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Abstract We derive some quantum ergodic theorems, related to microlocal behavior of
eigenfunctions of a positive, self-adjoint, elliptic pseudodifferential operator � on a com-
pact Riemannian manifold M , emphasizing results that hold without the hypothesis that
the Hamiltonian flow generated by the symbol of � be ergodic. Cases treated include both
integrable Hamiltonians and some associated with “soft chaos.”
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1 Introduction

Let M be a compact Riemannian manifold and � ∈ OPS1(M) a first order, scalar, elliptic,
positive self adjoint operator. Say

Spec � = {λk : k ∈ N}, (1.1)

counted with multiplicity, with λk ↗. Let {ϕk : k ∈ N} be an orthonormal basis of L2(M)

consisting of eigenfunctions,
�ϕk = λkϕk,

or more generally we can let {ϕk} be an orthonormal basis of L2(M) consisting of
quasimodes, satisfying (with λk as in Eq. 1.1)

sup
0≤s≤1

‖e−s(�−λk)(� − λk)ϕk‖L2 = εk −→ 0, (1.2)

as k →∞, though in examples we generally stick to the setting of actual eigenfunctions.

� Michael Taylor
met@math.unc.edu

1 UNC at Chapel Hill, Chapel Hill, NC 27599, USA

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s11118-015-9489-y-x&domain=pdf
mailto:met@math.unc.edu


626 M. Taylor

Let X ≈ S∗M ⊂ T ∗M denote the set where the principal symbol σ(�) is equal to 1. The
symplectic form on T ∗M induces a volume form dS on X, which we normalize to have unit
volume. The Hamiltonian vector field associated to σ(�) generates a smooth flow Gt on
X, preserving the volume form dS. Let P be the orthogonal projection of L2(X, dS) onto

V =
{
b ∈ L2(X, dS) : b ◦Gt ≡ b

}
. (1.3)

We aim to prove the following.

Theorem 1.1 There is a set N ⊂ N, of density zero, with the following property. Let
A ∈ OPS0(M) and assume a = σ(A)|X satisfies

Pa = a :=
∫

X

a dS. (1.4)

Then

lim
k /∈N ,k→∞(Aϕk, ϕk) = a. (1.5)

If the flow {Gt } is ergodic on X, then V consists of constants, and Eq. 1.4 holds for all
a. The ergodic case has been studied for some time, in [5, 6, 8, 14, 17], and other works.
Theorem 1.1 applies to cases where such ergodicity does not hold. Such a formulation was
mentioned in [13]. Here we intend to explore this formulation and its implications more
thoroughly.

More generally than taking A ∈ OPS0(M), which leads to a ∈ C∞(X), we can take

a ∈ C(X), (1.6)

and assign to a an operator A in the C∗-algebra �(M) of operators on L2(M) generated by
OPS0(M), with principal symbol a. See Section 3 for details. In this more general setting,
still (1.4) ⇒ (1.5).

Going further, we obtain the following result, which we propose to call the Quantum
Ergodic Theorem.

Theorem 1.2 TakeA ∈ �(M), with principal symbol a ∈ C(X) and weaken the hypothesis
(1.4) to

Pa ∈ C(X). (1.7)

If Ap ∈ �(M) has principal symbol Pa, then, withN as in Theorem 1.1,

lim
k /∈N ,k→∞ (Aϕk, ϕk)− (Apϕk, ϕk) = 0. (1.8)

As a corollary of Eq. 1.8, we get

lim sup
k /∈N ,k→∞

|a − (Aϕk, ϕk)| ≤ sup
X

|Pa − a|. (1.9)

The proof of Theorem 1.1 is parallel to previous proofs (cf. [5, 6, 8, 18], Chap. 15, and
[9], pp. 313–325), done in the context where {Gt } is ergodic. We record the details to verify
that the result holds in the more general setting put forward here. In Section 2 we show
that a Weyl formula, standard if {ϕk} are eigenfunctions of �, holds under the more general
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hypothesis (1.2). In Section 3 we discuss a special class of quantization procedures, known
as Friedrichs quantization, which gives that, if A = opF(a),

(Aϕk, ϕk) = 〈a, μk〉 (1.10)

defines μk as a probability measure on X, not just a distribution. In Section 4 we apply
Egorov’s theorem to show that, given a ∈ C(X),

∫

X

(a − a ◦Gt) dμk −→ 0 as k →∞, (1.11)

for each t (under the hypothesis (1.2)). In Section 5 we use a standard Mean Ergodic The-
orem argument to complete the proof of Theorem 1.1. In Section 6 we prove the Quantum
Ergodic Theorem stated above.

In Section 7 we give examples of cases where {Gt } is not ergodic on X but Eq. 1.4 holds
for interesting classes of operators A, and Eq. 1.7 holds for a general class. The examples
treated there are the following.

1. M = T
n, � = √−�. Here (1.4) holds for a = a(x), and (1.7) holds for all a ∈ C(X).

2. M = Sn, � = √−�. Here (1.7) holds for all a ∈ C(X), and an explicit formula
reveals many cases where (1.4) holds.

3. M = T 2, a certain non-flat torus in R
3, � = √−�. The analysis of Pa is more

complicated here, due partly to the existence of a hyperbolic closed geodesic on T 2.
Again, Eq. 1.7 holds for all a ∈ C(X). However, unlike Cases 1 and 2, in this case we
do not have P : C∞(X) → C∞(X). In fact, members of the image of P can have less
than Hölder regularity. This illustrates the value of having results for A ∈ �(M), rather
than just for A ∈ OPS0(M).

4. M = S2, � = �c =
√
− (

Y 2
1 + Y 2

2 + cY 2
3

)
, Yj generate rotation about the xj -

axis. We take c > 0, c �= 1. There is a uniform description for the dynamics
on X and behavior of the projection P , despite the fact that the spectral behavior
of �c depends delicately on c. Thus, certain implications of the quantum ergodic
theorem that look natural, for irrational c, seem a bit more surprising for rational
c (�= 1).

The curious phenomenon arising in Example 4 is related to an issue that arises when
two self-adjoint operators with discrete spectra commute. Namely, must all eigenfunctions
of one operator be joint eignfunctions of both? As seen in Example 4, sometimes they do
and sometimes they do not. In Section 8, we look into this phenomenon in a more general
setting.

The examples arising in Section 7 are all integrable systems. In Section 9 we take a look
at situations that might yield “soft chaos,” involving a mixture of integrability and chaos.
This analysis makes use of some basic results in KAM theory. In Section 10 we discuss
the issue of the existence of soft chaos, describing both known results and open problems.
We bring in some examples expected to exhibit soft chaos, and describe how Theorem 1.1
applies to some of them. We plan to investigate in future work some problems raised in
Sections 9 and 10.

We end with three appendices. In Appendix A, we establish some results on conditional
expectation of use in Section 7. In Appendix B we establish a general result on invariance
properties of commuting, measure-preserving flows, which contains Proposition 8.2, the
“classical” version of the “quantum” result, Proposition 8.1. Appendix C provides a proof
of the last proposition in Section 7.
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2 Weyl Law

Our first goal is to prove the following. This will play a role in the proof of Theorem 1.1 in
Section 5.

Proposition 2.1 Let A ∈ OPS0(M), with principal symbol σ(A) ∈ C∞(T ∗M \ 0),
homogeneous of degree zero. Then

lim
N→∞

1

N

N∑
k=1

(Aϕk, ϕk) =
∫

X

σ(A) dS. (2.1)

Note that if the limit on the left side of Eq. 2.1 were known to exist for all A ∈
OPS0(M), it must depend only on σ(A), since if Ã ∈ OPS0(M) had the same principal
symbol, then K = A − Ã would be compact on L2(M). Since ϕk → 0 weakly in L2(M),
we then have Kϕk → 0 in L2-norm, so

(Aϕk, ϕk)− (Ãϕk, ϕk) −→ 0. (2.2)

Proof of Proposition 2.1 First note that

e−t�ϕk − e−tλkϕk = e−tλk

∫ t

0

d

ds
e−s(�−λk)ϕk ds

= e−tλk

∫ t

0
e−s(�−λk)(�− λk)ϕk ds, (2.3)

so, for t ∈ (0, 1], ∥∥e−t�ϕk − e−tλk ϕk

∥∥
L2 ≤ εk|t | e−tλk , (2.4)

with εk as in Eq. 1.2. Hence
∑

k

e−tλk (Aϕk, ϕk) =
∑

k

(
Aϕk, e

−t�ϕk

)+ r(t), (2.5)

with

|r(t)| ≤ |t |
∑

k

εke
−tλk = o

(
Tr e−t�

)
, as t ↘ 0. (2.6)

Hence, as t ↘ 0,
∑

k

e−tλk (Aϕk, ϕk) ∼
∑

k

(
Aϕk, e

−t�ϕk

)

= Tr Ae−t�

∼
(∫

X

σ(A) dS
)

Tr e−t�

=
(∫

X

σ(A) dS
)∑

k

e−tλk .

(2.7)

The third line holds via a standard parametrix construction for e−t�. The result (2.1)
follows from this, via Karamata’s Tauberian theorem.
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3 Friedrichs Quantization

To proceed, we discuss the notion of a “quantization,” which is a continuous linear map

op : C∞(X) −→ OPS0
1,0(M) (3.1)

with the property that, given a ∈ C∞(X), A = op(a) has principal symbol a (mod
OPS−1

1,0(M)). We insist that op(1) = I , the identity map. The existence of quantizations
follows via local coordinate charts and partitions of unity from ψDO calculus on Euclidean
space. There are many different quantizations. Each one gives rise to a sequence of elements
μk ∈ D′(X), defined by

〈a, μk〉 = (op(a)ϕk, ϕk). (3.2)

It follows from Eq. 2.2 that if õp is another quantization, yielding μ̃k ∈ D′(X), then for
each a ∈ C∞(X), 〈a, μk〉−〈a, μ̃k〉 → 0 as k → ∞. Basic examples are “Kohn-Nirenberg”
quantizations:

opKN : C∞(X) −→ OPS0(M) ⊂ OPS0
1,0(M). (3.3)

However, for the analysis to follow, it is useful to bring in the existence of a “Friedrichs
quantization,”

opF : C∞(X) −→ OPS0
1,0(M), (3.4)

having the property
a ≥ 0 =⇒ opF(a) ≥ 0. (3.5)

This is constructed on the Euclidean space level from opKN(a) via “Friedrichs sym-
metrization.” See [16], Chapter 7. It is the case that

a ∈ C∞(X) =⇒ opF(a) − opKN(a) ∈ OPS−1
1,0(M). (3.6)

This result is not trivial. In fact, it is the main technical result in the Friedrichs approach
to the proof of the sharp Gårding inequality. From Eq. 3.5 it follows that

‖opF(a)‖L(L2) ≤ sup
X

|a|, (3.7)

and hence (3.4) has a unique extension to

opF : C(X) −→ L
(
L2(M)

)
, (3.8)

with (3.5) holding for all a ∈ C(X). From here on we will take a Friedrichs quantization,
and set A = opF(a). In such a case, the distributions μk ∈ D′(X) defined by Eq. 3.2 satisfy

a ≥ 0 =⇒ 〈a, μk〉 ≥ 0. (3.9)

Also 〈1, μk〉 = (ϕk, ϕk) = 1. Consequently, for each k,

μk is a probability measure on X. (3.10)

We write

(Aϕk, ϕk) =
∫

X

a dμk. (3.11)

Remark The image of C(X) in Eq. 3.8 is contained in the C∗-algebra of operators on
L2(M) generated by OPS0(M), which we denote �(M). If we compose the map

opF : C(X) −→ �(M) (3.12)
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with taking the quotient by K
(
L2(M)

)
, the space of compact operators on L2(M), we get

an isomorphism of C∗-algebras:

C(X)
≈−→ �(M)/K

(
L2(M)

)
. (3.13)

4 Application of Egorov’s Theorem

The following result will play a useful role in Section 5.

Proposition 4.1 Given a ∈ C(X), we have
∫

X

(a − a ◦Gt) dμk −→ 0, as k →∞, (4.1)

locally uniformly in t .

Proof It suffices to prove (4.1) for a ∈ C∞(X). Set A = opF(a) and

At = e−it�Aeit�. (4.2)

By Egorov’s theorem (and Eq. 3.6)

At − opF(a ◦Gt) ∈ OPS−1
1,0(M), (4.3)

and this holds locally uniformly in t , so
∫

X

a ◦Gt dμk −
(
Aeit�ϕk, e

it�ϕk

)
−→ 0, as k →∞, (4.4)

locally uniformly in t . Now

eit�ϕk − eitλkϕk = eitλk

∫ t

0

d

ds
eis(�−λk)ϕk ds

= eitλk

∫ t

0
eis(�−λk)(� − λk)ϕk ds,

(4.5)

so, with εk as in Eq. 1.2, ∥∥∥eit�ϕk − eitλkϕk

∥∥∥
L2

≤ εk|t |. (4.6)

Hence (
Aeit�ϕk, e

it�ϕk

)
= (Aϕk, ϕk)+ rk(t), (4.7)

with rk(t) → 0 as k → ∞, locally uniformly in t . This plus (4.4) gives (4.1), for a ∈
C∞(X), and the general result follows, via (3.10).

5 Proof of Theorem 1.1

To proceed, given a ∈ C(X), set

aT = 1

T

∫ T

0
a ◦Gt dt, a =

∫

X

a dS. (5.1)
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The Mean Ergodic Theorem implies that, as T →∞,

aT −→ Pa in L2-norm, (5.2)

where P is the orthogonal projection of L2(X) onto

V = {b ∈ L2(X) : b ◦Gt ≡ b}. (5.3)

If the flow {Gt } is ergodic on X, then V consists of constants, and then

Pa = a. (5.4)

Rather than assuming {Gt } is ergodic, we will make (5.4) an hypothesis. Under this
hypothesis, we have ∫

X

|aT − a| dS −→ 0 as T →∞. (5.5)

Thus, for ε ∈ (0, 1], there exists Tε < ∞ such that

T ≥ Tε =⇒
∫

X

|aT − a| dS ≤ ε. (5.6)

Now, Proposition 4.1 gives, for all a ∈ C(X), T < ∞,∫

X

(aT − a) dμk −→ 0 (5.7)

as k →∞, hence ∫

X

(aT − a) dμk −
∫

X

(a − a) dμk −→ 0, (5.8)

as k →∞. Furthermore, Proposition 2.1 implies

lim
N→∞

1

N

N∑
k=1

∫

X

b dμk =
∫

X

b dS, (5.9)

for each b ∈ C∞(X), and Eq. 3.10 then gives this result for all b ∈ C(X). Taking b =
|aT − a| gives

lim
N→∞

1

N

N∑
k=1

∫

X

|aT − a| dμk =
∫

X

|aT − a| dS, (5.10)

for each T < ∞. Comparison with Eq. 5.6 gives

T ≥ Tε =⇒ lim
N→∞

1

N

N∑
k=1

∫

X

|aT − a| dμk ≤ ε, (5.11)

if a satisfies (5.4). It follows that there exists a set Nε(a) ⊂ N, of density zero, such that

T = Tε =⇒ lim sup
k /∈Nε(a),k→∞

∫

X

|aT − a| dμk ≤ 2ε. (5.12)

Hence, by Eq. 5.8, for all ε > 0,

lim sup
k /∈Nε(a),k→∞

∣∣∣a −
∫

X

a dμk

∣∣∣ ≤ 2ε. (5.13)
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Now we can produce
N (a) ⊂ N, of density zero, (5.14)

such that, for all 
 ∈ N,
N2−
 (a) \N (a) is finite. (5.15)

Then Eq. 5.13 gives, for all ε ∈ (0, 1],
lim sup

k /∈N (a),k→∞

∣∣∣a −
∫

X

a dμk

∣∣∣ ≤ 2ε, (5.16)

so, if a ∈ C(X) satisfies (5.4),

lim
k /∈N (a),k→∞

∣∣∣a −
∫

X

a dμk

∣∣∣ = 0. (5.17)

To proceed, let
I = {a ∈ C(X) : Pa = a}, (5.18)

which is a closed, linear subspace of C(X) (equal to C(X) if {Gt } is ergodic). We can take
a countable set {aν}, dense in I , and produce

N ⊂ N, of density zero, (5.19)

such that, for all ν,
N (aν) \N is finite. (5.20)

Then

lim
k /∈N ,k→∞

∣∣∣a −
∫

X

a dμk

∣∣∣ = 0, (5.21)

whenever a = aν , and hence, by a limiting argument, using Eq. 3.10, for all a ∈ I . We
record the conclusion.

Theorem 5.1 Let A ∈ OPS0(M) and assume a = σ(A)|X satisfies (5.4). Then, withN as
in Eqs. 5.19–5.20,

lim
k /∈N ,k→∞ (Aϕk, ϕk) =

∫

X

a dS. (5.22)

This also holds whenever a ∈ C(X) satisfies (5.4) and A = opF (a).

6 Proof of the Quantum Ergodic Theorem

Here we will weaken the hypothesis (5.4). Instead, we will assume A ∈ �(M) has principal
symbol

a ∈ L ⊂ C(X), (6.1)

where L is a closed linear subspace of C(X) satisfying

P : L −→ C(X). (6.2)

Under the hypotheses (6.1–6.2), we can apply Theorem 5.1 to

b = a − Pa. (6.3)

Note that Pb = 0 = b, so Theorem 5.1 implies

lim
k /∈N ,k→∞ ((A− Ap)ϕk, ϕk) = 0, (6.4)
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where
Ap = opF (Pa). (6.5)

This gives the Quantum Ergodic Theorem, which we restate here.

Theorem 6.1 Assume (6.1–6.2) hold. There is a set N ⊂ N, of density 0, independent of
the choice of such a ∈ L, with the property that (6.4) holds, with Ap given by Eq. 6.5.

If Pa = a, then Apϕ = aϕ, so Eq. 6.4 contains Theorem 5.1. Note also that

a − (Aϕk, ϕk) = ((a − Ap)ϕk, ϕk)+ ((Ap − A)ϕk, ϕk), (6.6)

and, by Eq. 3.7,
‖a − Ap‖L(L2) ≤ sup

X

|a − Pa|. (6.7)

This together with Eq. 6.4 yields the following.

Corollary 6.2 Assume (6.1–6.2) hold. Take A ∈ �(M) with principal symbol a. Then, with
N as in Theorem 6.1,

lim sup
k /∈N ,k→∞

|a − (Aϕk, ϕk)| ≤ sup
X

|Pa − a|. (6.8)

7 Examples

To begin, let M = T
n = R

n/(2πZn), the flat torus. Take � = √−�. In such a case, the
geodesic flow is integrable. However, it is elementary that

a(x, ξ) = a(x) =⇒ Pa = a. (7.1)

More generally,

Pa(x, ξ) = 1

(2π)n

∫

Tn

a(y, ξ) dy. (7.2)

Hence, if {ϕk} is an orthonormal basis of L2(Tn), satisfying (1.2), then there exists a
sparse set N ⊂ N such that, for all a ∈ C∞(Tn),

lim
k /∈N ,k→∞ (a(x)ϕk, ϕk) = a. (7.3)

If ϕk consists of the standard complex exponentials,

(a(x)ϕk, ϕk) =
∫

Tn

a(x)|ϕk(x)|2 dx ≡ a, (7.4)

and Eq. 7.3 is trivial. However, in this setting eigenspaces of � have high multiplicities, and
other forms of {ϕk} can be produced. For them, Eq. 7.3 seems not to be trivial.

For the second example, we consider M = Sn, the unit sphere in R
n+1, with its standard

round metric. Again take � = √−�. The geodesic flow is again integrable. In this case,
Gt is periodic of period 2π , and X = S∗Sn is foliated into circles, orbits of {Gt }. We have

Pa(x, ξ) = 1

2π

∫ 2π

0
a(Gt (x, ξ)) dt. (7.5)

In case a ∈ C(Sn), i.e., a = a(x), Pa = a provided

a(x) = a + b(x), b(−x) = −b(x). (7.6)
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(For general a = a(x), Pa need not be a function of x alone.) Again in this setting,
eigenspaces of � have high multiplicity, but here each eigenspace consists of functions
that are either all even or all odd. Consequently, the results of Theorem 1.1 are trivial for
a(x, ξ) = a(x) in this case. However, there are many functions a ∈ C∞(S∗Sn), lacking
any symmetry, whose averages over the various closed orbits of {Gt } all coincide, hence
satisfying Pa = a. Theorem 1.1 applied to these operators has a nontrivial conclusion.

The formulas (7.2) and (7.5) show that, for both families of examples mentioned above,
with X = S∗Tn and X = S∗Sn, respectively, we have

P : C(X) −→ C(X), (7.7)

and also
P : C∞(X) −→ C∞(X). (7.8)

In general, there is a formula for Pa as a conditional expectation,

Pa = E(a|F), (7.9)

where F is the σ -algebra of Borel sets in X that are Gt -invariant. In case (7.2), X =
T

n × Sn−1 and

F =
{
T

n × B : B ⊂ Sn−1 Borel
}

. (7.10)

In case (7.5), F is the σ -algebra generated by
{ ⋃

0≤t≤2π

Gt (B) : B ⊂ X compact
}
. (7.11)

For the third example, we consider a non-flat torus, an “inner tube” T 2, the image of T2

under the map

� : T2 −→ R
3, �(θ, ω) = (

(2 + cos θ) cos ω, (2 + cos θ) sin ω, sin θ
)
. (7.12)

We use (θ, ω) as coordinates on T 2. Then X = S∗T 2 = T 2 × S1, and on the factor S1

we use the coordinate ϕ, the angle a tangent vector makes with the vector ∂θ�(θ, ω) (and
use the metric tensor to identify tangent vectors and cotangent vectors). Due to rotational
symmetry about the x3-axis, T 2 also has an integrable geodesic flow. In this case, we have
(7.9) with

F =
{
�−1(B) : B ⊂ R Borel

}
, (7.13)

where � : X → R is (the restriction to X = S∗T 2 of) the angular momentum, i.e., the
principal symbol of i∂/∂ω. Writing

X =
{
(θ, ϕ, ω) : θ, ϕ, ω ∈ T

1
}

, (7.14)

we see that � is independent of ω, say �(θ, ϕ, ω) = �̃(θ, ϕ), and

F =
{
�̃−1(B)× T

1 : B ⊂ R Borel
}

. (7.15)

Thus, given a ∈ C(X), say a = a(θ, ϕ, ω), we have

Pa = P bab, ab(θ, ϕ) = 1

2π

∫

T1

a(θ, ϕ, ω) dω, (7.16)

and
P bab(θ, ω) = E

(
ab|Fb

)
(θ, ω), (7.17)
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where
Fb =

{
�̃−1(B) : B ⊂ R Borel

}
, Fb ⊂ T

2. (7.18)

Regarding the level sets of �̃, we see that �̃ has four critical points:

max at θ = 0, ϕ = π

2
, min at θ = 0, ϕ = −π

2
,

saddles at θ = π, ϕ = ±π

2
.

(7.19)

The max and min correspond to closed geodesics on the outer equator of T 2, going
counterclockwise or clockwise, and the saddles correspond to closed geodesics along the
inner equator of T 2, going counterclockwise or clockwise. There are four curves (on each
of which �̃ is constant) that function as separatrices, two for each saddle, which separate
T

2 = {(θ, ϕ)} into four regions. Two regions correspond to geodesics on T 2 that cross the
inner equator infinitely often. The other two correspond to geodesics that never cross the
inner equator.

Now, given a ∈ C(X), we have ab ∈ C
(
T

2
)
. Formula (7.17) and the analysis above of

Fb guarantee that P bab is continuous on the interior of each of the four regions described
above, and extends to be continuous on the closure of each one of these. Furthermore, the
limit on each separating curve from each side is the value of ab at the corresponding saddle
point. Hence P bab does not jump across these separating curves, so again (7.7) holds. On
the other hand, Eq. 7.8 typically fails in this case. Instead, we have

a ∈ C∞(X) =⇒ Pa ∈ Cω(X), (7.20)

with

ω(h) = 1

| log h| , for h << 1. (7.21)

See Appendix A for details.

Remark With ab given by Eq. 7.16, we see that

P
(
a − ab

)
= 0. (7.22)

Thus Theorem 5.1 implies the following.

Proposition 7.1 Given A ∈ �
(
T 2

)
with symbol a, let Ab ∈ �

(
T 2

)
have symbol ab.

If {ϕk} is an orthonormal basis of L2
(
T 2

)
consisting of eigenfunctions of �, or more

generally satisfying (1.2), then there is a set N ⊂ N, of density 0, such that, for each
a ∈ C(X),

lim
k /∈N ,K→∞ (Aϕk, ϕk) −

(
Abϕk, ϕk

)
= 0. (7.23)

Remark Both T 2 and S2 are invariant under rotation about the x3-axis. However, if one
replaces T 2 by S2 in Proposition 7.1, the conclusion does not hold. This is because the σ -
algebra of Gt -invariant Borel subsets of S∗S2 in much richer than that for S∗T , and Eq. 7.22
fails.

For the fourth example (or class of examples), we return to M = S2, and consider other
elliptic operators. Let Yj be vector fields generating 2π -periodic rotation about the xj -axis.
For c ∈ (0,∞) take

�c =
√
− (

Y 2
1 + Y 2

2 + cY 2
3

)
. (7.24)
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Then �1 =
√−� is what we considered in Example 2. Now, � commutes with each Yj .

Hence �c commutes with Y3 for each c ∈ R
+, but if c �= 1, �c does not commute with Y1

or Y2. Let Xc ⊂ T ∗S2 denote the set where σ(�c) = 1, Gc,t the flow on Xc generated by
the Hamiltonian vector field associated to σ(�c). There is a natural probability measure on
Xc, invariant under {Gc,t : t ∈ R}. Let Pc denote the orthogonal projection of L2(Xc) onto
the space of Gc,t -invariant functions. Let {ϕk : k ∈ N} be an orthonormal basis of L2(�c),
consisting of eigenfunctions of �c. (This time, we abuse notation, and do not call these
functions ϕc,k .) By Theorem 6.1, there is a set Nc ⊂ N of density 0 such that if A ∈ �

(
S2

)
has principal symbol a ∈ C(Xc), and if Pca ∈ C(Xc), forming then the principal symbol
of Ap,c ∈ �(S2), then

lim
k /∈Nc,k→∞ (Aϕk, ϕk)− (Ap,cϕk, ϕk) = 0. (7.25)

When c �= 1, the structure of Pc is quite a bit different from that of P1, given by Eq. 7.5.
By Eq. 7.9, we have

Pca = E(a|Fc), (7.26)

where Fc is the σ -algebra of Borel sets in Xc that are Gc,t -invariant. F1 is given by Eq. 7.11,
but for other values of c, the situation is different.

Lemma 7.2 If c > 0, then, modulo null sets,

Fc =
{
ω−1

c (B) : B ⊂ R Borel
}

, if c �= 1, (7.27)

where ωc is (the restriction to Xc of) the principal symbol of iY3.

Proof Let us write σ(�c) as λc, where

λ2
c = λ2 + (c − 1)ω2, (7.28)

with λ = λ1 = σ
(√−�

)
and ω = σ(iY3). The set Xc is (up to a null set) foliated by

tori Tc,σ ⊂ Xc, on which ω = σ . The flow Gc,t , generated by the Hamiltonian vector field
associated to λc, leaves each such torus invariant. To prove (7.27), it suffices to show that,
if c �= 1, one gets an irrational flow on almost all of these tori.

Note that the Hamiltonian vector fields Hλ and Hω associated to λ and ω generate com-
muting flows F t

Hλ
and F t

Hω
, each periodic of period 2π , and each leaving the tori Tc,σ

invariant. Since

Hλc =
1

2
Hλ2

c
on Xc

= λHλ + (c − 1)ωHω,

(7.29)

we have
Gc,t = F t

Hλc
= Fλt

Hλ
◦F (c−1)ωt

Hω
. (7.30)

Now,

ω = σ, λ =
(

1 − (c − 1)σ 2
)1/2

, on Tc,σ , (7.31)

so, if c �= 1,

Fλt
Hλ

∣∣∣
Tc,σ

has period
2π(

1 − (c − 1)σ 2
)1/2

,

F (c−1)ωt
Hω

∣∣∣
Tc,σ

has period
2π

(c − 1)σ

(7.32)
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(if also σ �= 0). Thus Gc,t |Tc,σ is ergodic unless

q(σ ) = (c − 1)σ

(1 − (c − 1)σ 2)1/2

is rational. But (for c �= 1) q(σ ) is irrational for almost all σ , so Lemma 7.2 holds.

The flow on S2 generated by Y3 has a natural lift to a flow Ht on T ∗ (
S2

)
(generated

by the Hamiltonian vector field associated to σ(iY3)). The flow Ht leaves Xc invariant.
Furthermore, for c �= 1, each Borel set in Fc is Ht -invariant. It follows that if a ∈ C(Xc),

Pca = Pca
b, ab = 1

2π

∫ 2π

0
a ◦Ht dt. (7.33)

Note the parallel to Eq. 7.16. The argument going from Eq. 7.22 to Proposition 7.1
applies here, to give (for c �= 1)

lim
k /∈Nc,k→∞ (Aϕk, ϕk) −

(
Abϕk, ϕk

)
= 0, (7.34)

where Ab ∈ �(S2) has principal symbol ab, given by Eq. 7.33.
Since �c and Y 2

3 commute, one can pick an orthonormal basis of L2
(
S2

)
consisting of

joint eigenfunctions for these two operators. In such a case, Eq. 7.34 seems relatively natu-
ral, at least when Af (x) = a(x)f (x). One is tempted to wonder whether an eigenfunction
of �c must also be an eigenfunction of Y 2

3 . As we will see, this holds for some values of c

but fails in a big way for some other values of c.
Since

�2
c = −� − (c − 1)Y 2

3 , (7.35)

we can read off Spec �c from the joint spectrum of � and Y3. We recall that

L2(S2) =
∞⊕

k=0

Vk, −� = k2 + k on Vk, (7.36)

and

Spec iY3

∣∣∣Vk
= {j ∈ Z : |j | ≤ k}, Spec

(
−Y 2

3

)∣∣∣
Vk

=
{
j2 : 0 ≤ j ≤ k

}
. (7.37)

Hence

Spec �2
c

∣∣
Vk

= {λcjk : 0 ≤ j ≤ k} λcjk = k2 + k + (c − 1)j2. (7.38)

If c is irrational, then the number λcjk uniquely determines j and k, given that they both
are in N∪{0}. In view of the fact that each joint eigenspace of � and iY3 is one dimensional,
we have:

Proposition 7.3 If c ∈ R
+ is irrational, each eigenspace of �c has dimension 1 or 2, and

each eigenfunction of �c is also an eigenfunction of Y 2
3 .

We now observe how very different the spectrum of �c is when c = 2. By Eq. 7.38,

Spec �2
2

∣∣
Vk

=
{
k2 + k + j2 : 0 ≤ j ≤ k

}
. (7.39)

Now

n = k2 + k + j2 =⇒ 4n + 1 = (2k + 1)2 + (2j)2. (7.40)
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If we set

SN =
{

4n+ 1 : ∃ j, k such that 0 ≤ j ≤ k, 4n + 1 = (2k + 1)2 + (2j)2, n ≤ N
}

,

TN =
{
(j, k) : 0 ≤ j ≤ k, (2k + 1)2 + (2j)2 ∈ SN

}
,

(7.41)
we see that the number of elements of TN satisfies

#(TN) ∼ π

8
N, as N →∞. (7.42)

On the other hand, it is a classical result of lattice point counting that

#(SN)

N
−→ 0 as N →∞. (7.43)

These two results give:

Proposition 7.4 If the eigenvalues of �2 are

0 = ω1 < ω2 < · · · < ωk ↗∞, (7.44)

with corresponding eigenspaces Ṽk , then

lim
n→∞

1

n

n∑
k=1

dim Ṽk = ∞. (7.45)

The argument proving Proposition 7.4 extends readily to treat

c − 1 = a2

b2
, a, b ∈ N. (7.46)

In such a case,

λ = k2 + k + a2

b2
j2 =⇒ (4λ+ 1)b2 = ((2k + 1)b)2 + (2ja)2, (7.47)

and considerations parallel to Eqs. 7.41–7.43 apply. We have:

Proposition 7.5 The conclusion of Proposition 7.4 holds for �c whenever√
c − 1 ∈ Q. (7.48)

There is also an analogue of Proposition 7.5 for c ∈ (0, 1).

Proposition 7.6 If 0 < c < 1 and √
1 − c ∈ Q, (7.49)

then �c has eigenspaces of arbitrarily high dimension.

In such a case, in place of Eq. 7.46, we can write

1 − c = a2

b2
, a, b ∈ N, a < b, (7.50)

and, with λ = λcjk as in Eq. 7.38,

λ = k2 + k − a2

b2
j2 =⇒ (4λ+ 1)b2 = ((2k + 1)b)2 − (2ja)2. (7.51)
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Thus Proposition 7.6 follows from the assertion that, given a, b ∈ N, a < b, and

�a,b : {(j, k) ∈ N× N : j ≤ k} −→ N,

�a,b(j, k) = ((2k + 1)b)2 − (2ja)2,
(7.52)

there is no upper bound on the size of �−1
a,b(N), as N ranges over N. We record a proof of

this in Appendix C.
We briefly mention a further generalization of Eq. 7.24, namely

�c =
√
− (

c1Y
2
1 + c2Y

2
2 + c3Y

2
3

)
, c = (c1, c2, c3), cj > 0. (7.53)

Since
√−� commutes with each Yj , we see that

�c and
√−� commute, ∀ c ∈ (

R
+)3

. (7.54)

Thus their symbols σ(�c) and σ(
√−�) Poisson commute, and Hσ(�c) is integrable.

One could also look into how �c operates on the spaces Vk introduced in Eq. 7.36, using
basic representation theory of SO(3), but we will not take this up here.

8 Joint Eigenfunctions of Commuting Operators

Let � ∈ OPS1(M) be as in Section 1. Assume we have

Y = Y ∗ ∈ OPS1(M), �Y = Y�. (8.1)

Then L2(M) has an orthonormal basis consisting of joint eigenfunctions of � and Y ,
but a random orthonormal basis consisting of eigenfunctions of � might not also be eigen-
functions of Y , as the example M = S2, � = √−� considered in Section 7 shows. The
following result is parallel to Proposition 7.3. To state it, note that there is an interval I ⊂ R,
containing 0, such that

α ∈ I =⇒ �+ αY ∈ OPS1(M) is elliptic. (8.2)

Proposition 8.1 There is a countable set C ⊂ R such that, for all α ∈ I \ C, if u ∈ L2(M)

is an eigenfunction of �+ αY , then u is an eigenfunction both of � and of Y .

Proof We have

L2(M) =
∞⊕

k=0

Vk, � = λk on Vk, 0 ≤ λ0 < λ1 < λ2 < · · · . (8.3)

By Eq. 8.1, Y : Vk → Vk . Say

Spec Y
∣∣
Vk

= {ωjk : 1 ≤ j ≤ dk}, (8.4)

where the numbers ωjk are distinct, for each fixed k. Then

Spec(�+ αY)
∣∣
Vk

= {λk + αωjk : 1 ≤ j ≤ dk}. (8.5)

To prove Proposition 8.1, we need to construct C ⊂ R such that

α ∈ I \ C, λk + αωjk = λ
 + αωm
 (8.6)

implies λk = λ
. Note that the hypotheses of Eq. 8.6 imply

α(ωjk − ωm
) = λ
 − λk, (8.7)
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and if λk �= λ
, then also ωjk �= ωm
, so

α = λ
 − λk

ωjk − ωm


. (8.8)

So to construct C, first consider

S = {
λk : k ∈ Z

+} ∪ {
ωjk : k ∈ Z

+, 1 ≤ j ≤ dk

}
, (8.9)

which is countable. Then let C ⊂ R be the field generated by S , which is also countable.
Alternatively, C could just be the set of quotients that appear on the right side of Eq. 8.8,
with ωjk �= ωm
.

This spectral result suggests a dynamical counterpart. To state it, let

Xα = {
(x, ξ) ∈ T ∗M : σ(�+ αY)(x, ξ) = 1

}
, (8.10)

which gets a natural probability measure, invariant under the flow generated by Hσ(�+αY).
Also, Xα is invariant under the flows generated by Hσ(�) and Hσ(Y).

Proposition 8.2 There exists a countable set C ⊂ I such that, for α ∈ I \ C, the following
holds. Given b ∈ L2(Xα),

Hσ(�+αY)b = 0 =⇒ Hσ(�)b = 0 and Hσ(Y)b = 0. (8.11)

For such α, a Borel set S ⊂ Xα is invariant under the flow generated by Hσ(�+αY) if and
only if S is simultaneously invariant under the flow generated by Hσ(�) and that generated
by Hσ(Y).

Note that, by homogeneity, we can simply work on X = X0, rather than on Xα , in
Proposition 8.2. In Appendix B, we establish a more general result, on commuting, measure-
preserving flows, which implies Proposition 8.2.

9 Soft Chaos

Here, we take M,�, and X as in Section 1, but require

dim M = 2, (9.1)

so dim X = 3. Assume the flow Gt has an elliptic periodic orbit, γ . Let T0 denote its
minimal period, so p ∈ γ ⇒ GT0p = p. We describe how “soft chaos” (a term used in [7])
can arise in this setting, as a consequence of KAM theory.

Pick p ∈ γ , and let � ⊂ X be a 2-dimensional surface, transversal to γ , containing p.
Let R : � → � be the Poincaré first return map. Thus R(p) = p. The symplectic form on
T ∗M pulls back to a nondegenerate, closed, 2-form on �, invariant under R. Thus � has
an area element, and R is area-preserving. That γ is elliptic means DR(p) : Tp� → Tp�

has eigenvalues of the form
{
eiα, e−iα

}
. In such a case, R is called an α-twist.

It is a classical result of G. Birkhoff that (under some extra hypotheses) R has a “normal
form.” The formulation below is from [1], p. 582.

Proposition 9.1 If α is not 0 or an integral multiple of π/2 or 2π/3, then (after perhaps
shrinking �) there exist symplectic coordinates u = u1 + iu2 on � such that u(p) = 0 and

R(u) = u ei
(
α+β|u|2) +O

(
|u|4

)
. (9.2)
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One says the first return map R is an elementary twist map if α is as in Proposition 9.1
and Eq. 9.2 holds with β �= 0.

We next recall a stability theorem, proved by J. Moser, in [11]. We say a cycle in � is a
simple, closed, C1 curve in � that encloses p.

Theorem 9.2 Assume R : � → � is an elementary twist map. Then there is a collection
{σ ∈ I} of invariant cycles, contained in �, such that

(i) For each σ ∈ I , R|σ has irrational rotation number, and each orbit of R|σ is dense
in σ .

(ii)
⋃

σ∈I σ ⊂ � is closed.
(iii) For each ε > 0, there exists a neighborhood U of p in � such that the union ∪{σ ∈

I : σ ⊂ U} has 2D measure ≥ (1 − ε) Area(U).

In addition to the proof in [11], there is a treatment, in the real analytic case, in [15],
Sections 31–33. See also discussions in [12], Chapter 2, Section 4, and in [1]. The following
result is perhaps implicit in these works, and is certainly implicit in illustrative figures. We
make it explicit.

Proposition 9.3 Given two invariant cycles σ �= σ ′, in I , either σ encloses σ ′ or σ ′
encloses σ .

Proof The invariant cycles in I are obtained as small perturbations of the cycles |u| =
small const., which are invariant under R0(u) = uei

(
α+β|u|2). Thus if σ, σ ′ ∈ I , either

one encloses the other or they have a nonempty intersection. Then, part (i) of Theorem 9.2
implies this intersection must be dense in σ , and in σ ′, which requires σ = σ ′.

At this point, we pick a “base” invariant cycle σ0, and consider only those σ enclosed by
(or equal to) σ0.

Given an invariant cycle σ ∈ I , let

Tσ = {Gt(x) : x ∈ σ, t ∈ R} ⊂ X (9.3)

be the tube swept out by σ under the flow Gt . Each such Tσ is homeomorphic to T
2. Results

in Theorem 9.2 and Proposition 9.3 imply the following.

(I) Each Tσ has zero 3D measure.
(II) The union of all such Tσ for σ ∈ I is closed.

(III) Given two invariant tubes Tσ �= Tσ ′ , either Tσ encloses Tσ ′ or Tσ ′ encloses Tσ .

Now, let
T #

σ = closed, solid tube enclosed by Tσ . (9.4)

Given x ∈ X, let
Tx =

⋃

σ∈I,x /∈T #
σ

Tσ , (9.5)

and
T #

x =
⋃

σ∈I,x /∈T #
σ

T #
σ . (9.6)

That is, Tx is the union of all 2D tubes Tσ that neither enclose x nor contain x, and T #
x

is the union of all closed solid tubes T #
σ that do not contain x.
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Note that, given x, y ∈ X, possibly

Tx = Ty, (9.7)

and if not, either
Tx ⊂ Ty, or Ty ⊂ Tx . (9.8)

If Eq. 9.7 holds, we write
x ∼ y, (9.9)

and if it fails, we write
x ≺ y, or y ≺ x, (9.10)

in the two cases in Eq. 9.8. We also have natural notions of x � y or y � x.
Now, using the invariant volume element on X arising in Section 1, we define a function

� : X → R by
�(x) = Vol Tx. (9.11)

Note that Tx = TGtx , for all t ∈ R, x ∈ X, so � = � ◦ Gt . We view the following as a
key result.

Proposition 9.4 The function � is continuous on X.

Proof Let xk, x ∈ X, xk → x. We need to show that �(xk) → �(x). It suffices to show
this in each of the following three cases:

xk ≺ x, x ≺ xk, x ∼ xk, ∀ k, (9.12)

and xk → x.
Consider the first case, xk ≺ x, ∀ k. Reordering the sequence (xk) if necessary, we can

assume
x1 � x2 � x3 � · · · . (9.13)

In such a case,
Tx1 ⊂ Tx2 ⊂ Tx3 ⊂ · · · , (9.14)

hence
�(x1) ≤ �(x2) ≤ �(x3) ≤ · · · ≤ �(x). (9.15)

Furthermore, the monotone convergence theorem implies

�(xk) ↗ Vol
(⋃

k≥1

Txk

)
. (9.16)

Of course, ⋃
k≥1

Txk
⊂ Tx .

Recall that Tx is the union of all 2D tubes Tσ that neither enclose x nor contain it. If
Tσ is such a tube, x has a positive distance from Tσ . Since xk → x, we deduce that for all
sufficiently large k, Tσ will neither enclose nor contain xk . Thus Tσ ⊂ Txk

for all sufficiently
large k, so in fact ⋃

k≥1

Txk
= Tx. (9.17)

This proves Proposition 9.4 for the first case (and also the last case) of Eq. 9.12.
It remains to check the case x ≺ xk, ∀ k. This time, we can reorder (xk) to achieve

· · · � x3 � x2 � x1. (9.18)
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In such a case,
Tx1 ⊃ Tx2 ⊃ Tx3 ⊃ · · · , (9.19)

hence
�(x1) ≥ �(x2) ≥ �(x3) ≥ · · · ≥ �(x). (9.20)

This time, the monotone convergence theorem implies

�(xk) ↘ Vol
(⋂

k≥1

Txk

)
. (9.21)

Clearly ⋂
k≥1

Txk
⊃ Tx.

Recall that Txk
is the union of all the 2D tubes Tσ that neither enclose nor contain xk .

Now suppose you take Tσ such that

Tσ is not a subset of Tx. (9.22)

It follows that Tσ either contains x or encloses x. If Tσ encloses x, then x has a positive
distance from Tσ , hence for all sufficiently large k, Tσ must enclose xk , so Tσ is not a subset
of Txk

for large k. We deduce that, for each σ for which Eq. 9.22 holds,

Tσ ⊂
⋂
k≥1

Txk
=⇒ x ∈ Tσ . (9.23)

Now condition (III) implies there can be at most one such σ . We conclude that either⋂
k≥1

Txk
= Tx, or

⋂
k≥1

Txk
= Tx ∪ Tσ1 , (9.24)

for an invariant cycle σ1. Then condition (I) yields

�(xk) ↘ �(x), (9.25)

and the proof of Proposition 9.4 is complete.

Proposition 9.4 gives a nontrivial function � ∈ C(X) that is invariant under Gt for all
t ∈ R. Of course, for each continuous β : R → R, β ◦ � belongs to C(X) and is invariant
under all Gt . Thus the range of P contains lots of elements of C(X), where P is the orthog-
onal projection arising in Theorem 1.1. We are interested in the following complementary
situation.

Problem Determine when one can take a ∈ C(X) and guarantee that Pa ∈ C(X).

Our quantum ergodic theorem points to the usefulness of obtaining results on this
problem. We intend to address this in future work.

10 On the Existence of Soft Chaos

As stated in [7], p. 118, the term “soft chaos” is somewhat lacking in mathematical preci-
sion. A number of different varieties of soft chaos come to mind. To set definitions, let H be
a Hamiltonian vector field on T ∗M , X a constant energy surface, assumed to be compact,
Gt the flow on X generated by H . Here is a weak notion of soft chaos.

The flow Gt is neither integrable nor ergodic. (10.1)



644 M. Taylor

In this case, it has been proven in [10] that, in the generic case, Eq. 10.1 holds. Tools to
show that, in certain cases, Gt is not ergodic include KAM theory. Tools to show that, in
certain cases, Gt is not integrable include the detection of homoclinic tangles.

A stronger version of soft chaos is the following.

There is a partition X = X0 ∪X1 with the following properties.

X0 ⊂ X is closed and the union of invariant Lagrangian tori.

X1 = ∪αXα , with Gt acting ergodically on each Xα .

Finally, X0 and X1 both have positive measure.

(10.2)

It is widely believed (and this belief seems to be well supported by numerical evidence)
that (10.2) holds generically, but proving this (or even proving some examples exist) has
been a problem for some time, a problem mentioned in [12], p. 109, in 1973, and in [4]
in 2008. Of course, KAM can establish that X0 has positive measure, in certain cases. The
problem is to show that X \X0 has positive measure. In this context, it should be mentioned
that “Smale horseshoes” that arise from homoclinic tangles have measure zero.

The remarks above regarding (10.2) apply to cases where M has no boundary, which is
the setting of this paper. There do exist bounded domains in Euclidean space, with piecewise
smooth boundary, whose associated billiard ball maps have been proven to have property
(10.2). More precisely, what is called the “mushroom domain” in R

2 has been shown in [3]
to have the property that X = X0 ∪ X1 with the billiard ball map integrable on X0 and
ergodic on X1, and both X0 and X1 have positive measure. Study of the mushroom domain
and variants has produced a growing literature. As an example, we mention [2].

We now discuss some examples where one can expect to find soft chaos, and it is likely
one can prove that (10.1) holds, though we do not propose proofs here. It also seems likely
that (10.2) holds for these examples, but proofs of this will certainly have to wait!

Our first class of examples arise from geodesic flows on certain perturbations of the
“inner tube” T 2 ⊂ R

3, given by Eq. 7.17. To begin, we consider T 2
a ⊂ R

3, the image of T2

under the maps �a : T2 → R
3, given by

�a(θ, ω) = (
(2 + cos θ) cos ω, a(2 + cos θ) sin ω, sin θ

)
. (10.3)

In other words, T 2
a is the image of T 2 under the map

Ma : R3 → R
3, Ma(x, y, z) = (x, ay, z). (10.4)

For each a > 0, T 2
a has four closed geodesics in the plane {z = 0}. Two (related by time

reversal) are outer equatorial geodesics, and the other two (also related by time reversal) are
inner equatorial geodesics. The outer equatorial geodesics are elliptic and the inner equato-
rial geodesics are hyperbolic. For (almost all?) a > 0, we expect the results of Section 9 to
apply near the elliptic closed geodesics, yielding some nontrivial Gt -invariant functions in
C(X), X = S∗T 2

a .
The results of Section 9 do not imply that there are stochastic regions in a small tubular

neighborhood of the outer equatorial geodesics, though we expect this to be the case.
Another potential source of chaos is associated with the inner equatorial geodesics, which

are hyperbolic. Identify an inner equatorial geodesic with the periodic Gt -orbit γ ⊂ X.
Pick p ∈ γ , take a surface � ⊂ X, through p, transversal to γ , and let R : � → � be the
Poincaré first return map. Then R(p) = p, and p is a hyperbolic fixed point. Thus there are
invariant curves through p, one the stable manifold (near p) and one the unstable manifold.
If a = 1, then, globally, these two coincide, and we have a homoclinic invariant curve.
One would achieve chaos if, as a is moved from 1, these did not coincide, but intersected
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transversally, yielding a “homoclinic tangle.” However, for Ma as in Eqs. 10.3–10.4, this
does not happen.

In fact, for each a > 0, in this setup, the stable and unstable manifolds coincide. This
can be established using the symmetries of T 2

a . Each surface T 2
a is invariant under three

reflections, namely reflection across {x = 0}, across {y = 0}, and across {z = 0}. Hence T 2
a

is invariant under rotation by 180◦ about the x-axis (and also the y-axis, and for that matter,
also the z-axis). Consider various geodesics in T 2

a starting at the point e1 = (1, 0, 0) ∈ T 2
a ,

where θ = ω = 0. If the velocity vector is close to (0, 0, 1), the geodesic winds aronnd
T 2

a , crossing the inner equatorial geodesic infinitely often. If the velocity vector is close
to (0, 1, 0), the geodesic never crosses the inner equatorial geodesic. There are 4 critical
velocity directions leading to geodesics through e1 that tend toward the inner equatorial
geodesic as t → +∞. Now the rotational symmetry mentioned above implies these critical
directions occur in pairs, one velocity being the negative of the other. It follows that if a
geodesic through e1 tends toward the inner equatorial geodesic as t → +∞, it also tends
toward same as t → −∞.

To address this phenomenon, we modify T 2
a , obtaining surfaces T 2

a,b, for which the
reflection symmetries across {x = 0} and {y = 0} are destroyed, though we retain the
reflection symmetry across {z = 0}. We take T 2

a,b ⊂ R
3 to be the image of T2 under the

map �a,b : T2 → R
3, with

�a,b(θ, ω) = �a(θ, ω) + b�(ω), �(ω) = (sin 3ω, cos 5ω, 0). (10.5)

We take

0 < b << a. (10.6)

In such a case, T 2
a,b still has inner and outer equatorial geodesics, in {z = 0}.

Under such conditions, it is reasonable to expect that homoclinic tangles arise near the
inner equatorial geodesic.

We turn to another class of examples. Let M0 be a compact 2-dimensional Riemannian
manifold for which the geodesic flow is known to be ergodic on S∗M0. Take the standard
unit sphere S2. Cut a small open geodesic disk D from S2, cut a small open geodesic disk
D0 from M0, and join what remains by a neck N , obtaining

M = (S2 \ D) ∪N ∪ (M0 \D0). (10.7)

Endow M with a smooth metric tensor, agreeing with the original metric tensors on S2\D
and on M0 \D0. Let D∗ ⊂ S2 be the image of D under the antipodal map of S2. The set of
points in S∗S2 whose image under the geodesic flow lies over S2 \ (D ∪ D∗) for all t has
positive measure. This gives rise to a subset Y of S∗M of positive measure (in fact, with
nonempty interior) on which the geodesic flow is integrable. It is tempting to conjecture that
S∗M \ Y has a subset of positive measure on which the geodesic flow is ergodic. Needless
to say, we do not have a proof of this.

We conclude with a description of a class of symbols to which Theorem 1.1 applies. With
M as above, and β ∈ R, take a ∈ C(S∗M) such that

a averages to β on each closed orbit in Y ,

a = β on S∗M \ Y.
(10.8)

Then Pa ≡ β, and Theorem 1.1 applies.

Acknowledgments Work supported by NSF grant DMS-1161620.



646 M. Taylor

Appendix A: Conditional Expectation Near a Hyperbolic Critical Point

In Eq. 7.17 we have the conditional expectation of a function on T
2, with respect to the

σ -algebra of sets of the form �̃−1(B), for Borel B ⊂ R, where �̃ ∈ C∞ (
T

2
)

has two
hyperbolic critical points. We state there that this conditional expectation operator maps
C

(
T

2
)

to C
(
T

2
)

and C∞ (
T

2
)

to Cω
(
T

2
)
, with ω given by Eq. 7.21. Here we show how

to establish these results.
To simplify the calculations, we look at a model case, with one hyperbolic critical

point. Namely, we analyze Pf = E(f |F), on Q = [−1, 1] × [−1, 1] ⊂ R
2, with

Lebesgue measure, where F is the σ -algebra of the form g−1(B), for Borel B ⊂ R, with
g(x, y) = y2 − x2, which has a critical point at (0, 0). We make a few preliminary
observations. Clearly P : L∞(Q) → L∞(Q) has norm 1, so to show

P : C(Q) −→ C(Q), (A.1)

it suffices to show
P : C∞(Q) −→ C(Q). (A.2)

Also, clearly f ∈ C(Q) (resp., f ∈ C∞(Q)) implies Pf is continuous (resp., Pf is
smooth) on Q \ X, where

X = {(x, y) ∈ Q : x = ±y}. (A.3)

Consequently, the following result is useful.

Lemma A.1 If f ∈ C1(Q), then

zk ∈ Q \X, zk → z0 ∈ X =⇒ Pf (zk) → f (0, 0). (A.4)

Proof The set Q \ X has four connected components. It will suffice to consider the case
where each zk lies in the upper quarter, where y > |x|, as similar arguments apply in the
other cases. We may as well drop the subscripts, and take

y =
√

ε + x2, ε > 0. (A.5)

Then Pf (x, y) depends only on ε, and we have

Pf (x, y) = 1

A(ε)

∫ 1

−1

f
(
s,
√

ε + s2
)

√
ε + s2

ds, A(ε) =
∫ 1

−1

ds√
ε + s2

. (A.6)

Remark Actually, the domain of integration should be s ∈ [−√1 − ε,
√

1 − ε
]
. For

notational convenience, we ignore this, here and below.
For the denominator A(ε), we have

A(ε) =
∫ 1/

√
ε

−1/
√

ε

du√
1 + u2

= 2 sinh−1 1√
ε

= 2 log
( 1√

ε
+

√
1

ε
− 1

)

=
(

log
1

ε

)(
1 +O(ε)

)
.

(A.7)
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We can rewrite (A.6) as

Pf (x, y) = 1

A(ε)

∫ 1

−1

fε(s)√
ε + s2

ds, (A.8)

where

fε(s) = f
(
s,

√
ε + s2

)
. (A.9)

Note that, if f ∈ C1(Q), then the family fε is uniformly Lipschitz on [−1, 1], for
ε ∈ (0, 1/2]. We then have

Pf (x, y) = fε(0)+ 1

A(ε)

∫ 1

−1

fε(s)− fε(0)√
ε + s2

ds

= fε(0)+ 1

A(ε)

∫ 1

−1

s√
ε + s2

gε(s) ds,

(A.10)

where

gε(s) = fε(s)− fε(0)

s
=

f
(
s,
√

ε + s2
)
− f

(
0,
√

ε
)

s
. (A.11)

Since
√

ε + s2 −√
ε = 1

2

∫ s2

0

dy√
ε + y

≤ 1

2

∫ s2

0

dy√
y
= |s|, (A.12)

and f is C1, hence Lipschitz, we have

|gε(s)| ≤ L < ∞, ∀ ε. (A.13)

Thus we have ∣∣∣∣∣
∫ 1

−1

s√
ε + s2

gε(s) ds

∣∣∣∣∣ ≤ 2L, ∀ ε, (A.14)

hence, for (x, y) as in Eq. A.5, f ∈ C1(Q),

∣∣Pf (x, y)− f
(
0,
√

ε
)∣∣ ≤ 2L

A(ε)
. (A.15)

This establishes Lemma A.1. It hence yields (A.1), and also

P : C1(Q) −→ Cω(Q), (A.16)

with

ω(h) = 1

| log h| , 0 < h << 1. (A.17)

Remark The estimate (A.13) and the Lebesgue dominated convergence theorem yield

lim
ε→0

∫ 1

−1

s√
ε + s2

gε(s) ds =
∫ 1

−1
(sgn s)

f (s, |s|)− f (0, 0)

s
ds

=
∫ 1

−1

f (s, |s|)− f (0, 0)

|s| ds.

(A.18)

Since there are functions f ∈ C1(Q) for which this last integral is �= 0, this implies that
(A.16–A.17) is sharp, as far as the range is concerned.



648 M. Taylor

Appendix B: Invariance Properties of Commuting, Measure-Preserving
Flows

Our goal here is to establish a general result that contains Proposition 8.2. To set things up,
let (X,μ) be a probability space. Assume L2(X,μ) is separable. For j = 1, 2, t ∈ R, let
F t

j : X → X be a 1-parameter group of measure-preserving transformations. Assume these
transformations commute, i.e., F t

1F s
2 = F s

2F t
1, for all s, t ∈ R. Also assume the following

continuity:

f ∈ L2(X,μ) =⇒ t �→ f ◦F t
j is continuous from R to L2(X,μ). (B.1)

For α ∈ R, set
Gt

α = F t
1 ◦Fαt

2 . (B.2)

The following result contains Proposition 8.2.

Proposition B.1 Under the hypotheses stated above, there exists a countable set C ⊂ R

such that, for each α ∈ R \ C,
f ∈ L2(X,μ), f ◦ Gt

α = f, ∀ t ∈ R

=⇒ f ◦F t
j = f, ∀ t ∈ R, ∀ j.

(B.3)

Proposition B.1 follows from the next proposition, an abstract result about commuting

unitary groups. To state it, let
{
Ut

j : t ∈ R

}
be strongly continuous unitary groups on a

separable Hilbert space H , and assume they commute, i.e., Ut
1U

s
2 = Us

2Ut
1, for all s, t ∈ R.

For α ∈ R, set
V t

α = Ut
1U

αt
2 . (B.4)

Proposition B.2 Given Ut
j as above, there exists a countable set C ⊂ R such that, for each

α ∈ R \ C,
f ∈ H, V t

αf = f, ∀ t ∈ R

=⇒ Ut
jf = f, ∀ t ∈ R, ∀ j.

(B.5)

To prove Proposition B.2, we use the following version of the Spectral Theorem. There
exists a σ -finite measure space (Y, ν), a unitary map W : H → L2(Y, ν), and ν-measurable
functions aj : Y → R such that

W
(
Ut

jf
)

(y) = eitaj (y)Wf (y), ∀ f ∈ H, t ∈ R. (B.6)

Note that
Ut

jf = f ∀ t ⇐⇒ ajWf = 0 (ν-a.e.), (B.7)

and
V t

αf = f ∀ t ⇐⇒ (a1 + αa2)Wf = 0 (ν-a.e.). (B.8)

Hence Proposition B.2 is a consequence of the following.

Lemma B.3 Given ν-measurable functions aj : Y → R as above, there exists a countable
set C ⊂ R such that for each α ∈ R \ C,

g ∈ L2(Y, ν), (a1 + αa2)g = 0 (ν-a.e.)

=⇒ a1g = a2g = 0 (ν-a.e.).
(B.8)
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Proof Consider the following subsets of Y :

Sα = {y ∈ Y : a1(y) = −αa2(y)},
S = {y ∈ Y : a1(y) = a2(y) = 0}. (B.10)

Clearly S ⊂ Sα , for each α. To prove Lemma B.3, it suffices to show that there exists a
countable set C ⊂ R such that

α ∈ R \ C =⇒ ν(Sα \ S) = 0. (B.11)

Note that

Sα \ S = Tα = {y ∈ Y : a1(y) = −αa2(y), a2(y) �= 0}. (B.12)

On the other hand, clearly α �= α′ ⇒ Tα ∩ Tα′ = ∅. Hence ν(Tα) �= 0 for at most
countably many α ∈ R, and we are done.

We note the following n-dimensional version of Lemma B.3.

Lemma B.4 Given a ν-measurable a : Y → R
n, a = (a1, . . . , an), there exists E ⊂ R

n of
Lebesgue measure 0 such that, for each ω ∈ R

n \ E ,
g ∈ L2(Y, ν), (ω · a)g = 0 (ν-a.e.)

=⇒ a1g = · · · = ang = 0 (ν-a.e.).
(B.13)

This follows by induction on n, starting at n = 2, by Lemma B.3. This result leads to the
following n-dimensional version of Proposition B.2.

Proposition B.5 Let U be a strongly continuous unitary representation of Rn on a separa-
ble Hilbert space H . Then there exists a subset E ⊂ R

n, of Lebesgue measure 0, such that,
for each ω ∈ R

n \ E ,
f ∈ H, U(tω)f = f, ∀ t ∈ R

=⇒ U(ξ)f = f, ∀ ξ ∈ R
n.

(B.14)

This in turn leads to an n-dimensional version of Proposition B.1, which we leave to the
reader.

Appendix C: Proof of Proposition 7.6

As discussed in Section 7, Proposition 7.6 is a consequence of the following.

Proposition C.1 Given a, b ∈ N, a < b, and

�a,b : {(j, k) ∈ N× N : j ≤ k} −→ ∞,

�a,b(j, k) = ((2k + 1)b)2 − (2ja)2,
(C.1)

there is no upper bound on the number of elements of �−1
a,b(N), as N ranges over N.

We recall that Proposition 7.4 follows from an analogous result involving a sum of
squares, rather than a difference. In that case, the desired conclusion followed from Eq. 7.43.
That classical result is typically proven as a consequence of the fact that the ring Z[i]
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of Gaussian integers has the unique factorization property. The number theory behind
Proposition C.1 is rather different, and arguably more elementary.

To start the proof of Proposition C.1, we write

N = ((2k + 1)b)2 − (2ja)2

= [(2k + 1)b + 2ja] · [(2k + 1)b − 2ja]
= (K + J )(K − J )

= AB,

(C.2)

with
A + B

2
= K = (2k + 1)b,

A − B

2
= J = 2ja.

(C.3)

It is convenient to write

a = 2μα, α odd, μ ∈ {0, 1, 2, . . . }. (C.4)

We will look for numbers N that factorize (in many ways) as AB with

A = αbq, B = αbr, q > r. (C.5)

Then (C.3) becomes

α
q + r

2
= 2k + 1, b

q − r

2
= 2μ+1j, (C.6)

so we need (q + r)/2 to be odd, and it will be convenient to have (q − r)/2 divisible by
2μ+1. Say (q − r)/2 = 2μ+1
, 
 ∈ N, so

q = r + 2μ+2
, r odd. (C.7)

Then (C.6) holds with

2k + 1 = α
(
r + 2μ+2


)
,

j = b
.
(C.8)

In such a case, Eq. C.2 holds for

N = α2b2r
(
r + 2μ+2


)
. (C.9)

Recall that a (hence α) and b are given in N (with a < b), and we want (C.2) to hold
for some (in fact, many) j, k satisfying 1 ≤ j ≤ k. In light of the observations made above,
Proposition C.1 is a consequence of the following.

Lemma C.2 Take α, b ∈ N, μ ∈ Z
+, 2μα < b. Define

�μαb :
{
(r, 
) ∈ N× N : r odd, 2b
+ 1 ≤ α(r + 2μ+1
)

}
,

�μαb(r, 
) = r
(
r + 2μ+2


)
.

(C.10)

Then there is no upper bound on the number of elements of �−1
μαb(ν), as ν runs over N.
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Proof Given K ∈ N, pick μ1, . . . , μK and μ̃1, . . . , μ̃K ∈ N such that

μj = 1 mod 2μ+2, μ̃j = μj + 2μ+2, μj+1 > μ̃j . (C.11)

Set
ν = μ2

1μ̃
2
1 · · ·μ2

Kμ̃2
K. (C.12)

Then, for each k ∈ {1, . . . , K}, we have

ν = qkrk, (C.13)

with

qk = μ̃2
k

⎛
⎝∏

j �=k

μj μ̃j

⎞
⎠ , rk = μ2

k

⎛
⎝∏

j �=k

μj μ̃j

⎞
⎠ . (C.14)

Note that (C.11) implies qk = 1 mod 2μ+2 and rk = 1 mod 2μ+2. Since qk > rk , we
have

qk = rk + 2μ+2
k, (C.15)
for some 
k ∈ N. It follows from Eqs. C.11 and C.14 that j > k ⇒ rk < rj , so the
factorizations (C.13) are all distinct. Also, as long as we impose the requirement

μ1 >> 2μ+2, (C.16)

we can satisfy the constraint

2b
k + 1 ≤ α
(
rk + 2μ+1
k

)
, ∀ k. (C.17)

Thus we have Lemma C.2, and hence Proposition C.1.
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