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Abstract Suppose d ≥ 2 and α ∈ (1, 2). Let D be a (not necessarily bounded) C1,1 open
set in R

d and μ = (μ1, . . . , μd) where each μj is a signed measure on R
d belonging to a

certain Kato class of the rotationally symmetric α-stable process X. Let Xμ be an α-stable
process with drift μ in R

d and let Xμ,D be the subprocess of Xμ in D. In this paper, we
derive sharp two-sided estimates for the transition density of Xμ,D .

Keywords Symmetric α-stable process · Gradient operator · Heat kernel ·
Transition density · Green function · Exit time · Lévy system · Boundary Harnack
inequality · Kato class
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1 Introduction

Markov processes with discontinuous sample paths constitute an important family of
stochastic processes in probability theory. Recently there has been intense interest in obtain-
ing sharp two-sided estimates on the transition density pD(t, x, y) of Markov processes
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with discontinuous sample paths in open subset D of Rd . If the Markov process is a (rota-
tionally) symmetric α-stable process in R

d , an explicit form of estimates in terms of t ,
|x− y| and the distance to boundary of D was obtained in [7] when D is C1,1 open set, and
a Varopoulos type estimate in terms of surviving probabilities and the global transition den-
sity was obtained in [3] when D is a non-smooth κ-fat open set. Very recently in [8, 9, 11],
sharp two-sided estimates on the transition density pD(t, x, y) were established for several
symmetric Markov processes such as relativistic stable processes, mixed stable processes
and censored stable processes in C1,1 open subsets of Rd , respectively.

When b is an R
d -valued function on R

d belonging to a certain Kato class of the rotation-
ally symmetric α-stable process, in [10], jointly with Zhen-Qing Chen, we showed that there
is a non-symmetric Feller process with generator �α/2 + b · ∇ (called an α-stable process
with drift b) and derived sharp two-sided estimates on the transition density of such process
in a bounded C1,1 open set D in R

d . Independently in [5], sharp estimates on the Green
functions of subprocesses, in bounded C1,1 open sets in R

d , of such process were investi-
gated. The purpose of this paper is, through a somewhat different approach, to extend the
main result of [10] to allow D being unbounded and the drift being a measure. This paper is
a natural continuation of [21] where the existence and uniqueness of α-stable process with
a singular measure-valued drift were established.

Throughout this paper we assume d ≥ 2, α ∈ (1,2) and that X is a (rotationally) sym-
metric α-stable process in R

d . The infinitesimal generator of X is �α/2 := −(−�)α/2. The
transition density of X is denoted by p(t, x, y). We will use B(x, r) to denote the open
ball centered at x ∈ R

d with radius r > 0. The space of continuous functions on R
d will

be denoted as C(Rd), while C∞(Rd) and C∞
c (Rd) denote the space of continuous func-

tions on R
d that vanish at infinity and the space of smooth functions with compact supports

respectively.
By a signed measure ν we mean in this paper the difference of two nonnegative σ -finite

measures ν1 and ν2 in R
d . Since there is an increasing sequence of subsets {Fk, k ≥ 1} of

R
d such that |ν|Fk

is a finite measure, the positive and negative parts of ν are well defined
on each Fk and hence on R

d , which will be denoted as ν+ and ν−, respectively. We use
|ν| = ν+ + ν− to denote the total variation measure of ν.

Definition 1.1 For any signed measure ν on R
d , we define for any r > 0,

Mα
ν (r) = sup

x∈Rd

∫
B(x,r)

|ν|(dy)
|x − y|d+1−α

.

A signed measure ν on R
d is said to belong to the Kato class Kd,α−1 if limr↓0 M

α
ν (r) = 0.

We say that an R
d -valued signed measure μ = (μ1, · · · , μd) on R

d belongs to the Kato
class Kd,α−1 if each μj belongs to the Kato class Kd,α−1.

Since 1 < α < 2, using Hölder’s inequality, it is easy to see that, if p > d/(α − 1), for
every function f ∈ L∞(Rd ; dx)+ Lp(Rd; dx), f (x)dx is in the Kato class Kd,α−1. Note
that any signed measure ν on R

d is Radon.
Throughout this paper we will assume that μ = (μ1, · · · , μd), where each μj is a

signed measure on R
d belonging to Kd,α−1. Recently, in [21], we proved the existence and

uniqueness of the α-stable process Xμ with drift μ in R
d . Similar to [4], for small t > 0, the
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transition density pμ(t, x, y) of Xμ can be expressed as an infinite series
∑∞

k=0 p
μ
k (t, x, y),

where p
μ
0 (t, x, y) = p(t, x, y) and for k ≥ 1,

p
μ
k (t, x, y) :=

∫ t

0

∫
Rd

p
μ
k−1(s, x, z)∇zp(t − s, z, y) · μ(dz). (1.1)

We will use
{
P

μ
t ; t ≥ 0

}
to denote the transition semigroup of Xμ.

The following result is shown in [21]. Here and in the sequel, we use := as a way of
definition. For a, b ∈ R, a ∧ b := min{a, b} and a ∨ b := max{a, b}.

Theorem 1.2

(i) There exist T0 > 0 and c1 > 1 depending on μ only via the rate at which Mα
μ(r) goes

to zero such that
∑∞

k=0 p
μ
k (t, x, y) converges locally uniformly on (0, T0]×R

d ×R
d

to a positive jointly continuous function pμ(t, x, y) and that on (0, T0] × R
d × R

d ,

c−1
1

(
t−d/α ∧ t

|x − y|d+α

)
≤ pμ(t, x, y) ≤ c1

(
t−d/α ∧ t

|x − y|d+α

)
. (1.2)

Moreover,
∫
Rd p

μ(t, x, y)dy = 1 for every t ∈ (0, T0] and x ∈ R
d .

(ii) The function pμ(t, x, y) defined in (i) can be extended uniquely to a positive jointly
continuous function on (0,∞)× R

d × R
d so that for all s, t ∈ (0,∞) and (x, y) ∈

R
d ×R

d ,
∫
Rd p

μ(t, x, y)dy = 1 and

pμ(s + t, x, y) =
∫
Rd

pμ(s, x, z)pμ(t, z, y)dz. (1.3)

(iii) Xμ is a conservative Feller process with the strong Feller property admitting
pμ(t, x, y) as its transition density. It is also the unique weak solution to the stochas-
tic differential equation dX

μ
t = dXt + dAt , where, for j = 1, · · · , d , the j -th

component of At is a continuous additive functional of finite variation with respect
to Xμ and with Revuz measure μj .

(iv) For any f ∈ C∞
c (Rd) and g ∈ C∞(Rd),

lim
t→0

1

t

∫
Rd

(
P

μ
t f (x)− f (x)

)
g(x)dx=

∫
Rd

g(x)�α/2f (x)dx +
∫
Rd

g(x)∇f (x) · μ(dx).
(1.4)

Here and in the rest of this paper, the meaning of the phrase “depending on μ only via
the rate at which Mα

μ(r) goes to zero” is that the statement is true for any R
d -valued signed

measure ν on R
d with

Mα
ν (r) ≤ Mα

μ(r) for all r > 0.

For any open subset D ⊂ R
d , we define τ

μ
D = inf

{
t > 0 : Xμ

t /∈ D
}
. We will use

Xμ,D to denote the subprocess of Xμ in D; that is, Xμ,D
t (ω) = X

μ
t (ω) if t < τ

μ
D(ω) and

X
μ,D
t (ω) = ∂ if t ≥ τ

μ
D(ω), where ∂ is a cemetery state. The subprocess of X in D will

be denoted by XD . Throughout this paper, we use the convention that, for any function f ,
we extend its definition to ∂ by setting f (∂) = 0. The process Xμ,D has a transition den-
sity p

μ
D(t, x, y) with respect to the Lebesgue measure. (See Eq. 2.6 below.) The transition

density of XD is denoted by pD(t, x, y).
The purpose of this paper is to establish sharp two-sided estimates onpμ

D(t, x, y) whenD
is a (possibly unbounded) C1,1 open subset of R

d . To state the main result of this paper, we
first recall that an open set D in R

d is said to be a C1,1 open set if there exist a localization
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radius R0 > 0 and a constant 
0 > 0 such that for every z ∈ ∂D, there exist a C1,1-
function φ = φz : R

d−1 → R satisfying φ(0) = 0, ∇φ(0) = (0, . . . , 0), ‖∇φ‖∞ ≤

0, |∇φ(x) − ∇φ(w)| ≤ 
0|x − w|, and an orthonormal coordinate system CSz: y =
(y1, · · · , yd−1, yd) := (ỹ, yd) with its origin at z such that

B(z,R0) ∩D = {y ∈ B(0, R0) in CSz : yd > φ(ỹ)}.
The pair (R0,
0) is called the characteristics of the C1,1 open set D. We remark that
in some literature, the C1,1 open set defined above is called a uniform C1,1 open set as
(R0,
0) is universal for every z ∈ ∂D. For x ∈ D, let δD(x) denote the Euclidean distance
between x and ∂D. Note that a C1,1 open set may be disconnected.

Define

fD(t, x, y) =
(

1 ∧ δD(x)
α/2

√
t

)(
1 ∧ δD(y)

α/2

√
t

)(
t−d/α ∧ t

|x − y|d+α

)
.

Theorem 1.3 Let D be a C1,1 open subset of R
d with C1,1 characteristics (R0,
0).

Suppose that Xμ is an α-stable process with drift μ in R
d .

(i) For each T > 0, there exists a constant c1 = c1(T ,R0,
0, d, α,μ) ≥ 1 with
the dependence on μ only via the rate at which Mα

μ(r) goes to zero such that on
(0, T ] ×D ×D,

c−1
1 fD(t, x, y) ≤ p

μ
D(t, x, y) ≤ c1fD(t, x, y).

(ii) Suppose in addition that D is bounded. For each T > 0, there exists a constant
c2 = c2(diam(D), T ,R0,
0, d, α,μ) ≥ 1 with the dependence on μ only via the
rate at which Mα

μ(r) goes to zero so that for all (t, x, y) ∈ [T ,∞)×D ×D,

c−1
2 e−λ1t δD(x)

α/2δD(y)
α/2 ≤ p

μ
D(t, x, y) ≤ c2 e

−λ1t δD(x)
α/2δD(y)

α/2,

where −λ1 := sup Re(σ(L|D)) < 0 and L|D is the generator of XD .

Sharp two-sided estimates for pD(t, x, y), corresponding to the case μ = 0 in Theorem
1.3, were first established in [7]. When D is a bounded C1,1 open set and μ(dx) = b(x)dx

for some R
d -valued function b(x) on R

d belonging to the Kato class Kd,α−1, Theorem
1.3 was established in [10]. However, the argument of [10] used the boundedness of D

in an essential way and does not work when D is unbounded. Theorem 1.3 indicates that
short time Dirichlet heat kernel estimates for the fractional Laplacian in C1,1 open sets are
stable under gradient perturbations. We also establish a boundary Harnack principle for Xμ

(Theorem 5.8), which extends the corresponding result in [10]. We remark here that, unlike
[10], the boundary Harnack principle will be used to prove Theorem 1.3

In the remainder of this paper, the constants C1, C2, C3, C4, r0, r1, r2, r3, r4 will be fixed
throughout this paper. The lower case constants c1, c2, . . . can change from one appearance
to another. The dependence of the constants on the dimension d ≥ 2 and the stability index
α ∈ (1, 2) will not be always mentioned explicitly. We will use dx to denote the Lebesgue
measure in R

d . For a Borel set A ⊂ R
d , we also use |A| to denote its Lebesgue measure.

For two non-negative functions f and g, the notation f � g means that there are positive
constants c1 and c2 so that c1g(x) ≤ f (x) ≤ c2g(x) in the common domain of definition
for f and g.
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2 Stable Process with Drift µ

In this section we discuss some basic properties of the α-stable process Xμ with drift μ.
Recall that we always assume that d ≥ 2 and α ∈ (1,2). A (rotationally) symmetric

α-stable process X = {
Xt , t ≥ 0,Px, x ∈ R

d
}

in R
d is a Lévy process such that

Ex

[
eiξ ·(Xt−X0)

]
= e−t |ξ |α for every x ∈ R

d and ξ ∈ R
d .

It is well-known that the symmetric stable process X has Lévy density

J (x, y) = A(d,−α)|x − y|−(d+α)

where A(d,−α) := α2α−1π−d/2�
(
d+α

2

)
�
(
1 − α

2

)−1 with � being the Gamma function
defined by �(λ) := ∫∞

0 tλ−1e−t dt for every λ > 0.
The Lévy density gives rise to a Lévy system (N,H) for X, where N(x, dy) =

J (x, y)dy and Ht = t , which describes the jumps of the process X: for any x ∈ R
d

and any non-negative measurable function f on R+ × R
d × R

d vanishing on {(s, x, y) ∈
R+ ×R

d × R
d : x = y} and stopping time T (with respect to the filtration of X),

Ex

⎡
⎣∑
s≤T

f (s,Xs−,Xs)

⎤
⎦ = Ex

[∫ T

0

(∫
Rd

f (s,Xs, y)J (Xs, y)dy

)
ds

]
.

(See, for example, [13, Proof of Lemma 4.7] and [14, Appendix A].)
The infinitesimal generator of this process X is the fractional Laplacian �α/2, which is

a prototype of nonlocal operators. The fractional Laplacian can be written in the form

�α/2u(x) = lim
ε↓0

∫
{y∈Rd : |y−x|>ε}

(u(y)− u(x))J (x,y) dy. (2.1)

Recall that p(t, x, y) stands for the transition density of X (or equivalently the heat kernel
of the fractional Laplacian �α/2). It is well-known (see, e.g., [1, 13]) that

p(t, x, y) � t−d/α ∧ t

|x − y|d+α
on (0,∞)× R

d × R
d .

Recall that XD is the subprocess of X killed upon leaving an open set D. Denote the
Green function of XD by GD . It is known that

|∇zGD(z, y)| ≤ d

|z − y| ∧ δD(z)
GD(z, y). (2.2)

(See [6, Corollary 3.3].)
Recall that Xμ is the solution to the stochastic differential equation

dX
μ
t = dXt + dAt , (2.3)

where Xt is a symmetric α-stable process and, where, for j = 1, · · · , d , the j -th component
of At is a continuous additive functional of finite variation with respect to Xμ and with
Revuz measure μj .
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By the semigroup property of pμ(t, x, y) and Eq. 1.2 (which are proved in [21]), there
are constants c ≥ 1 and C1 > 0 depending only on d , α and μ with the dependence on μ

only via the rate at which Mα
μ(r) goes to zero such that on (0,∞)× R

d × R
d ,

c−1e−C1t

(
t−d/α ∧ t

|x − y|d+α

)
≤ pμ(t, x, y) ≤ ceC1t

(
t−d/α ∧ t

|x − y|d+α

)
. (2.4)

Recall that, for any open set D of Rd , Xμ,D stands for the subprocess of Xμ killed upon
exiting D. Let

k
μ
D(t, x, y) := Ex

[
pμ
(
t − τ

μ
D,X

μ

τ
μ
D

, y
)
; τμD < t

]

and

p
μ
D(t, x, y) := pμ(t, x, y)− k

μ
D(t, x, y). (2.5)

Then p
μ
D(t, x, y) is the transition density of Xμ,D . This is because by the strong Markov

property of Xμ, for every t > 0 and Borel set A ⊂ R
d ,

Px

(
X

μ,D
t ∈ A

)
=
∫
A

p
μ
D(t, x, y)dy. (2.6)

Using the conservativeness of Xμ and Eq. 2.4, the proof of the next lemma is standard
(for example, see [18, Lemma 6.1] and [10, Lemma 3.7]). So we omit the proof.

Lemma 2.1 For any bounded open set D, there exist positive constants c1 and c2 depending
only on d , α, diam(D) and μ with the dependence on μ only via the rate at which Mα

μ(r)

goes to zero such that

p
μ
D(t, x, y) ≤ c1e

−c2t , (t, x, y) ∈ (1,∞)×D ×D.

Combining the result above with Eq. 1.2 we know that for every bounded open set D,
there exists a positive constant c1 = c1(diam(D),μ) with the dependence on μ only via the
rate at which Mα

μ(r) goes to zero such that for any (t, x, y) ∈ (0,∞)×D ×D,

p
μ
D(t, x, y) ≤ c1

(
t−

d
α ∧ t

|x − y|d+α

)
.

Therefore for every bounded open set D the Green function G
μ
D(x, y) :=

∫∞
0 p

μ
D(t, x, y)dt

is finite and continuous off the diagonal of D ×D and

G
μ
D(x, y) ≤ c2

1

|x − y|d−α
(2.7)

for some positive constant c2 = c2(diam(D),μ) with the dependence on μ only via the rate
at which Mα

μ(r) goes to zero.
Let N(dt, dx) be the Poisson random measure describing the jumps of the stable process

X, that is, for any A ⊂ R
d and t > 0,

N(t,A) = #{s ≤ t : Xs − Xs− ∈ A}.
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It is well-known that the intensity of the Poisson random measure N is J (x)dxdt . We
will use Ñ to denote the compensator of N :

Ñ(t, A) = N(t, A)− t

∫
A

J (x)dx.

Since Xμ is a solution of Eq. 2.3, by Ito’s formula, we have that, for any f ∈ C∞
c (Rd),

f
(
X

μ
t

)−f
(
X

μ
0

) =
d∑

i=1

∫ t

0
∂if

(
X

μ
s−
)
dAi

s+
∫ t

0

∫
|x|<1

[
f
(
X

μ
s− + x

)− f
(
X

μ
s−
)]
Ñ(ds, dx)

+
∫ t

0

∫
|x|≥1

[
f
(
X

μ
s− + x

)− f
(
X

μ
s−
)]
N(ds, dx)

+
∫ t

0

∫
|x|<1

[
f
(
X

μ
s− + x

)− f
(
X

μ
s−
)− x · ∇f

(
X

μ
s−
)]
J (x)dxds.

(2.8)

The process

M
f
t :=

∫ t

0

∫
|x|<1

[
f
(
X

μ
s− + y

)− f
(
X

μ
s−
)]
Ñ(ds, dy) (2.9)

is a Px -martingale for each x ∈ R
d . Thus, using Eq. 2.8, we easily get the following

Dynkin’s formula.

Proposition 2.2 For any f ∈ C∞
c (Rd), any open subset U of Rd and any x ∈ U ,

Ex

[
f
(
X

μ

τ
μ
U

)]
= f (x)+

d∑
i=1

Ex

∫ τ
μ
U

0
∂if

(
X

μ
s−
)
dAi

s+Ex

∫ τ
μ
U

0
�α/2f

(
Xμ
s

)
ds. (2.10)

3 Process Killed at an Independent Exponential Time

For each q ≥ 0, we consider the subprocess X
μ,q
t of Xμ

t killed at an independent expo-
nential time e of parameter q: Xμ,q

t = X
μ
t when t ≤ e and X

μ,q
t = ∂ when t ≥ e,

where ∂ is a cemetery point. By convention, an exponential random variable with param-
eter q = 0 is identically infinite, and so Xμ,0 is simply Xμ. Let

{
P

μ,q
t ; t ≥ 0

}
be the

transition semigroup of Xμ,q . The transition density of Xμ,q is continuous and given by
pμ,q(t, x, y) = e−qtpμ(t, x, y). Thus using the upper bound of pμ(t, x, y), we have the
following proposition. Since the proof is almost identical to that of [10, Proposition 2.3],
we omit the proof.

Proposition 3.1 For each q ≥ 0, the semigroup
{
P

μ,q
t ; t ≥ 0

}
is a Feller semigroup. More-

over, it satisfies the strong Feller property; that is, for each t > 0, Pμ,q
t f maps bounded

measurable functions to continuous functions.

The following result gives the Lévy system ofXμ,q . In the case when q = 0 andμ(dx) =
b(x)dx for some Rd -valued function b on R

d belonging to Kd,α−1, the following result was
proved in [10] (see [10, Theorem 2.6]).
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Theorem 3.2 For each q ≥ 0, the Lévy system of Xμ,q is given by (Nq,Hq), where Hq
t = t

and for any x ∈ R
d ,

Nq(x, dy) = J (x, y)dy on R
d , Nq(x, {∂}) = q,

that is, for any x ∈ R
d and any non-negative measurable function f on R+ × R

d × R
d

vanishing on {(s, x, y) ∈ R+ ×R
d ×R

d : x = y} and stopping time T (with respect to the
filtration of Xμ,q ),

Ex

⎡
⎣∑
s≤T

f
(
s,X

μ,q
s− , X

μ,q
s

)
⎤
⎦ = Ex

[∫ T

0

(∫
Rd

f
(
s,X

μ,q
s , y

)
Nq

(
X

μ,q
s , y

)
dy

)
ds

]
.

(3.1)

Proof We first consider the case q = 0. The proof in this case is similar to that of [10,
Theorem 2.6]. For f ∈ C∞

c (Rd), define Mf as in Eq. 2.9. Suppose that U and V are two
compact subsets of Rd such that the distance between them is positive. Let f ∈ C∞

c (Rd)

with f = 0 on U and f = 1 on V . Then we know that Nf
t := ∫ t

0 1U (X
μ
s−)dM

f
s is a

martingale. Combining Eq. 2.8 with Eq. 2.1, we get that

N
f
t =

∑
s≤t

1U
(
X

μ
s−
)
f
(
Xμ
s

)−
∫ t

0
1U
(
Xμ
s

) (
�α/2f

(
Xμ
s

))
ds

=
∑
s≤t

1U
(
X

μ
s−
)
f (Xμ

s )−
∫ t

0
1U
(
Xμ
s

) ∫
Rd

f (y)J
(
Xμ
s , y

)
dyds.

By taking a sequence of functions fn ∈ C∞
c

(
R
d
)

with fn = 0 on U , fn = 1 on V and
fn ↓ 1V , we get that, for any x ∈ R

d ,

∑
s≤t

1U
(
X

μ
s−
)

1V
(
Xμ
s

)−
∫ t

0
1U
(
Xμ
s

) ∫
V

J
(
Xμ
s , y

)
dyds

is a martingale with respect to Px . Thus,

Ex

[∑
s≤t

1U
(
X

μ
s−
)

1V
(
Xμ
s

)] = Ex

[∫ t

0

∫
Rd

1U
(
Xμ
s

)
1V (y)J

(
Xμ
s , y

)
dyds

]
.

Using this and a routine measure theoretic arguments, we get

Ex

[∑
s≤t

f
(
X

μ
s−,Xμ

s

)] = Ex

[∫ t

0

∫
Rd

f
(
Xμ
s , y

)
J
(
Xμ
s , y

)
dyds

]

for any non-negative measurable function f on R
d ×R

d vanishing on {(x, y) ∈ R
d ×R

d :
x = y}. Finally following the same arguments as in [13, Lemma 4.7] and [14, Appendix
A], we get the theorem for q = 0.

Now we assume q > 0 and fix it. For any x ∈ R
d , we will use P̃x to denote the product

of the probability Px with the probability measure for the independent random variable e,
and we will use Ẽx to denote the expectation with respect to P̃x . We will use R

d
∂ to denote
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R
d ∪ {∂}. Suppose that F is a nonnegative function on R

d × R
d
∂ which vanishes on the

diagonal of Rd ×R
d such that F(·, ∂) = 0. Then for any x ∈ R

d and t > 0,

Ẽx

∑
s≤t

F
(
X

μ,q
s− , X

μ,q
s

)

= Ẽx

∑
s≤t∧e

F
(
X

μ,q
s− , X

μ,q
s

)

= Ẽx

[∑
s≤t

F
(
X

μ,q
s− , X

μ,q
s

) ; t < e

]
+ Ẽx

[∑
s≤e

F
(
X

μ,q
s− , X

μ,q
s

) ; t ≥ e

]

= e−qt
Ex

[∑
s≤t

F
(
X

μ
s−, Xμ

s

)]+ Ẽx

[∑
s<e

F
(
X

μ,q
s− , X

μ,q
s

) ; t ≥ e

]
+ Ẽx

[
F
(
X

μ,q
e− , ∂

) ; t ≥ e
]

= Ex

[
e−qt

∫ t

0

∫
Rd

F
(
Xμ

s , y
)
J
(
Xμ

s , y
)
dyds

]
+
∫ t

0
qe−qr

Ex

[∑
s<r

F
(
X

μ
s−, Xμ

s

)]
dr

+
∫ t

0
qe−qr

Ex

[
F
(
X

μ
r−, ∂

)]
dr

= Ex

[
e−qt

∫ t

0

∫
Rd

F
(
Xμ

s , y
)
J
(
Xμ

s , y
)
dyds

]
+Ex

[∫ t

0
qe−qr

∫ r

0

∫
Rd

F
(
Xμ

s , y
)
J
(
Xμ

s , y
)
dydsdr

]

+ Ex

[∫ t

0
qe−qrF

(
Xμ

r , ∂
)
dr

]

= Ex

[∫ t

0

∫
Rd

e−qsF
(
Xμ

s , y
)
J
(
Xμ

s , y
)
dyds

]
+ Ex

[∫ t

0
qF

(
Xμ

s , ∂
)
e−qsds

]

= Ẽx

[∫ t

0

∫
Rd

F
(
X

μ,q
s , y

)
J
(
X

μ,q
s , y

)
dyds

]
+ Ẽx

[∫ t

0
qF

(
X

μ,q
s , ∂

)
ds

]

= Ẽx

[∫ t

0

∫
Rd

F
(
X

μ,q
s , y

)
N
(
X

μ,q
s , dy

)
ds

]
.

Thus the assertion of the theorem is valid.

For any open set D of Rd , we will use Xμ,q,D to denote the subprocess of Xμ,q killed
upon exiting D. It is easy to check from the definition that the process Xμ,q,D can also be
obtained by killing the process Xμ,D at an independent exponential random variable e. Thus
the transition density p

μ,q
D is related to p

μ
D as follows:

p
μ,q
D (t, x, y) = e−qtp

μ
D(t, x, y), (t, x, y) ∈ [0,∞)×D ×D. (3.2)

For any Borel set G ⊂ R
d , we define τ

μ,q
G = inf

{
t > 0 : Xμ,q

t /∈ G
}
. A point z on the

boundary ∂G is said to be a regular boundary point with respect to Xμ,q if Pz

(
τ
μ,q
G = 0

) =
1. A Borel set G is said to be regular with respect to Xμ,q if every point in ∂G is a regular
boundary point with respect to Xμ,q .

The next result follows from Eq. 1.2 and Blumenthal’s zero-one law by a routine
argument so we omit the proof. See [19, Proposition 2.2].

Proposition 3.3 Suppose that q ≥ 0 and that G is a Borel set of Rd and z ∈ ∂G. If there is
a cone A with vertex z such that int(A) ∩ B(z, r) ⊂ Gc for some r > 0, then z is a regular
boundary point of G with respect to Xμ,q .

This result implies that all Lipschitz open sets, and in particular, all C1,1 open sets, are
regular with respect to Xμ,q .
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We will use
{
P

μ,q,D
t

}
to denote the semigroup of Xμ,q,D . Using some standard argu-

ments (see [10, Theorem 3.4] and its proof), we can show the following. We omit the
proof.

Theorem 3.4 Let q ≥ 0 and D be an open set in R
d . The transition density pμ,q

D (t, x, y) is
jointly continuous on (0,∞)×D ×D. Thus for every x,y in D and t, s > 0,

p
μ,q
D (t + s, x, y) =

∫
D

p
μ,q
D (t, x, z)p

μ,q
D (s, z, y)dz. (3.3)

The next result is a short time lower bound estimate for pμ,q
D (t, x, y) near the diagonal.

The technique used in its proof is well-known and the full detail is given in the proof of
[10, Proposition 3.5].

Proposition 3.5 For any a1 ∈ (0, 1), a2 > 0, a3 > 0 and R > 0, there is a constant
c = c (a1, a2, a3, R, μ) > 0 with the dependence on μ only via the rate at which Mα

μ(r)

goes to zero such that for all x0 ∈ R
d , q ≥ 0 and r ∈ (0, R],

p
μ,q

B(x0,r)
(t, x, y) ≥ ce−qt t−d/α for all x, y ∈ B(x0, a1r) and t ∈ [a2r

α, a3r
α
]
. (3.4)

Corollary 3.6 For every q ≥ 0 and open subset D ⊂ R
d , pμ,q

D (t, x, y) is strictly positive.

Proof See the proof of [10, Corollary 3.6].

4 Uniform Estimates on Green Functions

In this section we derive uniform sharp bounds on the Green function G
μ,q
U when U is some

small C1,1 open set. We first establish a Duhamel’s principle for Gμ
D when μ|D has compact

support in D.

Proposition 4.1 If D is a bounded open set and μ|D has compact support in D, then G
μ
D

satisfies

G
μ
D(x, y) = GD(x, y)+

∫
D

G
μ
D(x, z)∇zGD(z, y) · μ(dz). (4.1)

Proof The proof of this proposition is similar to that of [10, Proposition 4.2]. Since Xμ is
a solution of Eq. 2.3, by Ito’s formula, we know that for any f ∈ C∞

c (Rd),

M
f
t := f

(
X

μ
t

)− f
(
X

μ
0

)−
d∑

i=1

∫ t

0
∂if

(
Xμ
s

)
dAi

s −
∫ t

0

∫
|y|≥1

× [f (Xμ
s− + y

)− f
(
X

μ
s−
)]
N(ds, dy)

−
∫ t

0

∫
|y|<1

[
f
(
X

μ
s− + y

)− f
(
X

μ
s−
)− y · ∇f

(
X

μ
s−
)]
J (y)dyds

is a Px -martingale for each x ∈ R
d , where N is the Poisson random measure describing the

jumps of the symmetric stable process X. Since μ|D has compact support in D, in view of
Eqs. 2.2, 2.7 and the fact that μ ∈ Kd,α−1, Mf

t∧τμD
is a uniformly integrable martingale.
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Define Dj := {x ∈ D : dist(x,Dc) > 1/j }. Let φ ∈ C∞
c

(
R
d
)

with φ ≥ 1, supp[φ] ⊂
B(0, 1) and

∫
Rd φ(x)dx = 1. Let φn(x) := ndφ(nx) and for any ψ ∈ Cc(D), define

fn := φn ∗ (GDψ). Clearly fn ∈ C∞
c

(
R
d
)

and fn converges uniformly to GDψ . Fix

j ≥ 1. Since Ex

[
M

fn
0

]
= Ex

[
M

fn

τ
μ
Dj

]
, and for every y ∈ Dj and sufficiently large n,

�α/2fn(y) = φn ∗
(
�α/2GDψ

)
(y) = −φn ∗ ψ(y), we have, by Dynkin’s formula (2.10),

that for sufficiently large n,

Ex

[
fn

(
X

μ

τ
μ
Dj

)]
− fn(x)=

∫
Dj

G
μ
Dj

(x, y)�α/2fn(y)dy +
∫
Dj

G
μ
Dj

(x, y)∇fn(y) · μ(dy)

= −
∫
Dj

G
μ
Dj

(x, y)φn ∗ ψ(y)dy

+
∫
Dj

G
μ
Dj

(x, y)φn ∗ ∇(GDψ)(y) · μ(dy).

Taking n → ∞, we get, by Eqs. 2.2, 2.7 and the fact that μ ∈ Kd,α−1,

Ex

[
GDψ

(
X

μ

τ
μ
Dj

)]
−GDψ(x)=−

∫
D

G
μ
Dj

(x, y)ψ(y)dy+
∫
D

G
μ
Dj

(x, y)∇(GDψ)(y)·μ(dy).
(4.2)

Now using the fact that μ|D has compact support in D, taking j → ∞, we have by Eqs.2.2,
2.7 and the fact that μ ∈ Kd,α−1,

−GDψ(x) = −
∫
D

G
μ
D(x, y)ψ(y)dy +

∫
D

G
μ
D(x, y)∇(GDψ)(y) · μ(dy)

and the continuity of Gμ
D off the diagonal of D ×D that, for each x ∈ D, Eq. 4.1 holds for

all x, y ∈ D.

We derive the following two-sided estimates on the Green functions of subprocesses of
Xμ in certain nice open sets when the diameters of such open sets are less than or equal
to some constant depending on μ only via the rate at which Mα

μ(r) goes to zero. Using
Proposition 4.1, the proofs of Theorems 4.2 and 4.3 below are almost identical to those of
the corresponding results in [10]. Thus we omit the proof of Theorems 4.2 and only give a
sketch of the proof of Theorem 4.3.

Theorem 4.2 There exists a constant r1 = r1(μ) > 0 with the dependence on μ only via
the rate at which Mα

μ(r) goes to zero such that for any ball B = B(x0, r) of radius r ≤ r1,

2−1GB(x, y) ≤ G
μ
B(x, y) ≤ 2GB(x, y), x, y ∈ B.

For any bounded C1,1 open set D with characteristic (R0,
0), it is well-known (see,
for instance [25, Lemma 2.2]) that there exists L = L(R0, 
0, d) > 0 such that for every
z ∈ ∂D and r ≤ R0, one can find a C1,1 open set U(z,r) with characteristic (rR0/L,
0L/r)

such that D ∩ B(z, r/2) ⊂ U(z,r) ⊂ D ∩ B(z, r). For the remainder of this paper, given a
bounded C1,1 open set D, U(z,r) always refers to the C1,1 open set above.
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Theorem 4.3 For every C1,1 open set D with the characteristic (R0,
0), there exists a
constant r2 = r2(R0,
0, μ) ∈ (0, (R0 ∧ 1)/8] with the dependence on μ only via the rate
at which Mα

μ(r) goes to zero such that for any z ∈ ∂D and r ≤ r2, we have

2−1GU(z,r)
(x, y) ≤ G

μ
U(z,r)

(x, y) ≤ 2GU(z,r)
(x, y), x, y ∈ U(z,r). (4.3)

Proof Let U := U(z, r) with r ≤ R0. Using Proposition 4.1 and Eq. 2.7, one can follow
the proof of [10, Proposition 4.4] and show that there exists r2 = r2(R0,
0, μ) ∈ (0, (R0 ∧
1)/8] such that Eq. 4.3 holds for r ≤ r2 when μ is compactly supported in U .

Let

μn(x) = μ|Uc + μ|Kn (4.4)

with Kn being an increasing sequence of compact subsets of U such that ∪∞
n=1Kn = U .

Define

Nμ(t) :=
d∑

j=1

sup
w∈Rd

∫
Rd

∫ t

0

(
|w − z|−d−1 ∧ s−(d+1)/α

)
ds

∣∣∣μj
∣∣∣ (dz).

By following the proof of [4, Lemma 13] line by line, there exists a constant C2 > 0 such
that

d∑
j=1

∫
Rd

∫ t

0
p(t − s, x, z)|∇zp(s, z, y)|ds

∣∣∣μj
∣∣∣ (dz) ≤ C2p(t, x, y)Nμ(t), (4.5)

and so for every n ≥ 1,

d∑
j=1

∫
Rd

∫ t

0
p(t − s, x, z)|∇zp(s, z, y)|ds

∣∣∣μj
n

∣∣∣ (dz) ≤ C2p(t, x, y)Nμ(t). (4.6)

Moreover, for every n ≥ 1,

d∑
j=1

∫
Rd

∫ t

0
p(t − s, x, z)|∇zp(s, z, y)|ds

∣∣∣μj − μ
j
n

∣∣∣ (dz)
≤ C2p(t, x, y)Nμ−μn(t)

= C2p(t, x, y) sup
w∈Rd

d∑
j=1

∫
U\Kn

∫ t

0

(
|w − z|−d−1 ∧ s−(d+1)/α

)
ds|μj |(dz). (4.7)

Recall that pμ
k (t, x, y), k ≥ 0, was defined recursively by p

μ
0 (t, x, y) := p(t, x, y) and

Eq. 1.1. We define p
μn

k (t, x, y) similarly. By Eqs. 4.5–4.6 and induction we have

∣∣pμ
k (t, x, y)

∣∣ ∨
(

sup
n≥1

∣∣pμn

k (t, x, y)
∣∣
)

≤ (C2Nμ(t))
kp(t, x, y). (4.8)

Choose T1 > 0 small so that

C2Nμ(t) <
1

2
, t ≤ T1. (4.9)
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Then using Eqs. 4.7–4.9 and induction, one can show as in [10, Lemma 4.5] that for all
k ≥ 1 and (t, x, y) ∈ (0, T1] × R

d × R
d ,

∣∣pμn

k (t, x, y)− p
μ
k (t, x, y)

∣∣

≤kC22−(k−1)p(t, x, y) sup
w∈Rd

d∑
j=1

∫
U\Kn

∫ t

0

(
|w − z|−d−1 ∧ s−(d+1)/α

)
ds|μj |(dz).

Using this and Theorem 1.2(i), by following the first part of the proof of [10, Theorem 4.6],
we see that pμn(t, x, y) converges uniformly to pμ(t, x, y) on any [a, b]×R

d ×R
d , where

0 < a < b < ∞.
Now using Eq. 1.2, Proposition 3.3 and the Lévy system for Xμ, one can follow the

remainder part of the proof of [10, Theorem 4.6] and show that Xμn converges to Xμ weakly
and the boundary of

{
t < τ

μ
U

}
in Skorohod topology on D

([0,∞),Rd
)

is Px -null for every
x ∈ U . Using these and Lemma 2.1 we finally can show that for any bounded continuous
function f on U ,

lim
n→∞Ex

[∫ ∞

0
f
(
X

μn
t

)
1{t<τ

μn
U }dt

]
= lim

n→∞

∫ ∞

0
Ex

[
f
(
X

μn
t

)
1{t<τ

μn
U }
]
dt=Ex

[∫ ∞

0
f
(
X

μ
t

)
1{t<τ

μ
U }dt

]
,

that is, limn→∞ G
μn

U f = G
μ
Uf . Since Eq. 4.3 holds for μn, this implies the theorem.

For the remainder of the paper we alway assume that q0 := 2C1, where C1 is the constant
in Eq. 2.4. It follows from Eq. 2.4 that there exists a positive constant c1 > 0 such that for
every (t, x, y) ∈ (0,∞)× R

d ×R
d ,

c−1
1 e−3C1t

(
t−d/α ∧ t

|x − y|d+α

)
≤ pμ,q0(t, x, y) ≤ c1e

−C1t

(
t−d/α ∧ t

|x − y|d+α

)
.

(4.10)
Consequently we have that for every (t, x, y) ∈ (0,∞)×R

d × R
d ,

c−1
2 e−3C1tp(t, x, y) ≤ pμ,q0(t, x, y) ≤ c2e

−C1t p(t, x, y) (4.11)

for some constant c2 > 1.
It follows from Eq. 4.11 that, for any open subset D of R

d , the Green function
G

μ,q0
D (x, y) = ∫∞

0 p
μ,q0
D (t, x, y)dt is finite and continuous off the diagonal of D ×D and

G
μ,q0
D (x, y) ≤ Gμ,q0(x, y) ≤ c

1

|x − y|d−α
(4.12)

for some positive constant c = c(μ) with the dependence on μ only via the rate at which
Mα

μ(r) goes to zero.

Theorem 4.4 There exists a constant r3 = r3(μ) > 0 with the dependence on μ only via
the rate at which Mα

μ(r) goes to zero such that for any ball B = B(x0, r) of radius r ≤ r3,

4−1GB(x, y) ≤ G
μ,q0
B (x, y) ≤ 2GB(x, y), x, y ∈ B.
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Proof For any z ∈ B(x0, r), let
(
P
z
x, X

μ,B(x0,r)
t

)
be the G

μ
B(x0,r)

(·, z)-transform of(
Px,X

μ,B(x0,r)
t

)
, that is, for any nonnegative Borel functions f in B(x0, r),

E
z
x

[
f
(
X

μ,B(x0,r)
t

)]
= Ex

⎡
⎣ G

μ
B(x0,r)

(
X

μ,B(x0,r)
t , z

)

G
μ
B(x0,r)

(x, z)
f
(
X

μ,B(x0,r)
t

)⎤⎦ .

It is well-known that the following 3G-inequality holds: for all r > 0, x0 ∈ R
d , x,y, z ∈

B(x0, r),
GB(x0,r)(x, y)GB(x0,r)(y, z)

GB(x0,r)(x, z)
≤ c1

(
|x−y|α−d+|y − z|α−d

)
. (4.13)

Thus, by applying Theorem 4.2, we have the following 3G-inequality for all r ≤ r1, x0 ∈
R
d , x, y, z ∈ B(x0, r),

G
μ

B(x0,r)
(x, y)G

μ

B(x0,r)
(y, z)

G
μ
B(x0,r)

(x, z)
≤ 8c1

(
|x − y|α−d + |y − z|α−d

)
. (4.14)

Using Eq. 4.14 we choose a positive constant r3 ≤ r1 such that for any r ∈ (0, r3] and all
x, z ∈ B(x0, r),

E
z
xτ

μ
B(x0,r)

=
∫
B(x0,r)

G
μ
B(x0,r)

(x, y)G
μ
B(x0,r)

(y, z)

G
μ
B(x0,r)

(x, z)
dy < q−1

0 ln 2.

By Jensen’s inequality this implies that for any r ∈ (0, r3],
E
z
x

[
exp

(
−q0τ

μ
B(x0,r)

)]
≥ exp

(
E
z
x

[
−q0τ

μ
B(x0,r)

])
≥ 2. (4.15)

Since

G
μ,q0
B(x0,r)

(x, z) = G
μ

B(x0,r)
(x, z)Ez

x

[
exp

(
−qτ

μ

B(x0,r)

)]
, x, z ∈ B(x0, r),

by combining Theorem 4.2 with Eq. 4.15 we have proved theorem.

Theorem 4.5 For every C1,1 open set D with the characteristic (R0,
0), there exists a
constant r4 = r4(R0,
0, μ) ∈ (0, (R0 ∧ 1)/8] with the dependence on μ only via the rate
at which Mα

μ(r) goes to zero such that for any z ∈ ∂D and r ≤ r4, we have

4−1GU(z,r)
(x, y) ≤ G

μ,q0
U(z,r)

(x, y) ≤ 2GU(z,r)
(x, y), x, y ∈ U(z,r). (4.16)

Proof Using [20, Theorem 3.3] and Theorem 4.3 instead of Eq. 4.13 and Theorem 4.2
respectively, the proof of the theorem is the same as that of Theorem 4.4.

We will need the two results above later on.

5 Duality and Uniform Boundary Harnack Principle

Recall that q0 = 2C1, where C1 is the constant in Eq. 2.4. We will discuss some basic
properties of Xμ,q0 and its dual process with respect to some reference measure. The results
of this section will be used later in this paper.
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By Theorem 3.4 and Corollary 3.6, Xμ,q0 has a jointly continuous and strictly positive
transition density pμ,q0 (t, x, y). Thanks to Eq. 4.10, we can define a reference measure as
follows.

h(x) :=
∫
Rd

Gμ,q0(y, x)dy and ξ(dx) := h(x)dx.

The following result says that ξ is a reference measure for Xμ,q0 .

Proposition 5.1 ξ is an excessive measure with for Xμ,q0 , i.e., for every Borel function
f ≥ 0, ∫

Rd

f (x)ξ(dx) ≥
∫
Rd

Ex

[
f
(
X

μ,q0
t

)]
ξ(dx).

Moreover, h is a strictly positive, bounded continuous function on R
d , in fact, there exists a

positive constant c > 0 such that c−1 ≤ h(x) ≤ c for all x ∈ R
d .

Proof The proof of the first claim is the same as the corresponding one in the proof of
[10, Proposition 5.2]. So we only prove the second part.

By Eq. 4.11,

h(x) =
∫ ∞

0

∫
Rd

pμ,q0(t, x, y)dydt ≤ c1

∫ ∞

0
e−C1t

∫
Rd

p(t, x, y)dydt

= c1

∫ ∞

0
e−C1t dt = c1/C1 < ∞

and

h(x) ≥ c−1
1

∫ ∞

0
e−3C1t

∫
Rd

p(t, x, y)dydt = c−1
1

∫ ∞

0
e−3C1t dt = 1/(3C1c1) > 0.

The continuity of h now follows from the continuity of Gμ,q0 .

We define a transition density with respect to the reference measure ξ by

pμ,q0(t, x, y) := pμ,q0(t, x, y)

h(y)
.

Since pμ,q0 (t, x, y) is jointly continuous and strictly positive, pμ,q0 (t, x, y) is also jointly
continuous and strictly positive by Proposition 5.1.

Let

G
μ,q0

(x, y) :=
∫ ∞

0
pμ,q0(t, x, y)dt = Gμ,q0(x, y)

h(y)
.

Then G
μ,q0

(x, y) is the Green function of Xμ,q0 with respect to the reference measure ξ .
Before we discuss properties of G

μ,q0
(x, y), let us first recall some definitions.

Definition 5.2 Suppose that q ≥ 0 and that U is an open subset of Rd . A Borel function u

on R
d is said to be

(i) harmonic in U with respect to Xμ,q if

Ex

[∣∣u
(
X

μ,q

τ
μ,q
B

) ∣∣
]
< ∞ and u(x) = Ex

[
u

(
X

μ,q

τ
μ,q
B

)]
, x ∈ B, (5.1)

for every bounded open set B with B ⊂ U ;
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(ii) excessive with respective to Xμ,q if u is non-negative and

u(x) ≥ Ex

[
u
(
X

μ,q
t

)]
and u(x) = lim

t↓0
Ex

[
u
(
X

μ,q
t

)]
, t > 0, x ∈ R

d ;
(iii) a potential with respect to Xμ,q if it is excessive with respect to Xμ,q and for every

sequence {Un}n≥1 of open sets with Un ⊂ Un+1 and ∪nUn = R
d ,

lim
n→∞Ex

[
u

(
X

μ,q

τ
μ,q
Un

)]
= 0; ξ -a.e. x ∈ R

d ;
(iv) a pure potential with respect to Xμ,q if it is a potential with respect to Xμ,q and

lim
t→∞Ex

[
u
(
X

μ,q
t

)] = 0, ξ -a.e. x ∈ R
d ;

(v) regular harmonic with respect to Xμ,q in U if u is harmonic with respect to Xμ,q in
U and Eq. 5.1 is true for B = U .

The following properties of the Green function G
μ,q0

(x, y) of Xμ,q0 hold.

(A1) G
μ,q0

(x, y) > 0 for all (x, y) ∈ R
d ×R

d ; G
μ,q0

(x, y) = ∞ if and only if x = y ∈
R
d ;

(A2) For every x ∈ R
d , G

μ,q0
(x, · ) and G

μ,q0
( · , x) are extended continuous in R

d ;
(A3)

sup
x∈Rd

(∫
Rd

G
μ,q0

(x, y)ξ(dy)+
∫
Rd

G
μ,q0

(y, x)ξ(dy)

)
< ∞.

Clearly (A3) follows from Eq. 4.11, and (A2) follows from the continuity of
pμ,q0(t, x, y) and Eq. 4.11. (A1) follows from Corollary 3.6, Proposition 5.1 and Eq. 4.11.

From (A1)–(A3), we know that the process Xμ,q0 satisfies the condition (R) on
[16, p. 211] and the conditions (a)–(b) of [16, Theorem 5.4]. It follows from [16, Theorem
5.4] that Xμ,q0 satisfies Hunt’s Hypothesis (B). Thus, by [16, Theorem 13.24], Xμ,q0 has a
dual process X̂μ,q0 , which is a standard process.

Moreover, using Eqs. 4.12 and 3.1 and following the proof of (A4) in [10], we have the
following.

(A4) For each y, x �→ G
μ,q0

(x, y) is excessive with respect to Xμ,q0 and harmonic with
respect to Xμ,q0 in R

d \ {y}. Moreover, for every open subset U of Rd , we have

Ex

[
G

μ,q0

(
X

μ,q0

T
μ,q0
U

, y

)]
= G

μ,q0
(x, y), (x, y) ∈ R

d × U, (5.2)

where T
μ,q0
U := inf{t > 0 : Xμ,q0

t ∈ U }. In particular, for every y ∈ E and ε > 0,
G

μ,q0
( · , y) is regular harmonic in R

d \ B(y, ε) with respect to Xμ,q0 .

Using our (A1)–(A2), (A4), the proof of the next result is the same as that of
[10, Theorem 5.4]. We omit the proof.

Proposition 5.3 For each y ∈ R
d , x �→ G

μ,q0
(x, y) is a pure potential with respect to

Xμ,q0 . In fact, for every sequence {Un}n≥1 of open sets with Un ⊂ Un+1 and ∪nUn = R
d ,

and every x �= y in R
d ,

lim
n→∞Ex

[
G

μ,q0

(
X

μ,q0

τ
μ,q0
Un

, y

)]
= 0.

Moreover, for any x, y ∈ R
d , we have limt→∞ Ex

[
G

μ,q0 (
X

μ,q0
t , y

)] = 0.
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Using (A1)–(A4), Eq. 2.7 and Proposition 5.3 we get from [22, 23] that Xμ,q0 has a
transient Hunt process as a dual.

Theorem 5.4 There exists a transient Hunt process X̂μ,q0 in R
d such that X̂μ,q0 is a strong

dual of Xμ,q0 with respect to the measure ξ , that is, the density of the semigroup
{
P̂

μ,q0
t

}
t≥0

of X̂μ,q0 is given by pμ,q0(t, y, x) and thus

∫
Rd

f (x)P
μ,q0
t g(x)ξ(dx) =

∫
Rd

g(x)P̂
μ,q0
t f (x)ξ(dx) for all f, g ∈ L2(Rd, ξ ).

In Theorem 3.2, we have determined a Lévy system (Nq,Hq) for Xμ,q with respect to
the Lebesgue measure dx. To derive a Lévy system for X̂μ,q0 , we need to consider a Lévy
system for Xμ,q0 with respect to the reference measure ξ(dx). One can easily check that, if

N
q

0(x, dy) :=
J (x, y)

h(y)
ξ(dy) for (x, y) ∈ R

d × R
d , N

q

0 (x, {∂}) := q0

and H
q0
t := t , then

(
N

q0
,H

q0
)

is a Lévy system for Xμ,q0 with respect to the reference

measure ξ(dx). It follows from [17] that a Lévy system
(
N̂q0 , Ĥ q0

)
for X̂μ,q0 satisfies

Ĥ
q0
t = t and

N̂q0(y, dx)ξ(dy)= N
q0
(x, dy)ξ(dx).

Therefore, using J (x, y) = J (y, x), we have for every stopping time T with respect to the
filtration of X̂μ,q0 ,

Ex

⎡
⎣∑
s≤T

f
(
s, X̂

μ,q0
s− , X̂

μ,q0
s

)
⎤
⎦ = Ex

[∫ T

0

(∫
Rd

f (s, X̂
μ,q0
s , y)

J (X̂
μ,q0
s , y)

h(X̂
μ,q0
s )

ξ(dy)

)
dĤ

q0
s

]

= Ex

[∫ T

0

(∫
Rd

f (s, X̂
μ,q0
s , y)

J (X̂
μ,q0
s , y)h(y)

h(X̂
μ,q0
s )

dy

)
ds

]
.

(5.3)

That is,

N̂q0(x, dy) = J (x, y)h(y)

h(x)
dy.

By the definition of ξ and pμ,q0 , we have

P
μ,q0
t f (x) =

∫
Rd

pμ,q0(t, x, y)f (y)ξ(dy).

Let

P̂
μ,q0
t f (x) :=

∫
Rd

pμ,q0(t, y, x)f (y)ξ(dy).

For any open subset U of Rd , we use X̂μ,q0,U to denote the subprocess of X̂μ,q0 in U ,
i.e., X̂μ,q0,U

t (ω) = X̂
μ,q0
t (ω) if t < τ̂

μ,q0
U (ω) and X̂

μ,q0,U
t (ω) = ∂ if t ≥ τ̂

μ,q0
U (ω), where
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τ̂
μ,q0
U := inf{t > 0 : X̂μ,q0

t /∈ U } and ∂ is the cemetery state. Then by [24, Theorem 2 and
Remark 2], Xμ,q0,U and X̂μ,q0,U are dual processes with respect to ξ . Now we let

p̂
μ,q0
U (t, x, y) := p

μ,q0
U (t, y, x)h(y)

h(x)
. (5.4)

By the joint continuity of pμ,q0
U (t, x, y) (Theorem 3.4) and the continuity and positivity of

h (Proposition 5.1), we know that p̂ μ,q0
U (t, ·, ·) is jointly continuous on U × U . Thus we

have the following.

Theorem 5.5 For every open subset U , p̂ μ,q0
U (t, x, y) is strictly positive and jointly con-

tinuous on U × U and is the transition density of X̂μ,q0,U with respect to the Lebesgue
measure. Moreover,

Ĝ
μ,q0
U (x, y) := G

μ,q0
U (y, x)h(y)

h(x)
(5.5)

is the Green function of X̂μ,q0,U with respect to the Lebesgue measure so that for every
nonnegative Borel function f ,

Ex

[∫ τ̂
μ,q0

U

0
f
(
X̂

μ,q0
t

)
dt

]
=
∫
U

Ĝ
μ,q0
U (x, y)f (y)dy.

In the remainder of this section, we will establish a uniform boundary Harnack principle
on D for certain harmonic functions of Xμ. Since the arguments are mostly similar to those
in [10]. We only give a sketch.

A real-valued function u on R
d is said to be harmonic in an open set U ⊂ R

d with
respect to X̂μ,q0 if for every relatively compact open subset B with B ⊂ U ,

Ex

[∣∣u
(
X̂

μ,q0

τ̂
μ,q0
B

) ∣∣
]
< ∞ and u(x) = Ex

[(
X̂

μ,q0

τ̂
μ,q0
B

)]
for every x ∈ B. (5.6)

A real-valued function u on R
d is said to be regular harmonic in an open set U ⊂ R

d with
respect to X̂μ,q0 if Eq. 5.6 is true with B = U . Clearly, a regular harmonic function in U is
harmonic in U .

For any open set U , define the Poisson kernel for X of U as

KU(x, z) :=
∫
U

GU(x, y)J (y, z)dy, (x, z) ∈ U ×
(
R
d \ U

)
, (5.7)

the Poisson kernel for Xμ,q of U as

K
μ,q
U (x, z) :=

∫
U

G
μ,q
U (x, y)J (y, z)dy, (x, z) ∈ U ×

(
R
d \ U

)
(5.8)

and the Poisson kernel for X̂μ,q0 of U as

K̂
μ,q0
U (x, z) := h(z)

h(x)

∫
U

G
μ,q0
U (y, x)J (z, y)dy, (x, z) ∈ U ×

(
R
d \ U

)
. (5.9)

By Eqs. 3.1 and 5.3, we have

Ex

[
f

(
X

μ,q0

τ
μ,q0
U

)
; Xμ,q0

τ
μ,q0
U − �= X

μ,q0

τ
μ,q0
U

]
=
∫
U

c
K

μ,q0
U (x, z)f (z)dz
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and

Ex

[
f

(
X̂

μ,q0

τ̂
μ,q0
U

)
; X̂μ,q0

τ̂
μ,q0
U − �= X̂

μ,q0

τ̂
μ,q0
U

]
=
∫
U

c
K̂

μ,q0
U (x, z)f (z)dz. (5.10)

Define

M := M(μ, q0) := sup
x,y∈Rd

h(x)

h(y)
. (5.11)

Note that, by Proposition 5.1, we have

1 ≤ M(μ, q0) < ∞. (5.12)

By Eq. 5.12, Theorems 4.2 and 4.4, we have that for every r ∈ (0, r3] and every x ∈ R
d ,

Ez

[
τ
μ
B(x,r)

]
� Ez

[
τ
μ,q0
B(x,r)

]
� Ez

[
τ̂
μ,q0
B(x,r)

]
� Ez

[
τB(x,r)

]
, z ∈ B(x, r). (5.13)

Since, using the results we have obtained so far, the proofs in the remainder of this
section are almost identical to those in [10], we give details only for parts that require extra
explanation.

Lemma 5.6 Suppose that U is a bounded C1,1 open set in R
d with diam(U) ≤ 3r3 where

r3 is the constant in Theorem 4.4. Then

Px

(
X

μ

τ
μ
U

∈ ∂U
)
= Px

(
X

μ,q0

τ
μ,q0
U

∈ ∂U

)
= Px

(
X̂

μ,q0

τ̂
μ,q0
U

∈ ∂U

)
= 0 for every x ∈ U.

Proof Using Eqs. 5.12, 5.13 and 5.10, the proof of the lemma is the same as that of [10,
Lemma 6.1] and [2, Lemma 6]. We omit the proof.

By Eqs. 5.12, 5.7–5.9, Lemmas 4.4 and 5.6, we have for every r ∈ (0, r3] and every

x ∈ R
d and (y,z) ∈B(x, r)×

(
R
d \ B(x, r)

)
,

KB(x,r)(y, z)�K
μ

B(x,r)
(y, z) � K

μ,q0
B(x,r)

(y, z) � K̂
μ,q0
B(x,r)

(y, z). (5.14)

Using Eq. 5.14, Lemma 5.6 and a standard chain argument, we get the following form of
Harnack inequality.

Theorem 5.7 For every R > 0 and a ∈ (0, 1), there exists c = c(a,R) > 0 such that for
every r ∈ (0,R], x0 ∈ R

d , and any function u which is nonnegative on R
d and harmonic

with respect to Xμ (or Xμ,q0 , or X̂μ,q0 ) in B(x0, r), we have

u(x) ≤ c u(y), for all x, y ∈ B(x0, ar) .

Let z ∈ ∂D. We will say that a function u : Rd → R vanishes continuously on Dc ∩
B(z, r) if u = 0 on Dc ∩ B(z, r) and u is continuous at every point of ∂D ∩ B(z, r).

Note that, by the same proof as that of [12, Lemma 4.2], every nonnegative function u

in R
d that is harmonic with respect to Xμ (or Xμ,q0 , or X̂μ,q0 , respectively) in D ∩ B(0, r)

and vanishes continuously on Dc is regular harmonic in D ∩B(0, r) with respect to Xμ (or
Xμ,q0 , or X̂μ,q0 , respectively).

Theorem 5.8 (Boundary Harnack principle) Suppose d ≥ 2 and α ∈ (1,2). Let D be a
(not necessarily bounded) C1,1 open set in R

d and μ = (
μ1, . . . , μd

)
where each μj is a

signed measure on R
d belonging to the Kato class Kd,α−1. There exists a positive constant

c = c(R0,
0, μ) with the dependence on μ only via the rate at which Mα
μ(r) goes to



574 P. Kim, R. Song

zero such that for all z ∈ ∂D, r ∈ (0, R0] and all function u ≥ 0 on R
d that is positive

harmonic with respect to Xμ (or Xμ,q0 , or X̂μ,q0 ) in D∩B(z, r) and vanishes continuously
on Dc ∩ B(z, r) we have

u(x)

u(y)
≤ c

δD(x)
α/2

δD(y)α/2
, x, y ∈ D ∩ B(z, r/4).

Proof Using Eqs. 5.12, 5.3, Lemma 5.6, then using Theorems 4.3 and 4.5 and the boundary
Harnack principle for X in C1,1 open sets (see [15, 26]), we obtain the conclusion of the
theorem for r ≤ r3 ∧ r4 by the same argument of [10, Theorem 6.2]. Using the fact that D
is a C1,1 open set, now the theorem for all r ≤ R0 follows from the result for r ≤ r3 ∧ r4,
Theorem 5.7 and a standard chain argument.

6 Proof of Theorem 1.3

The strategy used in [7] to establish short time sharp two-sided heat kernel estimates is to
first establish sharp two-sided estimates on p

μ
D(t, x, y) at time t = 1 and then use a scaling

argument to establish estimates for t ≤ T .
Unfortunately due to the appearance of q0, one cannot use the scaling property of Xμ,q to

deduce the sharp two-sided estimates on p
μ,q0
D (t, x, y) for t ≤ T from these at time t = 1.

Our strategy is to establish sharp two-sided estimates on p
μ,q0
D (t, x, y) for t ≤ T directly

without using a scaling argument.
Recall that M ≥ 1 is the constant defined in Eq. 5.11. The next result follows from

Proposition 3.5, Eqs. 5.4 and 5.11.

Proposition 6.1 For all a1 ∈ (0, 1), a2, a3, R > 0, there exists c1 =
c1(a1, a2, a3, R,M,μ) > 0 with the dependence on μ only via the rate at which Mα

μ(r)

goes to zero such that for all open ball B(x0, r) ⊂ R
D with r ≤ R,

p̂
μ,q0
B(x0,r)

(t, x, y) ≥ c1 t
−d/α for all x, y ∈ B(x0, a1r) and t ∈ [a2r

α, a3r
α
]
.

Lemma 6.2 Suppose that U1, U3, U are open subsets of R
d with U1, U3 ⊂ U and

dist(U1, U3) > 0. Let U2 := U \ (U1 ∪ U3). If x ∈ U1 and y ∈ U3, then for all t > 0,

p
μ,q0
U (t,x,y)≤Px

(
X

μ,q0

τ
μ,q0
U1

∈ U2

)
· sup
s<t, z∈U2

p
μ,q0
U (s, z, y)+

(
t ∧ Ex

[
τ
μ,q0
U1

])
· sup
u∈U1, z∈U3

J (u, z),

(6.1)

p
μ,q0
U (t, y, x) ≤MPx

(
X̂

μ,q0

τ̂
μ,q0

U1

∈ U2

)
· sup
s<t, z∈U2

p̂
μ,q0
E,U (s, z, y)

+M
(
t∧ Ex

[
τ̂
μ,q0
U1

])
· sup
u∈U1, z∈U3

J (u, z) (6.2)

and

p
μ,q0
U (t, x, y) ≥ t

M
Px

(
τ

μ,q0
U1

> t
)
Py

(
τ̂
μ,q0
U3

> t
)
· inf
u∈U1, z∈U3

J (u, z) . (6.3)

Proof For Eq. 6.1, see the proofs of [3, Lemma 2] and [7, Lemma 2.2]. For Eqs. 6.2–6.3,
see the proof of [10, Lemma 7.3].
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Lemma 6.3 If T > 0, then there is a constant c = c(T ,M,μ) > 0 with the dependence on
μ only via the rate at which Mα

μ(r) goes to zero such that for every t ≤ T and u, v ⊂ R
d ,

p
μ,q0
B(u,t1/α)∪B(v,t1/α)(t/3, u, v) ≥ c

(
t−d/α ∧ t

|u− v|d+α

)
.

Proof If |u− v| ≤ t1/α/2, by Proposition 3.5,

p
μ,q0
B(u,t1/α)∪B(v,t1/α)(t/3, u, v) ≥ inf

|u−v|≤t1/α /2
p
μ,q0
B(u,t1/α)

(t/3, u, v) ≥ c1t
−d/α.

On the other hand, by Propositions 3.5 and 6.1,

inf
(t,x)∈(0,T ]×Rd

(∫
B(x,t1/α/16)

p
μ,q0
B(x,t1/α/8)

(t/3, x, z)dz∧
∫
B(v,t1/α/16)

p̂
μ,q0
B(u,t1/α/8)

(t/3, v, z)dz

)
≥ c2 > 0.

Thus, if |u− v| ≥ t1/α/2, by Eq. 6.3,

p
μ,q0
B(u,t1/α)∪B(v,t1/α)(t/3, u, v) ≥ t

3M
Pu

(
τ
μ,q0
U1

> t/3
)
Pv

(
τ̂

μ,q0
U3

> t/3
)

inf
w∈U1, z∈U3

J (w, z)

≥c3t

∫
B(u,t1/α/16)

p
μ,q0

B(u,t1/α/8)
(t/3, u, z)dz

∫
B(v,t1/α/16)

p̂
μ,q0

B(u,t1/α/8)
(t/3, v, z)dz

1

|u− v|d+α

≥ c4
t

|u− v|d+α
≥ c4

(
t−d/α ∧ t

|u− v|d+α

)
.

We now fix a C1,1 open set D ⊂ R
d with characteristics (R0, 
0). It is well-known that

any C1,1 open set D satisfies the uniform interior ball condition: there exists r0 < R0 such
that for every x ∈ D with δD(x) < r0 there is zx ∈ ∂D so that |x − zx | = δD(x) and that
B(x0, r0) ⊂ D for x0 = zx + r0(x − zx)/|x − zx |. For the remainder of the paper, we fix
such r0 and use zx as above. For x ∈ D with δD(x) < r0, let

Ux(t) := B(zx, t) ∩D. (6.4)

Lemma 6.4 For every T > 0, there is c = c(R0, T ,M,
0, μ) > 0 with the dependence
on μ only via the rate at which Mα

μ(r) goes to zero such that for all x ∈ D and t ∈ (0, T ],

Px

(
τ
μ,q0
D > t/4

) ≤ 4

t
Ex

[
τ
μ,q0
Ux((t/T )1/αr0/8)

]
+Px

(
X

μ,q0

τ
μ,q0
Ux((t/T )1/αr0/8)

∈D
)
≤ c

(
1 ∧ δD(x)

α/2

√
t

)

(6.5)
and

Px

(̂
τ

μ,q0
D >t/4

) ≤ 4

t
Ex

[
τ̂
μ,q0

Ux((t/T )
1/αr0/8)

]
+Px

(
X̂

μ,q0

τ̂
μ,q0

Ux ((t/T )
1/αr0/8)

∈ D

)
≤ c

(
1 ∧ δD(x)

α/2

√
t

)
.

(6.6)

Proof Since the arguments of the proofs of Eqs. 6.5 and 6.6 are same, we only give the
proof of Eq. 6.6.
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Fix T > 0 and t ∈ (0, T ]. Clearly we only need to show the theorem for x ∈ D with
δD(x) < (t/T )1/αr0/(16) ≤ r0/(16), which we will assume throughout the proof. Let
U1 := Ux((t/T )

1/αr0/8). Take x0 ∈ R
d so that

B(x0, (t/T )
1/αr0/(16)) ⊂ B(zx, (t/T )

1/αr0/4) \ B(zx, (t/T )1/αr0/8).

Then, by the Lévy system in Eq. 5.10, we have

Px

(
X̂

μ,q0

τ̂
μ,q0

U1

∈ D

)
≥ Ex

[∫ τ̂
μ,q0

U1

0

∫
B(x0,(t/T )

1/αr0/(16))

J (X̂
μ,q0
s , y)h(y)

h(X̂
μ,q0
s )

dyds

]

≥ c1t
1/α |B(x0, (t/T )

1/αr0/(16))||(t/T )1/αr0/(16)|−d−α
Ex

[
τ̂
μ,q0
U1

]
≥ c2t

−1
Ex

[
τ̂
μ,q0
U1

]
.

Thus

Px

(̂
τ
μ,q0
D > t/4

) ≤ Px

(
τ̂

μ,q0
U1

> t/4
)
+ Px

(
X̂

μ,q0

τ̂
μ,q0

U1

∈ D

)

≤ 4

t
Ex

[
τ̂
μ,q0
U1

]
+ Px

(
X̂

μ,q0

τ̂
μ,q0

U1

∈ D

)
≤ c3Px

(
X̂

μ,q0

τ̂
μ,q0

U1

∈ D

)
.

Now with x1 = zx+t1/αr016−1T −1/αn(zx), where n(zx) is the unit inward normal to ∂D at
the point zx , by applying our boundary Harnack principle (Theorem 5.8) for X̂μ,q0 , we get

Px

(
X̂

μ,q0

τ̂
μ,q0

U1

∈ D
)
≤ c4Px1

(
X̂

μ,q0

τ̂
μ,q0

U1

∈ D
) δD(x)

α/2

δD(x1)α/2 ≤ c5
δD(x)

α/2

√
t

.

Lemma 6.5 For every T > 0, there is a positive constant c = c(T ,R0, 
0,M,μ) with the
dependence on μ only via the rate at which Mα

μ(r) goes to zero such that for all x, y ∈ D,

p
μ,q0
D (t/2, x, y) ≤ c

(
1 ∧ δD(x)

α/2

√
t

)(
t−d/α ∧ t

|x − y|d+α

)
(6.7)

and

p
μ,q0
D (t/2, x, y) ≤ c

(
1 ∧ δD(y)

α/2

√
t

)(
t−d/α ∧ t

|x − y|d+α

)
. (6.8)

Proof We only give the proof of Eq. 6.8.
When |x − y| ≤ (t/T )1/αr0, by the semigroup property (3.3), (4.10), (5.4) and (6.6),

p
μ,q0
D (t/2, x, y) ≤

∫
D

pμ,q0(t/4, x, z)p̂ μ,q0
D (t/4, y, z)

h(y)

h(z)
dz

≤ c2Mt−d/α
Py (̂τ

μ,q0
D > t/4) ≤ c3

(
1 ∧ δD(y)

α/2

√
t

)
t−d/α.

By this and Eq. 4.10, we only need to consider the case that |x − y| ≥ (t/T )1/αr0 and
y ∈ D with δD(y) < (t/T )1/αr0/(16) ≤ r0/(16) which we assume throughout the proof.
Let U1 = Ux((t/T )

1/αr0/8), U3 := {z ∈ D : |z−x| > |x−y|/2} and U2 := D\(U1∪U3).

If u ∈ U1 and z ∈ U3, then

|u− z| ≥ |z− x| − |zx − x| − |zx − u| ≥ |z− x| − (t/T )1/αr0/4 ≥ 1

2
|z− x| ≥ 1

4
|x − y|.
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Thus,

sup
u∈U1, z∈U3

J (u, z) ≤ c5 sup
(u,z):|u−z|≥ 1

4 |x−y|
|u− z|−d−α ≤ c6|x − y|−d−α. (6.9)

Since |z− y| ≥ |x − y| − |x − z| ≥ |x − y|/2 for z ∈ U2, by Eq. 4.10,

sup
s≤t, z∈U2

pμ,q0(s, z, y) ≤ c7 sup
s≤t, |z−y|≥|x−y|/2

(
sJ (z, y)

) ≤ c5t |x − y|−d−α. (6.10)

Using Eq. 6.2 and then applying Eqs. 6.9, 6.10 and 6.6, we conclude that

p
μ,q0
D (t,x,y)≤c9

(
Ex

[̂
τ
μ,q0
U1

]
+tPx

(
X̂

μ,q0

τ̂
μ,q0

U1

∈ U2

))
|x−y|−d−α≤

(
1∧ δD(x)

α/2

√
t

)
|x−y|−d−α.

Lemma 6.6 For every T > 0, there is a positive constant c = c(T ,R0,
0,M,μ) with the
dependence on μ only via the rate at which Mα

μ(r) goes to zero such that for all x, y ∈ D,

p
μ,q0
D (t, x, y) ≤ c

(
1 ∧ δD(x)

α/2

√
t

)(
1 ∧ δD(y)

α/2

√
t

)(
t−d/α ∧ t

|x − y|d+α

)
. (6.11)

Proof Using Eqs. 6.7–6.8, the semigroup property (3.3) and the two-sided estimates of
p(t, x, y),

p
μ,q0
D (t, x, y) =

∫
Rd

p
μ,q0
D (t/2, x, z)pμ,q0

D (t/2, z, y)dz

≤ c

(
1 ∧ δD(x)

α/2

√
t

)(
1 ∧ δD(y)

α/2

√
t

)∫
Rd

p(t/2, x, z)p(t/2, z, y)dz

= c

(
1 ∧ δD(x)

α/2

√
t

)(
1 ∧ δD(y)

α/2

√
t

)
p(t, x, y)

≤ c

(
1 ∧ δD(x)

α/2

√
t

)(
1 ∧ δD(y)

α/2

√
t

)(
t−d/α ∧ t

|x − y|d+α

)
.

Lemma 6.7 For every T > 0, there is a positive constant c1 = c1(T ,R0,
0,M,μ) with
the dependence on μ only via the rate at which Mα

μ(r) goes to zero such that

p
μ,q0
D (t, x, y) ≥ c1

(
1 ∧ δD(x)

α/2

√
t

)(
1 ∧ δD(y)

α/2

√
t

)(
t−d/α ∧ t

|x − y|d+α

)
.

Proof Assume first that t ≤ T0 := (
r0
16

)α . Since D satisfies the uniform interior ball
condition with radius r0 and 0 < t ≤ T0, we can choose ξ tx as follows: if δD(x) ≤ 3t1/α , let
ξ tx = zx+(9/2)t1/αn(zx) (so that B

(
ξ tx, (3/2)t1/α

) ⊂ B
(
zx + 3t1/αn(zx), 3t1/α

)\{x} and
δD(z) ≥ 3t1/α for every z ∈ B(ξ tx, (3/2)t1/α)). If δD(x) > 3t1/α , choose ξ tx ∈ B(x, δD(x))

so that
∣∣x − ξ tx

∣∣ = (3/2)t1/α. Note that in this case, B(ξ tx, (3/2)t1/α) ⊂ B(x, δD(x)) \ {x}
and δD(z) ≥ t1/α for every z ∈ B(ξ tx, 2−1t1/α). We also define ξ ty the same way.
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For every (u, v) ∈ B
(
ξ tx, 2−1t1/α

)× B
(
ξ ty, 2−1t1/α

)
, we have |u− v| ≤ 21(|x − y| ∧

t1/α). Thus using Lemma 6.3, for such u and v we have

p
μ,q0

B(u,2−1t1/α)∪B(v,2−1t1/α)
(t/3, u, v) ≥ c1

(
t

|u− v|d+α
∧ t−d/α

)
≥ c2

(
t−d/α ∧ t

|x − y|d+α

)
.

(6.12)
Now by the semigroup property (3.3),

p
μ,q0
D (t, x, y)

≥
∫
B(ξty ,2

−1t1/α)

∫
B(ξtx ,2

−1t1/α)

p
μ,q0
D (t/3, x, u)pμ,q0

B(u,2−1 t1/α)∪B(v,2−1t1/α)
(t/3, u, v)pμ,q0

D (t/3, v, y)dudv

≥c2

(
t−d/α∧ t

|x − y|d+α

)(∫
B(ξtx ,2

−1t1/α)

p
μ,q0
D (t/3, x, u)du

)(∫
B(ξty ,2

−1t1/α)

p
μ,q0
D (t/3, v, y)dv

)
.

(6.13)

We claim that

∫
B(ξ ty,2

−1t1/α)

p
μ,q0
D (t/3, x, u)du ≥ c3

(
1 ∧ δD(x)

α/2

√
t

)
,

∫
B(ξ ty,2

−1t1/α)

p
μ,q0
D (t/3, v, y)dv ≥ c3

(
1 ∧ δD(y)

α/2

√
t

)
, (6.14)

which, combined with Eqs. 6.12–6.13, proves the theorem for t ≤ T0.
We only give the proof of the second inequality in Eq. 6.14. Recall that zy ∈ ∂D be such

that |y − zy | = δD(y) and Uy(t) is defined in (6.4). Let

V1 = Uy

(
13t1/α/4

)
and V2 =

{
Uy

(
15t1/α/4

)
when δD(y) ≤ 3t1/α

B
(
y, t1/α

)
when δD(y) > 3t1/α.

By Eq. 6.3 and Proposition 3.5,

∫
B(ξy,t1/α/2)

p
μ,q0
D (t/3, v, y) dv

≥ t

3M

(∫
B(ξ ty,4

−1t1/α)

Pv

(
τ
μ,q0

B(ξ ty ,2
−1t1/α)

>t/3

)
dv

)
Py

(̂
τ
μ,q0
V2

> t/3
)

inf
w∈B(ξ ty,2−1t1/α), z∈V2

J (w, y)

≥c3 Py

(
τ̂

μ,q0
V2

> t/3
)
, (6.15)

which is bounded above by some positive constant if δD(y) > 3t1/α by Proposition 6.1.
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We now assume δD(y) ≤ 3t1/α and let B
(
y0, c4t

1/α
)

be a ball in D ∩(
B
(
zy, 15t1/α /4

) \ B (zy , 7t1/α/2
))

where c4 = c4(
0, R0, d) > 0. By the strong
Markov property,

(
inf

w∈B(y0,c4 t
1/α/2)

Pw

(
τ̂

μ,q0

B(w,c4t
1/α/2)

> t/3
))

Py

(
X̂μ,q0

(
τ̂

μ,q0
V1

)
∈ B

(
y0, c4t

1/α/2
))

≤ Ey

[
P
X̂μ,q0

(
τ̂

μ,q0
V1

)
(
τ̂

μ,q0

B
(
X̂μ,q0

(
τ̂

μ,q0
V1

)
,c4t

1/α/2
)> t/3

)
; X̂μ,q0

(
τ̂

μ,q0
V1

)
∈ B

(
y0, c4t

1/α/2
)]

≤ Ey

[
P
X̂μ,q0

(
τ̂

μ,q0
V1

) (τ̂ μ,q0
V2

> t/3
)
; X̂μ,q0

(
τ̂

μ,q0
V1

)
∈ B

(
y0, c4t

1/α/2
)]

= Py

(
τ̂

μ,q0
V2

> t/3, X̂μ,q0
(
τ̂

μ,q0
V1

)
∈ B

(
y0, c4t

1/α/2
))

≤ Py

(
τ̂

μ,q0
V2

> t/3
)
.

Using Proposition 6.1, we get

Py

(
τ̂
μ,q0
V2

> t/3
)
≥ c5Py

(
X̂μ,q0

(
τ̂
μ,q0
V1

)
∈ B

(
y0, c4t

1/α/2
))

. (6.16)

Let B
(
y1, c6t

1/α
)

be a ball in V1 where c6 = c6 (
0, r1, d, r3) ∈
(

0, r3/T
1/α
0

)
. Recall that

r3 is the constant from Theorem 4.4. Applying Theorem 5.8, we have

Py

(̂
Xμ,q0

(
τ̂

μ,q0
V1

)
∈B

(
y0, c4t

1/α/2
))

≥ c7Py1

(
X̂μ,q0

(
τ̂

μ,q0
V1

)
∈B
(
y0,c4t

1/α/2
)) δD(y)α/2

δD(y1)α/2

≥ c8Py1

(
X̂μ,q0

(
τ̂

μ,q0
V1

)
∈ B

(
y0, c4t

1/α/2
)) δD(x)

α/2

√
t

.

By the Lévy system in Eq. 5.10, we have

Py1

(̂
Xμ,q0

(
τ̂

μ,q0
V1

)
∈B

(
y0, c4t

1/α/2
))

= Ey1

[∫ τ̂
μ,q0

V1

0

∫
B(y0,c4 t

1/α/2)

J
(∣∣X̂μ,q0

s − y
∣∣)h(y)

h(X̂
μ,q0
s )

dyds

]

≥ c9t
1/α
∣∣∣B
(
y0, c4t

1/α/2
)∣∣∣ t−d−α

Ey1

[
τ̂

μ,q0
V1

]

≥ c10t
−1

Ey1

[
τ̂

μ,q0
V1

]
≥ c10t

−1
Ey1

[
τ̂

μ,q0

B(y1,c6 t
1/α)

]
≥ c11.

In the last inequality we have used Eq. 5.13. Therefore

Py

(
X̂μ,q0

(
τ̂
μ,q0
V1

)
∈ B

(
y0, c4t

1/α/2
))

≥ c12
δD(y)

α/2

√
t

. (6.17)

Combining Eqs. 6.15–6.17, we have proved Eq. 6.14.
To get the theorem for T > T0, it is enough to handle the case T = 2T0 and the proof of

this case is the same as the one in [7, page 1323–1324].

Proof of Theorem 1.3

(i) follows immediately from the two lemmas above and Eq. 3.2.
(ii) We need to redefine dual process as [10] without introducing q0. Since the argument

is same as that in [10]. here we provide the sketch of the proof.
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Choose a ball E large enough so that D ⊂ 1
4E. Define

hE(x) :=
∫
E

G
μ
E(y, x)dy and ξE(dx) := hE(x)dx.

Then hE(y) is strictly positive and continuous on E and ξE is an excessive measure for
Xμ,E . We define a transition density with respect to the reference measure ξE by

p
μ
E(t, x, y) := p

μ
E(t, x, y)

hE(y)
.

Then one can show that there exists a transient Hunt process X̂μ,E in E such that X̂μ,E is a
strong dual of Xμ,E with respect to the measure ξE . Let

p
μ,E
D (t, x, y) := p

μ
D(t, x, y)

hE(y)
,

which is strictly positive, bounded and continuous on (t, x, y) ∈ (0,∞)×D ×D because
p
μ
D(t, x, y) is strictly positive, bounded and continuous on (t, x, y) ∈ (0,∞)×D ×D and

hE(y) is strictly positive and continuous on E. For each x ∈ D, (t, y) �→ p
μ,E
D (t, x, y) is

the transition density of
(
Xμ,D,Px

)
with respect to the reference measure ξE and, for each

y ∈ D, (t, x) �→ p
μ,E
D (t, x, y) is the transition density of

(
X̂μ,E,D,Py

)
, the dual process

of Xμ,D with respect to the reference measure ξE .
By using the same argument as that in [10, Section 8], one can show that the semigroups{

P
μ,E,U
t

}
and

{
P̂

μ,E,U
t

}
of Xμ,D and Xμ,E,D with respect to the reference measure ξE

are intrinsically ultracontractive. Using this, now (ii) follows from (i) and the argument in
the proof of [10, Theorem 1.3 (ii)].
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