D2u) ≥ 0,

by ζ 2G′(u)χ[t1,t2](≤ 0) and integrate over S × [t1, t2] with respect to dM to obtain∫ t2

t1

∫
S

[
ζ 2G′(u)ut μϕ − trace(AϕD2u)ζ 2G′(u)

]
dxdt ≤ 0. (3.24)

By applying the null-Lagrangian property (1.6) and integrating by parts, for each fixed
t ∈ [t0 − R, t0], Eq. 3.24 now reads as∫ t2

t1

∫
S

[
ζ 2G′(u)ut μϕ + 〈Aϕ∇u, ∇(ζ 2G′(u))〉

]
dxdt ≤ 0. (3.25)

Setting w := G(u) and recalling the definition of ∇ϕ in Eqs. 2.16, 3.25 yields∫ t2

t1

∫
S

[
ζ 2wt + G′′ζ 2|∇ϕu|2 + 〈∇ϕw,∇ϕ(ζ 2)〉

]
dM ≤ 0. (3.26)

Now, by using Eq. 3.26, we can bound∫ t2

t1

∫
S

[
ζ 2wt + 〈∇ϕw,∇ϕ(ζ 2)〉 + ζ 2|∇ϕw|2

]
dM

=
∫ t2

t1

∫
S

[
ζ 2wt + G′′ζ 2|∇ϕu|2 + 〈∇ϕw,∇ϕ(ζ 2)〉

]
dM

+
∫ t2

t1

∫
S

(−G′′ζ 2|∇ϕu|2 + ζ 2|∇ϕw|2) dM

≤
∫ t2

t1

∫
S

(−G′′ζ 2|∇ϕu|2 + ζ 2|∇ϕw|2) dM

=
∫ t2

t1

∫
S

[
−G′′ + (G′)2

]
ζ 2|∇ϕu|2 dM ≤ 0,
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where in the last line we used that ∇ϕw = G′(u)∇ϕu and Eq. 3.23. Consequently,∫ t2

t1

∫
S

(
ζ 2wt + ζ 2|∇ϕw|2

)
dM ≤ −

∫ t2

t1

∫
S

〈∇ϕw,∇ϕ(ζ 2)〉 dM

and, by Cauchy-Schwarz and Young’s inequalities,∫ t2

t1

∫
S

(
ζ 2wt + ζ 2|∇ϕw|2

)
dM ≤

∫ t2

t1

∫
S

|〈∇ϕw,∇ϕ(ζ 2)〉| dM

≤ 2
∫ t2

t1

∫
S

ζ |∇ϕw||∇ϕζ | dM

≤ 2

(∫ t2

t1

∫
S

ζ 2|∇ϕw|2 dM
) 1

2
(∫ t2

t1

∫
S

|∇ϕζ |2 dM
) 1

2

≤ 1

2

∫ t2

t1

∫
S

ζ 2|∇ϕw|2 dM + 2
∫ t2

t1

∫
S

|∇ϕζ |2 dM.

Therefore,

∫ t2
t1

∫
S

(
ζ 2wt + 1

2
ζ 2|∇ϕw|2

)
dμϕ dt ≤ 2

∫ t2

t1

∫
S

|∇ϕζ |2 dμϕ dt

= 2(t2 − t1)

∫
S

|∇ϕζ |2 dμϕ ≤ 2R′
∫

S

|∇ϕζ |2 dμϕ. (3.27)

Next, in order to estimate
∫
S

|∇ϕζ |2 dμϕ , we proceed along the lines of some computations
in [9, Section 6], this is the step where the degeneracy of Lϕ is circumvented by means of
the null Lagrangian property (1.6). Details follow. For β ∈ (0, 1) as in the statement of the
theorem (it will be helpful to bear in mind that β is close to 1), let h : R → [0, 1] be a diffe-
rentiable function such that

h ≡ 1 in [0, βR′], h ≡ 0 in [R′,∞), and ‖h′‖L∞ ≤ 1

R′(1 − β)
. (3.28)

Recalling the definition of δϕ in Eq. 2.7, for x ∈ R
n set

δx0(x) := δϕ(x0, x) and ζ0(x) := h(δx0(x))

so that ζ0 ∈ C1
0 (S) and ∇ζ0(x) = h′(δx0(x))∇δx0(x). Integrating by parts again (notice that

δx0(x) = R′ for every x ∈ ∂S) and using the null-Lagrangian property (1.6), we can write∫
S

|∇ϕζ0|2 dμϕ =
∫

S

〈Aϕ∇ζ0, ∇ζ0〉 dx =
∫

S

h′(δx0)
2〈Aϕ∇δx0 ,∇δx0〉 dx

≤ ‖h′‖2L∞

∫
S

〈Aϕ∇δx0 ,∇δx0〉 dx = −‖h′‖2L∞

∫
S

〈Aϕ∇δx0 ,∇(R′ − δx0)〉 dx

= ‖h′‖2L∞

∫
S

div(Aϕ∇δx0)(R
′ − δx0) dx

= ‖h′‖2L∞

∫
S

trace(AϕD2δx0)(R
′ − δx0) dx

= ‖h′‖2L∞

∫
S

trace(AϕD2ϕ)(R′ − δx0) dx = n‖h′‖2L∞

∫
S

(R′ − δx0) μϕ dx

≤ nR′

R′2(1 − β)2
μϕ(S) = n

R′(1 − β)2
μϕ(S).
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Putting this together with Eq. 3.27 implies that for every t1, t2 in [t0 − R′, t0], with t1 < t2,
the following inequality holds true∫ t2

t1

∫
S

(
ζ 2
0 wt + 1

2
ζ 2
0 |∇ϕw|2

)
dM ≤ 2n

(1 − β)2
μϕ(S). (3.29)

For λ > 0 to be fixed later, set w = G(u) := g(u + λ) ≥ 0 where g is the function from
Lemma 7. For t ∈ [t0 − R′, t0] set

μ(t) := μϕ({x ∈ Sϕ(x0, R
′) : u(x, t) ≥ 1})

and

Nt := {x ∈ Sϕ(x0, βR′) : u(x, t) ≥ λ}.
From Eq. 3.21 we have∫ t0

t0−R′
μ(t) dt = M({(x, t) ∈ QR′ : u(x, t) ≥ 1}) ≥ εM(QR′) = ε μϕ(S)R′.

Therefore, since we also have μ(t) ≤ μϕ(S) for every t ∈ [t0 − R′, t0],
∫ t0−σR′

t0−R′
μ(t) dt =

∫ t0

t0−R′
μ(t) dt −

∫ t0

t0−σR′
μ(t) dt ≥ (ε − σ) μϕ(S)R′.

By the mean-value theorem there is τ ∈ [t0 − R′, t0 − σR′] such that
μ(τ) ≥ ε − σ

1 − σ
μϕ(S). (3.30)

Now, using Eq. 3.29 with t1 := τ and any t2 ∈ (t0 − σR′, t0] followed by the doubling pro-
perty (2.10), we can write∫

S

ζ 2
0 (x)w(x, t2) dμϕ(x)

=
∫ t2

τ

∫
S

ζ 2
0 (x)wt (x, t) dμϕ(x) dt +

∫
S

ζ 2
0 (x)w(x, τ ) dμϕ(x)

≤ 2n μϕ(Sϕ(x0, R
′))

(1 − β)2
+

∫
S

ζ 2
0 (x)w(x, τ ) dμϕ(x)

≤ 2nKd μϕ(Sϕ(x0, εR
′))

(1 − β)2εν
+

∫
S

ζ 2
0 (x)w(x, τ ) dμϕ(x),

which, since ε < β < 1, implies that∫
S

ζ 2
0 (x)w(x, t2) dμϕ(x) ≤ 2nKd μϕ(Sϕ(x0, βR′))

(1 − β)2εν
+

∫
S

ζ 2
0 (x)w(x, τ ) dμϕ(x). (3.31)

On the other hand, by using that u(·, t) < λ in Sϕ(x0, βR′) \ Nt , that w = g(u + λ) with
g′ ≤ 0, and that ζ0 ≡ 1 in Sϕ(x0, βR′), we get∫

S

ζ 2
0 (x)w(x, t2) dμϕ(x) ≥

∫
Sϕ(x0,βR′)

w(x, t2) dμϕ(x)

≥
∫

Sϕ(x0,βR′)\Nt2

w(x, t2) dμϕ(x)

≥ g(2λ)μϕ(Sϕ(x0, βR′) \ Nt2).
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Also, since g ≡ 0 in [1, ∞) and w = g(u + λ) ≤ g(λ), Eq. 3.30 yields

∫
S

ζ 2
0 (x)w(x, τ ) dμϕ(x) ≤

∫
S

w(x, τ ) dμϕ(x) =
∫

{x∈S:u(x,τ )<1}
w(x, τ) dμϕ(x)

≤ g(λ) μϕ({x ∈ S : u(x, τ ) < 1})
= g(λ)( μϕ(S) − μ(τ)) ≤

(
1 − ε

1 − σ

)
g(λ) μϕ(S)

≤
(
1 − ε

1 − σ

)
g(λ)μϕ(Sϕ(x0, βR′))
1 − 2(1 − β) logKd

, (3.32)

where for the last inequality we used Eq. 2.14. Connecting the above inequalities through
Eq. 3.31, for any t2 ∈ (t0 − σR′, t0] it follows that

g(2λ)μϕ(Sϕ(x0, βR′) \ Nt2) ≤ 2nKd μϕ(Sϕ(x0, βR′))
(1 − β)2εν

+
(
1 − ε

1 − σ

)
g(λ) μϕ(Sϕ(x0, βR′))
[1 − 2(1 − β) logKd ] .

That is, for every t2 ∈ (t0 − σR′, t0], we obtained
μϕ(Sϕ(x0, βR′) \ Nt2)

μϕ(Sϕ(x0, βR′))
≤ 2nKd

(1 − β)2ενg(2λ)

+ (1 − ε)g(λ)

(1 − σ)g(2λ)[1 − 2(1 − β) logKd ] .

Therefore, given any α, ε, β, σ as in Eq. 3.20, by (iii) in Lemma 7 we can choose λ ∈ (0, 1),
close to 0 and depending only on α, ε, β, σ , dimension n, and the geometric constant Kd ,
such that

2nKd

(1 − β)2ενg(2λ)
+ (1 − ε)g(λ)

(1 − σ)g(2λ)[1 − 2(1 − β) logKd ] < (1 − α).

Consequently,

μϕ(Nt2) ≥ α μϕ(Sϕ(x0, βR′)) ∀t2 ∈ (t0 − σR′, t0]
and this is precisely (3.22).

4 An Arbitrarily Sensitive Critical-Density Property

Our next lemma, combined with Theorem 8, will imply that every density is critical
(Theorem 10 below).

Lemma 9 Assume μϕ ∈ (DC)ϕ . Let K0 > 1 be the geometric constant from Theorem 6.
Given (x0, t0) ∈ R

n+1 and R > 0, set Q2R := Sϕ(x0, 2R) × (t0 − 2R, t0] and

Q∗
R := Sϕ(x0, 4K

2
0R) × (t0 − 2R, t0].
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Suppose that u satisfies Lϕ(u) ≥ 0 and u > 0 in Q∗
R and that there are some constants α,

β, λ, σ ∈ (0, 1) such that

μϕ({x ∈ Sϕ(x0, βR′) : u(x, t) ≥ λ}) ≥ α μϕ(Sϕ(x0, βR′)) ∀t ∈ (t0 − σR′, t0] (4.33)

where R′ := ξR ∈ (R, 2R] and ξ = ξ(R, β) are always as in Remark 5. Fix an arbitrary
σ ′ ∈ (0, σ ). Then, there exists θ ∈ (0, 1), depending only on geometric constants as well as
on α, β, λ, σ and σ ′, such that

u(x, t) ≥ θλ ∀(x, t) ∈ Q′
β,σ,σ ′ := S(x0, σ

′βR′/(Kσ)) × (t0 − σ ′R′, t0]. (4.34)

Proof Let us put γ := θλ, where θ ∈ (0, 1) will be determined later on. Since we are
assuming Lϕ(u) ≥ 0 in Q∗

R , by replicating the proof of Theorem 8 up through the point
where we obtained (3.29), again with w := G(u) where G satisfies (3.23), but now with
the section S0 := Sϕ(x0, 2K2

0R′) and ζ(x) := h(δϕ(x0, x)) with h such that, instead of
Eq. 3.28, it verifies h ≡ 1 in [0, K2

0R′], h ≡ 0 in [2K2
0 ,∞), and ‖h′‖L∞ ≤ 1/K2

0 , for every
t1, t2 in [t0 − R′, t0], with t1 < t2, we obtain∫ t2

t1

∫
S0

(
ζ 2wt + 1

2
ζ 2|∇ϕw|2

)
dM ≤ 2n

K0
4

μϕ(S0). (4.35)

Now by Eq. 4.35 with t1 := t0 − σR′ and t2 := t0∫ t0

t0−σR′

∫
S0

(
ζ 2wt + 1

2
ζ 2|∇ϕw|2

)
dM ≤ 2n

K0
4

μϕ(S0). (4.36)

At this point we choose G as w := G(u) := g
(

u+γ
λ

)
, where g is always as in Lemma

7. In particular, the fact that g′ ≤ 0 implies that w ≤ g(γ /λ) in Q∗
R; therefore,∫ t0

t0−σR′

∫
S0

ζ 2wt dM =
∫

S0

ζ 2(x)[w(x, t0) − w(x, t0 − σR′)] dμϕ(x)

≥ −
∫

S0

ζ 2(x)w(x, t0 − σR′) dμϕ(x) ≥ −g(γ /λ) μϕ(S0).

Along with Eq. 4.36, this yields
∫ t0

t0−σR′

∫
Sϕ(x0,K

2
0R′)

|∇ϕw|2 dM ≤
∫ t0

t0−σR′

∫
S0

ζ 2|∇ϕw|2 dM

≤
(

4n

K0
4

+ 2g(γ /λ)

)
μϕ(S0). (4.37)

From the facts that g′ ≤ 0 and g ≡ 0 in [1, ∞) and the hypothesis (4.33), for every
t ∈ (t0 − σR′, t0] we have

α μϕ(Sϕ(x0, βR′)) ≤ μϕ({x ∈ Sϕ(x0, βR′) : u(x, t) ≥ λ})
≤ μϕ({x ∈ Sϕ(x0, βR′) : w(x, t) = 0}).
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Now, for each fixed t ∈ (t0 − σR′, t0], we use the Poincaré inequality (2.18) from Theorem
6 with the function w(·, t), the section Sϕ(x0, βR′) and the set N := {x ∈ Sϕ(x0, βR′) :
w(x, t) = 0} to obtain∫

Sϕ(x0,βR′)
w(x, t) dμϕ(x) ≤ α−1K5(βR′)

1
2 μϕ(Sϕ(x0, βR′))

1
2

×
(∫

S(x0,βK2
0R′)

|∇ϕw(x, t)|2 dμϕ(x)

) 1
2

which, after integration in t over (t0 − σR′, t0] and the Cauchy-Schwarz inequality, yields∫ t0

t0−σR′

∫
Sϕ(x0,βR′)

w dM

≤ α−1K5(βσ)
1
2 R′ μϕ(Sϕ(x0, βR′))

1
2

(∫ t0

t0−σR′

∫
S(x0,βK2

0R′)
|∇ϕw|2 dM

) 1
2

.

Then, by Eq. 4.37 and the doubling property (2.10), we can further estimate∫ t0

t0−σR′

∫
Sϕ(x0,βR′)

w dM

≤ α−1K5(βσ)
1
2 R′ μϕ(Sϕ(x0, βR′))

1
2 μϕ(S0)

1
2

(
4n

K0
4

+ 2g(γ /λ)

) 1
2

≤ K
1
2
d K5α

−1(βσ)
1
2 (2K2

0/β)
ν
2 R′ μϕ(Sϕ(x0, βR′))

(
4n

K0
4

+ 2g(γ /λ)

) 1
2

.

Setting K(α, β, σ ) := K
1
2
d K5α

−1(β/σ)
1
2 (2K2

0/β)
ν
2 and

Q := Sϕ(x0, βR′) × (t0 − σR′, t0] ⊂ Q2R ⊂ Q∗
R

we get

1

M(Q)

∫∫
Q

w dM ≤ K(α, β, σ )

(
4n

K0
4

+ 2g(γ /λ)

) 1
2

. (4.38)

On the other hand, since Lϕ(u) ≥ 0, G′(u) ≤ 0, and G′′(u) ≥ 0 in all of Q∗
R we have

Lϕ(w) = wt − trace((D2ϕ)−1D2w)

= G′(u)ut − G′(u) trace((D2ϕ)−1D2u) − G′′(u)trace((D2ϕ)−1∇u ⊗ ∇u)

= G′(u)Lϕ(u) − G′′(u) trace((D2ϕ)−1∇u ⊗ ∇u)

≤ −G′′(u) trace((D2ϕ)−1∇u ⊗ ∇u) = −G′′(u)|∇ϕu|2 ≤ 0.

Hence, by applying Theorem 2 (with q = 1, τ = σ and τ ′ = σ ′) to w in Q ⊂ Q∗
R it follows

that, for K9 > 0 as in Theorem 2,

sup
Qβ,σ,σ ′

w ≤ K9

M(Q)

∫∫
Q

w dM, (4.39)
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with Qβ,σ,σ ′ := S(x0, σ
′βR′/(σK))× (t0−σ ′R′, t0]. Recalling that θ := γ /λ, by property

(iii) in Lemma 7 we can choose θ ∈ (0, 1) small enough, depending only on geometric
constants as well as α, β, and σ ′/σ , so that

g(2γ /λ) > K9K(α, β, σ )

(
4n

K0
4

+ 2g(γ /λ)

) 1
2

. (4.40)

Then, we claim that

inf
Q′

β,σ,σ ′
u ≥ γ. (4.41)

Indeed, if there were (x′, t ′) ∈ Q′
β,σ,σ ′ such that u(x′, t ′) < γ , then the fact that g′ ≤ 0,

Eqs. 4.38, and 4.39 would imply

g(2γ /λ) ≤ g((u(x′, t ′) + γ )/λ) = w(x′, t ′) ≤ sup
Q′

β,σ,σ ′
w

≤ K9

M(Q)

∫∫
Q

w dM ≤ K9K(α, β, σ )

(
4n

K0
4

+ 2g(γ /λ)

) 1
2

,

contradicting (4.40). Hence, Eq. 4.41 holds and the proof is complete.

Theorem 10 (Every density is critical). Assume μϕ ∈ (DC)ϕ . Then, for every εc ∈ (0, 1)
and every σ, σ ′ with 0 < σ ′ < σ < εc/(2Kd) < 1 there exist constants β, γ ∈ (0, 1), de-
pending only on σ, σ ′, εc and geometric constants, such that for every (x0, t0) ∈ R

n+1,
R > 0, and u satisfying Lϕ(u) ≥ 0 and u > 0 in Q∗

R := Sϕ(x0, 4K2
0R) × (t0 − 2R, t0] the

inequality

M({(x, t) ∈ QR : u(x, t) ≥ 1}) ≥ εc M(QR), (4.42)

where QR := Sϕ(x0, R) × (t0 − R, t0], implies
inf

Qβ,σ,σ ′
u ≥ γ, (4.43)

where Qβ,σ,σ ′ := S(x0, βσ ′R/(σK)) × (t0 − σ ′R, t0].

Proof Given εc ∈ (0, 1) (think εc close to 0) put ε := εc/(2Kd). Given σ, σ ′ with 0 < σ ′ <

σ < ε < 1, choose α, β ∈ (0, 1) as in Eq. 3.20 of Theorem 8 (that is, β close to 1 and α

close to 0). For this choice of β, let R′ = ξR, with ξ = ξ(R, β) ∈ (1, 2], be as in Remark
5 and set

QR′ := Sϕ(x0, R
′) × (t0 − R′, t0]

so that QR ⊂ QR′ and, by the doubling property (2.9),

M(QR) = μϕ(Sϕ(x0, R))R ≥ 1

2Kd

μϕ(Sϕ(x0, 2R))2R ≥ M(QR′)

2Kd

,

which, along with Eq. 4.42, yields

M({(x, t) ∈ QR′ : u(x, t) ≥ 1}) ≥ εc

2Kd

M(QR′) = εM(QR′). (4.44)
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By means of Eq. 4.44 and Theorem 8, the values of α, β, σ , and σ ′ chosen above produce
λ ∈ (0, 1) satisfying (3.22) and then Lemma 9 gives γ ∈ (0, 1) with

inf
Q′

β,σ,σ ′
u ≥ γ, (4.45)

where Q′
β,σ,σ ′ := S(x0, βσ ′R′/(σK))× (t0 −σ ′R′, t0]. Now, since Qβ,σ,σ ′ ⊂ Q′

β,σ,σ ′ (due
to the fact that R < R′), Eq. 4.43 follows from Eq. 4.45.

5 The Double-Ball Property

With Theorem 10 in hand, we are now in position to prove the double-ball property (also
known as property of expansion of positivity) for super-solutions under the hypothesis μϕ ∈
(DC)ϕ only.

Theorem 11 (The double-ball property) Assume μϕ ∈ (DC)ϕ and introduce the geometric
constant

κ0 := 1

Kd(4K)ν+1
∈ (0, 1). (5.46)

Then, for every τ ∈ (0, 2K], (x0, t0) ∈ R
n+1, R > 0, and u satisfying Lϕ(u) ≥ 0 and u > 0

in Sϕ(x0, 4K2
0KR) × (t0 − 2KR, t0], the following implication holds true

inf
Q1

u ≥ 1 ⇒ inf
Q2

u ≥ γ, (5.47)

where

Q1 := Sϕ(x0, R/2) × (t0 − τR, t0] and Q2 := Sϕ(x0, R) × (t0 − κ0τR, t0].

Proof Given τ ∈ (0, 2K], set εc := 2κ0τ ∈ (0, 1), σ ′ := εc/(4Kd), and σ ∈ (σ ′, 1) close
enough to σ ′ so that σ ′/σ > 4/5, and let β be as in Theorem 10 (notice that β will depend
on τ , but we can always assume β > 5/6, since, by Eq. 3.20, β must be close to 1).

Assume inf
Q1

u ≥ 1 and, by contradiction, suppose that inf
Q2

u ≥ γ does not hold. Now,

since σ ′/σ > 4/5 and β > 5/6, we get 2σ ′β/σ > 4/3 and consequently

Q2 = S(x0, R) × (t0 − σ ′R, t0] ⊂ S(x0, 2σ
′βR/σ) × (t0 − 2σ ′KR, t0] =: Q′

2.

From the assumption inf
Q2

u < γ it then follows that inf
Q′

2

u < γ and, by Theorem 10 applied

with the just chosen values of σ ′, σ, εc (and with R replaced by 2KR), we get

M(Q2KR ∩ {u ≥ 1}) < εc M(Q2KR), (5.48)

where Q2KR := Sϕ(x0, 2KR) × (t0 − 2KR, t0]. Since τ ≤ 2K we obtain the inclusion
Q1 ⊂ Q2KR ∩{u ≥ 1} and, from Eq. 5.48, the doubling property (2.10), and the definitions
of εc := 2κ0τ and of κ0 in Eq. 5.46,

M(Q1) ≤ M(Q2KR ∩ {u ≥ 1}) < εc M(Q2KR) = εc μϕ(Sϕ(x0, 2KR))2KR

≤ εcKd(4K)ν μϕ(Sϕ(x0, R/2))2KR

= κ0Kd(4K)ν+1 μϕ(Sϕ(x0, R/2))Rτ

= μϕ(Sϕ(x0, R/2))τR = M(Q1),

leading to the contradiction M(Q1) < M(Q1). Hence, the implication (5.47) must hold
true.
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As a consequence of Theorem 11, one can prove the next result which plays the role of
Lemma 3.3 in [6] (where μϕ ∈ (μ∞) was assumed).

Corollary 12 Assume μϕ ∈ (DC)ϕ . Given 0 < M < N with N − M ≤ 4K , there exists
γ ∈ (0, 1), depending only on M,N , and geometric constants, such that for every (x0, t0) ∈
R

n+1, R > 0, and u satisfying Lϕ(u) ≥ 0 and u > 0 in Sϕ(x0, 4K2
0KR) × (t0 − 2KR, t0],

the following implication holds true

inf
QN

u ≥ 1 ⇒ inf
QM

u ≥ γ, (5.49)

where

QN := Sϕ(x0, R/2) × (t0 − NR, t0] and QM := Sϕ(x0, R) × (t0 − MR, t0].

Proof Given 0 < M < N withN−M ≤ 4K , set τ := (N−M)/2. For every t ′ ∈ (t0−MR,
t0] it follows that (t ′ − τR, t ′] ⊂ (t0 −NR, t0] and then Sϕ(x0, R/2)× (t ′ − τR, t ′] ⊂ QN .
Thus, inf

QN

u ≥ 1 implies

inf
Sϕ(x0,R/2)×(t ′−τR,t ′]

u ≥ 1.

Next, Theorem 11 applied to u on Sϕ(x0, R/2) × (t ′ − τR, t ′] yields
inf

Sϕ(x0,R)×(t ′−κ0τR,t ′]
u ≥ γ. (5.50)

Since (5.50) holds true for every t ′ ∈ (t0 − MR, t0], we get inf
QM

u ≥ γ .

6 Proof of Theorem 3

Some further notation and preparations are in order. Given a parabolic cylinder Q := Sϕ

(x1, ρ) × (t1 − ρ, t1] and m ∈ N, let Qm be the parabolic cylinder defined as

Qm := Sϕ(x1, ρ) × (t1, t1 + mρ].
In order to prove Theorem 3 we will use the following version of the result known as the
crawling ink spots theorem (see [10, Section 6]). Namely,

Theorem 13 Fix μ ∈ (0, 1) and m ∈ N. Suppose that for (Lebesgue-measurable) subsets
E ⊂ F ⊂ Sϕ(x0, R) × R the following two conditions hold true:

(i) for every (x, t) ∈ F there exists a parabolic cylinder Q ⊂ Sϕ(x0, R) × R such that
(x, t) ∈ Q and

M(E ∩ Q) ≤ (1 − μ)M(Q), (6.51)
(ii) for every parabolic cylinder Q ⊂ Sϕ(x0, R) ×R withM(E ∩ Q) ≥ (1− μ)M(Q) it

follows that Qm ⊂ F .

Then,

M(E) ≤ (m + 1)

m
(1 − κμ)M(F ), (6.52)

where κ := (5K)−ν(10Kd)−1 ∈ (0, 1).

The proof of Theorem 13 follows, just as in Appendix A in [10] (and see also Lemma 2.3
in [6]), from the Vitali covering lemma and the doubling condition (2.9). Another advantage
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of Theorem 13 (besides not requiring μϕ ∈ (μ∞)) is that it can be implemented locally
(because so can the Vitali covering lemma), thus allowing for the possibility that the domain
of the convex function ϕ be a bounded convex open subset, instead of all of Rn. We men-
tion in passing that the proof of the Calderón-Zygmund decomposition in [6, Theorem 2.1]
requires, in the notation from [6, p. 2033], that lim

r→∞ a(r) = 0, which necessitates that the

domain of ϕ be all of Rn.
Another element in the proof of Theorem 3 will be Lemma 4.1 from [6] which prescribes

the smallness of radii of parabolic cylinders satisfying a critical density estimate. For fixed
z0 := (x0, t0) ∈ R

n+1 and R > 0, set

Q̃(z, R) := Sϕ(x0, R) × (t0 − R/2, t0 + R/2]
QA := Sϕ(x0, 2R) × (t0 − 3R/2, t0 + R/2]
QB := Sϕ(x0, 8K

2R) × (t0 − 3R/2, t0 + 2R].

Lemma 14 ([6, Lemma 4.1]) There exist geometric constants C2, M2, δ0, ε0 > 0 such that
for every positive solution u of Lϕ(u) = 0 in QB with inf

Q+ u ≤ 1, every z′ = (x′, t ′) ∈ QA,

every ρ > 0, and every M > M2, the inequality

M{z ∈ Q̃(z′, ρ) : u(z) ≥ M} ≥ (1 − ε0)M(Q̃(z′, ρ)) (6.53)

implies that ρ ≤ C2M
−δ0R.

The proof of this Lemma, that is, of Lemma 4.1 in [6], ultimately relies on Lemma 3.3 in
[6] which, as mentioned, corresponds to our Corollary 12. Therefore, all constants involved
are geometric constants depending only on dimension n and the constants α0, C0 in Eq. 1.3
(or, equivalently, on K in Eqs. 2.11 and 2.12).

The next lemma says that whenever sub-solutions attain critical density in a parabolic
cylinder, then they are uniformly bounded away from zero forward in time. More precisely,

Lemma 15 Assume μϕ ∈ (DC)ϕ . Let (x1, t1) ∈ R
n+1, ρ > 0, and u satisfy Lϕ(u) ≥ 0

and u > 0 in Q∗
ρ := Sϕ(x1, 4K2

0ρ) × (t1 − 2ρ, t1]. Set Q := Sϕ(x1, ρ) × (t1 − ρ, t1] and
suppose that

M({u ≥ 1} ∩ Q) ≥ ε1M(Q) (6.54)

for some ε1 ∈ (0, 1). Then, for every m ∈ N there exists γm ∈ (0, 1), depending only on ε1,
m, and geometric constants, such that

inf
Qm

u ≥ γm, (6.55)

where Qm := Sϕ(x1, ρ) × (t1, t1 + mρ].

Proof Given m ∈ N, let τ ∈ R satisfy 0 ≤ τ ≤ m/(2K) and set

Qτ := Sϕ(x1, 2(τ + 1)Kρ) × (t1 − 2Kρ, t1 + 2Kτρ]
so that Q ⊂ Qτ and, by Eq. 6.54 and the doubling property (2.9),

M({u ≥ 1} ∩ Qτ) ≥ M({u ≥ 1} ∩ Q) ≥ ε1M(Q)

≥ ε1M(Qτ )

Kd [2K(1 + τ)]ν+1
≥ ε1M(Qτ )

Kd(2K + m)ν+1
=: ε(m)M(Qτ ).
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Next, for every σ ′
m, σm ∈ (0, 1) with σ ′

m < σm < ε(m)/(2Kd), Theorem 10 (applied with
εc := ε(m), R := Rτ := 2(τ + 1)Kρ and t0 := t1 + 2Kτρ) yields βm, γm ∈ (0, 1), depen-
ding only on σm, σ ′

m, ε(m) and geometric constants (in particular, they are independent of
τ ) such that

inf
Qτ

βm,σm,σ ′
m

u ≥ γm ∀τ ∈ [0, m/(2K)], (6.56)

where Qτ
βm,σm,σ ′

m
:= S(x1, βmσ ′

mRτ/(σmK))×(t1+2Kτρ−σ ′
mRτ , t1+2Kτρ]. As before,

by choosing σ ′
m, σm ∈ (0, 1) also satisfying σ ′

m/σm > 4/5 and assuming that βm > 5/6, we
get 2σ ′

mβm/σm > 4/3 so that

βmσ ′
mRτ

σmK
= 2βmσ ′

m(τ + 1)Kρ

σmK
≥ 4(τ + 1)ρ

3
> ρ ∀τ ∈ [0, m/(2K)],

and we get the inclusion

Sϕ(x1, ρ) ⊂ Sϕ(x1, βmσ ′
mRτ/(σmK)) ∀τ ∈ [0,m/(2K)]. (6.57)

Also, as τ moves along the interval [0, m/(2K)] the time intervals (t1+2Kτρ −σ ′
mRτ , t1+

2Kτρ] cover all of (t1, t1 + mρ], which, combined with Eq. 6.57, implies that the cylinders
Qτ

βm,σm,σ ′
m
cover all of Qm. Hence, the lower-bound estimate (6.56), which is uniform in τ ,

gives (6.55).

of Theorem 3 By homogeneity, we can assume that inf
Q+ u = 1. Let ε0, κ ∈ (0, 1) be the

geometric constants from Lemma 14 and Theorem 13, respectively, and choosem ∈ N large
enough so that

ε2 := (m + 1)

m
(1 − κε0) < 1. (6.58)

Let γm ∈ (0, 1) be as in Lemma 15 corresponding to m as in Eq. 6.58 and to ε1 := (1− ε0).
Next, fix M > 0 such that

Mδ0 > max{2C2m, ε−1
2 } and M > max{M2, γ

−1
m } (6.59)

where C2, δ0, and M2 are the geometric constants from Lemma 14. The choices above make
m and M geometric constants.

Given M as in Eq. 6.59 and k ∈ N, let us put

E := {u ≥ Mk+1} ∩ Q−

and
F := {u ≥ Mk} ∩ Sϕ(x0, R) × (t0 − R, t0 + C2mM−kδ0R]. (6.60)

Notice that by the choice of M in Eq. 6.59 we have t0 + C2mM−kδ0R < t0 + R/2; in
particular, F ⊂ QA. In order to use Theorem 13 with E ⊂ F ⊂ QA let us check that its
two conditions hold true.

First, given (x, t) ∈ F (hence (x, t) ∈ QA) pick any r > 0 with

max{C2M
−δ0R, δϕ(x0, x)} < r < R,

so that δϕ(x0, x) < r < R gives x ∈ Sϕ(x0, r) and then

(x, t) ∈ Qr := Sϕ(x0, r) × (t − r/2, t + r/2] ⊂ Sϕ(x0, R) × R.

Now, the inequality C2M
−δ0R < r implies that r > C2M

−δ0(k+1)R and, by Lemma 14
(used with Mk+1 instead of M), the cylinder Qr satisfies

M({u ≥ Mk+1} ∩ Qr) < (1 − ε0)M(Qr)
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which, combined with the trivial inclusion

E ∩ Qr = {u ≥ Mk+1} ∩ Q− ∩ Qr ⊂ {u ≥ Mk+1} ∩ Qr,

yields
M(E ∩ Qr) < (1 − ε0)M(Qr)

and condition (i) in Theorem 13 is met with μ := ε0 and Q := Qr .
Next, given any cylinder Q := Sϕ(x1, ρ)× (t1 −ρ, t1] such that Q ⊂ Sϕ(x0, R)×R and

M(E ∩ Q) ≥ (1 − ε0)M(Q), we will show that

Qm := Sϕ(x1, ρ) × (t1, t1 + mρ] ⊂ F. (6.61)

FromM(E ∩ Q) ≥ (1 − ε0)M(Q) and the inclusion Q ⊃ Q ∩ Q− we get

M({u ≥ Mk+1} ∩ Q) ≥ M(E ∩ Q) ≥ (1 − ε0)M(Q).

Then, by Lemma 15 used with ε1 := (1−ε0) and with uM−(k+1) in place of uwe obtain that

inf
Qm

uM−(k+1) ≥ γm

and then
inf
Qm

u ≥ γmMk+1 ≥ Mk,

where for the last inequality we used Eq. 6.59. That is, we have proved that

Qm ⊂ {u ≥ Mk}. (6.62)

Also, the fact thatM(E ∩ Q) ≥ (1− ε0)M(Q) > 0 implies the existence of (x′′, t ′′) ∈
Q− ∩Q. Then t ′′ ≤ t0 and 0 ≤ t1 − t ′′ ≤ ρ and, due to Lemma 14 used with Mk+1 in place
of M , it follows that ρ ≤ C2M

−δ0(k+1)R. Therefore,

t1 + mρ = t ′′ + (t1 − t ′′) + mρ ≤ t0 + (m + 1)ρ

≤ t0 + C2(m + 1)M−δ0(k+1)R < t0 + C2mM−δ0kR.

On the other hand, since t1 − t ′′ ≥ 0 and t0 − R < t ′′, we get
t1 = t1 − t ′′ + t ′′ > t0 − R.

Consequently,
Qm ⊂ Sϕ(x0, R) × (t0 − R, t0 + C2mM−kδ0R). (6.63)

Thus, by Eqs. 6.62, 6.63, and the definition of F in Eq. 6.60 the inclusion (6.61) holds true
and condition (ii) in Theorem 13 is met as well.

From Theorem 13 we then obtain that, for every k ∈ N,

M({u ≥ Mk+1} ∩ Q−) = M(E) ≤ (m + 1)

m
(1 − κε0)M(F ) =: ε2M(F )

≤ ε2M({u ≥ Mk} ∩ Q−) + ε2C2mM−kδ0 μϕ(Sϕ(x0, R))R

= ε2M({u ≥ Mk} ∩ Q−) + ε2C2mM−kδ0M(Q−),

which yields

M({u ≥ Mk+1} ∩ Q−)

M(Q−)
≤ ε2

M({u ≥ Mk} ∩ Q−)

M(Q−)
+ ε2C2mM−kδ0 (6.64)

for every k ∈ N. In order to prove (1.5), for k ∈ N set

mk := M({u ≥ Mk} ∩ Q−)

M(Q−)
and bk := ε2C2mM−kδ0
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so that Eq. 6.64 implies that

mk+1 ≤ εk
2 m1 +

k∑
j=1

bj ε
k−j

2 ∀k ∈ N. (6.65)

Then, from the fact that ε2M
δ0 > 1, the sum in Eq. 6.65 can be bounded by a convergent

geometric series to obtain

mk+1 ≤
(
1 + ε22C2mMδ0

Mδ0ε2 − 1

)
εk
2 ∀k ∈ N

and Eq. 1.5 follows with δ1 and K10 depending only on the geometric constants ε2, C2, m,
δ0, and M .

Finally, having proved Theorem 3 under μϕ ∈ (DC)ϕ only, the proof of Theorem 1 fol-
lows just as in [6, pp. 2051–53].
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