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Abstract We study curvature dimension inequalities for the sub-Laplacian on con-
tact Riemannian manifolds. This new curvature dimension condition is then used to
obtain:

• Geometric conditions ensuring the compactness of the underlying manifold
(Bonnet–Myers type results);

• Volume estimates of metric balls;
• Gradient bounds and stochastic completeness for the heat semigroup generated

by the sub-Laplacian;
• Spectral gap estimates.
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1 Introduction

Let (M, θ, g) be a 2n+ 1 smooth contact Riemannian manifold. On M, there is
a canonical diffusion operator L: The contact sub-Laplacian. This operator is not
elliptic but only subelliptic in the sense of Fefferman–Phong [15] (see also [20] for a
survey on subelliptic diffusion operators).

This lack of ellipticity makes the study of the geometrically relevant functional
inequalities associated to L particularly delicate. Some methods have been devel-
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oped in the literature but are local in nature (see [12, 19, 26, 27]) and no global
methods were known before the work by Baudoin–Garofalo [2], except in the three
dimensional case (see [1, 25]). One of the main obstacles is the complexity of the
theory of Jacobi vector fields (see [24]).

In the work [2], instead of dealing with Jacobi fields, the authors use the Bochner’s
method and proved that, if M is Sasakian, then under some geometric conditions
(a lower bound on the Ricci curvature tensor of the Tanaka–Webster connection),
the operator L satisfies a generalized curvature dimension inequality that we now
describe. On M, there is a canonical vector field, the Reeb vector field Z of the
contact form θ , it is transverse to the kernel of θ .

Given the sub-Laplacian L and the first-order bilinear forms

�( f ) = 1

2

(
L
(
f 2
)− 2 f Lf

)
,

and

�Z ( f ) = (Z f )2,

we can introduce the following second-order differential forms:

�2( f, g) = 1

2
[L�( f, g)− �( f,Lg)− �(g,Lf )], (1.1)

�Z
2 ( f, g) = 1

2
[L�Z ( f, g)− �Z ( f, Lg)− �Z (g,Lf )]. (1.2)

The following basic result connecting the geometry of the contact manifold M

to the analysis of its sub-Laplacian was then proved in [2]. It requires the contact
structure onM to be of Sasakian type: A class of contact manifolds that contain very
interesting examples (see [10, 34]) but that is somehow restrictive.

Theorem 1.1 Let (M, θ) be a complete Sasakian contact manifold with dimension
2n+ 1. The Tanaka–Webster Ricci tensor satisf ies the bound

Ricx(v, v) ≥ ρ1|v |2, x ∈ M, v ∈ Ker(θ),

if and only if for every smooth and compactly supported function f ,

�2( f )+ 2
√
�( f )�Z

2 ( f ) ≥ 1

2n
(Lf )2 + ρ1�( f )+ n

2
�Z ( f ). (1.3)

Observe that by linearization, the inequality 1.3 is equivalent to the fact that for
every ν > 0,

�2( f )+ ν�Z
2 ( f ) ≥ 1

2n
(Lf )2 +

(
ρ1 − 1

ν

)
�( f )+ n

2
�Z ( f ). (1.4)

Theorem 1.1 opened the door to the study of global functional inequalities on
Sasakian manifolds, like the log-Sobolev inequalities (see [7]), the Sobolev and
isoperimetric inequalities (see [9]), the Li–Yau type gradient bounds for the heat
kernel (see [2]) and the Gaussian upper and lower bounds for the heat kernel (see
[8]). These inequalities were obtained through a systematic use of the heat semigroup
associated to L and Bakry–Émery type computations [3, 4].
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Our goal in this paper is to remove the assumption thatM is a Sasakian manifold.
The Sasakian condition is equivalent to the fact that the contact manifold carries a
CR structure and that the Reeb vector field acts isometrically on the kernel of θ .
This condition is equivalent to the fact that the forms � and �Z are intertwined in
the sense that

�( f, �Z ( f )) = �Z ( f, �( f )). (1.5)

The condition is restrictive and many interesting examples of contact manifolds are
not Sasakian. It is thus interesting to see if the Sasakian condition can be dropped.
Our main result in that direction is the following theorem that shows the structure of
the curvature dimension condition in the most general class of contact manifolds:

Theorem 1.2 (see Theorem 3.6) Let (M, θ, g) be a 2n+ 1-dimensional contact
Riemannian manifold. If some geometric conditions are satisf ied, then there exist
constants ρ1, ρ2 and ρ3 such that for every ν > 0 and smooth and compactly supported
function f :

�2( f )+ ν�Z
2 ( f ) ≥ 1

2n
(Lf )2 +

(
ρ1 − 1

ν

)
�( f )+ (ρ2 − ρ3ν

2
)
�Z ( f ). (1.6)

The main difference with the Sasakian curvature dimension condition 1.4 is
therefore the appearance of the strongly nonlinear term−ρ3ν

2�Z ( f ). It is noticeable
that this new curvature dimension inequality appears as a special case of a general
class of inequalities that was recently proposed in an abstract setting by F.Y. Wang
in [33]. Our approach here is more of geometric nature, in the sense that our goal
is to precisely understand what are the geometric bounds that imply a curvature
dimension condition. As a consequence we get a very explicit curvature dimension
condition.

As we will see, the new termmakes the curvature dimension condition muchmore
difficult to exploit. However, we can still address the following questions by using our
new curvature dimension inequality:

1. Bonnet–Myers type results (See Theorem 4.2). We provide geometric conditions
ensuring the compactness ofM;

2. Volume estimate (See Proposition 4.4) We prove that under suitable geometric
conditions the volume of balls has at most an exponential growth;

3. Stochastic completeness of the heat semigroup associated to the contact sub-
Laplacian (see Proposition 4.4). We prove that if the curvature dimension
inequality 1.6 and an additional condition are satisfied, then the semigroup is
stochastically complete.

4. Poincaré inequality (see Theorem 5.6). By using the generalized curvature
dimension inequality to prove gradient bounds for the heat semigroup, we
show that if Eq. 1.6 is satisfied with ρ1 − κ

√
ρ3√
ρ2

> 0, then for every smooth and
compactly supported function f onM:

∫

M

f 2dμ−
(∫

M

fdμ
)2

≤ ρ2 + κ

ρ1ρ2 − κ
√
ρ2ρ3

∫

M

�( f )dμ.

As a consequence, −L has a spectral gap of size bigger than ρ1ρ2−κ
√
ρ2ρ3

ρ2+κ
.
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The paper is organized as follows. In Section 2, we introduce the geometric
prerequisites that are needed in this work. Section 3 is devoted to a careful analysis
of the Bochner’s type formulas that are needed to establish the generalized curvature
dimension condition 1.6. Bochner’s type formulas on CR manfolds have been exten-
sively studied in the literature (see for instance [5, 12, 14, 16, 18, 23]). The horizontal
Bochner’s formula we obtain in Theorem 3.3 is an extension of the CR Bochner
fomula of the above mentioned works since we work in the more general framework
of an abritaryRiemannian contact manifold for which Tanno’s tensor is not necessary
zero. As it is well-known in the CR case, this Bochner’s formula makes appear a
second order differential term involving a differentiation in the vertical direction of
the Reeb vector field. This term is the main source of difficulties, since it may not
be bounded in terms of the horizontal gradient. The main idea is then to prove a
vertical Bochner’s formula: This is our Theorem 3.4. Computations show then that
the annoying second order differential term of the horizontal Bochner’s formula also
appears in the vertical Bochner’s formula. As a consequence, the horizontal and the
vertical Bochner’s formulas perfectly match together and a linear combination of
them produces the curvature-dimension inequality 1.6.

In Section 4, we apply the generalized curvature dimension inequality to the study
of the stochastic completeness of the subelliptic heat semigroup and to the problem
of the compactness of the manifold under suitable geometric conditions. The main
idea is that the generalized curvature dimension inequality 1.6 implies that the Ricci
curvature of the rescaled Riemannian metric dθ(·, J·)+ λ−2θ2 satisfies itself a lower
bound for some values of the scaling parameter λ. The compactness result we obtain
(see Theorem 4.2) is then a consequence of the classical Bonnet–Myers theorem
on Riemannian manifolds. We believe Theorem 4.2 is not optimal and we actually
conjecture:

Conjecture 1.3 If ρ1 − κ
√
ρ3√
ρ2

> 0, then the manifoldM is compact.

The conjecture is strongly supported by the fact that we prove in Section 5 that
if ρ1 − κ

√
ρ3√
ρ2

> 0, then the volume of M is finite and the sub-Laplacian has a spectral
gap, which for instance proves the conjecture in the case where M is a Lie group.
We can observe that in the case of Sasakian manifolds, for which ρ3 = 0 and ρ1 is
precisely a lower bound for the Ricci curvature of the Webster-Tanaka connection,
the conjecture has been proved in [2].

In Section 5 we prove that if ρ1 − κ
√
ρ3√
ρ2

> 0, then the operator −L has a spectral
gap of size

λ1 ≥ ρ1ρ2 − κ
√
ρ2ρ3

ρ2 + κ
.

This result can be seen as a Lichnerowicz type estimate on contact Riemannian
manifolds. We should mention that such estimates have already been obtained on
CRmanifolds (see for instance [5, 14, 16, 23]) and that our result is not sharp since the
lower bound does not involve the dimension of the manifold (in the Riemannian case
our bound writes λ1 ≥ ρ where ρ is a lower bound on the Ricci curvature). However,
the main point here, is that we do not assume the compactness of the manifold.
Therefore the methods of the above mentioned papers which consist to integrate
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over the manifold Bochner’s identity, can not be used in our framework. Instead,
we need to use heat semigroup methods which are perfectly adapted to “integrate”
Bochner’s identity in non compact frameworks.

To conclude, let us stress that the existence of a spectral gap does not imply
compactness of M but is clearly a first important step toward the proof of our
Conjecture 1.3. The missing ingredient here is an ultracontractivity property of the
heat semigroup. More precisely, if we could establish that, under the condition
ρ1 − κ

√
ρ3√
ρ2

> 0, the heat kernel pt(x, y) satisfies for some constants C > 0 and D > 0,
the global small time estimate

pt(x, y) ≤ C
tD/2

, x, y ∈ M, 0 < t ≤ 1,

then we would have a Sobolev inequality, that could then be improved into a tight
Sobolev inequality by using the existence of a spectral gap for L. It is then known
by using the Moser’s iteration technique that a tight Sobolev inequality implies the
compactness of the underlying space. This strategy is essentially the one that proved
to be succesful in the Sasakian case (see [2] for more details) and we hope to adapt it
to the present framework in a future work.

2 The Sub-Laplacian of a Contact Riemannian Manifold

Let (M, θ) be a 2n+ 1-dimensional smooth contact manifold. OnM there is a unique
smooth vector field Z , the Reeb vector field, that satisfies

θ(Z ) = 1, LZ (θ) = 0,

where LZ denotes the Lie derivative with respect to Z . The kernel of θ defines a
2n dimensional subbundle of M which shall be referred to as the set of horizontal
directions and denoted H(M). The vector field Z is transverse to H(M) and will be
referred to as the vertical direction.

According to [32], it is always possible to find a Riemannian metric g and a (1,1)-
tensor field J onM so that for every vector fields X,Y

g(X, Z ) = θ(X), J2 = −I + θ ⊗ Z , g(X, JY) = (dθ)(X,Y).

The triple (M, θ, g) is called a contact Riemannian manifold, a geometric structure
well studied by Tanno in [32]. On a contact Riemannian manifold, the Riemannian
structure of M is actually often confined to the background whereas the sub-
Riemannian structure ofM carriesmore fundamental informations about the contact
structure (see [6, 25, 32]).

If f : M → R is a smooth function, we denote by ∇H f the horizontal gradient
of f which is defined as the projection of the Riemannian gradient of f onto the
horizontal space H(M). The sub-Laplacian L of the contact Riemannian manifold
(M, θ, g) is then defined as the generator of the symmetric Dirichlet form

E( f, g) =
∫

M

〈∇H f,∇Hg〉dμ,
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where μ is the Borel measure given the 2n+ 1 volume form θ ∧ (dθ)n. The diffusion
operator L is not elliptic but subelliptic of order 1/2 (see [6]). We can observe that,
as a direct consequence of the definition of L, we have

L = �− Z 2,

where � is the Laplace-Beltrami of the Riemannian structure (M, g). The following
lemma will be useful:

Lemma 2.1 If the Riemannian manifold (M, g) is complete, then L is essentially self-
adjoint on the space C∞

0 (M) of smooth and compactly supported functions..

Proof If (M, g) is complete, then from [28], there exists a sequence hn in C∞
0 (M)

such that ‖∇H f‖∞ + ‖Z f‖∞ → 0 when n → ∞. In particular ‖∇H f‖∞ → 0, and
thus from [29], L is essentially self-adjoint on the space C∞

0 (M). ��

In the sequel of the paper we always assume that (M, g) is complete.
We denote by ∇R the Levi-Civita connection on M. The following (1, 2) tensor

field Q on (M, g) that was introduced by Tanno in [32] as follows:

Q(X,Y) = (∇R
X J
)
Y + [(∇R

Y θ
)
JX
]
Z + θ(X)J

(∇R
Y Z
)

will play a pervasive role in this paper. A fundamental result due to Tanno is that
(M, θ, J|H(M)) is a strongly pseudo convex CR manifold if and only if Q = 0

Besides the Riemannian connection ∇R, there is a canonical sub-Riemannian
connection that was introduced by Tanno in [32] and which generalizes the Tanaka–
Webster connection of the CR manifolds. This connection denoted by ∇ in the
sequel, is much more naturally associated with the study of the sub-Laplacian L. In
terms of the Riemannian connection, the Tanno’s connection writes for every vector
fields X,Y,

∇XY = ∇R
XY + θ(X)JY − θ(Y)∇R

XZ + [(∇R
Xθ
)
Y
]
Z .

This connection ∇ is more intrinsically characterized as follows:

Proposition 2.2 [32] The connection ∇ on (M, θ, g) is the unique linear connection
that satisf ies:

1. ∇θ = 0;
2. ∇Z = 0;
3. ∇g = 0;
4. T(X,Y) = dθ(X,Y)Z for any X,Y ∈ H(M);
5. T(Z , JX) = −JT(Z , X) for any vector f ield X;
6. (∇X J)Y = Q(Y, X) for any vector f ields X,Y.

where T(·, ·) is the torsion tensor with respect to ∇.

If X is a horizontal vector field, so is T(Z , X). As a consequence if we define
τ(X) = T(Z , X), τ is a symmetric horizontal endomorphism which satisfies τ ◦ J +
J ◦ τ = 0. In the context of CR manifolds, τ is referred to as the pseudo-Hermitian
torsion. We can observe that τ = 0 is equivalent to the fact that the contact structure
is of K type (see [32]).
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For our purpose, it will be expedient to work in local frames that are adapted to
the contact structure. If X1, X2, · · · , X2n is a local orthonormal frame of H(M), all
the local geometry of the contact manifold is contained into the structure coefficients
that are defined by

[
Xi, Xj

] =
2n∑

k=1

wk
ijXk + γijZ , [Xi, Z ] =

2n∑

j=1

δ
j
i X j (2.1)

where wk
ij, γij, δ

j
i are smooth functions. It is easy to see that

wk
ij = −wk

ji, γij = −γ ji, i, j,k = 1, · · · 2n. (2.2)

In the local frame {X1, · · · , X2n, Z } as above, the sub-Laplacian L can be written

L = −
2n∑

i=1

X∗
i Xi,

where X∗
i is the formal adjoint of Xi with respect to the volume measure μ. From

Eq. 2.1, we obtain

X∗
i = −Xi +

2n∑

k=1

wk
ik.

Hence, we can write locally

L =
2n∑

i=1

X2
i + X0,

where

X0 = −
2n∑

i,k=1

wk
ikXi. (2.3)

By Eq. 2.1, one can then easily calculate the Christoffel’s symbols of the sub-
Riemannian connection:

∇Xi X j =
2n∑

k=1

�k
ijXk, ∇Z Xi = 1

2

2n∑

k=1

(
δik − δki

)
Xk

where �k
ij = 1

2 (w
k
ij +w

j
ki +wi

kj). It is also easy to see that

τ (Xi) = 1

2

2n∑

k=1

(
δik + δki

)
Xk, T

(
Xj, Xk

) = −γ jkZ and JXi =
2n∑

j=1

γijX j.

In the case of CR Sasakian manifolds, in addition to the relations in Eq. 2.2, we
also have the skew-symmetry of the δ

j
i s, i.e., δ

j
i = −δij for all i, j = 1, · · · , 2n, which

implies that the torsion τ vanishes (see [2]).
In our general case, though the skew-symmetry is no more satisfied, we can still

always find a basis such that the diagonal entries of τ vanish. i.e., δii = 0, for all i =
1, · · · , 2n. Indeed, let λ be an eigenvalue of τ and X a corresponding eigenvector.
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Since τ ◦ J + J ◦ τ = 0, this implies that −λ is also an eigenvalue of τ . Hence τ is
similar to the diagonal matrix

A =
⎛

⎝
A1

· · ·
An

⎞

⎠ , Ai =
(
λ1 0
0 −λ1

)
, i = 1, · · · ,n.

Since we have Ai ∼
(

0 λi
λi 0

)
:= Ãi, thus A ∼

⎛

⎝
Ã1

· · ·
Ãn

⎞

⎠.

In the sequel, we thus always choose the local frame such that δii = 0, i = 1, · · · , 2n.

3 The Generalized Curvature Dimension Inequality

3.1 Bochner’s Formulas

Our first goal will be to work out the Bochner’s type formulas for the sub-Laplacian
L. We follow the methods of [2] and use the �2 formalism introduced in [4].

Let us consider the first order differential bilinear form:

�( f, g) = 1

2
(L( fg)− f Lg− gLf ), f, g ∈ C∞(M),

and observe that

�( f, g) = 〈∇H f,∇Hg〉,
where ∇H is the horizontal gradient. �( f ) = �( f, f ) is known as le carré du champ.
Similarly we define for every f, g ∈ C∞(M),

�Z ( f, g) = 〈∇V f,∇Vg〉,

where ∇V is the vertical gradient of M. We also introduce the second order
differential bilinear forms:

�2( f, g) = 1

2
(L�( f, g)− �( f, Lg)− �(g,Lf )) (3.1)

and

�Z
2 ( f, g) = 1

2
(L�Z ( f, g)− �Z ( f, Lg)− �Z (g,Lf )). (3.2)

Throughout the section, we work in a local frame that satisfies

[Xi, Xj] =
2n∑

k=1

wk
ijXk + γijZ , [Xi, Z ] =

2n∑

j=1

δ
j
i X j

with δii = 0.
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The following tensorial quantity will play a crucial role in our discussion.

Definition 3.1 Let Ric(·, ·) and T(·, ·) respectively denote the Ricci and torsion
tensors of the sub-Riemannian connection ∇. For f ∈ C∞(M) we define:

R( f, f ) = Ric(∇H f,∇H f )+ n
2
‖∇V f‖2

−
2n∑

l,k=1

(((∇Xl T
)
(Xl, Xk) f (Xk f )

)+ T (Xl,T (Xl, Xk)) f Xk f
)
. (3.3)

From its definition, it is obvious that R is an intrinsic first order differential
bilinear form on M. The following proposition provides its computations in terms
of the structure constants of the local frame.

Lemma 3.2 We have:

R( f, f ) =
2n∑

k,l=1

RklXk f Xl f

+
2n∑

k=1

⎛

⎝
2n∑

l, j=1

wl
jlγkj +

∑

1≤l< j≤2n

wk
ljγlj −

2n∑

j=1

Xjγkj

⎞

⎠ Z f Xk f + n
2
(Z f )2,

with

Rkl =
2n∑

j=1

γkjδ
l
j +

2n∑

j=1

(
Xlw

j
kj − Xjw

k
lj

)
+

2n∑

i, j=1

wi
jiw

l
kj

−
2n∑

j=1

wi
kiw

i
li +

1

2

∑

1≤i< j≤2n

(
wl

ijw
k
ij −

(
wi

lj +w
j
li

)(
wi

kj +w
j
ki

))
.

Proof We write R( f, f ) as follows

R( f, f ) = RI( f, f )+RII( f, f )+RIII( f, f ),

where

RI( f, f ) =
2n∑

l,k=1

(Ric (Xl, Xk) Xl f Xk f + T (Xl,T (Xl, Xk)) f Xk f ) , (3.4)

RI I( f, f ) = −
2n∑

k,l=1

((∇Xl T
)
(Xl, Xk) f (Xk f )

)
, (3.5)

RI I I( f, f ) = n
2
(Z f )2. (3.6)
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Straightforward but tedious calculations show that

2n∑

l,k=1

T (Xl,T (Xl, Xk)) f Xk f = −
2n∑

l,k, j=1

δ
j
k + δkj

2
γ jl Xl f Xk f

2n∑

l,k=1

Ric (Xl, Xk) Xl f Xk f =
2n∑

i, j,l,k=1

(
�i
lk�

j
ji − �i

jk�
j
li −wi

jl�
j
ik

)
Xl f Xk f

+
2n∑

j,l,k=1

((
Xj�

j
lk

)
−
(
Xl�

j
jk

))
Xl f Xk f

−
2n∑

l,k, j=1

γ jl

δkj − δ
j
k

2
Xl f Xk f, (3.7)

which implies that

RI( f, f ) =
2n∑

k,l=1

RklXk f Xl f.

We also calculate in a direct way that

RI I( f, f ) =
2n∑

k=1

⎛

⎝
2n∑

l, j=1

wl
jlγkj +

∑

1≤l< j≤2n

wk
ljγlj −

2n∑

j=1

Xjγkj

⎞

⎠ Z f Xk f.

By combining the above terms we have the lemma. ��

With these preliminary results in hands, we can now turn to the proof of the
horizontal Bochner’s formula:

Theorem 3.3 For every f ∈ C∞(M), the following Horizontal Bochner formula
holds:

�2( f ) =
∥∥∇2

H f
∥∥2 +R( f, f )− 2

2n∑

i, j=1

γij
(
XjZ f

)
(Xi f ) . (3.8)

Proof Ourmethod is close to the method used in [2] to obtain a horizontal Bochner’s
formula, so we refer to this paper for further details and only give the mains steps in
the calculations.

It is of course enough to prove Eq. 3.8 in the local frame {X1, ...,X2n, Z }. Observe
that

XiXj f = f,ij + 1

2

[
Xi, Xj

]
f,

where we have let

f,ij = 1

2

(
XiXj + XjXi

)
f. (3.9)
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Using Eq. 2.1, we find

XiXj f = f,ij + 1

2

2n∑

�=1

ω�
ijX� f + 1

2
γijZ f. (3.10)

Now, starting from the definition 3.1 of �2( f ), we obtain

�2( f ) =
2n∑

i=1

Xi f [X0, Xi] f − 2
2n∑

i, j=1

Xi f
[
Xi, Xj

]
Xj f

+
2n∑

i, j=1

Xi f
[[
Xi, Xj

]
, Xj

]
f +

2n∑

i, j=1

(
XjXi f

)2
,

where X0 is defined by Eq. 2.3. From Eq. 3.10 we have

2n∑

i, j=1

(
XjXi f

)2 =
2n∑

i, j=1

f 2
,ij +

1

2

∑

1≤i< j≤2n

(
2n∑

�=1

ω�
ijX� f

)2

+ 1

2

∑

1≤i< j≤2n

(
γijZ f

)2

+
∑

1≤i< j≤2n

2n∑

�=1

ω�
ijγijZ f X� f,

and therefore,

�2( f ) =
2n∑

i, j=1

f 2
,ij − 2

2n∑

i, j=1

Xi f
[
Xi, Xj

]
Xj f +

2n∑

i, j=1

Xi f
[[
Xi, Xj

]
, Xj

]
f

+
2n∑

i=1

Xi f [X0, Xi] f + 1

2

∑

1≤i< j≤2n

(
2n∑

�=1

ω�
ijX� f

)2

+ 1

2

∑

1≤i< j≤2n

(
γijZ f

)2

+
∑

1≤i< j≤2n

2n∑

�=1

ω�
ijγijZ f X� f. (3.11)

By plugging in Eq. 2.1 and completing the square, we obtain

�2( f ) =
2n∑

�=1

(

f,�� −
2n∑

i=1

ω�
i�Xi f

)2

+ 2
∑

1≤�< j≤2n

(

f, j� −
2n∑

i=1

ω�
ij + ω

j
i�

2
Xi f

)2

− 2
2n∑

i, j=1

γijX jZ f Xi f +R( f ),
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where we used the fact that
∑

1≤i< j≤2n

(
γijZ f

)2 = n(Z f )2. At last, we complete the
proof of Eq. 3.8 by realizing that the square of the Hilbert-Schmidt norm of the
horizontal Hessian ∇2

H f is given by

‖∇2
H f‖2 =

2n∑

�=1

(

f,�� −
2n∑

i=1

ω�
i�Xi f

)2

+ 2
∑

1≤�< j≤2n

(

f, j� −
2n∑

i=1

ω�
ij + ω

j
i�

2
Xi f

)2

. (3.12)

��

Our next goal is to derive a vertical Bochner’s formula.We first give the formula in
terms of the structure constants and will provide the tensorial expressions afterwards.

Theorem 3.4 For every f ∈ C∞(M),

�Z
2 ( f ) =

2n∑

i=1

(XiZ f )2 + 1

2

2n∑

i,l=1

(
δli + δil

)
(XiXl f + XlXi f ) Z f

+
2n∑

i,l=1

(

Xiδ
l
i −

2n∑

k=1

wk
ikδ

l
i +

2n∑

k=1

Zwk
lk

)

Xl f Z f. (3.13)

Proof From Eq. 3.2, we know that

�Z
2 ( f ) = �(Z f )+ [L, Z ] f Z f. (3.14)

Moreover, since

[L, Z ] f = [X0, Z ] f +
2n∑

i=1

(Xi [Xi, Z ] f + [Xi, Z ] Xi f )

we can easily compute that

[L, Z ] f = −
2n∑

i,k,l=1

wk
ikδ

l
i Xl f +

2n∑

l,k=1

(
Zwk

lk

)
Xl f +

2n∑

i,l=1

(
Xiδ

l
i

)
Xl f

+1

2

2n∑

i,l=1

(
δli + δil

)
(XiXl + XlXi) f. (3.15)

Plug this expression back in Eq. 3.14, we have the expression for �Z
2 ( f ). ��
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To stress that the formula, of course does not depend on the local frame, we can
rewrite it as follows:

Theorem 3.5 For any smooth function f ∈ C∞(M), we have

�Z
2 ( f ) =‖∇H∇V f‖2 +Ric (∇H f,∇V f )

+ 2
2n∑

i,l=1

τ (Xi)Xi f Z f +
2n∑

k=1

(∇XkT
)
(Z , Xk) f Z f − 2

2n∑

k=1

∇τ (Xk)Xk f Z f

Proof Since

(∇XkT
)
(Z , Xi) = ∇Xk (τ (Xi))− τ

(∇Xk Xi
)
,

we have that

(∇XkT
)
(Z , Xk) = 1

2

2n∑

l=1

Xk
(
δlk + δkl

)
Xl + 1

2

2n∑

l, j=1

(
δlk + δkl

)
�

j
klX j

−1

2

2n∑

l, j=1

wk
lk

(
δ
j
l + δlj

)
Xj.

and simple calculations give us

Ric (Z , Xi) = 1

2

2n∑

j=1

Xj

(
δij − δ

j
i

)
+ 1

2

2n∑

j,k=1

w
j
jk

(
δik − δki

)

−
2n∑

j=1

Zw
j
ji −

1

2

2n∑

k, j=1

�k
ji

(
δkj − δ

j
k

)
−

2n∑

k, j=1

δkj�
j
ki.

As a consequence, we obtain

2n∑

i=1

Ric (Z , Xi) Xi f Z f +
2n∑

k=1

(∇XkT
)
(Z , Xk) f Z f

=
2n∑

i, j=1

Xjδ
i
jXi f Z f +

2n∑

i, j,k=1

w
j
jkδ

i
kXi f Z f −

2n∑

i, j=1

(
Zw

j
ji

)
Xi f Z f

+
⎛

⎝1

2

2n∑

i, j,k=1

(
δ
j
k + δkj

)
�i
kjXi f − 1

2

2n∑

i, j,k=1

�k
ji

(
δkj − δ

j
k

)
Xi f −

2n∑

i, j,k=1

δkj�
j
kiXi f

⎞

⎠ Z f.

By taking into account

�k
ji = �i

kj −
(
wk

ij +w
j
ik

)
= wi

kj − �i
kj, �

j
ki = −�i

kj,
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we have that

1

2

2n∑

i, j,k=1

(
δ
j
k + δkj

)
�i
kjXi f − 1

2

2n∑

i, j,k=1

�k
ji

(
δkj − δ

j
k

)
Xi f

−
2n∑

i, j,k=1

δkj�
j
kiXi f = 1

2

2n∑

i, j,k=1

(
wk

ij + w
j
ik

)(
δ
j
k + δkj

)
Xi f.

Moreover, notice that

1

2

2n∑

i, j,k=1

(
δ
j
k + δkj

) (
wk

ij +w
j
ik

)
Xi f Z f = 2

2n∑

k=1

∇τ (Xk)Xk f Z f, (3.16)

so that we can write

2n∑

i, j=1

Xjδ
i
jXi f Z f +

2n∑

i, j,k=1

w
j
jkδ

i
kXi f Z f −

2n∑

i, j=1

(
Zw

j
ji

)
Xi f Z f

=
2n∑

i=1

Ric (Z , Xi) Xi f Z f +
2n∑

k=1

(∇XkT
)
(Z , Xk) f Z f − 2

2n∑

k=1

∇τ (Xk)Xk f Z f.

(3.17)

At the end we conclude the proposition by comparing with the expression in
Eq. 3.13. ��

3.2 Generalized Curvature Dimension Bounds

With the two Bochner’s formulas in hands, we are now ready to give the suitable
curvature dimension conditions on contact manifolds. To this purpose, we introduce
the relevant geometric quantities. As in the previous subsection, we work in a local
frame.

The vector field

V =
2n∑

i=1

Ric (Z , Xi)Xi +
(∇XiT

)
(Z , Xi) ,

obviously does not depend on the choice of the local frame and is therefore an
intrinsic invariant of the manifold. In terms of the structure constants, we compute

V =
2n∑

i, j,l=1

(
δlj + δ

j
l

2

)(
w

j
il +wl

ij

)
Xi +

2n∑

i=1

⎛

⎝
2n∑

j=1

Xjδ
i
j −

2n∑

j,k=1

wk
jkδ

i
j +

2n∑

k=1

Zwk
ik

⎞

⎠ Xi.

We then consider the first-order quadratic differential form defined for f ∈ C∞(M)
by

τ2( f ) =
2n∑

l,k=1

T(Xl,T(Xl, Xk)) f Xk f,
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and the horizontal trace of the Tanno tensor Q which is the vector field given by
TrHQ :=∑2n

l=1 Q(Xl, Xl) =∑2n
l=1(∇Xl J)Xl . Our main result is the following:

Theorem 3.6 Assume there exist constants c1 ∈ R, c2 ≥ 0, c3 ≥ 0 and ι ≥ 0 such that
for every f ∈ C∞(M),

Ric (∇H f )+ τ2( f ) ≥ c1 ‖∇H f‖2 , ‖(TrHQ) f‖2 ≤ c2 ‖∇H f‖2 , (3.18)

‖V f‖2 ≤ c3 ‖∇H f‖2 , ‖τ (∇H f )‖2 ≤ ι ‖∇H f‖2 .

Then for all ν > 0 and f ∈ C∞(M),

�2( f )+ ν�Z
2 ( f ) ≥ 1

2n
(Lf )2 +

(
c1 − 1

ν

)
�( f )

− (c2 + c3ν)

√
�( f )�Z ( f )+

(n
2
− ι

4
ν2
)
�Z ( f ).

Proof To derive the generalized curvature-dimension inequality, let us first intro-
duce the first-order differential forms U and T in the local frame {X1, · · · , X2n} such
that

T ( f, f ) =
2n∑

k=1

∥∥
∥T (Xk,∇H f )2

∥∥
∥ , U( f, f ) =

2n∑

k=1

‖τ (Xk)‖2 (Z f )2. (3.19)

A simple computation shows that

U( f, f ) =
2n∑

j,l=1

(
δlj + δ

j
l

2

)2

(Z f )2 , T ( f, f ) =
2n∑

j=1

(
2n∑

i=1

γijXi f

)2

. (3.20)

Let us also consider S( f ) = V f Z f so that

S( f ) = Ric (∇V f,∇H f )+
2n∑

i=1

(∇XiT
)
(Z , Xi) f Z f. (3.21)

From Eqs. 3.8 and 3.13, by using the fact that δii = 0, we have that

�2( f, f )+ ν�Z
2 ( f, f ) =

2n∑

l=1

(

X2
l f −

2n∑

i=1

wl
il Xi f

)2

− 2
2n∑

i, j=1

γij(XjZ f )(Xi f )

+ ν

2n∑

i=1

(XiZ f )2 + 2ν
∑

1≤l< j≤2n

⎛

⎝
δlj + δ

j
l

2

⎞

⎠
(
XjXl + XlXj

2

)
fZf

+ 2
∑

1≤l< j≤2n

⎛

⎝
(
XlXj + XjXl

2

)
f −

2n∑

i=1

⎛

⎝
w

j
il +wl

ij

2

⎞

⎠ Xi f

⎞

⎠

2

+ ν

2n∑

l=1

⎛

⎝
2n∑

i=1

Xiδ
l
i −

2n∑

i,k=1

wk
ikδ

l
i +

2n∑

k=1

Zwk
lk

⎞

⎠ Xl f Z f +R( f, f ).
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We write the above equation as follows:

�2( f, f )+ ν�Z
2 ( f, f )

= BI + BII + BIII + ν

2n∑

l=1

⎛

⎝
2n∑

i=1

Xiδ
l
i −

2n∑

i,k=1

wk
ikδ

l
i +

2n∑

k=1

Zwk
lk

⎞

⎠ Xl f Z f +R( f, f ),

where

BI =
2n∑

l=1

(

X2
l f −

2n∑

i=1

wl
il Xi f

)2

,

BII = −2
2n∑

i, j=1

γij(XjZ f )(Xi f )+ ν

2n∑

i=1

(XiZ f )2,

BIII = 2
∑

1≤l< j≤2n

((
XlXj + XjXl

2

)
f −

2n∑

i=1

(
w

j
il +wl

ij

2

)

Xi f

)2

+ 2ν
∑

1≤l< j≤2n

(
δlj + δ

j
l

2

)(
XjXl + XlXj

2

)
f Z f

Hence from Cauchy–Schwartz inequality we obtain

BI ≥ 1

2n
(Lf )2.

Also we can easily see that

BII ≥ −1

ν

2n∑

j=1

(
2n∑

i=1

γijXi f

)2

,

and

BIII ≥ 2ν
∑

1≤l< j≤2n

2n∑

i=1

(
δlj + δ

j
l

2

)(
w

j
il +wl

ij

2

)

Xi f Z f

− ν2

2

∑

1≤l< j≤2n

((
δlj + δ

j
l

2

)

Z f

)2

.

Hence we have

�2( f, f )+ ν�Z
2 ( f, f ) ≥ 1

2n
(Lf )2 − ν2

4
U( f )+ νS( f )+R( f )− 1

ν
T ( f ),

and the conclusion easily follows from the fact that

T ( f ) =
2n∑

k=1

〈J∇H f, Xk〉2 = ‖J∇H f‖2 = �( f ).

��
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In the case of Sasakian manifolds, we have V = 0, Q = 0, τ = 0 and we recover
the curvature dimension inequality introduced in [2].

In view of Theorem 3.6, it is then natural to set the following definition:

Definition 3.7 We say thatM satisfies the generalized curvature-dimension inequal-
ity CD(ρ1, ρ2, ρ3, κ , m) with respect to L and �Z if there exist constants ρ1, ρ2 ∈ R,
ρ3 > 0, κ > 0, 0 < m ≤ ∞ such that the inequality

�2( f )+ ν�Z
2 ( f ) ≥ 1

m
(Lf )2 +

(
ρ1 − κ

ν

)
�( f )+ (ρ2 − ρ3ν

2
)
�Z ( f )

holds for all f ∈ C∞(M) and every ν > 0.

In particular, under the assumptions of Theorem 3.6 we easily see that the
curvature-dimension inequality CD(ρ1, ρ2, ρ3, 1, 2n) holds for every z > 0, w > 0,
where ρ1 = c1 − c2z

2 − c3w
2 , ρ2 = n

2 − c2
2z , ρ3 = c3

2w + ι
4 .

It is very interesting to observe that Theorem 3.6 admits a partial converse.

Theorem 3.8 Assume that there exist constants c1, c2, c3 and ι such that for every ν > 0
and f ∈ C∞(M),

�2( f )+ ν�Z
2 ( f ) ≥ 1

2n
(Lf )2 +

(
c1 − 1

ν

)
�( f )

− (c2 + c3ν)

√
�( f )�Z ( f )+

(n
2
− ι

4
ν2
)
�Z ( f ),

then, we have for every f ∈ C∞(M),

Ric(∇H f )+ τ2( f ) ≥ c1‖∇H f‖2

and

‖τ(∇H f )‖2 ≤ ι‖∇H f‖2.

Proof We first observe that under our assumptions the curvature-dimension in-
equalityCD(ρ1, ρ2, ρ3, 1, 2n) holds for every z > 0,w > 0, where ρ1 = c1 − c2z

2 − c3w
2 ,

ρ2 = n
2 − c2

2z , ρ3 = c3
2w + ι

4 .
For a fixed x0 ∈ M, u ∈ Hx0 (M), v ∈ Vx0(M), let {X1, X2, · · · , X2n, Z } be a local

adapted frame around x0. First we claim that for ν > 0, we can find a function f ∈
C∞(M) satisfying:

(i) ∇H f (x0) = u,
(ii) ∇V f (x0) = Z f (x0) = v ,

(iii)
(∇2

H f (x0)
)
l, j = ν

2

(
δlj+δ

j
l

2

)
(x0)v ,

(iv) XjZ f (x0) = 1
ν

∑2n
i=1 γij(x0)ui, for all j = 1, · · · , 2n.
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To prove this, let (U, φ) be a local chart at x0, such that φ(0) = x0 and in U we have
Xj = ∂

∂x j
, j = 1, ..., 2n, Z = ∂

∂z . Then the existence of f follows immediately by the
existence of functions f1 ∈ C∞(M) such that

⎧
⎨

⎩

∇R f1(x0) = u+ v,

∇R∇R f1(x0) = 0.

and f2 ∈ C∞(M) such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇R f2(x0) = 0,

(∇R∇R f2(x0)
)
l, j =

ν

2

(
δlj + δ

j
l

2

)

(x0)v,

XjZ f2(x0) = 1

ν

2n∑

i=1

γij(x0)ui − XjZ f1(x0).

where ∇R is the Levi–Civita connection of the Riemannian metric on M. As in [2],
we can easily see the existence of such f1. Also we can write f2 in local coordinates
(x1, · · · , x2n, z) such that

f2(x, z) =
2n∑

j=1

(
1

ν

2n∑

i=1

γij(x0)ui − XjZ f1(x0)

)

x jz+ ν

2

2n∑

l. j=1

(
δlj + δ

j
l

2

)

(x0)vxlx j.

We then chose f = f1 + f2. Now we divide the rest of the proof into two parts.

(1) First we derive the bounds forRic(∇H f )+ τ2( f ). From the above claim we can
find a function f ∈ C∞(M) such that (i), (ii), (iii), (iv) are satisfied with v = 0.
Moreover, by Eqs. 3.8 and 3.13 we have that

�2( f )+ ν�Z
2 ( f ) = Ric(∇H f )+ τ2( f )

Hence we have that for all ν > 0, z > 0, w > 0,

Ric(∇H f ) (x0)+ τ2( f )(x0) ≥
(
ρ1 − κ

ν

)
‖u‖2

where ρ1 = c1 − c2z
2 − c3w

2 . By letting ν → ∞, z → 0, w → 0, we obtain that

Ric(∇H f )(x0)+ τ2( f )(x0) ≥ c1‖u‖2.
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(2) To derive the bound for ‖τ‖2 , we notice that the existence of the function f ∈
C∞(M) satisfying (i)–(iv) implies

�2( f )+ ν�Z
2 ( f ) = R( f, f )− 1

ν

2n∑

j=1

(
2n∑

i=1

γijXi f

)2

+ ν

2n∑

i, j,l=1

(
δlj + δ

j
l

2

)(
w

j
il +wl

ij

2

)

Xi f Z f

+ ν

2n∑

l=1

⎛

⎝
2n∑

i=1

Xiδ
l
i −

2n∑

i,k=1

wk
ikδ

l
i +

2n∑

k=1

Zwk
lk

⎞

⎠ Xl f Z f

− ν2

2

∑

1≤l< j≤2n

((
δlj + δ

j
l

2

)

Z f

)2

.

Since

�2( f, f )+ ν�Z
2 ( f, f ) ≥ (ρ1 − 1

ν
)‖u‖2 + (ρ2 − ρ3ν

2)‖v‖2,

by comparing the coefficients of ν2 terms we have that

1

2

∑

1≤l< j≤2n

((
δlj + δ

j
l

2

)

Z f

)2

≤ c3

2w
+ ι

4

for all w > 0. Let w → ∞ we obtain

‖τ‖2 =
2n∑

l, j=1

((
δlj + δ

j
l

2

)

Z f

)2

≤ ι.

��

4 Stochastic Completeness and Bonnet Myers Type Theorem

Throughout this section we assume that L satisfies the generalized curvature dimen-
sion condition CD(ρ1, ρ2, ρ3, κ , ∞) with ρ1 ∈ R, ρ2 > 0, ρ3 > 0, κ > 0. Our purpose
here is to study the stochastic completeness property of the heat semigroup and the
compactness properties of the manifoldM.

Let us introduce the rescaled Riemannian metric

gλ = dθ(·, J·) + λ−2θ2,

where λ > 0. The associated Laplacian�λ is given by

�λ = L + λ2Z 2

and the associated first order bilinear form is

�λ( f ) = �( f )+ λ2(Z f )2.
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Lemma 4.1 If there exists α, ι ≥ 0 such that for every f ∈ C∞(M),

〈(∇Z τ) (∇H f ) ,∇H f 〉 ≤ α ‖∇H f‖2 , ‖τ (∇H f )‖2 ≤ ι ‖∇H f‖2 , (4.1)

then we have

�λ
2 ( f ) ≥ �2( f )+ λ2�Z

2 ( f )− λ2 (2ι+ α) �( f ), (4.2)

and consequently

�λ
2 ( f ) ≥ c(λ)�λ( f ),

where c(λ) = min
{
ρ1 − κ

λ2
+ λ2 (2ι+ α) ,

ρ2

λ2
− ρ3λ

2
}
.

Proof Some easy computations show that

2�λ
2 ( f ) = �λ�λ( f )− 2�λ

(
f, �λ( f )

)

= 2�2( f )+ λ2
(
Z 2�( f )− 2�

(
f, Z 2 f

)+ 2�Z
2 ( f )

)+ 2λ4
(
Z 2 f

)2
,

and, in a local orthonormal frame,

Z 2�( f )− 2�( f, Z 2 f ) = 2
2n∑

k=1

(

ZXk f −
2n∑

i=1

δki Xi f

)2

− 2
2n∑

i, j,k=1

δki

(
δkj + δ

j
k

)
Xi f X j f − 2

2n∑

i,k=1

(
Zδki

)
Xi f Xk f.

Since

ZXk f = XkZ f −
2n∑

i=1

δikXi f

and
2n∑

i=1

((∇Z τ) (Xi)) f Xi f =
2n∑

i,k=1

Z
(
δki
)
Xi f Xk f + 1

2

2n∑

i, j,k=1

(
δki δ

k
j − δikδ

j
k

)
Xi f X j f,

we can conclude that

1

2
Z 2�( f )− �( f, Z 2 f ) =

2n∑

k=1

(XkZ f − 2τ(Xk) f )2

−2‖τ(∇H f )‖2 − 〈(∇Z τ)(∇H f ),∇H f 〉, (4.3)

and thus

1

2
Z 2�( f )− �

(
f, Z 2 f

) ≥ −2 ‖τ (∇H f )‖2 − 〈(∇Z τ) (∇H f ) ,∇H f 〉.
At the end we obtain Eq. 4.2 by plugging in Eq. 4.1. The inequality 4.2 is obtained by
using the generalized curvature condition CD(ρ1, ρ2, ρ3, κ , ∞). ��

This lemma has a very interesting first corollary.
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Theorem 4.2 Assume that there exist α, ι ≥ 0 such that for every f ∈ C∞(M),

〈(∇Z τ) (∇H f ) ,∇H f 〉 ≤ α ‖∇H f‖2 , ‖τ (∇H f )‖2 ≤ ι ‖∇H f‖2 ,

and moreover that ρ1 >
√

ρ3
ρ2
κ +

√
ρ2
ρ3
(2ι+ α), then the manifoldM is compact.

Proof If ρ1 >
√

ρ3

ρ2
κ +

√
ρ2

ρ3
(2ι+ α), then we can chose λ > 0 such that c(λ) > 0. It

implies that the Ricci curvature of the Riemannian metric gλ is bounded from
below by a positive number and thusM is compact from the classical Bonnet–Myers
theorem. ��

Remark 4.3 In the Sasakian case, α = ι = ρ3 = 0 and we recover the result from [2].
However, in [2] the compactness result came with an upper bound for the Carnot–
Carathéodory diameter ofM.

A second corollary is the following volume estimate of the metric balls and the
stochastic completeness of the heat semigroup generated by L (see the next Section
for a definition). Let us first remind that the distance d associated to L is defined by:

d(x, y) = sup
{
f (x)− f (y), f ∈ C∞(M), ‖�( f )‖∞ ≤ 1

}
.

It also coincides with the usual Carnot-Carathéodory distance.

Theorem 4.4 Assume that there exist α, ι ≥ 0 such that for every f ∈ C∞(M),

〈(∇Z τ) (∇H f ) ,∇H f 〉 ≤ α ‖∇H f‖2 , ‖τ (∇H f )‖2 ≤ ι ‖∇H f‖2 .

There exist constants C1 ≥ 0 and C2 ≥ 0 such that for every x ∈ M and every r ≥ 0

μ(B(x, r)) ≤ C1eC2r. (4.4)

As a consequence, the heat semigroup Pt generated by the sub-Laplacian is stochasti-
cally complete, that is for every t ≥ 0, Pt1 = 1.

Proof Let Bλ(x, r) denote the gλ Riemannian ball in M centered at x with radius r.
It is easy to see that

B(x, r) ⊂ Bλ(x, r).

By Lemma 4.1, the Ricci curvature of the Riemannian metric gλ is bounded from
below. From the Riemannian volume comparison theorem, we deduce then that
μ(B(x, r)) ≤ C1eC2r. As a consequence, we conclude that for every x ∈ M,

∫ +∞

0

rdr
logμ(B(x, r))

= ∞.

Thanks to a theorem byK.T. Sturm [31], we deduce that Pt is stochastically complete.
��
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5 Gradient Bounds for the Heat Semigroup and Spectral Gap Estimates

In the whole section, we assume again that the sub-Laplacian of L satisfies the
generalizedCD(ρ1, ρ2, ρ3, κ,∞) for some constants ρ1 ∈ R, ρ2 > 0, ρ3 > 0, κ > 0.

The previous section has shown how to deduce some interesting geometric conse-
quences of the generalized curvature dimension condition. However an additional
bound is required on the tensor ∇Z τ and the techniques are not intrinsically
associated to L in the sense that we introduced the rescaled Riemannian metric gλ

and used results from Riemannian geometry. In this section, we develop tools to
exploit in an intrinsic way the generalized curvature dimension inequality. These
methods rely on the study of gradient bounds for the subelliptic heat semigroup
which is generated by L.

We first remind the construction of the heat semigroup associated to L. From
Lemma 2.1, the operator L is essentially self-adjoint. Let us denote by L =
− ∫ +∞

0 λdEλ the spectral decomposition of L in L2(M, μ). By definition, the heat
semigroup (Pt)t≥0 is given by Pt =

∫ +∞
0 e−λtdEλ. It is a one-parameter family of

bounded operators on L2(M, μ) which transforms positive functions into positive
functions and satisfies

Pt1 ≤ 1. (5.1)

This property implies in particular

‖Pt f‖L1(M) ≤ ‖ f‖L1(M), ‖Pt f‖L∞(M) ≤ ‖ f‖L∞(M), (5.2)

and therefore by the Riesz–Thorin interpolation theorem

‖Pt f‖Lp(M) ≤ ‖ f‖Lp(M), 1 ≤ p ≤ ∞. (5.3)

Moreover, it can be shown as in [22] that Pt is the unique solution in Lp of the
parabolic Cauchy problem:

Proposition 5.1 The unique solution of the Cauchy problem
⎧
⎪⎨

⎪⎩

∂u
∂t

− Lu = 0,

u(x,0) = f (x), f ∈ Lp(M), 1 < p < +∞,

that satisf ies ‖u(·, t)‖p < +∞ is given by u(x, t) = Pt f (x).

Due to the hypoellipticity of L, the function (t, x) → Pt f (x) is smooth on M×
(0,∞) and

Pt f (x) =
∫

M

p(x, y, t) f (y)dμ(y), f ∈ C∞
0 (M),

where p(x, y, t) > 0 is the so-called heat kernel associated to Pt. Such function is
smooth and it is symmetric, i.e.,

p(x, y, t) = p(y, x, t).
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By the semi-group property for every x, y ∈ M and s, t > 0 we have

p(x, y, t + s) =
∫

M

p(x, z, t)p(z, y, s)dμ(z)

=
∫

M

p(x, z, t)p(y,z, s)dμ(z) = Ps(p(x, ·, t))(y). (5.4)

In order to use heat semigroup gradient bounds techniques, we will need the
following hypothesis throughout this section.

Hypothesis 5.2 The semigroup Pt is stochastically complete, i.e., for t > 0,

Pt1 = 1,

and for all f ∈ C∞
0 (M) and T ≥ 0, one has

sup
t∈[0,T]

‖� (Pt f )‖∞ + ∥∥�Z (Pt f )
∥∥∞ < +∞.

The Hypothesis 5.2 is not very strong. It is obviously satisfied if M is compact. In
the non compact case, a general criterion is given in the Appendix. From now on, in
this section, we assume that that Hypothesis 5.2 is satisfied.

The raison d’être of Hypothesis 5.2 is the following theorem that was proved in
[2].

Theorem 5.3 Assume that Hypothesis 5.2 is satisf ied. Let T > 0. Suppose that
u, v : M× [0,T] → R are smooth functions such that supt∈[0,T] ‖u(·, t)‖∞ < ∞ and
supt∈[0,T] ‖v(·, t)‖∞ < ∞. Suppose

Lu + ∂u
∂t

≥ v

onM× [0,T]. Then for all x ∈ M,

PT(u(·,T))(x) ≥ u(x, 0)+
∫ T

0
Ps(v(·, s))(x)ds.

We can now prove the main gradient bound for the heat semigroup.

Proposition 5.4 Let us assume ρ1 − κ
√
ρ3√
ρ2

≥ 0. For f ∈ C∞
0 (M) and t ≥ 0, we have

� (Pt f )+ σ +√σ 2 + 16ρ2ρ3

4ρ2
�Z (Pt f )

≤ e−σ t

(

Pt(�( f ))+ σ +√σ 2 + 16ρ2ρ3

4ρ2
Pt(�

Z ( f ))

)

where σ = 2ρ1ρ2−2κ
√
ρ2ρ3

(ρ2+κ)
.
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Proof Let us fix t > 0 once time for all in the following proof. For 0 < s < t, let

φ1(x, s) = �(Pt−s f )(x),

φ2(x, s) = �Z (Pt−s f )(x),

be defined onM× [0, t]. A simple computation shows that

Lφ1 + ∂φ1

∂s
= 2�2(Pt−s f ),

Lφ2 + ∂φ2

∂s
= 2�Z

2 (Pt−s f ),

Now consider the function

φ(x, s) = a(s)φ1(x, s)+ b (s)φ2(x, s)

Applying the generalized curvature-dimension inequality CD(ρ1, ρ2, ρ3, κ,∞), one
obtains

Lφ + ∂φ

∂s
= a′�(Pt−s f )+ b ′�Z (Pt−s f )+ 2a�2(Pt−s f )+ 2b�Z

2 (Pt−s f )

≥
(
a′ + 2ρ1a− 2κ

a2

b

)
�(Pt−s f )

+
(
b ′ + 2ρ2a− 2ρ3

b 2

a

)
�Z (Pt−s f ). (5.5)

Let us chose

b (s) = e

−2ρ1ρ2 + 2κ
√
ρ2ρ3

(ρ2 + κ)
s

,

and

a(s) = σ +√σ 2 + 16ρ2ρ3

4ρ2
b (s),

where σ = 2ρ1ρ2−2κ
√
ρ2ρ3

(ρ2+κ)
, and denote δ = σ+

√
σ 2+16ρ2ρ3

4ρ2
. It is easy to observe that

b ′(s) = −σb (s), a′(s) = −σa(s) = −σδb (s).

We now claim that a(s), b (s) satisfy

a′ + 2aρ1 − 2κ
a2

b
≥ 0, (5.6)

b ′ + 2aρ2 − 2ρ3
b 2

a
= 0. (5.7)

Indeed, Eq. 5.7 writes as

−σδ + 2δ2ρ2 − 2ρ3 = 0,

and follows immediately by the expressions of δ. To see Eq. 5.6, similarly, we only
need to prove that

−δσ + 2ρ1δ − 2κδ2 ≥ 0,
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which is equivalent to prove

2ρ1 ≥ 2κδ + σ.

We can obtain it by observing that

κ
√
σ 2 + 16ρ2ρ3 ≤ 4κ

√
ρ2ρ3 + κσ,

thus we have claim proved. Plug Eqs. 5.6 and 5.7 into Eq. 5.5, we get

Lφ + ∂φ

∂s
≥ 0

and by the comparison result of Theorem 5.3, we have that

Pt(φ(·, t))(x) ≥ φ(x,0).

We complete the proof by realizing that

φ(x,0) = a(0)�(Pt f )(x)+ b (0)�Z (Pt f )(x),

and

Pt(φ(·, t))(x) = a(t)Pt(�( f ))(x)+ b (t)Pt(�
Z ( f ))(x).

��

A direct application of the above inequality is the fact ρ1 − κ
√
ρ3√
ρ2

> 0 implies that
the invariant measure is finite.

Corollary 5.5 If ρ1 − κ
√
ρ3√
ρ2

> 0 thenM has a f inite volume, i.e.,

μ(M) < +∞.

Proof Let f, g ∈ C∞
0 (M), and write

∫

M

(Pt f − f )gdμ =
∫

M

∫ t

0

∂(Ps f )
∂s

gdsdμ

=
∫ t

0

∫

M

(LPs f )gdμds

= −
∫ t

0

∫

M

�(Ps f, g)dμds

By Cauchy–Schwartz inequality, we have

∣
∣∣
∣

∫

M

(Pt f − f )gdμ

∣
∣∣
∣ ≤
∫ t

0

∫

M

(
�(Ps f )

1
2 �(g)

1
2

)
dμds.
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Applying Proposition 5.4, we obtain then

∣
∣∣
∣

∫

M

(Pt f − f )gdμ

∣
∣∣
∣ ≤

(∫ t

0
e

ρ1ρ2−2κ√ρ2ρ3
(ρ2+κ)

sds
∫

M

�(g)
1
2 dμ

)

×
√

‖�( f )‖∞ + σ +√σ 2 + 16ρ2ρ3

4ρ2
‖�Z ( f )‖∞,

where σ = 2ρ1ρ2−2κ
√
ρ2ρ3

(ρ2+κ)
.

Moreover, from the spectral theorem we know that Pt f converges to P∞ f in
L2(M) and LP∞ f = 0, where P∞ f is in the domain of L. Hence �(P∞ f ) = 0, which
implies that P∞ f is a constant.

We then prove the measure is finite by contradiction. Assume μ(M) = +∞, then
we have P∞ f = 0, thus when t → +∞,

∣∣
∣∣

∫

M

fgdμ

∣∣
∣∣ ≤

(∫ +∞

0
e

ρ1ρ2−2κ
√
ρ2ρ3

(ρ2+κ) sds
∫

M

�(g)
1
2 dμ

)

×
√

‖�( f )‖∞ + σ +√σ 2 + 16ρ2ρ3

4ρ2
‖�Z ( f )‖∞.

Let g ≥ 0, g �= 0, and we chose for f an increasing sequence {hk} ∈ C∞
0 (M) such that

hk ↗ 1 onM and

‖�(hk)‖∞ + ‖�Z (hk)‖∞ →k→+∞ 0.

By letting k → +∞, we obtain

∫

M

gdμ ≤ 0,

which is a contradiction. Hence μ(M) < +∞. ��

Another corollary is the following Poincaré inequality.

Corollary 5.6 If ρ1 − κ
√
ρ3√
ρ2

> 0, then for all f ∈ C∞
0 (M),

∫

M

f 2dμ−
(∫

M

fdμ
)2

≤ ρ2 + κ

ρ1ρ2 − κ
√
ρ2ρ3

∫

M

�( f )dμ. (5.8)

Proof By Proposition 5.4, we have

∫

M

�(Pt f )dμ ≤ e
2ρ1ρ2−2κ

√
ρ2ρ3

(ρ2+κ) t
∫

M

(

Pt(�( f ))+ σ +√σ 2 + 16ρ2ρ3

4ρ2
Pt(�

Z ( f ))

)

dμ

≤ e
2ρ1ρ2−2κ√ρ2ρ3

(ρ2+κ)
t
∫

M

(

�( f )+ σ +√σ 2 + 16ρ2ρ3

4ρ2
�Z ( f )

)

dμ, (5.9)
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where the last inequality is due to the contractivity of Pt. Let dEλ be the spectral
resolution of −L. Then by the spectral theorem we have

∫

M

�(Pt f )dμ =
∫ +∞

0
λe−2λtdEλ( f ) (5.10)

and
∫

M

�( f )dμ =
∫ +∞

0
λdEλ( f ).

Thus for 0 < s < t, by Hölder inequality,
∫

M

�(Ps f )dμ =
∫ +∞

0
λe−2λsdEλ( f )

≤
(∫ ∞

0
λe−2λtdEλ( f )

) s
t
(∫ ∞

0
λdEλ( f )

) t−s
t

. (5.11)

We denote C( f ) = ∫
M

(
�( f )+ σ+

√
σ 2+16ρ2ρ3

4ρ2
�Z ( f )

)
dμ, then by Eqs. 5.9, 5.10 and

5.11 we have

∫

M

�(Ps f )dμ ≤ e
2ρ1ρ2−2κ

√
ρ2ρ3

(ρ2+κ)
sC( f )

s
t

(∫

M

�( f )dμ
) t−s

t

.

By letting t → +∞, we obtain
∫

M

�(Ps f )dμ ≤ e
2ρ1ρ2−2κ

√
ρ2ρ3

(ρ2+κ)
s
∫

M

�( f )dμ.

At the end, we obtain the desired Poincaré inequality by observing

∫

M

f 2dμ−
(∫

M

fdμ
)2

= −
∫ ∞

0

∂

∂s

∫

M

(Ps f )2dμds =
∫

M

�(Ps f )dμ.

��

This result naturally raises the conjecture that if ρ1 − κ
√
ρ3√
ρ2

> 0, thenM is compact.
This would be a stronger result than Theorem 4.2.

Acknowledgement The authors thank an anonymous referee for pointing out several references.

Appendix: Gradient Bounds by Stochastic Analysis

The goal of the section is to study some general conditions ensuring that Hypothesis
5.2 is true.

LetM be a n+m dimensional smooth manifold. We assume given n+m smooth
vector fields {X1, · · · , Xn+m} onM such that for every x ∈ M, {X1(x), · · · , Xn+m(x)}
is a basis of TxM. This global basis of vector fields induce onM a Riemannian metric
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g that we assume to be complete. There exist smooth functions ωk
ij : M → R, i, j,k =

1, · · · ,n+m, such that:

[
Xi, Xj

] =
n+m∑

k=1

ωk
ijXk.

We assume that the vector fields {X1, · · · , Xn} satisfy the Hörmander’s bracket
generating condition.

Let us consider the symmetric and subelliptic operator

L = −1

2

n∑

i=1

X∗
i Xi,

where X∗
i = −Xi + divXi is the formal adjoint of Xi with respect to the Riemannian

measure μ. By using a similar argument as in the proof of Lemma 2.1, it is seen that
the assumed completeness of g implies that L is essentially self-adjoint on the space
C∞

0 (M). As a consequence, L is the generator of sub-Markov semigroup (Pt)t≥0. Let
us observe that L can also be written as

L = X0 + 1

2

n∑

k=1

X2
k,

where X0 = − 1
2

∑n
i=1(divXi)Xi = − 1

2

∑n
i=1

∑n+m
k=1 ωk

ikXi. We thus can find some
smooth functions ωk

0i’s such that

[X0, Xi] =
n+m∑

k=1

ωk
0iXk.

Let now (Bt)t≥0 be a n-dimensional Brownian motion.
If we consider the stochastic differential equation onM,

dYx
t =

n∑

k=0

Xk
(
Yx

t

) ◦ dBk
t , Yx

0 = x,

with the notation B0
t = t, it has a unique solution defined up to an explosion time

e(x). If f is a bounded Borel function onM, we then have the representation

Pt f (x) = E
(
f
(
Yx

t

)
1t<e(x)

)
.

Our goal is to prove the following theorem:

Theorem A.1 Let us assume that the functions ωk
ij, Xlω

k
ij, i, j,k, l = 1, · · · , n+m are

bounded, then the semigroup Pt is stochastically complete and there exist constants
C1,C2 ≥ 0 such that for every f ∈ C∞

0 (M), t ≥ 0 and x ∈ M

n+m∑

k=1

(XkPt f )2(x) ≤ C1eC2t

(
n+m∑

k=1

‖Xk f‖2
∞

)

.
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Proof We adapt some ideas fromKusuoka [21]. Let x, y ∈ M and letO be a bounded
open set that contains the Riemannian geodesic connecting x to y. Let R > 0 such
that the ball B(x, R) with center x and radius R contains O. We denote

TR = inf
z∈O

inf
{
t ≥ 0,Yz

t /∈ B(x, R)
}
.

Let us then consider for f ∈ C∞
0 (M), and z ∈ O,

PR
t f (z) = E

(
f
(
Yz

t∧TR

))
.

By using the chain rule, and the triangle inequality, we see that for z ∈ O,

n+m∑

k=1

(
XkPR

t f
)2
(z) ≤ E

(∥∥J∗t∧TR
(z)∇ f

(
Yz

t∧TR

)∥∥)2 ≤ E
(∥∥J∗t∧TR

(z)
∥
∥)2
(
n+m∑

k=1

‖Xk f‖2
∞

)

.

where Jt(z) = ∂Yz
t

∂z , t < TR, is the first variation process of the stochastic differential
equation and J∗ the adjoint matrix. We thus want to find a bound for E

(‖J∗t∧TR
(z)‖)

that does not depend on R and z. Since {X1, · · · , Xn+m} form a basis at each point,
we can find processes βk

i (t, z), k = 1, · · · ,m+ n, i = 1, · · ·n such that for t < TR,

J−1
t

(
Xi
(
Yz

t

)) =
m+n∑

k=1

βk
i (t, z)Xk(z).

By using the chain rule, we have for t < TR,

dJ−1
t

(
Xi
(
Yz

t

)) =
n∑

k=0

J−1
t

(
[Xk, Xi]

(
Yz

t

)) ◦ dBk
t

=
n∑

k=0

m+n∑

l=1

ωl
ki

(
Yz

t

)
J−1
t

(
Xk
(
Yz

t

)) ◦ dBk
t .

As a consequence the matrix valued process β(t, z), t < TR solves the matrix stochas-
tic differential equation,

dβ(t, z) =
n∑

k=0

ωk
(
Yz

t

)
β(t, z) ◦ dBk

t .

The inverse matrix process α(t, z) = β(t,z)−1 will then solve the linear stochastic
differential equation for t < TR,

dα(t, z) = −
n∑

k=0

α(t, z)ωk
(
Yz

t

) ◦ dBk
t .

From our assumption, all the coefficients of the equation are bounded. We therefore
obtain a bound E(‖α(t, z)‖) ≤ C1eC2t, where C1,C2 are independent from R and z.
As a conclusion, we get

n+m∑

k=1

(
XiPR

t f
)2
(z) ≤ C1eC2t

(
n+m∑

k=1

‖Xk f‖2
∞

)

.
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By integrating the inequality over the geodesic between x and y, we obtain

∣
∣(PR

t f
)
(x)− (PR

t f
)
(y)
∣
∣2 ≤ C1eC2t

(
n+m∑

k=1

‖Xk f‖2
∞

)

d(x, y)2.

We can then let R → +∞ to conclude

|(Pt f ) (x)− (Pt f ) (y)|2 ≤ C1eC2t

(
n+m∑

k=1

‖Xk f‖2
∞

)

d(x, y)2.

Since this is true for every x, y ∈ M, we conclude

n+m∑

k=1

(XkPt f )
2 (x) ≤ C1eC2t

(
n+m∑

k=1

‖Xk f‖2
∞

)

.

We now prove the stochastic completeness. Let f, g ∈ C∞
0 (M), we have

∫

M

(Pt f − f ) gdμ =
∫ t

0

∫

M

(
∂

∂s
Ps f
)
gdμds =

∫ t

0

∫

M

(LPs f ) gdμds

= −
∫ t

0

∫

M

� (Ps f, g)dμds.

By means of Cauchy–Schwarz inequality we find
∣
∣∣
∣

∫

M

(Pt f − f ) gdμ

∣
∣∣
∣ ≤
(∫ t

0
C1eC2sds

)
‖∇ f‖∞

∫

M

�(g)
1
2 dμ. (5.12)

We now apply Eq. 5.12 with f = hk, where hk is a sequence such that hk ↗ 1, hk ≥ 0
and

∑n+m
k=1 ‖Xkhl‖2∞ → 0 when l → +∞.

By Beppo Levi’s monotone convergence theorem we have Pthk(x) ↗ Pt1(x) for
every x ∈ M. We conclude that the left-hand side of Eq. 5.12 converges to

∫
M
(Pt1 −

1)gdμ. Since the right-hand side converges to zero, we reach the conclusion
∫

M

(Pt1 − 1) gdμ = 0, g ∈ C∞
0 (M).

It follows that Pt1 = 1. ��
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