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Abstract We develop a potential theory for a Riesz type kernel in a homogeneous space and
characterize the compact sets K with capacity zero as the sets K for which every continous
function f on K is the restriction to K of a continuous potential U

σf

k of an absolutely
continuous measure σf supported in an arbitrarily small neighbourhood of K . The measure
σf can be choosen as a suitable restriction of a single measure σ that only depends on the
set K and the kernel k.
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1 Introduction

A classical result of G. C Evans [8] characterizes the compact sets K in Rn of α−capacity
zero as the sets for which there is a nonnegative measure σ such that the α−potential
Uσ

α (x) is infinite precisely on K . H. Wallin [21] proved a different characterization: K has
k−capacity zero if and only if every continuous function on K is the restriction to K of a
continuous potential in Rn, for suitable kernels k. Later, S. Ja Havinson [12] gave a unified
treatment of both these results, removed some restrictions on the kernel and showed that it
is sufficient to consider restrictions of a single measure that only depends on the set K and
the kernel k. T. Sjödin generalized the problem described above to nonlinear Lp−potential
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theory and solved the extension problem for Bessel potentials [18] and Sobolev functions
[19]. It is the purpose of this paper to extend the results described above from the Euclidean
space Rn to an abstract space. A suitable setting for this is the homogeneous spaces of Coif-
man and Weiss [5] consisting of a quasimetric space (X, d) equipped with a nonnegative
doubling measure μ. For more on such spaces, see [6] and the references contained there.

Let (X, d, μ) be a homogeneous space in the sense of [5], let k(x, y) be a kernel and
define the k−potential of a nonnegative Borel measure ν on X by

Uν
k (x) =

∫
k(x, y) dν(y). (1.1)

B. Fuglede [9] developed a potential theory for Uν
k and its related capacity Ck in a locally

compact space and proved the basic existence theorem for capacitary measures and capac-
itary potentials. We show how [5] and [9] can be combined into a potential theory that
extends the classical potential theory in Rn to the homogeneous spaces (X, d, μ). A natural
analog of a Riesz type kernel in Rn is defined by

K ◦ μ(x, y) = K(μB(x, d(x, y)) + μB(y, d(x, y))),

where K(r), r > 0, is a positive, continuous and nonincreasing function and μB(x, a) =
μ{y ∈ X; d(y, x) ≤ a}, c.f. [4] and [20]. See Section 3 for the exact definitions. The main
tools in the proofs are our adoption of an approximation of the identity in Carleson [3] to
the present setting and the construction of families of dyadic nets in M. Christ [4] and T.
Hytönen, H. Kairema [13]. It allows us to mollify measures and potentials uniformly in
X and build continuous potentials of measures that are absolutely continuous with respect
to the measure μ. Theorems 2.1 and 2.2 are our principal results that give sufficient and
necessary conditions, respectively, for every continuous function on K to be the restriction
to K of a continous potential. Our main result (Theorems 2.3) extends the results of H.
Wallin [21] and Ya. Havinson [12] described above to the homogeneous spaces (X, d, μ)

and gives our characterization of compact sets with capacity zero. See Section 2 for details.
The plan of the paper is as follows. Section 2 states our results, that are proved in

Sections 5 and 6. Our notation and definitions of the spaces (X, d, μ) are given in Section 3.
We describe the potential theory in Section 4 and construct the potentials that will be our
building blocks in the proofs of Theorems 2.1 and 2.2.

2 Main Results

We start with the extension theorem, which roughly states that if K is a compact subset of
X with Ck(K) = 0 and f ∈ C(K) then there is a nonnegative measure σf on X and a
continuous potential U

σf

k (x) in X such that U
σf

k (x) = f (x), x ∈ K , and σf is the restriction
of a single measure σ on X. The theorem extends and unites results by H. Wallin [21],
Theorem 1, and S. Ja Havinson [12], Theorem 1, to homogeneous spaces. More exactly, we
have the following result.

Theorem 2.1 Let (X, d, μ) be a complete homogeneous space of order γ , 0 < σ < 1,
satisfying (DC), and assume that μ satisfies (3.7). Let K ◦μ be a doubling kernel satisfying
(4.6). Let K be a compact subset of X such that CK(K) = 0, G an open set containing K

and ε > 0. Then there is σ ∈ M+(X) with the following properties:

(a) supp(σ) ⊂ G, ||σ ||1 < ε and σ is absolutely continuous with respect to μ,
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(b) Uσ
K(x) = ∞, x ∈ K , Uσ

K(x) is finite and continuous outside K and lim inf
x→x0

Uσ
K(x) =

∞, x0 ∈ K ,
(c) Let F(x) be a positive and lower semicontinuous function in a neighbourhood of K

and let f (x) be the restriction of F(x) to K . Then there exists a Borel subset Ef of
supp(σ) such that if σf is the restriction of σ to Ef then the potential U

σf

K (x) is
continuous outside K , lower semicontinuous in X and

U
σf

K (x) = f (x), x ∈ K.

If f ∈ C(K) then U
σf

K (x) is continuous in X.

For the converse of Theorem 2.1 we assume that K is a compact subset of X with
CK(K) > 0. Then there exists a more singular kernel K0 ◦μ such that CK0(K) > 0 and the
potentials Uσ

K(x) have a uniform continuity property outside a small subset of K (Lemma
6.1). However, this property fails in general for functions in C(K) (Lemma 6.2), which
proves Theorem 2.2. The Euclidean case was proved in H. Wallin [21], Theorem 2.

Theorem 2.2 Let (X, d, μ) and K ◦ μ be as in Theorem 2.1. Let K be a compact subset of
X with CK(K) > 0. Then there is f ∈ C(K) that is not the restriction to K of a potential
Uσ

K(x) for any σ ∈ M+(X) with ||σ ||1 finite.

Combining Theorems 2.1 and 2.2 we get the following characterization of compact sets in
X with CK−capacity zero, which is our main result.

Theorem 2.3 Let (X, d, μ) and K ◦ μ be as in Theorem 2.1 and let K be a compact subset
of X. Then the following statements (i)–(iii) are equivalent:

(i) CK(K) = 0,
(ii) There exists σ ∈ M+(X) such that Uσ

K(x) = ∞ exactly for x ∈ K ,
(iii) For every f ∈ C(K) there is a continuous potential Uσ

K(x), σ ∈ M+(X), such that
f (x) = Uσ

K(x), x ∈ K .

In statements (ii) and (iii) we may require σ to have arbitrarily small total mass ||σ ||1 and
support in an arbitrary neighbourhood of K .

Remark Sets {x;Uσ
K(x) = ∞}, for some σ ∈ M+(X), are usually refered to as polar sets,

see [15], Ch. III, §1. Theorem 2.3 (ii) says thet K is a polar set relative to the kernel K ◦ μ.

3 Notations and Definitions

A homogeneous space is a triple (X, d, μ), where (X, d) is a quasi–metric space satisfying

d(x, y) ≤ K · (d(x, z) + d(z, y)), x, y, z ∈ X, (3.1)

for some constant K ≥ 1, and μ is a nonnegative and nonatomic measure on the σ−algebra
generated by all balls B(x, r) = {y ∈ X; d(y, x) < r} and satisfies the doubling condition

0 < μB(x, 2r) ≤ M · μB(x, r), x ∈ X, r > 0. (3.2)
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The constant M is called the doubling constant of μ. It is an easy consequence of Eq. 3.2
that

μB(x, r) ≥ C ·
( r

R

)α · μB(x, R), x ∈ X, 0 < r < R, (3.3)

where the constants C > 0 and α > 0 only depend on M . A relation which holds except in
a set of μ−measure zero is said to hold μ− a.e. See [5, 6, 16] for the basic properties of the
homogeneous spaces (X, d, μ).

We give X the topology induced by the balls B(x, r) = {y ∈ X; d(y, x) < r} and denote
the closure and complement of a set E ⊂ X by E and Ec respectively. Let B(x, r) = {y ∈
X; d(y, x) ≤ r} and S(x, r) = {y ∈ X; d(y, x) = r}. It is a consequence of the doubling
property of μ that there exists a positive integer N such that the following holds:

For every m = 1, 2, . . . and x ∈ X, r > 0 there are at most Nm points xi ∈ B(x, r) such
that for all i 	= j we have d(xi, xj ) ≥ r · 2−m,

c.f. [5], Ch. III. It follows that bounded sets are totally bounded. If (X, d) is complete then
(X, d) is a locally compact and separable Hausdorff space, see [17], Ch. 4, Sec. 25, Theorem
A. Every open set is a countable union of balls B(x, r) and is therefore μ−measurable.
Hence μ is a regular Borel measure on X.

A homogeneous space (X, d, μ) is of order γ , 0 < γ < 1, if there is a constant C such
that

|d(x, z) − d(z, y)| ≤ C · R1−γ · d(x, y)γ , (3.4)

for all x, y ∈ B(z,R), z ∈ X and R > 0. Every homogeneous space has an equivalent quasi-
norm satisfying (3.4), c.f. [16] Theorem 2. In that case all sets B(x, r) and {y; d(y, x) > r}
are open sets in X. We say that a homogeneous space satisfies a density condition (DC) if
there are constants N ≥ 2 and A > 1 such that DC

μB(x, r) ≥ A · μB(x, r/N), x ∈ X, r > 0. (DC)

The condition (DC) implies that

μB(x.r) ≤ Nβ · (r/R)β · μB(x, R), x ∈ X, 0 < r ≤ R, (3.5)

where β > 0 only depends on A and N , in analogy with Eq. 3.3.
A kernel k(x, y) is a symmetric, k(x, y) = k(y, x), and lower semicontinuous function

k : X × X → [0, ∞]. We will mostly consider kernels of the type K ◦ μ(x, y), where
K : (0, ∞) → [0, ∞) is non–increasing and continuous and

K ◦ μ(x, y) = K(μB(x, d(x, y)) + μB(y, d(x, y))), (3.6)

c.f. [20]. It is easy to see, assuming (3.4), that K ◦μ is symmetric and lower semicontinuous
and hence is a kernel in our sense. We say that K(r) is doubling if there is B > 0, the
doubling constant, such that K(r) ≤ B · K(2r), r > 0. Then also K ◦ μ is doubling in the
sense that d(x, y) ≤ 2 · d(x, z) implies K ◦ μ(x, z) ≤ C · K ◦ μ(x, y),where C depends on
the doubling constants for μ and K(r). See Section 4 for more on the various properties of
our kernels.

In some of our results below we need the following continuity property for the measure
μ,

μS(x, r) = μ{y ∈ X; d(y, x) = r} = 0, for x ∈ X, r > 0. (3.7)

The following lemma is then an easy consequence of Eq. 3.7.
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Lemma 3.1 Let (X, d, μ) be a complete homogeneous space of order γ , 0 < γ < 1, where
Eq. (3.7) holds. Let S be a closed ball and a > 0, then

|μB(x, r + h) − μB(x, r)| ≤ g(h), for x ∈ S and 0 ≤ r ≤ a, (3.8)

where g is independent of x and r and g(h) → 0, as h → 0.

Proof Define g(h) as the supremum of |μB(x, r + h) − μB(x, r)| over x ∈ S, 0 ≤ r ≤ a

and r + h ≥ 0. We first show that g(h) → 0 as h → 0, h > 0. If this is not the case there
are hi > 0, 0 ≤ ri ≤ a and xi ∈ S, i = 1, 2, . . . , such that hi → 0, as i → ∞, and

c ≤ μB(xi, ri + hi) − μB(xi, ri), i = 1, 2, . . . ,

for some positive constant c. By compactness we may assume that xi → x0 and ri → r0,
as i → ∞. Let r0 > 0, then the right hand side of the last expression is at most

μB
(
x0, ri + hi + C · d

γ

i

) − μB
(
x0, ri − C · d

γ

i

)
, i = 1, 2, . . . ,

by Eq. 3.4, where di = d(xi, x0). This expression tends to zero as i → ∞ by Eq. 3.6,
a contradiction. The cases r0 = 0 and h < 0 are proved in the same way. Lemma 3.1 is
proved.

The assumptions of Lemma 3.1 also imply that K ◦ μ(x, y) is continuous for x 	= y,
which allows us to use continuous potentials as building blocks in the proof of Theorem 2.1.

Lemma 3.2 Let (X, d, μ) be a homogeneous space of order γ , 0 < γ < 1, where μ

satisfies (3.7) and let K ◦ μ be a kernel. Then K ◦ μ(x, y) is continuous for x 	= y.

Proof Since K(r) is continuous and K ◦ μ(x, y) is symmetric it suffices to prove that
g(x, y) = μB(x, d(x, y)) is continuous. Let x0, y0 ∈ X be fixed, then g(x, y) ≤
μB(x0, d(x0, y0) + R(x, y)), where R(x, y) = C · (d(x, x0)

γ + d(y, y0)
γ ), and hence

lim sup g(x, y) ≤ g(x0, y0), as (x, y) → (x0, y0). Conversely, μB(x0, d(x0, y0) −
R(x, y)) ≤ g(x, y) gives g(x0, y0) ≤ lim inf g(x, y), as (x, y) → (x0, y0), by Eq. 3.6. This
proves Lemma 3.2.

When (X, d, μ) is the Euclidean space Rn with Lebesgue measure and K(r) = r−α/n,
0 < α < n, we recover the usual Riesz kernel K ◦μ(x, y) = cn · |x − y|−α , c.f. [3]. We use
standard notation for measures and integrals. M(X) denotes the class of Borel measures ν

on a X, with finite mass on bounded sets, and M+(X) is the subclass of positive measures. If
E is a Borel set M(E) is the class of ν ∈ M(X) that are concentrated on E and analogously
for M+(E). The closed support and total variation of a measure ν in M(X) are denoted
by supp(ν) and ||ν||1, respectively. The class of all continuous functions on a set E is
denoted by C(E). Various constants, that may vary from one instance to another, are written
C, C1, C2, . . . .

4 Some Potential Theory

The potential theory for the Riesz kernel |x|ρ−n, 0 < ρ < n, in Rn has a long history that
goes back at least to O. Frostman’s thesis [10] from 1935. For its later development see for
example N. S. Landkof’s classical treatment [15], J. L. Doob [7], L. Carleson [3] and D. R.
Adams, L-I Hedberg [1]. B. Fuglede [9] developed a potential theory in a locally compact
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Hausdorff space in the 1960’s. For the more recent harmonic analysis and potential theory
in abstract spaces, see D. Deng, Y Han [6] and A. Björn, J. Björn [2] and the references
contained there. Continuity properties of potentials on homogeneous spaces were studied in
[11].

Let (X, d, μ) be a complete homogeneous space of order γ , 0 < γ < 1, let k(x, y) be
any kernel and define the k−potential Uν

k of a measure ν ∈ M+(X) by Eq. 1.1. We define
the k−energy Ik(ν) of ν by

Ik(ν) =
∫

Uν
k (x) dν(x) =

∫ ∫
k(x, y) dν(x) dν(y)

and the k−capacity of a compact set K is defined by

Ck(K)−1 = inf{Ik(ν); ν ∈ M+(K) and ||ν||1 = 1}.
For an arbitrary set A we define the inner capacity Ck(A) and outer capacity Ck(A) by
Ck(A) = sup{Ck(K);K ⊂ A} and Ck(A) = inf{Ck(G);A ⊂ G}, where G and K denote
open and compact sets, respectively. A set A is called capacitable if Ck(A) = Ck(A).
This common value is (with a slight abuse of notation) also denoted by Ck(A). Open
and compact sets are capacitable and we have Ck(A) = sup{Ck(K);K ⊂ A} and
Ck(A) = inf{Ck(G);A ⊂ G}, for arbitrary sets A. A relation which holds except in a set
with Ck−capacity zero is said to hold Ck−quasi everywhere (Ck−q.e.) and analogously for
Ck and Ck , see [9] Ch. I. Clearly, Ck(K) > 0 if and only if there exists a nonzero measure
ν ∈ M+(K) with ||ν||1 < ∞ and finite energy Ik(ν). The following basic existence theo-
rem for the capacitary measure and the capacitary potential of a compact set K is proved in
[9], Theorem 2.4.

Theorem 4.1 Let (X, d, μ) be a complete homogeneous space of order γ , 0 < γ < 1, and
let k(x, y) be a kernel. Then for every compact subset K of X with Ck(K) > 0 there exists
ν = νK ∈ M+(K) such that

Ik(ν) = Ck(K)−1 and ||ν||1 = 1, (4.1)

Uν
k (x) ≥ Ck(K)−1, Ck − q.e. x ∈ K, (4.2)

Uν
k (x) ≤ Ck(K)−1, x ∈ supp(ν). (4.3)

The measure ν = νK and the potential Uν
k in Theorem 4.1 are called the capacitary measure

and the capacitary potential for K , respectively. In the case of the kernels K ◦ μ, potentials,
energies and capacities are denoted by Uν

K , IK(ν) and CK , respectively.
As in the Euclidean case, we need some basic compatibility between the capacity Ck and

the doubling measure μ, see [21], p. 56. More exactly, we want the following to hold:

Ck({x}) = 0, for all x ∈ X, (4.4)

K a compact subset of X and μ(K) > 0 implies that Ck(K) > 0. (4.5)

We show below that Eqs. 4.4 and 4.5 hold for the kernel K ◦ μ if K(r) satisfies

lim
r→0+ K(r) = ∞ and

1∫

0

K(r) dr < ∞, (4.6)

using the following technical lemma.
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Lemma 4.1 Let (X, d, μ) be a homogeneous space satisfying (DC) and let K ◦ μ be a
doubling kernel. Then

∫

d(y,x)≤r

K ◦ μ(x, y) dμ(y) ∼
μB(x,r)∫

0

K(t) dt, x ∈ X, r > 0,

with constants only depending on the doubling constants for μ and K(r) and the constants
A, N in the definition of (DC).

Proof Fix any x ∈ X, r > 0, let N ≥ 2 be the constant in (DC) and define circular sets

Eν = {y; N−ν · r < d(y, x) ≤ N1−ν · r}, ν integer.

Then μEν ∼ μB(x,N1−νr) and for the integral in the left hand side of Eq. 4.2 we get
∞∑

ν=1

∫

Eν

K ◦ μ(x, y) dμ(y) ∼
∞∑

ν=1

K(μB(x,N−ν · r)) · μB(x,N1−ν · r).

Put bν = μB(x,N−ν · r), then for the integral on the right hand side of Eq. 4.2 we have

∞∑
ν=1

bν−1∫

bν

K(t) dt ∼
∞∑

ν=1

K(μB(x, N1−ν · r)) · (μB(x,N1−ν · r)) − μB(x,N−ν · r))

∼
∞∑

ν=1

K(μB(x,N−ν · r)) · μB(x,N1−ν · r),

with constants depending on the doubling constants of μ and K(r) and the constants A, N

in (DC).

Lemma 4.2 Let (X, d, μ) be a homogeneous space satisfying (DC) and let K ◦ μ be a
doubling kernel, where K(r) satisfies (4.6). Then Eqs. 4.4 and 4.5 hold.

Proof The Dirac measure δx at x has infinite energy by Eq. 4.6, which implies that
CK({x}) = 0, x ∈ X. To prove Eq. 4.5 we let K be a compact set with μ(K) > 0 and
let ν be the restriction of μ to K . If we show that UKν is bounded it follows that IK(ν)

is finite and hence CK(K) > 0. It is sufficient to consider the case K = B(x0, r0). If
d(x, x0) ≤ 4 · K2 · r0 we have

Uν
K(x) ≤

∫

B(x,5K3r0)

K ◦ μ(x, y) dμ(y) ≤ C ·
μ(K)∫

0

K(t) dt,

by Lemma 4.1. When d(x, x0) > 4 · K2 · r0 we get Uν
K(x) ≤ K(μ(K)) · μ(K), which

completes the proof of Lemma 4.2.

We will also need the following standard maximum principle, c.f. [3], § III, Theorem 1.

Lemma 4.3 Let (X, d, μ) be a homogeneous space and let K ◦ μ be a doubling kernel. If
F is closed and ν ∈ M+(F ) then

sup
x∈X

Uν
K(x) ≤ C · sup

x∈F

Uν
K(x),
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where C depends on the doubling constants of μ and K(r).

Proof Let x ∈ X \ F and let d be the distance between x and F . Take x0 ∈ F such that
d(x, x0) ≤ 2d then 2 · d(y, x) ≥ d(x, x0), for all y ∈ F , and

Uν
K(x) =

∫
K ◦ μ(x, y) dν(y) ≤ C ·

∫
K ◦ μ(x0, y)) dν(y) = C · Uν

K(x0),

where C depends on the doubling constants of μ and K(r).

The capacitary potential Uν
k of a compact set K has a lower bound Ck−q.e. in K (Theorem

4.1). In the classical case this lower bound holds everywhere in K , provided that K satisfies
a cone condition, c.f. [3], Sec. III, Theorem 3. We next use the same idea to get a lower
bound for Uν

k (x) in the interiour points of K also in the present case, see also [1] Proposition
2.6.7.

Lemma 4.4 Let (X, d, μ) be a homogeneous space of order γ , 0 < γ < 1, satisfying (DC)
and let K ◦ μ be a doubling kernel. Let K be a compact set with nonempty interiour Ko

and capacitary measure ν. Then

Uν
K(x) ≥ m · CK(K)−1, x ∈ Ko,

where 0 < m < 1 depends on the doubling constants of μ and K(r).

Proof The exceptional set in (4.2) is a Fσ set E such that CK(K) = 0 and hence μ(K) = 0,
for all compact subsets of E, by Lemma 4.2. Thus (4.2) holds μ−a.e. by the regularity of
μ. Define

q(z, x) = K ◦ μ(z, x)∫
0<d(w,x)<d(z,x)

K ◦ μ(w, x) dμ(w)
,

for 0 < a < d(z, x) < b, and q(z, x) = 0 elsewhere, c.f. [3], Sec. III. For every b > 0 there
is 0 < a < b such that 1 ≤ ∫

q(z, x) dμ(z) ≤ C, where C only depends on μ and K(r). To
see this we note that

∫
q(z, x) dμ(z) > 1, if a is small enough, and

∫
q(z, x) dμ(z) ≤ C, if

a = b/N and N is the number in (DC).
Assume that B(x, b) ⊂ Ko, then we get

CK(G)−1 ≤
∫

Uν
K(z) · q(z, x) dμ(z) =

∫
dν(y)

∫
K ◦ μ(z, y) · q(z, x) dμ(z).

Denote the inner integral by I (x, y). It is enough to show that I (x, y) ≤ C · K ◦ μ(x, y).
Fix any y 	= x. If d(z, x) ≤ 2Kd(z, y) then K ◦ μ(z, y) ≤ C · K ◦ μ(x, y) by the
doubling property of k. Otherwise, d(z, y) < d(z, x)/2K which implies that d(x, y)/2K ≤
d(z, x) ≤ 2Kd(x, y) and I (x, y) ≤ C · K ◦ μ(x, y), by Lemma 4.1.

By Lemma 4.4 and 4.5 the capacitary potential of a compact set with positive capacity
and interiour points is approximately constant on that set. We will sharpen this result and
construct continuous potentials with suitable properties. The key step to do this is the fol-
lowing construction of an approximate identity q(z, x) x ∈ X, acting uniformly in x ∈ X,
inspired by the proof of [3], Theorem 3. We will need the following property on K(r),

1

r
·

r∫

0

K(t) dt ≤ C · K(r), r > 0, (4.7)
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for some positive constant C, c.f. [C], Section IV. The converse inequality holds trivially.

Lemma 4.5 Let (X, d, μ) be a homogeneous space satisfying (DC) and let K ◦ μ be a
doubling kernel, where K(r) satisfies (4.7). Define q(z, x) as in Lemma 4.4 with a = b/N ,
where b > 0 and N is the constant in (DC). Then

q(z, x) ∼ μB(x, b)−1 and
∫

q(z, x) dμ(z) ∼ 1,

for b/N < d(z, x) < b, with constants that only depend on the doubling constants of μ and
K(r).

Proof Let b > 0, b/N < d(z, x) < b and define d = d(z, x). Then

q(z, x) ∼ K ◦ μ(z, x) ·
⎛
⎜⎝

μB(x,d)∫

0

K(t) dt

⎞
⎟⎠

−1

∼

∼ K ◦ μ(z, x) · μB(x, d)−1 · K(μB(x, d))−1 ∼ μB(x, b)−1

by Lemma 4.1, (4,7) and the doubling properties of μ and K(r). This proves the lemma.

We are now ready to construct the potentials that will be our building blocks in the proof of
Theorem 2.1, c.f. [21], p. 58 and [12], Lemma 1. We do this in three steps. In the first step
(Lemma 4.6) we construct a measure ν with arbitrary small total mass ||ν||1 and support
in an arbitrary neighbourhood of a compact set K with CK(K) = 0, such that Uν

K(x) is
approximately constant near K . In the second step (Lemma 4.7) we use a smoothing method
built on the function q(z, x) in Lemma 4.5 to get a continuous potential with these properties
and construct the approximating potentials in the third step (Lemma 4.8).

Lemma 4.6 Let (X, d, μ) be a complete homogeneous space of order γ , 0 < γ < 1, and
let K ◦ ϕ be a doubling kernel. Let K ⊂ X be a compact set with CK(K) = 0, G an
open set containing K , a > 0 and δ > 0, Then there is ν ∈ M+(X) such that ||ν||1 < δ,
supp(ν) ⊂ G, Uν

K(x) ≥ a, x ∈ K and Uν
K(x) ≤ D · a, x ∈ X, where D only depends on

μ and K(r).

Proof By the outer regularity of CK we can choose a finite union V of open balls such that
K ⊂ V , V ⊂ G and CK(V ) = t arbitrarily small. Let ν1 be the capacitary measure of V .
Then U

ν1
K (x) ≥ m/t , x ∈ V , by Lemma 4.4 and U

ν1
K (x) ≤ C/t , x ∈ X, by Lemma 4.3.

Define ν = a · t/m · ν1. Then U
ν1
K (x) ≥ a, x ∈ V , U

ν1
K (x) ≤ Ca/m = D · a, x ∈ X,

supp(ν) ⊂ G and ||ν||1 = at/m < δ, provided 0 < t < δm/a.

Lemma 4.7 Let (X, d, μ), K ◦ μ, K , G, a > 0 and δ > 0 be as in Lemma 4.6. Further,
assume that μ satisfies (3.7) and that K(r) satisfies (4.7). Then there is σ ∈ M+(X),
absolutely continuous with respect to μ, such that Uσ

K is continuous in X and σ has the
same properties as ν in Lemma 4.6, possibly with another constant D.

Proof Let K , G, a and δ be as in Lemma 4.7. For every t > 0 there are open sets W and
V such that K ⊂ W ⊂ V ⊂ G, W ⊂ V , V ⊂ G, V is a finite union of open balls and the
measure ν constructed for V in Lemma 4.6 satisfies ||ν||1 < t . There is b0 > 0 such that
B(w, b0) ⊂ V , for all w ∈ W . Define g(z) = ∫

q(z, x) dν(x) and dσ(z) = g(z) dμ(z),
where q(z, x) is the function in the proof of Lemma 4.5 with 0 < b < b0. Then σ is
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absolutely continuous with respect to μ and ||σ ||1 = ||g||1 ≤ C · ||ν||1 < C · t < δ by
Lemma 4.5, if t is small enough. Further, Uσ

K(x) ≥ a, x ∈ K , and Uσ
K(x) ≤ C ·D·a = D1 ·a

in X. The continuity of Uσ
K in X follows from the continuity of the kernel K ◦ μ.

The following lemma constructs the approximating potentials, c.f. [21] and [12], Lemma
2. The standard net of dyadic cubes in Rn will here be replaced by the dyadic sets in [4],
Theorem 2. See also [13] and [14] for similar constructions.

Lemma 4.8 Let (X, d, μ) be a complete homogeneous space of order γ , 0 < γ < 1,
satisfying (DC) and letK◦μ be a doubling kernel and assume thatμ satisfies (3.7). LetK be
a compact set contained in the interiour of a closed ball S and let f be a positiv continuous
function on S. Then for every open set G containing K and every ε > 0 there is a measure
σ ∈ M+(X), absolutely continuous with respect to μ, such that Uσ

K is continuous in X,

(a) Uσ
K(x) < f (x), x ∈ S b) Uσ

K(x) > f (x) − ε, x ∈ K, (4.8)

and supp(σ) ⊂ G, ||σ ||1 < ε.

Proof We will use the standard collection of dyadic sets from [4], Theorem 11. For every
k ∈ Z, Ik is an index set and Dk is a collection of open sets (called dyadic cubes in the
following) Bk

α , α ∈ Ik , in X with the following properties:

(a) μ(X \ ⋃
α

Bk
α) = 0, for every k ∈ Z,

(b) If l ≥ k then either Bl
β ⊂ Bk

α or Bl
β

⋂
Bk

α = φ,

(c) For each (k, α) and l < k there is a unique β such that Bk
α ⊂ Bl

β ,

(d) Diameter of Bk
α is at most C · δk ,

(e)
⋃
α

B
k

α = X, for every k ∈ Z.

Here 0 < δ < 1 and C > 0 are constants only depending on K and M in Section 3. Cubes
in Dk are called cubes of generation k. If Bk+1

β ⊂ Bk
α we say that Bk+1

β is a child of Bk
α

and Bk
α is a parent of Bk+1

β . Cubes in Dl are called ancestors or descendents of cubes in Dk ,
depending on if l < k or l > k. Each cube has at least one child and at most a fixed number
of childs, depending on K , M and δ. Two cubes B1 and B2 in Dk are called neighbours if
B1

⋂
B2 	= φ. There exists a positive integer L such that any dyadic cube in Dk has at most

L neighbours.
Let f be a positive and continuous function on S and let ε > 0 be arbitrary. Put ε1 =

ε/M , where M = L · D + 4 and D is the constant in Lemma 4.7. Take k ∈ Z such that the

oscillation of f is less than ε1 for all cubes B
k

α that intersect S and choose δ > 0 such that
f (x) ≥ δ on all such cubes. Let B denote the collection of these cubes. We divide B into
three subclasses. Let

B1 =
{
B ∈ B; sup

B

f (x) > ε

}
,

B2 = {B ∈ B; B /∈ B1 but B has a neighbour in B1}
and B3 = B \ (B1

⋃B2). If B1 is empty then σ = 0 has the properties in the lemma and we
are done. Otherwise, let B1 = {B1, B2, . . . , Bs} and take Bi ∈ B1. Since CK(Bi ∩ K) = 0
there is νi ∈ M+(X), absolutely continuous with respect to μ, such that U

νi

K (x) ≥ ε1 on
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Bi ∩K , Uνi

K (x) ≤ D · ε1 in X, Uνi

K is continuous in X, supp(νi) ⊂ G and ||νi ||1 is arbitrary
small. We can further choose νi such that

U
νi

K (x) < min(δ/2s, εi/s),

on every cube in B that is not a neighbour of Bi , since all such cubes have a positive distance
to Bi . Finally we assume that ||νi ||1 < ε/2s.

Now define τ1 =
s∑

i=1
νi and consider the potential U

τ1
K . Clearly, U

τ1
K (x) is continuous in

X, supp(τ1) ⊂ G and ||τ1||1 < ε/2. It remains to compare U
τ1
K (x) and f (x) and we begin

with the upper bound for U
τ1
K (x). If x belongs to a cube in B1 or B2 we have

f (x) > ε − 2ε1 = (LD + 2)ε1 and U
τ1
K (x) < LDε1 + ε1 = (LD + 1)ε1,

since any cube in B has at most L neighbours in B1. On the other hand, if x belongs to a
cube in B3 then

f (x) > δ and U
τ1
K (x) < s · δ/2s = δ/2.

We get the upper bound U
τ1
K (x) < f (x) in both cases.

Now we turn to the lower bound of U
τi

K (x) on K . If x belongs to Bi ∩K , 1 ≤ i ≤ s, then
U

τi

K (x) ≥ ε1 and if x belongs to a cube B in B \ B1 then f (x) ≤ ε = M · ε1, which gives
U

τi

K (x) > f (x) − ε ≥ min(f (x) − ε, ε1). Summing up, we have proved that

U
τ1
K (x) < f (x), x ∈ S, and U

τ1
K (x) > min(f (x) − ε, ε1), x ∈ K.

If τ1 satisfies (4.8) we stop and put σ = τ1. Otherwise we repeat the construction above
with f (x) replaced by f (x) − U

τ1
K (x). This gives τ2 ∈ M+(X), absolutely continous with

respect to μ, such that supp(τ2) ⊂ G, ||τ2||1 < ε/4, U
τ2
K (x) is continuous in X and

U
τ2
K (x) < f (x) − U

τ1
K (x), x ∈ S,

U
τ2
K (x) > min(f (x) − U

τ1
K (x) − ε, ε1), x ∈ K.

It follows that

U
τ1+τ2
K (x) < f (x), x ∈ S and U

τ1+τ2
K (x) > min(f (x) − ε, 2ε1), x ∈ K.

If τ1 + τ2 satisfies (4.8) we stop and put σ = τ1 + τ2. Otherwise we repeat the construction
such that supp(τk) ⊂ G and ||τk||1 < ε/2k in step k. Put N = sup{f (x); x ∈ S} and let
n be the smallest positive integer such that n · ε1 > N . If the construction has not stopped

before the n−th step we define σ =
n∑

i=1
τi . Then supp(σ) ⊂ G, ||σ ||1 < ε,

Uσ
K(x) < f (x), x ∈ S and Uσ

K(x) > min(f (x) − ε, nε1) = f (x) − ε, x ∈ K,

and σ satisfies (4.8) by the construction.

We conclude this section with a technical lemma, c.f. [12], Lemma 3. It states roughly that
the potential of μD (the restriction of μ to D) is uniformly small in X, if only μ(D) is small
enough, and makes it possible to construct measures with disjoint support in the proof of
Theorem 2.1.

Lemma 4.9 Let (X, d, μ) be a homogeneous space satisfying (DC) and let K ◦ μ be a
doubling kernel. Then for every ε > 0 there is δ > 0 such that if D is μ−measurable and
μ(D) < δ then ∫

D

K ◦ μ(x, y) dμ(y) < ε, for all x ∈ X.
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Proof Let μ(D) = q. For every q > 0 there is Q > 0 such that K(r) < 1/
√

q, for r ≥ Q.
Let x ∈ X and consider∫

D

K ◦ μ(x, y) dμ(y) =
∫

D
⋂

B(x,R)

+
∫

D\B(x,R)

= I + II.

Define R = R(q, x) = sup{r;μB(x, r)} ≤ Q}, then I is at most a constant times
Q∫
0

K(t) dt , by Lemma 4.1, and II ≤ ∫
D

K(B(x,R)) dμ(y) ≤ K(Q) · μ(D) ≤ √
q. The

lemma now follows, since q → 0 implies Q → 0 and K(t) satisfies (4.6).

5 Proof of Theorem 2.1

Let K be a compact set with CK(K) = 0. We are going to define the measure σ ∈ M(X) in

Theorem 2.1 as a sum σ =
∞∑
i=0

σi of measures with disjoint support, where each measure σi

is constructed as in Lemma 4.8. Let S be a fixed closed ball containing K in its interior. The
space C(S) of continuous and real valued functions on S with supremum norm is separable
[x.x]. Let {φi(x)}∞i=1 be a sequence of positive functions in C(S) such that for every positive
continuous function f (x) in C(S) there is a subsequence {φij (x)}∞1 that satisfies φij (x) <

f (x), x ∈ S, and {φij (x)}∞1 converges uniformly to f (x) on S, as j → ∞. Define a new
sequence {fi}∞1 by f1 = φ1, f2 = φ2, f3 = φ1, f4 = φ2, f5 = φ3, f6 = φ1 and so
on, where every φi appears infinitely often. Now we use Lemma 4.8 to construct measures
σi ∈ M+(X), i ≥ 1, absolutely continuous with respect to μ, such that

supp(σi) ⊂ G and ||σi ||1 < ε/2i , (5.1)

supp(σi) ∩ K = φ and supp(σi) ∩ supp(σj ) = φ, i 	= j, (5.2)

U
σi

K (x) < fi(x), x ∈ S and U
σi

K (x) > fi(x) − 1/2i , x ∈ K. (5.3)

The construction is done step by step. Since Eqs. 5.1 and 5.3 follow directly from Lemma
4.8 it is sufficient to describe how to get Eq. 5.2. Assume that σ1, σ2, . . . , σk have been
defined such that Eq. 5.2 holds for 1 ≤ i, j ≤ k. There is an open set V containing K

that does not intersect supp(σi), 1 ≤ i ≤ k. Find σ0 by Lemma 4.8 such that Eqs. 5.1
and 5.3 hold and supp(σ0) ⊂ V . Put dσ0 = g0 dμ, where g0 ≥ 0, supp(g0) ⊂ V and∫

g0 dμ < ε/2k+1. Let W be another open set with K ⊂ W ⊂ V and let g1 be the restriction

of g0 to W . Then the potential U
g1 dμ
K (x) can be made arbitrarily small in X by taking μW

small enough, by Lemma 4.9, since g1 is bounded. This is possible, since CK(K) = 0
implies μ(K) = 0 by Lemma 4.2. Now define dσk+1 = (g0 − g1)dμ, then we can make
σk+1 satisfy (5.1)–(5.3). We can also choose (σi)

∞
1 such that the distance between supp(σi)

and K tends to zero as i → ∞.

Define σ =
∞∑
i=1

σi , then σ is absolutely continuous with respect to μ, supp(σ) ⊂ G and

||σ1||1 < ε, which proves (a). The potential Uσ
K(x) is finite outside K by our construction. If

x ∈ K we choose f (x) = N + 1 and fi(x) > N on K . Then Uσ
K(x) ≥ U

σi

K (x) > N − 2−i ,
x ∈ K . Letting N → ∞ gives that Uσ

K(x) = ∞, x ∈ K , which proves (b).
Let F(x) be a positive and upper semicontinuous function in a neighbourhood of K .

Then there are positive continuous functions {ψi}∞1 such that F(x) =
∞∑
i=1

ψi(x). Choose
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fn1(x) such that ψ1(x)−2−1 < fn1(x) < ψ1(x), x ∈ S, and consider the potential U
σn1
K (x).

Put g1(x) = ψ1(x) and g2(x) = ψ1(x) + ψ2(x) − U
σn1
K (x). Now choose fn2(x), n2 > n1,

such that
g2(x) − 2−2 < fn2(x) < g2(x), x ∈ S,

and consider the potential U
σn2
K (x). Put g3(x) = ψ1(x)+ψ2(x)+ψ3(x)−U

σn1
K (x)−U

σn2
K (x)

and continue this process. After k steps we have measures σn1 , σn2 , . . . , σnk
such that

U
σn1
K (x) + · · · + U

σnk

K (x) < ψ1(x) + · · · + ψk(x), x ∈ S, (5.4)

and

ψ1(x) + · · · + ψk(x) − 2−k − 2−nk < U
σn1
K (x) + · · · + U

σnk

K (x), x ∈ K. (5.5)

Define σf =
∞∑
i=1

σni
, then σf is absolutely continuous with respect to μ and U

σf

K (x) =
∞∑
i=1

U
σni

K (x). It follows from Eqs. 5.4 and 5.5 and the definition of F(x) that U
σf

K (x) ≤
F(x), x ∈ S, and U

σf

K (x) = f (x), x ∈ K . Also, U
σf

K (x) is continuous outside K by the
construction of σ . It remains to prove that U

σf

K (x) is continuous in X if f ∈ C(K). Let
x0 ∈ K then

lim inf
x→x0

U
σf

K (x) ≥ U
σf

K (x0) = F(x0) = f (x0),

since U
σf

K is lower semicontinuous, and

lim sup
x→x0

U
σf

K (x) ≤ lim sup
x→x0

F(x) = F(x0) = f (x0).

Hence U
σf

K is continuous also in K . This proves (c) and completes the proof of
Theorem 2.1.

6 Proof of Theorem 2.2

We show that if a compact set K has positive capacity CK(K), then there is f ∈ C(K)

that is not the restriction to K of a continuous potential Uν
K for any ν ∈ M+(X). Our proof

follows the idea in [21], Theorem 2. The main part of the proof is done in Lemma 6.1 and
Lemma 6.2, that correspond to Lemma 2 and Lemma 3 in [21], respectively. The proof
of Lemma 6.1 is fairly straight forward. To prove Lemma 6.2 we use recent results of T.
Hyvönen, H. Martikainen [14] and T. Hyvönen, H. Kairema [13] for classes of dyadic nets
in homogeneous spaces.

Lemma 6.1 Let K(r) and K0(r), r > 0, be positive, continuous and nonincreasing
functions such that lim

r→0
K(r) = lim

r→0
K0(r) = ∞ and

lim
r→0

K0(r)/K(r) = ∞
and let S be a closed ball with radius R. Then there exists a positive function t (r), r > 0,
with lim

t→0
t (r) = 0, depending on K(r),K0(r) and μ, such that if ν ∈ M+(X) has support

in S, ||ν||1 ≤ M1 and Uν
K0

(xi) ≤ M2, xi ∈ S, i = 1, 2, then

|Uν
K(x1) − Uν

K(x2)| ≤ (M1 + M2) · t (d(x1, x2)).
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Proof Let x1, x2 ∈ S be as in the lemma and put r0 = d(x1, x2). Define E = B(x1, r0 +
r1) ∪ B(x2, r0 + r1), where r1 > 0 will be defined below. Then

Uν
K(x1) − Uν

K(x2) =
∫

S

(
K ◦ μ(x1, y) − K ◦ μ(x2, y)

)
dν(y) =

∫

E

+
∫

S\E
= I + II.

Define t1(r) = K(r)/K0(r), r > 0, then t1(r) → 0, as r → 0, and

|I | ≤
∫

E

(
K ◦ μ(x1, y) + K ◦ μ(x2, y)

)
dν(y) ≤

≤ M2 · sup
y∈E

(
t1(ϕ(x1, y) + t1(ϕ(x2, y)

) ≤ 2 · M2 · sup
0≤r≤2Kg(r0+r1)

t1(r),

where ϕ(x, y) = μB(x, d(x, y)) + μB(y, d(x, y)) and g is the function in Lemma 3.1.
Next we turn to the term II and note that, by Eq. 3.4 and set inclusion, ϕ(x1, y) is greater

than or equal to

μB(x2, d(x2, y) − C1 · d(x1, x2)
γ ) + μB(y, d(x2, y) − C1 · d(x1, x2)

γ )

≥ ϕ(x2, y) − 2 · g(C1 · d(x1, x2)
γ ),

which gives

II ≤
∫

S\E

[
K

(
ϕ(x2, y) − 2 · g(C1 · d(x1, x2))

γ
) − K

(
ϕ(x2, y)

)]
dν(y).

Now ϕ(x2, y) ≥ C2 · μ(S) · R−α · (r0 + r1)
α ≥ C2 · μ(S) · R−α · rα

1 by Eq. 3.3 and

ϕ(x2, y) − 2 · g(C1 · d(x1, x2))
γ ≥ 1

2
· C2 · μ(S) · R−α · rα

1 ,

since we, without loss of generality, may assume that r1 >> r0. As in [21], p. 63, there is a
function t2(r), r > 0, such that t2(r) → 0, as r → 0, and

K(r) − K(r + ρ) ≤ t2(η), for r ≥ t2(η) and 0 ≤ ρ ≤ η.

Now put

η = 2 · g(C1 · r
γ

0 ) and
1

2
· C2 · μ(S) · R−α · rα

1 = t2(η),

which defines r1 = t3(r0) such that t3(r) → 0, as r → 0, then II ≤ M1 · 1
2 ·C2 ·μ(S) ·R−α ·

t3(r0)
α . Interchanging the roles of x1 and x2 combined with the estimate above for I gives

|Uν
K(x1) − Uν

K(x2)| ≤
≤ 4M2 · sup

0≤r≤r0+t3(r0)

t1(r) + M1 · 1

2
· C2 · μ(S) · R−α · t3(r0)

α ≤ (M1 + M2) · t (r0),

where t (r) → 0, as r → 0. Clearly, t (r) only depends on K(r), K0(r), μ and S. Lemma
6.1 is proved.

In our last lemma we construct, given a nonatomic measure ν and a function t�(r) → 0,
as r → 0, a continuous function with a bad continuity property outside every set with
sufficiently small ν−measure. The novelty in the proof is the construction in [14] and [13]
of dyadic nets D in a homogeneous space having the property that, for a given measure ν,
ν(∂B) = 0 for every B in D, [13], Corollary 6.4. The construction of such dyadic nets is
done with a probabilistic method as well as with a deterministic method. The corresponding
problem in [21] Lemma 3 was solved by induction over the dimension of the space Rn,
which is clearly not applicable here.
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Lemma 6.2 Let (X, d, μ) be a homogeneous space of order γ , 0 < γ < 1, and let ν ∈
M+(X) be a nonatomic measure with support in a compact K . Let t�(r), r > 0, be a
positive and nondecreasing function such that t�(r) → 0, as r → 0. Then there is f ∈
C(K) such that for every sufficiently small ε > 0 and every Borel set E with ν(E) < ε

there are points x1 and x2 in K \ E with d(x1, x2) arbitrary small and such that

|f (x1) − f (x2)| ≥ t�(d(x1, x2)).

Proof Let ν ∈ M+(X) have support in a compact set K contained in the interiour of a
closed ball S. By [13], Corollary 6.4 there exists a dyadic net D in X, with the properties
(a)–(e) in the proof of Lemma 4.8, such that ν(∂B) = 0 for every B in D. Without loss of
generality we may assume that every dyadic cube in Dk contains at least two cubes from
Dk+1. We follow the proof in [21], Lemma 3 and use two sequences {ai}∞1 and {bi}∞1 of

positive numbers to construct the function f (x) =
∞∑
i=1

fi(x) in the lemma. Let i ≥ 1 be

fixed and cover K with closed dyadic cubes from D with diameter less than ai . Let Bij ,
1 ≤ j ≤ ni , denote the cubes with ν(K

⋃
Bij ) > 0 and fix any such cube Bij . We

now divide Bij into a class E = {E1, E2, . . . , Ep} of closed dyadic subcubes, of different
sizes, that covers K

⋂
Bij and satisfies 0 < ν(K

⋂
El) < ν(Bij )/4, 1 ≤ l ≤ p. This is

possible since Bij has infinitely many childs and ν has no atoms. Divide E into two disjoint
subclasses E1 and E2 such that the sum

∑
ν(El) over each of the classes E1 and E2 lies

between ν(Bij )/4 and 3ν(Bij )/4. For each cube El there is an open set �l containing ∂El

such that El \ �l has a positive distance to ∂El and

ν(K ∩ Bij )/4 <
∑
Ei

ν(K
⋂

(El \ �l)) < 3 · ν(K
⋂

Bij )/4, i = 1, 2.

If we define �ij = ⋃
l

�l and � = ⋃
i,j

�l we can choose �l such that ν(�) < η, for any

given η > 0.
Now define fi(x) on Bij , 1 ≤ j ≤ ni , by fi(x) = 2 · t�(ai), x ∈ El \ �l , when El ∈ E1

and fi(x) = 0, x ∈ El \ �l , when El ∈ E2, and extend fi(x) to a continuous function in
S such that 0 ≤ fi(x) ≤ 2 · t�(ai), x ∈ S. It remains to prove that f (x) = ∑

fi(x) has
the desired properties. Clearly, f is continuous of S, if the sequence (ai)

∞
1 is choosen small

enough. Define bij as the minimal distance between Ek\�k and 	= l, and bi = min{bij , 1 ≤
j ≤ ni}. Let xi ∈ El \ �, for El ∈ E1 and x′

i ∈ El \ �, for El ∈ E2, then

|fi(xi) − fi(yi)| = 2 · t�(ai) ≥ 2 · t�(d(xi, yi) and bi ≤ d(xi, yi) ≤ ai .

Now assume, without loss of generality, that ai+1 < bi, i = 1, 2, . . . to get fj (xi) −
fj (yi) = 0, j < i, and |fj (xi) − fj (yi)| ≤ 4 · t�(ai), j > i. This gives

|f (xi) − f (yi)| ≥ t�(d(xi, yi) ·
⎛
⎝2 − 4 · t�(bi)

−1 ·
∑
j>i

t�(aj )

⎞
⎠ ≥ t�(d(xi, yi)),

if only
∑
j>i

t�(aj ) < t�(bi)/4, i = 1, 2, . . . , which holds if (ai)
∞
1 is choosen small enough.

We finish the proof by showing that we can find such pairs xi, yi , with d(xi, yi) arbitraly
small, outside any Borel set with sufficiently small measure. More exactly we show that
if ε > 0 is small enough then for any Borel set E ⊂ K with ν(E) < ε and for every

i = 1, 2, . . . there are xi and yi in

(
ni⋃

j=1
Bij

⋂
K

)
\ (�

⋃
E) belonging to different cubes
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Ek ∈ E1 and El ∈ E2. This implies |f (xi) − f (yi)| ≥ t�(d(xi, yi)) and the lemma follows.
Assume to the contrary that there is i ≥ 1 such that for every 1 ≤ j ≤ ni the set (Bij

⋂
K)\

(�
⋃

E) does not contain such a pair xi , yi . Then either all sets K
⋂

(Ek \ �k), Ek ∈ E1
or all sets K

⋂
(El \ �l), El ∈ E2, are contained in E

⋃
�. In the first case we get for each

such j

1

4
· ν(Bij

⋂
K) ≤

∑
Ek∈Bij

ν(K
⋂

(Ek \ �k)) < ν(Bij

⋂
(E

⋃
�)).

Summing over 1 ≤ j ≤ ni then gives ν(K)/4 < ν(E
⋃

�) < ε + η, which is a contradic-
tion if ε < ν(K)/4 and η is small enough. The second case is handled in the same way. The
proof of Lemma 6.2 is complete.

Proof of Theorem 2.2 Let K be a compact set with CK(K) > 0, then there is ν ∈ M+(K)

such that ||ν||1 = 1 and

IK(ν) =
∫ ∫

K ◦ μ(x, y) dν(x) dν(y) < ∞.

A standard argument proves that there is K0(r), r > 0, with the same properties as K(r),
such that IK0(ν) < ∞ and K0(r)/K(r) → ∞, as r → 0. Then also CK0(K) > 0. Let
σ ∈ M+(X) be a measure with ||σ ||1 = M1 finite, then Uσ

K0
(x) < ∞ except in a set of

CK0
−capacity zero. It follows that Uσ

K0
(x) is finite ν−a.e., since IK0(ν) < ∞, c.f. [15] Ch.

III. Let t (r), r > 0, be the function constructed in Lemma 6.1 and choose t�(r), r > 0, such
that t�(r)/t (r) → ∞, as r → 0. Define E = {x;Uσ

K0
(x) > M2}, then by Lemma 6.1

|Uσ
K(x) − Uσ

K(y)| ≤ (M1 + M2) · t (d(x, y)),

for x, y in K \ E. Let ε > 0 and choose M2 such that ν(E) < ε. Then there are arbitrarily
close points x and y in K \ E such that

|f (x) − f (y)| ≥ t�(d(x, y)),

provided only ε > 0 is small enough, by Lemma 6.2. We conclude that there is no such
measure σ for which f (x) and Uσ

K(x) coincide everywhere on K and Theorem 2.2 is
proved.
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