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Abstract The classical Riesz Decomposition Theorem is a powerful tool describing super-
harmonic functions on compact subsets of R

n. There is also the global version of this
result dealing with functions superharmonic in R

n and satisfying an additional condi-
tion. Recently, a generalization of this result for superbiharmonic functions in R

n was
obtained by (J. Anal. Math. 60, 113–133 2006). We consider its further generalization for
m-superharmonic functions.
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1 Introduction and Main Results

Subharmonic and superharmonic functions are very important classes of functions since
they enjoy many properties of harmonic functions, but unlike the latter, they are more flexi-
ble. There are several equivalent definitions of a superharmonic function on an open subset
� ⊂ R

n (see, e.g., [5, Ch. 2], [1, Ch. 3], [7, Ch. III]). The class of subharmonic functions in
� is denoted by S (�). For superharmonic functions, we use SH (�).

Let us note that if s ∈ C2 (�), then it is subharmonic if and only if its Laplacian �s is
non-negative in �. Moreover, for an arbitrary s ∈ S (�), and an open subset ω such that
ω ⊂ �, there exists a decreasing sequence of functions sn ∈ S(ω) ∩ C∞(ω) convergent to
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s pointwise on ω (see, e.g., [1, Th. 3.3.3]). This result and Green’s formula suggest to con-
sider Laplacian in the distributional sense to give an equivalent definition of a subharmonic
function (see, e.g., [1, § 4.3]).

Definition 1.1 For an open set � ⊂ R
n, we use C0 (�) to denote the vector space (over

R) of all real-valued functions continuous and compactly supported in �. Furthermore,
C∞
0 (�) := C0 (�) ∩ C∞ (�). If u : � → [−∞, ∞] is locally integrable on �, then the

linear functional

Lu(ϕ) :=
∫

�

u(x)�ϕ(x) dx, ϕ ∈ C∞
0 (�) , (1)

is called the distributional Laplacian of u.

Using Green’s formula, it is easy to conclude (see, e.g., [1, § 4.3]) that if u ∈ C2 (�), then
Lu(ϕ) = ∫

�
ϕ(x)�u(x) dx. In general, if s ∈ S (�), then Ls is a positive linear functional

on C∞
0 (�), and there is a unique measure μs on �, such that

a−1
n Ls(ϕ) =

∫
�

ϕ(x) dμs(x), ϕ ∈ C∞
0 (�) ,

where an = σn max{1, n − 2}, and σn is the surface measure of the unit sphere in R
n, i.e.,

σn = 2πn/2

�
(

n
2

) .

The measure μs is called the Riesz measure associated with s. For a superharmonic function
u, the Riesz measure is defined to be the one associated with the subharmonic function −u.
In both cases, Riesz measure is a non-negative measure, which characterizes the function.
Namely, if u, v ∈ S (�), (or SH (�)) are such that Lu = Lv on C∞

0 (�), then u − v is
harmonic in � (see, e.g., [5, Ch. 3, Lemma 3.7]).

The Riesz Decomposition Theorem gives even more. This theorem in various forms and
for various � could be found in any book on Potential Theory (see, e.g., [1, Th. 4.4.1],
or [11, Th. 3.7.9]). The most classical ones (see, e.g., [5, Ch. 3, Th. 3.9]) describes
superharmonic functions on compact subsets of �.

There are several versions of the Riesz Decomposition Theorem for functions superhar-
monic in a ball, half-space, etc. (see, e.g., [1, Ch. 4, § 4.4]). However, we are interested in
generalizations of the following global type of result (see, e.g., [9, Ch. I, § 5, Ths. 1.24 and
1.25]).

Theorem 1.1 (Riesz Decomposition Theorem, ”Global Version”) Suppose u is superhar-
monic in Rn, n ≥ 3. Then, there is a harmonic function h in R

n such that

u(x) = (σn (n − 2))−1
∫
Rn

K2 (x − y) dμu(y) + h(x),

if and only if
lim

r→∞ M (r, u) > −∞.

Here and in what follows we use the following notations.
For a measurable function g, the spherical mean over the sphere S(0, r) of radius r > 0

centered at the origin is defined by

M(r, g) = 1

σnrn−1

∫
S(0,r)

g(x) dσ (x),



On Riesz Decomposition for Super-Polyharmonic 343

where dσ is the surface measure in R
n.

The Riesz Kernels are given by:

Kα(x) := |x|α−n , α > 0.

As a corollary of Theorem 1.1, one can obtain (see [1, Cor. 4.4.2]) that if u is superharmonic
in R

n, n ≥ 3, u ≥ 0, and u �≡ ∞, then

u(x) = (σn (n − 2))−1
∫
Rn

K2 (x − y) dμu(y) + c, x ∈ R
n,

where c is a non-negative constant.
We are interested in a generalization of the Riesz Decomposition Theorem for m-

superharmonic functions (see Definition 1.3 below). Recently, for m = 2 (superbiharmonic
functions) the generalization we are looking for was obtained by K. Kitaura and Y. Mizuta
[8]. Let us introduce precise definitions first.

Definition 1.2 Let � be an open subset of Rn, n ≥ 2. A function u : � → R is called
m − harmonic (m ∈ N), or polyharmonic of order m, in � if u ∈ C2m (�), and �mu ≡ 0
in �. The set of all functions m-harmonic in � is denoted byHm (�).

Polyharmonic functions have many interesting properties. The monograph [2] is an excel-
lent source of information about them.

Definition 1.3 Let � be an open subset of Rn, n ≥ 2. A function u : � → (−∞,∞] is
called m-superharmonic if
(i) u is locally integrable on �;
(ii) u is lower semicontinuous in �;
(iii) μu := (−�)m u is a positive Radon measure in � in the sense of distributions, i.e.,∫

�

ϕ(x) dμu(x) =
∫

�

u(x) (−�)m ϕ(x) dx ≥ 0, ∀ϕ ∈ C∞
0 (�) , ϕ ≥ 0;

(iv) Every point of � is the Lebesgue point of u.
The class of all m-superharmonic functions in � is denoted by SHm (�). If m = 2, we
have the class of superbiharmonic functions;

The generalization of the Riesz Decomposition Theorem for superbiharmonic functions
is given by the following theorem

Theorem 1.2 (K. Kitaura, Y. Mizuta [8, Th. 1.2]) Let n ≥ 5, u ∈ SH2 (Rn), and μu =
�2u. Then M(2r, u) − 4M(r, u) is bounded when r > 1 if and only if u is of the form

u(x) = (2σn (n − 4) (n − 2))−1
∫
Rn

K4(x − y) dμu(y) + h(x),

where h ∈ H2 (Rn), and ∫
Rn

(1 + |y|)4−n dμu(y) < ∞.

Moreover, in [8], the authors consider the case of lower dimensions too. However, they use
some modification of the Riesz kernels in that case.

The main point is that the possibility for a superbiharmonic function to possess a Riesz
decomposition is given in terms of boundedness of a linear combination of spherical means.
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For the m-superharmonic case, the appropriate linear combination of spherical means is
more complicated. It is defined in the following proposition.

Proposition 1.1 Let m ∈ N, m ≥ 2, and let αm,1 = 1. Then there are unique real constants
αm,2, . . . , αm,m such that for every polynomial of the form

Fm(r) :=
m−1∑
k=0

akr
2k,

we have
m∑

j=1

αm,jFm

(
2m−j r

)
= a0

m∑
j=1

αm,j , r ∈ R. (2)

The constants are given by

αm,k+1 = (−1)k+ m−1
2 (m−2)4

m
2 (m−1)−(m−k−1)

∏
1≤l<j≤m−1

(
θm,j,k − θm,l,k

)
∏

1≤l<j≤m−1

(
4j − 4l

) , (3)

where

θm,j,k =
{
4m−j , 1 ≤ j ≤ k,

4m−1−j , k + 1 ≤ j ≤ m − 1,
1 ≤ k ≤ m − 1.

To formulate the main result, we need to introduce R – the class of functions ϕ ∈
C∞
0 (Rn) satisfying:

(i) ϕ(x) ≡ 1 in B (0, 1) (as usual, B (0, r) denotes the ball in Rn of radius r centered at
the origin);

(ii) supp ϕ ⊂ B (0, 2);
(iii) 0 ≤ ϕ(x) ≤ 1, x ∈ R

n.
Such functions are often used for regularization purposes.

Our main result is given by the following theorem.

Theorem 1.3 Let m, n ∈ N, 2m < n, u ∈ SHm (Rn), μu = (−�)m u, and ϕ ∈ R is
chosen arbitrarily. Furthermore, let αm,j be the absolute constants from Proposition 1.1.
Then

sup
r>1

∣∣∣∣∣∣
m∑

j=1

αm,jM
(
2m−j r, u

)∣∣∣∣∣∣ < ∞ and sup
r>1

∫
1≤|t |≤2

u(rt) (−�)m ϕ(t) dt < ∞ (4)

if and only if ∫
Rn

(1 + |y|)2m−n dμu(y) < ∞, (5)

and u is of the form

u(x) = cm,n

∫
Rn

K2m(x − y) dμu(y) + h(x), (6)

where h ∈ Hm (Rn), and

cm,n =
⎛
⎝2m−1(m − 1)!σn

∏
0≤j≤m−1, j �=m−n/2

(n − 2m + 2j)

⎞
⎠

−1

. (7)



On Riesz Decomposition for Super-Polyharmonic 345

Note that (5) is the condition for existence of the potential in (6). Furthermore, the nor-
malizing coefficients cm,n are chosen so that cm,n (−�)m K2m is the delta-function δ0 (see
[6] and [4, § 3]).

Comparing Theorems 1.2 and 1.3, one can observe that the first condition in (4) is exactly
the condition on the boundedness of M (2r, u)−4M (r, u) used in Theorem 1.2. The second
one is an extra condition. However, for m = 2, the second condition in (4) follows from the
first one. This seems to be false for m ≥ 3.

Moreover, for the case 2m ≥ n, one needs to consider different kernels. For example,
K. Kitaura and Y. Mizuta [8] considered special kernels wich are products of the Riesz ker-
nels and ln 1

|x| . It was shown that if u ∈ SH2 (Rn) and n ≤ 4, then the linear combination of

spherical means M (2r, u)−4M (r, u) is bounded on r > 1 if and only if u ∈ H2 (Rn). The
authors investigate the case for each n between 2 and 4 separately. The Riesz decomposition
for superharmonic functions in R

n (m = 1) is also proven in [8].
The following corollary gives an easy to use sufficient condition for an m-superharmonic

function to have the representation (6).

Corollary 1.1 Let m, n ∈ N, 2m < n, u ∈ SHm (Rn), μu = (−�)m u. If

sup
r>1

∣∣∣∣∣∣
m∑

j=1

αm,jM
(
2m−j r, u

)∣∣∣∣∣∣ < ∞,

and one of the conditions

(a) supr>1
1
rn

∫
r≤|x|≤2r

|u(x)|p dt < ∞, for some p ∈ [1, ∞);
(b)

u(x)

|x|n/p ∈ Lp (Rn \ B(0, 1)) , for some p ∈ [1, ∞],
is satisfied, then (5) and (6) hold.

Let us also note that there is a generalization of the Riesz Decomposition Theorem for
α-superharmonic functions (fractional α ∈ (1, 2)) obtained by N. S. Landkof [9, Ch. I,
§ 6, Th. 1.30]. It would be very interesting to get an analogous result for fractional α > 2.
However, the method developed by N. S. Landkof seems to be non-applicable in the latter
case.

2 Lemmas on Riesz Kernels

We will assume that x, y are vectors in Rn, m, n, L ∈ N, n ≥ 2, and that 2m < n or 2m− n

is a positive odd integer.
Following [8], we consider the generalized Riesz kernels

K2m,L(x, y) :=
⎧⎨
⎩

K2m(x − y), |y| < 1,
K2m(x − y) − ∑

|ν|≤L

xν

ν! (DνK2m) (−y), |y| ≥ 1, L ∈ Z+.

Here and in the sequel, for a multi-index ν = (ν1, . . . , νn), νj ∈ Z+,

xν = x
ν1
1 · · · · ·xνn

n , ν! = ν1! · · · · ·νn!, |ν| = ν1+· · ·+νn, Dνf (x) = ∂ |ν|f
∂x

ν1
1 . . . ∂x

νn
n

.
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We will also use �x to denote the n-dimentional Laplace operator applied with respect to
the variable x ∈ R

n.

Lemma 2.1 If 2m < n or 2m − n is a positive odd integer, then for any k ∈ Z+,

�kK2m(x) = cm,n,kK2(m−k)(x), (8)

�k
xK2m,2(m−1)(x, y) = cm,n,kK2(m−k),2(m−k−1)(x, y), (9)

where

cm,n,k :=

⎧⎪⎪⎨
⎪⎪⎩

1, k = 0,

2k
k−1∏
j=0

((2(m − j) − n) (m − j − 1)) , 1 ≤ k ≤ m − 1,

0, k ≥ m.

In particular, K2m(x) and K2m,2(m−1)(x, y) (with y as a parameter) are m-harmonic
functions in Rn \ {0}.

Proof First, assume k = 1. Since 2m < n or 2m − n is a positive odd integer, we obtain

∂2

∂x2
j

(
|x|2m−n

)
= (2m − n)

(
|x|2m−n−2 + x2

j (2m − n − 2) |x|2m−n−4
)

. (10)

Hence,

�x

(
|x|2m−n

)
= (2m − n)(2m − 2)|x|2m−n−2.

This gives (8) for k = 1. Now, for |y| ≥ 1, we get

∂2

∂x2
j

⎛
⎝ ∑

|ν|≤2m−2

xν

ν!
(
DνK2m

)
(−y)

⎞
⎠

=
∑

|ν|≤2m−2

⎛
⎝ 1

ν!
(
DνK2m

)
(−y)νj (νj − 1)xνj −2

∏
k=1,n, k �=j

x
νk

k

⎞
⎠

=
∑

ν1+···+νn≤2(m−1), νj ≥2

x
ν1
1

ν1! . . .
x

νj−1
j−1

νj−1!
x

νj −2
j(

νj − 2
)!

x
νj+1
j+1

νj+1! . . .
x

νn
n

νn!
(
Dν1...νnK2m

)
(−y).

Replacing the multi-index ν by ν̃ = (ν̃1, . . . , ν̃n) with

ν̃k =
{

νk, k �= j,

νj − 2, k = j,

we obtain

∂2

∂x2
j

⎛
⎝ ∑

|ν|≤2m−2

xν

ν!
(
DνK2m

)
(−y)

⎞
⎠

=
∑

|ν̃|≤2(m−2)

xν̃

ν̃!
(
Dν̃1...ν̃j−1(ν̃j +2)ν̃j+1...ν̃nK2m

)
(−y). (11)
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From (10), it is clear that

(
Dν̃1...ν̃j−1(ν̃j +2)ν̃j+1...ν̃nK2m

)
(−y) = Dν̃

(
∂2

∂y2
j

K2m

)
(−y)

= (2m − n)Dν̃
(
K2(m−1) + y2

j (2m − n − 2)K2(m−2)

)
(−y).

Setting ν := ν̃ in the right-hand side of (11), and taking the sum over j = 1, . . . , n, we
deduce

�x

⎛
⎝ ∑

|ν|≤2m−2

xν

ν!
(
DνK2m

)
(−y)

⎞
⎠

= (2m − n)(2m − 2)
∑

|ν|≤2(m−2)

xν

ν!
(
DνK2(m−1)

)
(−y). (12)

Thus, considering (8), we obtain (9) for k = 1.
For k > 1, the statement follows by applying (8) and (9) with k = 1 repeatedly.

Lemma 2.2 If 2m < n or 2m − n is a positive odd integer, then for any r > 0,

M (r,K2m (· − y)) =

⎧⎪⎪⎨
⎪⎪⎩

�
(

n
2

) m−1∑
k=0

( |y|
2

)2k cm,n,k

k!�( n
2 +k)

r2(m−k)−n, |y| ≤ r,

�
(

n
2

) m−1∑
k=0

(
r
2

)2k cm,n,k

k!�( n
2 +k)

|y|2(m−k)−n, |y| > r,

where cm,n,k are defined in Lemma 2.1.
Moreover, for any y �= 0 and r > 0,

1

σnrn−1

∫
S(0,r)

∑
|ν|≤2m−2

xν

ν!
(
DνK2m

)
(−y) dσ(x)

= �
(n

2

) m−1∑
k=0

( r

2

)2k cm,n,k

k!� (
k + n

2

) |y|2(m−k)−n. (13)

Proof We will use formula (7.11) from [12, Ch. 1.7]:

∫
B(0,r)

f (x + y) dx =
m−1∑
k=0

πn/2r2k+n
(
�kf

)
(y)

22kk!� (
k + n

2 + 1
) , (14)

which is valid for any function f ∈ Hm (U) for some domain U , y ∈ U , and any r ∈
(0, dist (y, ∂U)).

Assume |y| > r . Applying (14) with f = K2m, U = R
n \ {0}, and using Lemma 2.1, we

get

∫
B(0,r)

K2m(x − y) dx =
m−1∑
k=0

πn/2r2k+ncm,n,kK2(m−k)(−y)

22kk!� (
k + n

2 + 1
)

=
m−1∑
k=0

πn/2r2k+ncm,n,k|y|2(m−k)−n

22kk!� (
k + n

2 + 1
) . (15)
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If we fix y and let r < |y| to be arbitrary, then differentiating the last equality with respect
to r , we obtain

M (r, K2m (· − y)) = �
(n

2

) m−1∑
k=0

r2kcm,n,k|y|2(m−k)−n

22kk!� (
k + n

2

) . (16)

Now, let 0 < |y| < r . We cannot apply the above approach since we have a singularity
in B(0, r). To get rid of it, we will use the reflection technique as in Kelvin transform,
described in [1, Ch. 1, § 1.6]. For w �= 0, we will consider its inverse with respect to the
unit sphere S(0, 1):

w∗ := 1

|w|2w.

If x ∈ S(0, 1), and y �= 0, then

|y| ∣∣x − y∗∣∣ = |x − y|. (17)

Using (17) and making a simple change of variable, we obtain

M (r, K2m (· − y)) = |y|2m−nM
(
1,K2m

(
· −

(y

r

)∗))
.

Since
∣∣( y

r

)∗∣∣ = r
|y| > 1, we can apply (16) with r = 1 to get

M (r,K2m (· − y)) = �
(n

2

) m−1∑
k=0

( |y|
2

)2k
cm,n,k

k!� (
k + n

2

) r2(m−k)−n. (18)

For |y| = r , let yl :=
(
1 + 1

l

)
y, l ∈ N. Note that |x − y| < |x − yl | provided |x| = r .

Thus, if 2m < n, we obtain |x − yl |2m−n ≤ |x − y|2m−n. Since the function |x − y|2m−n

(as a function of x) is in L1 (S (0, r)), we can apply the Lebesgue Dominated Convergence
Theorem to get

M (r,K2m (· − y)) = lim
l→∞ M (r, K2m (· − yl)) .

If 2m − n ≥ 0, then |x − yl |2m−n converges to |x − y|2m−n uniformly on S(0, r), and the
last equality is obviously justified. Therefore, in either case, applying (16) with y = yl , we
deduce

M (r,K2m (· − y)) = lim
l→∞ �

(n

2

) m−1∑
k=0

r2kcm,n,k|yl |2(m−k)−n

22kk!� (
k + n

2

)

= �
(n

2

) m−1∑
k=0

( |y|
2

)2k
cm,n,k

k!� (
n
2 + k

) r2(m−k)−n, y �= 0.

If y = 0, then (18) is obvious.
To obtain (13), we shall use (12) to conclude that

�k
x

⎛
⎝ ∑

|ν|≤2m−2

xν

ν!
(
DνK2m

)
(−y)

⎞
⎠ = cm,n,k

∑
|ν|≤2(m−k−1)

xν

ν!
(
DνK2(m−k)

)
(−y),

and then apply (14) with U = R
n, y = 0, and f (x) = ∑

|ν|≤2m−2
xν

ν! (DνK2m) (−y), where
y is considered as a constant. Thus, we get

∫
B(0,r)

∑
|ν|≤2m−2

xν

ν!
(
DνK2m

)
(−y) dx =

m−1∑
k=0

πn/2r2k+ncm,n,k

22kk!� (
k + n

2 + 1
) |y|2(m−k)−n.



On Riesz Decomposition for Super-Polyharmonic 349

This equality is valid for any y �= 0 and r > 0. Differentiation on r gives (13).

Note. There is even more general result on spherical means of the Riesz kernels due to
J. S. Brauchart, P. D. Dragnev, E. B. Saff [3, Th. 2]. Their statement covers fractional powers
of |x − y|, but the answer is given in terms of a hypergeometric function, which makes it
more complicated to apply in our proofs.

Integrating the formula for spherical means in Lemma 2.2 on r , we arrive at the following
statement.

Lemma 2.3 If 2m < n or 2m − n is a positive odd integer, then for any R > 0,∫
B(0,R)

K2m (x − y) dx

=

⎧⎪⎪⎨
⎪⎪⎩

2πn/2
m−1∑
k=0

cm,n,k

4kk!�( n
2 +k)

(
|y|2m

(
1

2k+n
− 1

2(m−k)

)
+ |y|2kR2(m−k)

2(m−k)

)
, |y| ≤ R,

πn/2
m−1∑
k=0

cm,n,k

4kk!�( n
2 +k+1)

|y|2(m−k)−nR2k+n, |y| > R,

where cm,n,k are as in Lemma 2.1.

3 Proof of Proposition 1.1

Proof of Proposition 1.1. Note that for αm,1 = 1 and any αm,j , j ≥ 2, we have

m∑
j=1

αm,jFm

(
2m−j r

)
=

m−1∑
k=0

akr
2k

⎛
⎝4(m−1)k +

m∑
j=2

4(m−j)kαm,j

⎞
⎠ . (19)

Let us show that there is a unique set of αm,2, . . . , αm,m, such that

4(m−1)k +
m∑

j=2

4(m−j)kαm,j = 0, k = 1, . . . , m − 1,

which is equivalent to (2) holding for every r and a0, . . . , am. As we will also see, these
αm,j ’s satisfy (3).

We can rewrite the last system as

m∑
j=2

4(m−j)kαm,j = −4(m−1)k, k = 1, . . . , m − 1. (20)

This is a linear system of (m − 1) equations for (m − 1) unknowns, whose matrix is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4m−2 4m−3 . . . 4m−1−j . . . 4 1 −4m−1

42(m−2) 42(m−3) . . . 42(m−1−j) . . . 42 1 −42(m−1)

...
... . . .

... . . .
...

...
...

4l(m−2) 4l(m−3) . . . 4l(m−1−j) . . . 4l 1 −4l(m−1)

...
... . . .

... . . .
...

...
...

4(m−1)(m−2) 4(m−1)(m−3) . . . 4(m−1)(m−1−j) . . . 4m−1 1 −4(m−1)(m−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (21)
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To evaluate the main determinant of this matrix, let us make a reflection in horizontal
direction, so that the last column becomes first, next to the last becomes second, etc.:

A :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 4 . . . 4j−1 . . . 4m−3 4m−2

1 42 . . . 42(j−1) . . . 42(m−3) 42(m−2)

...
... . . .

... . . .
...

...

1 4l . . . 4l(j−1) . . . 4l(m−3) 4l(m−2)

...
... . . .

... . . .
...

...

1 4m−1 . . . 4(m−1)(j−1) . . . 4(m−1)(m−3) 4(m−1)(m−2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The main determinant D of system (21) and the determinant of A are related by

D = (−1)
m−1
2 (m−2) det(A),

and the matrix A is a Vandermonde matrix, whose determinant is well known. Thus, we
obtain

D = (−1)
m−1
2 (m−2)

∏
1≤l<j≤m−1

(
4j − 4l

)
. (22)

Since D �= 0, system (20) has a solution αm,2, . . . , αm,m, and this solution is unique.
Now, for k = 1, . . . , m − 1, let us evaluate the determinant of the left-hand side of the

matrix in (21) with k-th column replaced by the right-hand side:

Dk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4m−2 . . . 4m−k −4m−1 4m−k−2 . . . 4 1
42(m−2) . . . 42(m−k) −42(m−1) 42(m−k−2) . . . 42 1

... . . .
...

...
... . . .

...
...

4l(m−2) . . . 4l(m−k) −4l(m−1) 4l(m−k−2) . . . 4l 1
... . . .

...
...

... . . .
...

...

4(m−1)(m−2) . . . 4(m−1)(m−k) −4(m−1)(m−1) 4(m−1)(m−k−2) . . . 4m−1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Multiplying the k-th column by −1 and then each column by the reciprocal of its first entry
(i.e., multiplying j -th column by the reciprocal of (1, j)-entry), we get

Dk = −4m−2 . . . 4m−k4m−14m−k−2 . . . 4×∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1 1 1 . . . 1 1
4m−2 . . . 4m−k 4m−1 4m−k−2 . . . 4 1

... . . .
...

...
... . . .

...
...

4(l−1)(m−2) . . . 4(l−1)(m−k) 4(l−1)(m−1) 4(l−1)(m−k−2) . . . 4l−1 1
... . . .

...
...

... . . .
...

...

4(m−2)(m−2) . . . 4(m−2)(m−k) 4(m−2)(m−1) 4(m−2)(m−k−2) . . . 4m−2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Taking the transposition and moving the k-th row to the first place, we again arrive at a
Vandermonde matrix, whence

Dk = (−1)k4
m
2 (m−1)−(m−k−1)

∏
1≤l<j≤m−1

(
θm,j,k − θm,l,k

)
. (23)

Finally, using Kramer’s rule, we conclude that

αm,k+1 = Dk

D
, k = 1, . . . , m − 1,

whence (3) follows immediately from (22) and (23).
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Conversely, if αm,2, . . . , αm,m satisfy (20), representation (19) yields

m∑
j=1

αm,jFm

(
2m−j r

)
= a0

⎛
⎝1 +

m∑
j=2

αm,j

⎞
⎠ = a0

m∑
j=1

αm,j .

�
Note.We can give an explicit representation in (2) for some values of m:

m = 2 : F2(2r) − 4F2(r) = −3a0;
m = 3 : F3(4r) − 20F3(2r) + 64F3(r) = 45a0;
m = 4 : F4(8r) − 84F4(4r) + 1344F4(2r) − 4096F4(r) = −2835a0.

4 Spherical Means of m-Superharmonic Functions

The key ingredient to the proof of Theorem 1.3 is the following formula for spherical means.

Lemma 4.1 Let u ∈ SHm (Rn), and let μu = (−�)m u. Then for r > 1,

M(r, u) =
∫

B(0,r)
f (r, y) dμu(y) +

m−1∑
k=0

akr
2k,

where ak’s are constants independent of r ,

f (r, y) = cm,n�
(n

2

)

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m−1∑
k=0

( |y|
2

)2k cm,n,k

k!�( n
2 +k)

r2(m−k)−n, |y| < 1,

m−1∑
k=0

cm,n,k

4kk!�( n
2 +k)

(|y|2kr2(m−k)−n − r2k|y|2(m−n)−k
)
1 ≤ |y| < r,

0, |y| ≥ r,

cm,n,k are as in Lemma 2.1, and cm,n are given by (7), so that

cm,n (−�)m K2m,L (·, y) = δy. (24)

Proof It follows from the Riesz decomposition that (see [4, Representation (3.1)]) if v ∈
SHm (Rn), then

v(x) = cm,n

∫
B(0,R)

K2m,2(m−1)(x, y) dμv(y) + hR(x), x ∈ B (0, R) ,

where hR ∈ Hm (B(0, R)). (For (24), see [4, § 3].) Indeed, let us consider the following
positive linear functional on C∞

0 (B(0, R)):

Lp(ϕ) :=
∫

B(0,R)

p(x) (−�)m ϕ(x) dx, ϕ ∈ C∞
0 (B(0, R)) ,

where

p(x) := cm,n

∫
B(0,R)

K2m,2(m−1)(x, y) dμv(y).
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Using Fubini’s theorem and (24), we have

Lp(ϕ) =
∫

B(0,R)

(
cm,n

∫
B(0,R)

K2m,2(m−1)(x, y) dμv(y)

)
(−�)m ϕ(x) dx

=
∫

B(0,R)

ϕ(y) dμv(y) = Lv(ϕ).

This implies that for a.e. x ∈ B (0, R), v(x) − p(x) coincides with a function from
Hm (B(0, R)). Let us call it hR(x). Thus, v(x) = p(x) + hR(x), a.e. Since two m-
superharmonic functions, which are equal a.e., are equal identically, we conclude that
v(x) = p(x) + hR(x) in B (0, R).

Therefore, since u ∈ SHm (Rn), then for any r2 > r1 > 0

u(x) = cm,n

∫
B(0,rj )

K2m,2(m−1)(x, y) dμu(y) + hrj (x), x ∈ B
(
0, rj

)
, j = 1, 2,

(25)
where hrj ∈ Hm

(
B

(
0, rj

))
.

Let us fix two arbitrary r1 and r2 (assume r1 < r2), and take an arbitrary r with 1 < r <

r1 < r2. Integrating the last equality over the sphere of radius r , we obtain

M(r, u) = cm,n

σnrn−1

∫
S(0,r)

∫
B(0,rj )

K2m,2(m−1)(x, y) dμu(y) dσ(x)

+ 1

σnrn−1

∫
S(0,r)

hrj (x) dσ (x). (26)

Since hrj ∈ Hm
(
B

(
0, rj

))
, the Almansi expansion (see, e.g., [2, Ch. I, Prop. 1.3]) implies

that there exist functions g0,j , . . . , gm−1,j harmonic in B
(
0, rj

)
, such that

hrj (x) =
m−1∑
k=0

|x|2kgk,j (x), x ∈ B
(
0, rj

)
. (27)

The mean-value property for harmonic functions yields

1

σnrn−1

∫
S(0,r)

hrj (x) dσ (x) =
m−1∑
k=0

r2kgk,j (0). (28)

Changing the order of integration in the first summand of (26) using Fubini’s theorem, and
applying (28) we get

M(r, u) = cm,n

∫
B(0,rj )

M
(
r,K2m,2(m−1)(·, y)

)
dμu(y) +

m−1∑
k=0

r2kgk,j (0).

Now, Lemma 2.2 implies

M(r, u) =
∫

B(0,rj )
f (r, y) dμu(y) +

m−1∑
k=0

r2kgk,j (0).

Since f (r, y) = 0 when |y| > r , the last equality can be rewritten as

M(r, u) −
∫

B(0,r)
f (r, y) dμu(y) =

m−1∑
k=0

r2kgk,j (0). (29)
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Since the left-hand side is independent of j ∈ {1, 2}, so is the right-hand side. But for each
j ∈ {1, 2}, the expression in the right-hand side is a polynomial in r . Thus, we can rewrite
(29) as

M(r, u) =
∫

B(0,r)
f (r, y) dμu(y) +

m−1∑
k=0

akr
2k,

where

ak := gk,1(0), k = 0, . . . , m − 1, (30)

and r1 > 1 is taken arbitrarily.

Corollary 4.1 Let u ∈ SHm (Rn), 2m < n, and let μu = (−�)m u. Then for any r > 1,

m∑
j=1

αm,jM
(
2m−j r, u

)
=

∫
B(0,r)

m∑
j=1

αm,jf
(
2m−j r, y

)
dμu(y)

+
m−1∑
l=1

∫
B(0,2l r)\B(0,2l−1r)

m−l∑
j=1

αm,jf
(
2m−j r, y

)
dμu(y) + a0

m∑
j=1

αm,j , (31)

where f (r, y) is defined in Lemma 4.1, αm,1 = 1, αm,2, . . . , αm,m are given by (3) in
Proposition 1.1, and a0 is from the proof of Lemma 4.1.

Furthermore, if u(0) �= ∞, then

a0 = u(0) − cm,n

∫
B(0,1)

|y|2m−n dμu(y), (32)

where cm,n are given by (7).

Proof Since f (R, y) = 0 when |y| ≥ R, then (31) follows immediately from Lemma 4.1
and Proposition 1.1.

To get a0, we need to refer the proof of Lemma 4.1. Assume that u(0) �= ∞. Using (25)
with some r1 > 1, we conclude that

u(0) = cm,n

∫
B(0,r1)

K2m,2(m−1)(0, y) dμu(y) + hr1(0).

Since

K2m,2(m−1)(0, y) =
{ |y|2m−n, |y| < 1,
0, |y| ≥ 1,

we obtain

u(0) = cm,n

∫
B(0,1)

|y|2m−n dμu(y) + hr1(0).

Now, (32) follows from (27) and (30).

Note. It is clear that if h ∈ Hm (Rn), then μh is a zero measure. Moreover, using the
same reasoning as in the proof of Lemma 4.1, we obtain that for any r > 0, M (r, h) =∑m−1

k=0 akr
2k . Therefore, Proposition 1.1 and (32) imply

m∑
j=1

αm,jM
(
2m−j r, h

)
= h(0)

m∑
j=1

αm,j , r > 0. (33)
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5 Proof of the Riesz Decomposition

The following statement is straightforward.

Lemma 5.1 Let m, n ∈ N, 2m < n, u ∈ SHm (Rn), μu = (−�)m u, k = 0, . . . , m − 1,
and

sup
r>1

r2m−nμu (B(0, r)) < ∞. (34)

Let also 1 ≤ a ≤ b and

c1(b, r, m, n, k) :=
∫

B(0,br)\B(0,1)
|y|2kr2(m−k)−n dμu(y),

c2(a, b, r, m, n, k) :=
∫

B(0,br)\B(0,ar)

|y|2kr2(m−k)−n dμu(y),

c3(a, b, r, m, n, k) :=
∫

B(0,br)\B(0,ar)

|y|2(m−k)−nr2k dμu(y).

Then

sup
r>1

|c1(b, r, m, n, k)| < ∞, sup
r>1

|c2(a, b, r, m, n, k)| < ∞, sup
r>1

|c3(a, b, r, m, n, k)| < ∞.

Lemma 5.2 Let m, n ∈ N, 2m < n, u ∈ SHm (Rn), and μu = (−�)m u. If

sup
r>1

∣∣∣∣∣∣
m∑

j=1

αm,jM
(
2m−j r, u

)∣∣∣∣∣∣ < ∞ and sup
r>1

r2m−nμu (B(0, r)) < ∞, (35)

then

sup
r>1

∫
B(0,r)\B(0,1)

|y|2m−n dμu(y) < ∞.

Proof Corollary 4.1 implies that
m∑

j=1

αm,jM
(
2m−j r, u

)
=

∫
B(0,r)

m∑
j=1

αm,jf
(
2m−j r, y

)
dμu(y)+

m−1∑
l=1

∫
B(0,2l r)\B(0,2l−1r)

m−l∑
j=1

αm,jf
(
2m−j r, y

)
dμu(y) + a0

m∑
j=1

αm,j .

Let us denote
βm,n,k := �

(n

2

) cm,n,k

4kk!� (
n
2 + k

) , (36)

where cm,n,k are defined in Lemma 2.1.
According to (20),

∑m
j=1 αm,j4(m−j)k = 0, k = 1, . . . , m − 1. Hence,

m∑
j=1

αm,j

m−1∑
k=0

βm,n,k

(
2m−j r

)2k |y|2(m−k)−n = |y|2m−n
m∑

j=1

αm,j . (37)

Using the representation of f (r, y) given by Lemma 4.1, and (37), we get

m∑
j=1

αm,jM
(
2m−j r, u

)
=

∫

B(0,1)

m∑
j=1

αm,j

m−1∑
k=0

βm,n,k|y|2k
(
2m−j r

)2(m−k)−n

dμu(y)
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+
∫

B(0,r)\B(0,1)

m∑
j=1

αm,j

m−1∑
k=0

βm,n,k|y|2k
(
2m−j r

)2(m−k)−n

dμu(y)

−
∫

B(0,r)\B(0,1)

|y|2m−n dμu(y)

m∑
j=1

αm,j

+
m−1∑
l=1

∫

B(0,2l r)\B(0,2l−1r)

m−l∑
j=1

αm,j

m−1∑
k=0

βm,n,k|y|2k
(
2m−j r

)2(m−k)−n

dμu(y)

−
m−1∑
l=1

∫

B(0,2l r)\B(0,2l−1r)

m−l∑
j=1

αm,j

m−1∑
k=0

βm,n,k

(
2m−j r

)2k |y|2(m−k)−n dμu(y)

+ a0

m∑
j=1

αm,j . (38)

It is easy to see that∣∣∣∣∣∣∣
∫

B(0,1)

m∑
j=1

αm,j

m−1∑
k=0

βm,n,k|y|2k
(
2m−j r

)2(m−k)−n

dμu(y)

∣∣∣∣∣∣∣

≤ r2m−nμu (B(0, 1))
m∑

j=1

∣∣αm,j

∣∣ m−1∑
k=0

∣∣βm,n,k

∣∣ (2m−j
)2(m−k)−n → 0, r → ∞.

Hence

c0 (r,m, n) :=
∫

B(0,1)

m∑
j=1

αm,j

m−1∑
k=0

βm,n,k|y|2k
(
2m−j r

)2(m−k)−n

dμu(y)

is bounded as a function of r for r > 1.
In terms of Lemma 5.1, we can rewrite (38) as

m∑
j=1

αm,jM
(
2m−j r, u

)
= c0 (r,m, n)

+
m∑

j=1

αm,j

m−1∑
k=0

βm,n,k2
(m−j)(2(m−k)−n)c1 (1, r, m, n, k)

−
∫

B(0,r)\B(0,1)

|y|2m−n dμu(y)

m∑
j=1

αm,j

+
m−1∑
l=1

m−l∑
j=1

αm,j

m−1∑
k=0

βm,n,k2
(m−j)(2(m−k)−n)c2

(
2l−1, 2l , r, m, n, k

)

−
m−1∑
l=1

m−l∑
j=1

αm,j

m−1∑
k=0

βm,n,k4
k(m−j)c3

(
2l−1, 2l , r, m, n, k

)
+ a0

m∑
j=1

αm,j .
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Thus, Lemma 5.1 and boundedness of c0 (r,m, n) imply that
m∑

j=1

αm,jM
(
2m−j r, u

)
= c (r, m, n) −

∫

B(0,r)\B(0,1)

|y|2m−n dμu(y)

m∑
j=1

αm,j ,

where supr>1 |c (r,m, n)| < ∞. It is clear from (3) that for any fixed m, αm,j ’s alternate
in sign and grow in absolute value when j increases. Hence

∑m
j=1 αm,j �= 0. Therefore, if

supr>1

∣∣∣∑m
j=1 αm,jM

(
2m−j r, u

)∣∣∣ < ∞, we obtain that

sup
r>1

∫
B(0,r)\B(0,1)

|y|2m−n dμu(y) < ∞.

As a corollary, we immediately get the following lemma.

Lemma 5.3 Let m, n ∈ N, 2m < n, u ∈ SHm (Rn), and μu = (−�)m u. If (35) holds,
then ∫

Rn

(1 + |y|)2m−n dμu(y) < ∞.

Theorem 5.1 Let m, n ∈ N, 2m < n, u ∈ SHm (Rn), and μu = (−�)m u. Then (35) holds
if and only if ∫

Rn

(1 + |y|)2m−n dμu(y) < ∞, (39)

and u is of the form

u(x) = cm,n

∫
Rn

K2m(x − y) dμu(y) + h(x), x ∈ R
n, (40)

where h ∈ Hm (Rn), and cm,n are given by (7).

Proof Suppose that (35) holds. Consider the following function

U
μu

2m(x) :=
∫
Rn

|x − y|2m−n dμu(y).

Let us show that U
μu

2m is locally integrable in R
n. Indeed, choose an arbitrary R > 0. It

follows from Lemma 2.3 that
∫
B(0,R)

|x − y|2m−n dx is continuous on R
n, and

∫
B(0,R)

|x − y|2m−n dx ≤

⎧⎪⎪⎨
⎪⎪⎩

R2m2πn/2
m−1∑
k=0

|cm,n,k|
4kk!�( n

2 +k)

(
1

m−k
− 1

2k+n

)
, |y| ≤ R,

|y|2m−nRnπn/2
m−1∑
k=0

|cm,n,k|
4kk!�( n

2 +k+1)
, |y| > R.

Lemma 5.3 also implies that ∫
Rn

(1 + |y|)2m−n dμu(y) < ∞.

Hence, for any R > 0,∫
Rn

(∫
B(0,R)

|x − y|2m−n dx

)
dμu(y) < ∞. (41)
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Now, Tonelli-Fubini’s Theorem yields that U
μu

2m ∈ L1
loc (Rn). In particular, we have that

U
μu

2m(x) �= ∞ a.e. (in the Lebesgue measure sense) in R
n.

Theorem 1.2 of [10, Ch. 2, S 2.1] implies that Uμu

2m is lower semicontinuous in R
n.

Furthermore, since |· − y|2m−n inSHm (Rn), we conclude that (−�)m U
μu

2m is a positive
Radon measure in R

n. It is also clear that every point of Rn is the Lebesgue point of U
μu

2m .
Thus, Uμu

2minSHm (Rn).
Let ϕ ∈ C∞

0 (Rn). Since cm,n (−�)m K2m = δ0 (see, e.g., [4]), we may apply Tonelli-
Fubini’s Theorem (justified by (41)) to get

cm,n

∫
Rn

U
μu

2m(x) (−�)m ϕ(x) dx =
∫
Rn

ϕ(y) dμu(y) =
∫
Rn

u(x) (−�)m ϕ(x) dx.

Thus, we have two functions, U
μu

2m and u, from the class SHm (Rn), such that
(−�)m

[
cm,nU

μu

2m

] = (−�)m u in distributional sense. Using the same reasoning as in the
proof of Lemma 4.1, we conclude that h := u − cm,nU

μu

2m ∈ Hm (Rn). Thus, (40) follows.
Conversely, let u ∈ SHm (Rn) be of the form (40), where μu satisfies (39). Applying

Tonelli-Fubini’s Theorem, and Lemma 2.2, we obtain that

M
(
r, U

μu

2m

) =
∫
Rn

M (r, K2m (· − y)) dμu(y)

=
∫

B(0,r)
�

(n

2

) m−1∑
k=0

( |y|
2

)2k
cm,n,k

k!� (
n
2 + k

) r2(m−k)−n dμu(y)

+
∫
Rn\B(0,r)

�
(n

2

) m−1∑
k=0

( r

2

)2k cm,n,k

k!� (
n
2 + k

) |y|2(m−k)−n dμu(y)

≤ r2m−n

m−1∑
k=0

∣∣βm,n,k

∣∣
∫

B(0,r)
dμu(y) +

m−1∑
k=0

∣∣βm,n,k

∣∣
∫
Rn\B(0,r)

|y|2m−n dμu(y),

where βm,n,k are defined by (36). Now, if r > 1, we get∫
B(0,r)\B(0,1)

r2m−n dμu(y) ≤
∫

B(0,r)\B(0,1)
|y|2m−n dμu(y).

Therefore,

M
(
r, U

μu

2m

) ≤
(

r2m−nμu (B(0, 1)) +
∫
Rn\B(0,1)

|y|2m−n dμu(y)

) m−1∑
k=0

∣∣βm,n,k

∣∣ .

Since (39) holds, we conclude that supr>1 M
(
r, U

μu

2m

)
< ∞, whence

sup
r>1

∣∣∣∣∣∣
m∑

j=1

αm,jM
(
2m−j r, U

μu

2m

)∣∣∣∣∣∣ < ∞. (42)

Now, from (40), (42) and (33), we deduce that

sup
r>1

∣∣∣∣∣∣
m∑

j=1

αm,jM
(
2m−j r, u

)∣∣∣∣∣∣ < ∞.

Finally, for any r > 1 we have

r2m−n

∫
B(0,r)

dμu(y) ≤ μu (B(0, 1)) + 2n−2m
∫

B(0,r)\B(0,1)
(1 + |y|)2m−n dμu(y).
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Hence,

sup
r>1

r2m−nμu (B(0, r)) ≤ μu (B(0, 1)) + 2n−2m
∫
Rn

(1 + |y|)2m−n dμu(y) < ∞.

To prove Theorem 1.3, it remains to replace the condition

sup
r>1

r2m−nμu (B(0, r)) < ∞

by another one which would be easier to check having a particular function u ∈ SHm (Rn).
The replacement is given by the following lemma.

Lemma 5.4 Let m, n ∈ N, 2m < n, u ∈ SHm (Rn), and μu = (−�)m u. The following
are equivalent:

(a) sup
r>1

r2m−nμu (B(0, r)) < ∞;
(b) sup

r>1

∫
1≤|t |≤2

u(rt) (−�)m ϕ(t) dt < ∞, for some ϕ ∈ R;
(c) sup

r>1

∫
1≤|t |≤2

u(rt) (−�)m ϕ(t) dt < ∞, for any ϕ ∈ R.

Proof Since u ∈ SHm (Rn), it is locally integrable, and dμu(x) is a positive Borel measure
onRn. Take any ϕ ∈ R, r > 0, and let �(x) := ϕ(x/r). Since� ∈ C∞

0 (Rn) and �(x) ≡ 1
in B(0, r), we obtain that

μu (B(0, r)) =
∫

B(0,r)
�(x) dμu(x) ≤

∫
B(0,2r)

�(x) dμu(x)

=
∫
Rn

u(x) (−�)m �(x) dx = r−2m
∫

r≤|x|≤2r
u(x)

[
(−�)m ϕ

] (x

r

)
dx.

Making the substitution t := x/r in the last integral, we get

r2m−nμu (B(0, r)) ≤
∫
1≤|t |≤2

u(rt) (−�)m ϕ(t) dt, r > 0. (43)

Analogously, since 0 ≤ �(x) ≤ 1,

μu (B(0, 2r)) ≥
∫

B(0,2r)
�(x) dμu(x) = r−2m

∫
r≤|x|≤2r

u(x)
[
(−�)m ϕ

] (x

r

)
dx.

Using the substitution t := x/r in the last integral, we arrive at

(2r)2m−n μu (B(0, 2r)) ≥ 22m−n

∫
1≤|t |≤2

u(rt) (−�)m ϕ(t) dt, r > 0. (44)

Now, assume (a) holds. Taking an arbitrary ϕ ∈ R, we conclude from (44) that

sup
r>1/2

∫
1≤|t |≤2

u(rt) (−�)m ϕ(t) dt ≤ 2n−2m sup
r>1

r2m−nμu (B(0, r)) < ∞,

which implies (c), and then, trivially, (b).
If (b) holds with some ϕ ∈ R, then (43) yields (a) immediately.

Thus, Theorem 1.3 follows from Theorem 5.1 and Lemma 5.4.
Furthermore, we may use (43) to get easy-to-check sufficient conditions on u to have

Riesz representation (6).
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Proof of Corollary 1.1. Applying Hölder’s inequality to the right-hand side of (43), and
using the substitution x = rt , we conclude that for any p ∈ [1, ∞) and q, such that 1/p +
1/q = 1,

r2m−nμ (B(0, r)) ≤ ∥∥(−�)m ϕ
∥∥

Lq
(
B(0,2)\B(0,1)

)
(

1

rn

∫
r≤|x|≤2r

|u(x)|p dt

)1/p

≤ 2n/p
∥∥(−�)m ϕ

∥∥
Lq

(
B(0,2)\B(0,1)

)
(∫

|x|≥1

|u(x)|p
|x|n dt

)1/p

.

If p = ∞, then clearly,

r2m−nμu (B(0, r)) ≤ ∥∥(−�)m ϕ
∥∥

L1
(
B(0,2)\B(0,1)

) ess sup
r≤|x|≤2r

|u(x)| .

Thus, if either condition, (a) or (b) is satisfied, then supr>1 r2m−nμu (B(0, r)) < ∞.
Applying Theorem 5.1, we get relation (5), and representation (6). �

Open Problem. It would be interesting to generalize Theorem 1.3 to the case of α-
superharmonic functions in R

n. We have already mentioned a formula for spherical means
of Riesz kernels obtained in [3], which could be a good starting point. Although it is unclear
what should be a condition replacing the boundedness of the linear combination of spherical
means

∑m
j=1 αm,jM

(
2m−j r, u

)
in the case of a fractional power of Laplacian α/2 instead

of m.
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