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Abstract In this article, we consider a stochastic PDE of parabolic type, driven by a
space-time white-noise, and its numerical discretization in time with a semi-implicit
Euler scheme. When the nonlinearity is assumed to be bounded, then a dissipativity
assumption is satisfied, which ensures that the SDPE admits a unique invariant
probability measure, which is ergodic and strongly mixing—with exponential con-
vergence to equilibrium. Considering test functions of class C2, bounded and with
bounded derivatives, we prove that we can approximate this invariant measure using
the numerical scheme, with order 1/2 with respect to the time step.
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1 Introduction

In this paper, we are interested in the discretization in time of the following stochastic
reaction-diffusion equation

∂y(t, ξ )
∂t

= ∂2y(t, ξ )
∂ξ 2

+ g(ξ, y(t, ξ ))+ ∂ω(t, ξ )
∂t

, (1)

for t ≥ 0, ξ ∈ (0,1), with the initial condition y(0, ξ ) = y(ξ ), and homogeneous
Dirichlet boundary conditions y(t,0) = y(t,1) = 0. The stochastic perturbation
∂ω(t,ξ )

∂t is a space-time white noise: the rigorous interpretation of Eq. 1 is given by
an abstract evolution (2)—in the sense of [3]—in the Hilbert space H = L2(0, 1),
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driven by a Wiener cylindrical process—see Section 2.3. We assume that g is of class
C2 with respect to y and measurable with respect to ξ . Moreover we assume uniform
bounds on g and on its derivatives, uniformly with respect to ξ ; more details are given
in Example 2.7.

The numerical approximation of stochastic equations has been extensively studied
during the last thirty years. First we recall that one can look at strong approximation
results—when the trajectories of the continuous and the discrete-time processes are
compared—or at weak approximation results—when the laws at a fixed time are
compared. The simplest method in the case of SDEs is the Euler-Maruyama scheme;
it is built as a straightforward extension of the well-known explicit Euler method for
ODEs, which is of order 1: if we consider in R

d a SDE with regular coefficients

dXt = f (Xt)dt + σ(Xt)dBt, X0 = x,

its numerical approximation is defined for a given step-size �t by

X0 = x,

Xn+1 = Xn + f (Xn)�t + σ(Xn)(Btn+1 − Btn ).

Due to the regularity properties of the Brownian Motion, this scheme is in gen-
eral only of order 1/2 in the strong sense—i.e. for n�t ≤ T we have E|Xn�t −
Xn|2 ≤ C(T)�t—while it is of order 1 in the weak sense—i.e. for test functions
φ of class C3, with bounded derivatives, we have a bound |Eφ(Xn�t)− Eφ(Xn)| ≤
C(T, φ)�t. The idea for proving that weak order is 1 and not 1/2 is to consider the
Kolmogorov equation associated with the process Xt, which is satified by the function
(t, x) �→ Eφ(X(t, x))—see [28, 30]. The books [14] and [22]—see also [21]—contain
various numerical schemes—like the well-known Milstein scheme, some implicit
schemes, and methods based on stochastic Taylor expansions—with their order of
convergence in both strong and weak senses.

Numerical methods for SPDEs like (Eq. 1) need discretization both in time and
in space. For example, time discretization leads to explicit or implicit methods, while
discretization in space can be done with finite difference or finite element methods.
Basically, the result for space-time white noise driven equations is convergence with
strong order 1/2 in space and only 1/4 in time—under some Courant-Friedrichs-
Lewy conditions when necessary: see [5, 10–13, 31].

If we look at the abstract formulation of Eq. 1 in the Hilbert space H, results have
also been proved for the time discretization using semi-implicit Euler schemes: the
strong order of convergence is 1/4—see [25]—while the weak order of convergence
is 1/2—see [6]. Moreover in [8], the authors have studied weak convergence in the
case of linear equations when using a finite element method in space.We follow here
the framework of [6]: we consider the stochastic evolution equation in H and we
use a time discretization with a semi-implicit Euler scheme, with no discretization in
space.

In this work, we are interested in the behaviour of the weak convergence estimates
when the final time T goes to infinity: can we replace constants C(T, φ) by a constant
C(φ) independent from T? Passing to the limit, we thus ask the more general
following question: can we use a numerical scheme to approximate the invariant
probability measure of the continuous time process—which is assumed to be unique,
ergodic and with exponential convergence to equilibrium? The SDE case has been
studied with variousmethods: in [29], the weak error analysis is made by showing that
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the time derivatives of the solution of the Kolmogorov equation are exponentially
decreasing in time; in [17], some general conditions are given for the ergodicity of the
numerical scheme, thanks to the theory of geometric ergodicity of Markov Chains.
In [19], the approximation result is shown thanks to the use of a Poisson equation.

In the case of SPDEs, general ergodicity results have only been obtained
recently—see Section 4.3—and the problem of approximation of invariant measures
by numerical schemes has not been studied yet.

We prove the following result:

Theorem 1.1 For any 0 < κ < 1/2, τ0 > 0 and for any C2
b function φ, there exists a

constant C > 0 such that for any m ≥ 2, y ∈ H and 0 < τ ≤ τ0

|E[φ(Y(mτ, y))] − E[φ(Ym(τ, y))]| ≤ C(1 + |y|3)(((m− 1)τ)−1/2+κ + 1)τ 1/2−κ .

The continuous process Y is defined by Eq. 2 below, and the numerical approxi-
mation (Ym(τ, y)) with time step τ and initial condition y is defined by Eq. 8.

We notice that the right-hand side of the previous estimate contains a singu-
larity when m = 1, which is due to a lack of regularity of the infinite-dimensional
processes—details are given in Section 6.1 below. However, if we look at the error
at a fixed time T = mτ , if τ is small enough we just need to change the constant
C = C(T); moreover since we are interested in the behaviour whenm goes to infinity,
this term plays no role.

With the assumptions precised below, we show in Section 4.3 that the SPDE
admits a unique invariant probability measure μ, which is ergodic and strongly
mixing, with exponential convergence to equilibrium; nevertheless we can in general
only show the existence, not the uniqueness, of invariant measures for the numerical
approximation, and we can prove the following result:

Corollary 1.2 For any 0 < κ < 1/2, τ0 > 0 and for any C2
b function φ, there exists

constants c > 0, C > 0 such that for any 0 < τ ≤ τ0, any initial condition y ∈ H and
any m ≥ 1

|E[φ(Ym(τ, y))] −
∫
H
φdμ| ≤ C(1 + |y|3)

(
1

m1/2−κ
+ τ 1/2−κ

)
+ C(1 + |y|2)e−cmτ .

Moreover, if μτ is an ergodic invariant probability measure of the numerical scheme
(Ym(τ, .))m∈N, we have ∣∣∣∣

∫
H
φdμτ −

∫
H
φdμ

∣∣∣∣ ≤ Cτ 1/2−κ ;

all the ergodic invariant measures of the numerical approximation are then close to the
unique invariant probability measure of the continuous process.

Up to our knowledge, this is the first result of this kind for SPDEs.
The key point, like in [29], for obtaining bounds independent from the time

T = mτ , is to prove that derivatives of the solution u of the underlying Kolomogorov
equation—mentioned above—decrease exponentially in time: this is done in
Section 5.2, using a coupling method.

Moreover, an essential tool in [6] is the use of Malliavin calculus and of an
integration by parts formula in order to transform a stochastic integral—which is
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not regular enough in space in the infinite dimensional setting—into an expression
which can be controlled; in Lemma 4.5, we see that the involvedMalliavin derivatives
may increase exponentially fast with respect to time. The solution is to separate the
lack of regularity problem and this badly controlled growth with a decomposition of
the interval into two parts: in the first one we need the integration by parts formula,
and we can control the Malliavin derivatives, while in the other one we can directly
give an appropriate bound. We also provide an improvement with respect to [6]: we
can consider a more general nonlinear coefficient G—like a Nemytskii operator, see
Example 2.7.

We also notice that some more general equations, with additive noise which is
white in time but colored in space, can be studied with our method, with suitable
assumptions on the coefficients. For a very smooth noise, the numerical analysis on
finite time is easier to treat, but then ergodic properties and long-time behaviour
require different techniques; this will be treated elsewhere.

The case of some equations with multiplicative noise which satisfy the Strong
Feller Property is also covered by our technique of proof, but with some additional
difficulties—see for instance the restrictive condition on the diffusion coefficient in
[6]. Since all the necessary ideas are contained here and in [6], we only focus on the
additive noise case.

The paper is organized as follows: in Section 2, we precise the assumptions
made on the coefficients of the equations, and we define the numerical method in
Section 3. In Section 4, we give some bounds on the solutions of the continuous and
discrete equations, and we study their asymptotic behaviour: existence of invariant
measures, and uniqueness for the continuous equation, following from Proposition
4.7. In Section 5, we explain the proof of Theorem 1.1, and we give a proof of
Corollary 1.2; more precisely, in Section 5.2 we prove the exponential decreasing
in time of the derivatives of the function u. Eventually Section 6 contains the proofs
of the remaining estimates

2 Notations and Assumptions

Let H be a separable Hilbert space, with norm denoted by |.|H or simply |.|. We
consider equations of the form

dY(t, y) = (BY(t, y)+ G(Y(t, y)))dt+ dW(t)

Y(0, y) = y. (2)

In the next paragraphs, we explain the assumptions on the linear operator B and on
the nonlinear coefficient G; we also recall how the cylindrical Wiener process W is
defined, and how we can construct solutions of this equation.

2.1 Test Functions

To quantify the weak approximation, we use test functions φ in the space C2
b (H,R)

of functions from H to R that are twice continuously differentiable, bounded, with
first and second order bounded derivatives.
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Remark 2.1 In the sequel, we often identify the first derivative Dφ(x) ∈ L(H,R)

with the gradient in the Hilbert space H, and the second derivative D2φ(x) with a
linear operator on H, via the formulas:

< Dφ(x),h > = Dφ(x).h for every h ∈ H

< D2φ(x).h,k > = D2φ(x).(h,k) for every h,k ∈ H.

In the sequel, we use the following notations:

‖
‖∞ = sup
x∈H

|
(x)|H
‖
‖1 = sup

x∈H
|D
(x)|H

‖
‖2 = sup
x∈H

|D2
(x)|L(H).

2.2 Assumptions on the Coefficients

2.2.1 The Linear Operator

We denote by N = {0, 1, 2, . . .} the set of nonnegative integers.
We suppose that the following properties are satisfied:

Assumptions 2.2

1. We assume that there exists a complete orthonormal system of elements of H
denoted by ( fk)k∈N, and a non-decreasing sequence of real positive numbers
(μk)k∈N such that:

Bfk = −μk fk for all k ∈ N.

2. The sequence (μk) goes to +∞ and

+∞∑
k=0

1

μα
k

< +∞ ⇔ α > 1/2.

The smallest eigenvalue of −B is then μ0.

Example 2.3 The Eq. 1 enters in this framework: we can choose B = D2

dx2 , with
the domain H2(0, 1) ∩ H1

0(0,1) ⊂ L2(0,1)—corresponding to homogeneous Dirich-
let boundary conditions. In this case for any k ∈ N μk = π2(k+ 1)2, and fk(ξ ) =√

2 sin((k+ 1)πξ)—see [2].

For a N ∈ {1, 2, . . .}, we denote by HN the subspace of H spanned by f0, . . . , fN−1,
and by PN the orthogonal projection of H onto HN.
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The domain D(B) of B is equal to D(B) = {
y = ∑+∞

k=0 yk fk ∈ H ,∑+∞
k=0(μk)

2|yk|2 < +∞}
. We can more generally define fractional powers of

−B, for b ∈ [0, 1]:

(−B)b y =
∞∑
k=0

μb
k yk fk ∈ H,

with the domains

D(−B)b =
{
y =

+∞∑
k=0

yk fk ∈ H, |y|2b :=
+∞∑
k=0

(μk)
2b |yk|2 < +∞

}
.

When b ∈ [0, 1], we can also define the spaces D(−B)−b and operators (−B)−b ,
with norm denoted by |.|−b ; when y = ∑+∞

k=0 yk fk ∈ H, we have (−B)−b y =∑+∞
k=0 μ

−b
k yk fk and |y|2−b := ∑+∞

k=0(μk)
−2b |yk|2.

The semi-group (etB)t≥0 can be defined by the Hille-Yosida Theorem—see [2]. We
use the following spectral formula: if y = ∑+∞

k=0 yk fk ∈ H, then for any t ≥ 0

etBy =
+∞∑
k=0

e−μkt yk fk.

For any t ≥ 0, etB is a continuous linear operator in H, with operator norm e−μ0t.
The semi-group (etB) is used to define the solution Z (t) = etBz of the linear Cauchy
problem

dZ (t)
dt

= BZ (t) with Z (0) = z.

To define solutions of more general PDEs of parabolic type, we use mild formu-
lation, and Duhamel principle.

This semi-group enjoys some smoothing properties that we often use in this work.
Basically we need the following properties, which are easily proved using the above
spectral properties.

Proposition 2.4 Under Assumption 2.2, for any σ ∈ [0, 1], there exists Cσ > 0 such
that we have:

(1) for any t > 0 and y ∈ H,

|etBy|σ ≤ Cσ t−σ e−
μ0
2 t|y|H.

(2) for any 0 < s < t and y ∈ H,

|etBy− esBy|H ≤ Cσ

(t − s)σ

sσ
e−

μ0
2 s|y|H.

(3) for any 0 < s < t and y ∈ D(−A)σ ,

|etBy− esBy|H ≤ Cσ (t − s)σe−
μ0
2 s|y|σ .
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2.2.2 The Nonlinear Operator

The nonlinear operator G is assumed to satisfy some general assumptions. In
Example 2.7, we give the two main kind of operators that can be used in our
framework.

Assumptions 2.5 The function G : H → H is assumed to be bounded and Lipschitz
continuous. We denote by LG the Lipschitz constant of G

We also def ine for each N ≥ 1 a function GN : HN → HN, with GN(y) = PNG(y)
for any y ∈ HN. We assume that each GN is twice dif ferentiable, and that we have the
following bounds on the derivatives, uniformly with respect to N:

• There exists a constant C1 such that for any N ≥ 1, y ∈ HN and h ∈ HN

|DGN(y).h|H ≤ C1|h|H.
• There exists η ∈ [0, 1) and a constant C2 such that for any N ≥ 1, y ∈ HN and any

h, k ∈ HN we have

|(−B)−ηD2GN(y).(h,k)| ≤ C2|h|H|k|H.
• Moreover, there exists a constant C3 such that for any N ≥ 1, y ∈ HN and any

h, k ∈ HN

|D2GN(y).(h,k)| ≤ C3|h|(−B)η |k|H.

Since G is bounded, the following property is easily satisfied:

Proposition 2.6 (Dissipativity) There exist c > 0 and C > 0 such that for any
y ∈ D(B)

< By+G(y), y >≤ −c|y|2 + C. (3)

We remark that we have uniform control with respect to the dimension N of the
bounds on GN and on its derivatives, and that Eq. 3 is also satisfied for GN, with
constants c and C independent from N.

Example 2.7 We give some fundamental examples of nonlinearities for which the
previous assumptions are satisfied:

• A function G : H → H of class C2, bounded and with bounded derivatives, fits
in the framework, with the choice η = 0.

• The function G can be a Nemytskii operator: let g : (0, 1)×R → R be a mea-
surable, bounded, function such that for almost every ξ ∈ (0,1) g(ξ, .) is twice
continuously differentiable, with uniformly bounded derivatives. Then G(y) is
defined for every y ∈ H = L2(0,1) by

G(y)(ξ ) = g(ξ, y(ξ )).
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In general, such functions are not Fréchet differentiable in H, but only Gâteaux
differentiable, with the following expressions:

[DG(y).h](ξ ) = ∂g
∂y

(ξ, y(ξ ))h(ξ )

[D2G(y).(h,k)](ξ ) = ∂2g
∂y2

(ξ, y(ξ ))h(ξ )k(ξ ).

We assume first that the linear coefficient B is given like in Example 2.3,
with H = L2(0,1). We remark that the finite dimensional subspaces HN of H
spanned byN eigenvectors of −B, with for k = 0, . . . ,N − 1

fk(ξ ) =
√

2 sin((k+ 1)πξ),

are subspaces of the space of continuous functions C([0,1],R).
Then GN is of class C2 on the finite dimensional space HN. The required
estimates—holding uniformly with respect to N—on the second derivative are
consequences of a Sobolev inequality: D(−B)η is continuously embedded into
L∞(0, 1) as soon as η > 1/4. For any h,k, �, we have as a consequence of Holder
inequality

∣∣ < D2GN(y).(h,k), � >
∣∣ ≤ C‖hk�‖L1 (0,1)

≤ C sup
(‖h‖L2 (0,1)‖k‖L2(0,1)‖�‖L∞(0,1), ‖h‖L2 (0,1)‖k‖L∞(0,1)‖�‖L2(0,1)

)
≤ C sup

(|h|H|k|H|�|(−B)η , |h|H|k|(−B)η |�|H
)
.

See also [26] (Chapter 4).

2.3 The Cylindrical Wiener Process and Stochastic Integration in H

In this section, we recall the definition of the cylindrical Wiener process and of
stochastic integral on a separable Hilbert space H with norm |.|H. For more details,
see [3].

We first fix a filtered probability space (�,F , (Ft)t≥0,P). A cylindrical Wiener
process on H is defined with two elements:

• a complete orthonormal system of H, denoted by (qi)i∈I , where I is a subset of
N;

• a family (βi)i∈I of independent realWiener processes with respect to the filtration
((Ft)t≥0);

then W is defined by

W(t) =
∑
i∈I

βi(t)qi. (4)

When I is a finite set, we recover the usual definition of Wiener processes in
the finite dimensional space R|I|. However the subject here is the study of some
Stochastic Partial Differential Equations, so that in the sequel the underlying Hilbert
space H is infinite dimensional; for instance when H = L2(0,1), an example of
complete orthonormal system is (qk) = (

√
2 sin(kπ.))k≥1—see Example 2.3.
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A fundamental remark is that the series in Eq. 4 does not converge in H; but if a
linear operator � : H → K is Hilbert-Schmidt, then �W(t) converges in L2(�,H)

for any t ≥ 0.
We recall that a bounded linear operator� : H → K is said to be Hilbert-Schmidt

when

|�|2L2(H,K) :=
+∞∑
k=0

|�(qk)|2K < +∞,

where the definition is independent of the choice of the orthonormal basis (qk) of H.
The space of Hilbert-Schmidt operators from H to K is denoted L2(H,K); endowed
with the norm |.|L2(H,K) it is an Hilbert space.

The stochastic integral
∫ t

0 �(s)dW(s) is defined in K for predictible processes �
with values in L2(H,K) such that

∫ t
0 |�(s)|2L2(H,K)

ds < +∞ a.s; moreover when � ∈
L2(�× [0, t];L2(H,K)), the following two properties hold:

E| ∫ t
0 �(s)dW(s)|2K = E

∫ t
0 |�(s)|2L2(H,K)

ds (Itô isometry),

E
∫ t

0 �(s)dW(s) = 0.

A generalization of Itô formula also holds—see [3].
For instance, if v = ∑

k∈N vkqk ∈ H, we can define

< W(t), v >=
∫ t

0
< v,dW(s) >=

∑
k∈N

βk(t)vk;

we then have the following space-time white noise property

E < W(t), v1 >< W(s), v2 >= t ∧ s < v1, v2 > .

Therefore to be able to integrate a process with respect to W requires some strong
properties on the integrand; in our SPDE setting, the Hilbert-Schmidt properties
follow from the assumptions made on the linear coefficients of the equations.

Thanks to Assumption 2.2, it is easy to show that the following stochastic integral
is well-defined in H, for any t ≥ 0:

WB(t) =
∫ t

0
e(t−s)BdW(s). (5)

It is called a stochastic convolution, and it is the unique mild solution of

dZ (t) = BZ (t)dt + dW(t) with Z (0) = 0.

Under the second condition of Assumption 2.2, there exists δ > 0 such that for any
t > 0 we have

∫ t
0

1
sδ |esB|2L2(H)

ds < +∞; it can then be proved that WB has continuous
trajectories—via the factorization method, see [3]—and that for any 1 ≤ p < +∞

E sup
t≥0

|WB(t)|pH < +∞. (6)

We can now define solutions to Eq. 2, thanks to the assumptions made on the
coefficients: the following result is classical—see [3]:
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Proposition 2.8 For every T > 0, y ∈ H, the Eq. 2 admits a unique mild solution Y ∈
L2(�,C([0,T], H)):

Y(t) = etBy+
∫ t

0
e(t−s)BG(Y(s))ds+

∫ t

0
e(t−s)BdW(s). (7)

3 Definition of the Numerical Scheme

We now define the numerical approximation of Y: denoting by τ the time step, we
have

Yk+1(τ, y) = Yk(τ, y)+ τBYk+1(τ, y)+ τG(Yk(τ, y))+√
τχk+1

Y0(τ, y) = y,

where χk+1 = 1√
τ
(W((k+ 1)τ)− W(kτ)).

To simplify the equations, we omit the dependence of Yk on the time-step τ and
on the initial condition y.

This expression does not make sense in H. Defining Rτ = (I − τB)−1, this last
equation can be replaced by

Yk+1 = RτYk + τRτG(Yk)+√
τRτ χk+1, (8)

which is valid, since Rτ is a Hilbert-Schmidt operator on H.

Remark 3.1 Later, we often use the following expression for Yk:

Yk = Rk
τ y+ τ

k−1∑
l=0

Rk−l
τ G(Yl)+√

τ

k−1∑
l=0

Rk−l
τ χl+1. (9)

The following expression is also useful:

√
τ

k−1∑
l=0

Rk−l
τ χl+1 =

∫ tk

0
Rk−ls

τ dW(s), (10)

where ls = � s
τ
�—with the notation �.� for the integer part.

We need the following technical estimates:

Lemma 3.2 For any 0 ≤ κ ≤ 1 and j ≥ 1,

|(−B)1−κRj
τ |L(H) ≤ c

1

( jτ)1−κ

1

(1 + μ0τ) jκ
.

Moreover, for any β ≥ 1 there exists a constant cβ such that if j ∈ N with j ≥ β , then

|(−B)βRj
τ |L(H) ≤ cβ

1

( jτ)β
.
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Proof For any z ∈ H,

|(−B)1−κRj
τ z|2H =

+∞∑
i=0

μ
2(1−κ)

i
1

(1 + μiτ)2 j
|zi|2

= 1

( jτ)2(1−κ)

+∞∑
i=0

|zi|2μ2(1−κ)

i ( jτ)2(1−κ) 1

(1 + μiτ)2 j(1−κ)

1

(1 + μiτ)2 jκ

≤ 1

( jτ)2(1−κ)

+∞∑
i=0

(
μi jτ

1 + μi jτ

)2(1−κ) 1

(1 + μ0τ)2 jκ
|zi|2

≤ c|z|2H
1

( jτ)2(1−κ)

1

(1 + μ0τ)2 jκ
.

The proof of the second inequality is similar: if j ≥ β

|(−B)βRj
τ z|2H =

+∞∑
i=0

μ
2β
i

1

(1 + μiτ)2 j
|zi|2 =

+∞∑
i=0

μ
2β
i

1

(1 + μiτ)
2β j

β

|zi|2

≤
+∞∑
i=0

μ
2β
i

1

(1 + μiτ
j
β
)2β

|zi|2 ≤ ββ

( jτ)β
|z|2H.

��

4 Preliminary Results

We warn the reader that constants may vary from line to line during the proofs, and
that in order to use lighter notations we usually forget to mention dependence on the
parameters. We use the generic notation C for such constants.

We fix the time step τ , as well as m ∈ N; we then introduce the notation
T = mτ . We also define tk = kτ . κ > 0 is a parameter, which is be supposed to be
small enough. We also control τ : for some τ0 > 0, τ ≤ τ0.

4.1 Galerkin Approximation

The first step of the proof is to consider finite dimensional approximations of the
H-valued processes (Y(t))t∈R+ and (Yk)k∈N: if we fix N ≥ 1, we define (Y(N)(t))t∈R+

and (Y(N)

k )k∈N by the equations

dY(N)(t) = BY(N)(t)dt+GN(Y(N)(t))dt+ dW(N)(t)

and

Y(N)

k+1 = Y(N)

k + τBY(N)

k+1 + τGN(Y
(N)

k )+√
τ PNχk+1,

with the initial conditions Y(N)
t=0 = Y(N)

k=0 = PNy.
The projection PN and the nonlinear coefficient GN have been defined above.

W(N) = PNW is a N-dimensional Wiener process on the subspace HN. We remark
that the above equations are well-defined on HN—which is a stable subspace of B.
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It is not difficult to prove the following convergence results: for any fixed t ∈ R
+

and k ∈ N, when N → +∞ we have

E|Y(t)− Y(N)(t)|2 → 0 and E|Yk − Y(N)

k |2 → 0.

For this, we use the following inequality—where I denotes the identity map on H:
for any 0 < β < 1

|(−B)−β(I − PN)|L(H) ≤ 1

μ
β

N+1

.

Given 0 < r < 1/2, we then obtain for any t ≥ 0, k ∈ N and τ > 0

E|
∫ t

0
e(t−s)B(I − PN)dW(s)|2

=
∫ t

0
Tr

(
(I − PN)e(t−s)B(−B)−1/2−r(−B)1−r(−B)−1/2+2re(t−s)B(I − PN)

)
ds

≤ Tr((−B)−1/2−r)|(−B)−1/2+2r(I − PN)|L(H)

∫ t

0

Cr

(t − s)1−r
ds,

and the last expression goes to 0 when N → +∞.To conclude, it remains to use the
Gronwall lemma. The proof for the discrete-time process is similar.

We need test functions 
N adapted to the finite-dimensional approximation: for
any N ≥ 1, by restriction we define 
N(y) = 
(y) for any y ∈ HN; we obtain the
following decomposition

E
(Y(mτ))− E
(Ym) = E
(Y(mτ))− E
(Y(N)(mτ))

+E
N(Y(N)(mτ))− E
N(Y(N)
m )

+E
(Y(N)
m )− E
(Ym);

the first and the third terms converge to 0 when N → +∞. In the sequel, we prove
an estimate of the second term, which is uniform with respect to dimension N; letting
N → +∞ then yields an estimate on the left hand side.

Hence we work with the finite dimensional approximation, but we omit the
parameter N. The constants appearing below are independent of N.

In Section 4.2, we prove some estimates on Y(t) and Ym, and in Section 4.3 we
focus on the asymptotic behaviour of the processes.

4.2 Some Useful Estimates

Bounds on moments of Yt and Yk can be proved, uniformly with respect to time.

Lemma 4.1 For any p ≥ 1, there exists a constant Cp > 0 such that for every t ≥ 0 and
y ∈ H

E|Y(t, y)|p ≤ Cp(1 + |y|p).

Proof If we define Z (t) = Y(t)− WB(t), we have Z (0) = Y(0) = y, and

dZ (t)
dt

= BZ (t)+G(Y(t)),
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and by Proposition 2.6

1

2

d|Z (t)|2
dt

= < BZ (t)+G(Y(t)), Z (t) >

= < BZ (t)+G(Z (t)),Z (t) > + < G(Y(t))−G(Z (t)),Z (t) >

≤ −c|Z (t)|2 + C + ‖G‖∞|Z (t)|
≤ −c′|Z (t)|2 + C′,

for some new constants c′,C′.
Then almost surely we have for any t ≥ 0

|Z (t)| ≤ C(1 + |y|).
Thanks to Eq. 6, the conclusion easily follows. ��

Lemma 4.2 For any p ≥ 1, τ0 > 0, there exists a constant C > 0 such that for every
0 < τ ≤ τ0, k ∈ N and y ∈ H

E|Yk|p ≤ C(1 + |y|p).

Proof As in the proof of Lemma 4.1 above, we introduce Zm = Ym −wm, where the
process (wm) is the numerical approximation ofWB with the numerical scheme (8)—
with G = 0; it is defined by

wm+1 = Rτwm +√
τRτ χm+1.

Using Theorem 3.2 of [25], giving the strong order 1/4 for the numerical scheme—
when the initial condition is 0, with no nonlinear coefficient, with a constant diffusion
term and under the assumptions made here—we obtain the following estimate: for
any p ≥ 1, τ0 > 0 and 0 < r < 1/2 there exists C > 0 such that for any 0 < τ ≤ τ0 and
m ≥ 0

E|wm −WB(mτ)|2p ≤ Cτ (1/2−r)p. (11)

Thanks to Eqs. 6 and 11, we get that for any τ0 > 0, there exists C > 0 such that for
0 < τ ≤ τ0 and m ≥ 0

4E|wm|2 ≤ C. (12)

Now Zm defined above satisfies Z0 = Y0 = y and

Zm+1 = Rτ Zm + τRτG(Ym);
since |Rτ |L(H) ≤ 1

1+μ0τ
, we obtain the almost sure estimates

|Zm+1| ≤ 1

1 + μ0τ
|Zm| + Cτ

and

|Zm| ≤ C(1 + |y|).
Thanks to Eq. 12, we therefore obtain the result. ��
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We now introduce the following process: for 0 ≤ k ≤ m− 1 and tk ≤ t ≤ tk+1

Ỹ(t) = Yk +
∫ t

tk
[BτYk + RτG(Yk)]ds+

∫ t

tk
RτdW(s), (13)

where Bτ = BRτ . The process Ỹ is a natural interpolation of the numerical solution
(Yk) defined by Eq. 8: Ỹ(tk) = Yk.

Thanks to Lemma 4.2, we get

Lemma 4.3 For any p ≥ 1, τ0 > 0, there exists C > 0 such that for any 0 < τ ≤ τ0,
t ≥ 0 and y ∈ H

E|Ỹ(t)|p ≤ C(1 + |y|p).

In the next Lemma, we give a control on Malliavin derivatives of Yk used in the
proof. For an introduction to Malliavin calculus, see [24, 27]. We take the notationD
for the Malliavin derivative, and we follow the presentation given in [6], where the
following useful integration by parts formula is given—see Lemma 2.1 therein:

Lemma 4.4 For any F ∈ D
1,2(H), u ∈ C2(H) with bounded derivatives and � ∈

L2(�× [0,T],L2(H)) an adapted process,

E

[
Du(F).

∫ T

0
�(s)dW(s)

]
= E

[∫ T

0
Tr(�(s)∗D2u(F)DsF)ds

]
, (14)

whereDsF : h ∈ H �→ Dh
s F ∈ H stands for the Malliavin derivative of F, andD1,2(H)

is the set of H-valued random variables F = ∑
i∈N Fi fi, with Fi ∈ D

1,2 the do-
main of the Malliavin derivative for R-valued random variables for any i, and∑

i∈N
∫ T

0 E|DsFi|2ds < +∞.

Without any stronger dissipativity assumption, we are not able to give a uniform
control with respect to time of the Malliavin derivative of Ỹ. In the proof below, we
take care of this problem by using these derivatives only at times tk = kτ and s such
that tk−ls ≤ 1.

Lemma 4.5 For any 0 ≤ β < 1 and τ0 > 0, there exists a constant C > 0 such that for
every h ∈ H, k ≥ 1, 0 < τ ≤ τ0 and s ∈ [0, tk]

|Dh
s Yk|β ≤ C(1 + LGτ)

k−ls

(
1 + 1

(1 + μ0τ)(1−β)(k−ls)tβk−ls

)
|h|.

For any k ≥ 1, h ∈ H and s ∈ [0, tk], using the chain rule for Malliavin calculus and
expressions (9) and (10), we have

Dh
s Yk = Rk−ls

τ h+ τ

k−1∑
l=ls+1

Rk−l
τ DG(Yl).Dh

s Yl .

Indeed, recall that ls denotes the integer part of s
τ
, so that when l ≤ ls we have

Dh
s Yl = 0.
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As a consequence, for k ≥ ls + 1

|Dh
s Yk| ≤ (1 + LGτ)

k−ls |h|.
Now using Lemma 3.2, we have

|(−B)βDh
s Yk| ≤ 1

(1 + μ0τ)(1−β)(k−ls)tβk−ls

|h|

+ LGτ

k−1∑
l=ls+1

(1 + LGτ)
l−ls

(1 + μ0τ)(1−β)(k−l)tβk−l

|h|.

To conclude, we see that

τ

k−1∑
l=ls+1

1

(1 + μ0τ)(1−β)(k−l)tβk−l

≤ C
∫ +∞

0
t−β 1

(1 + μ0τ)
(1−β) t

τ

dt

≤ C < +∞,

when 0 < τ ≤ τ0.

4.3 Asymptotic Behaviour of the Processes

The results of this section are obtained for the initial H-valued processes, and for
their finite dimensional approximations.

First, we focus on the existence of invariant measures for the continuous and
discrete time processes. We use the well-known Krylov-Bogoliubov criterion—see
[4]. Tightness comes from two facts: D(−B)γ is compactly embedded in H when
γ > 0, and when γ < 1/4 we can control moments:

Lemma 4.6 For any 0 < γ < 1/4, τ > 0 and any y ∈ H, there exists C(γ, τ, y),
C(γ, y) > 0 such that for any m ≥ 1 and t ≥ 1

E|Ym(τ, y)|2γ ≤ C(γ, τ, y) and E|Y(t, y)|2γ ≤ C(γ, y)

Uniqueness of the invariant probability measure for the continuous time process
(Y(t))t∈R+ can be deduced from the well-known Doob Theorem—see [4]. Indeed,
since in Eq. 2 noise is additive and non-degenerate, the Strong Feller property—
see also Lemma 5.6 below—and irreducibility can be easily proved. In the proof
of the main Theorem 1.1, we also need speed of convergence, and thanks to a
coupling argument we get the following exponential convergence result—for a proof
see Theorem 2.4 and Section 6.1 in [7]:

Proposition 4.7 There exist c > 0, C > 0 such that for any bounded test function φ,
any t ≥ 0 and any y1, y2 ∈ H

|Eφ(Y(t, y1))− Eφ(Y(t, y2))| ≤ C‖φ‖∞(1 + |y1|2 + |y2|2)e−ct. (15)

The idea of coupling relies on the following formula: if ν1 and ν2 are two
probability measures on a state space S, their total variation distance satisfies

dTV(ν1, ν2) = inf {P(X1 �= X2)} ,



16 C.E. Bréhier

which is an infimum over random variables (X1, X2) defined on a same probability
space, and such that X1 ∼ ν1 and X2 ∼ ν2.

Roughly speaking, the principle is to define a coupling (Z1(t, y1, y2),

Z2(t, y1, y2))t≥0 for the processes (Y(t, y1)t≥0 and Y((t, y2))t≥0 such that the coupling
time T of Z1 and Z2—i.e. the first time the processes are equal—has an exponen-
tially decreasing tail.

This technique was first used in the study of the asymptotic behaviour of Markov
chains—see [1, 9, 16, 20]—and was later adapted for SDEs and more recently for
SPDEs—see for instance [15, 18, 23].

In fact, uniqueness of an invariant probability measure μ is an easy consequence
of this Proposition, and moreover we get for any y ∈ H and any t ≥ 0

∣∣∣∣Eφ(Y(t, y))−
∫
H
φdμ

∣∣∣∣ ≤ C‖φ‖∞(1 + |y|2)e−ct. (16)

In general, we do not know whether uniqueness also holds for the numerical
approximation (Yk(τ, .))k∈N.

Remark 4.8 A sufficient condition for the uniqueness of the invariant probability
measure of the discrete time process (Yk)k∈N is the strict dissipativity assumption

LG < μ0,

where we recall that LG denotes the Lipschitz constant of G.
Then trajectories of the processes (Yt)t∈R+ and (Yk)k∈N issued from different initial

conditions y1 and y2 and driven by the same noise process are exponentially close
when time increases: for any τ0 > 0, there exists c > 0 such that for any 0 < τ ≤ τ0,
k ≥ 0 and t ≥ 0 we have almost surely

|Y(t, y1)− Y(t, y2)| ≤ e−(μ0−LG)t|y1 − y2|
|Yk(τ, y1)− Yk(τ, y2)| ≤ e−ckτ |y1 − y2|.

Proof of uniqueness is then straightforward—and we do not need Proposition 4.7
above.

5 Presentation of the Proof of the Weak Approximation Result

The proof of Theorem 1.1 is very technical, so for pedagogy we first introDuce the
decomposition of the error, and identify the term which we control later in Section 6.
Some crucial estimates on the derivatives of the semi-group with respect to the initial
conditions—regularization, long-time behaviour—are proved below in Section 5.2.

5.1 Strategy

We define

u(t, y) = E[φ(Y(t, y))], (17)



Approximation of the Invariant Law of SPDEs with the Euler Scheme 17

which is solution of a finite dimensional Kolmogorov equation associated with the
finite dimensional approximation of Eq. 2:

du
dt

(t, y) = Lu(t, y) = 1

2
Tr

(
D2u(t, y)

)+ < By+G(y),Du(t, y) > .

As explained in the introduction, this is one of the essential tools in the proof of the
weak approximation result.

The weak error at time T = mτ can be decomposed with a telescoping sum—
where to simplify the dependence of the numerical approximation in τ and y is not
written:

E[φ(Y(T, y))] − E[φ(Ym)] = u(T, y)− E[u(0,Ym)]

=
m−1∑
k=0

(E[u(T − tk,Yk)] − E[u(T − tk+1,Yk+1)])

= u(T, y)− E[u(T − τ,Y1(τ, y))] +
m−1∑
k=1

(ak + bk + ck),

(18)
where for 1 ≤ k ≤ m− 1

ak = E

∫ tk+1

tk
< BỸ(t)− BτYk,Du(T − t, Ỹ(t)) > dt,

bk = E

∫ tk+1

tk
< G(Ỹ(t))− RτG(Yk),Du(T − t, Ỹ(t)) > dt,

ck = 1

2
E

∫ tk+1

tk
Tr((I − Rτ R∗

τ )D
2u(T − t, Ỹ(t)))dt. (19)

This follows from the use of the Kolmogorov equation and of the Itô formula. We
recall that Ỹ is defined in Eq. 13.

5.2 Bounds on the Derivatives of the Transition Semi-group

By Eq. 17, u(t, y) = E[φ(Y(t, y))]; since φ is of class C2, bounded and with bounded
derivatives, we are able to prove that with respect to y the function u is twice
differentiable, and that the derivatives can be calculated in the following way:

• For any h ∈ H, we have

Du(t, y).h = E[Dφ(Y(t, y)).ηh,y(t)], (20)

where ηh,y is the solution of

dηh,y(t)
dt = Bηh,y(t)+DG(Y(t, y)).ηh,y(t),

ηh,y(0) = h.

• For any h, k ∈ H, we have

D2u(t, y).(h,k) = E[D2φ(Y(t, y)).(ηh,y(t), ηk,y(t))+Dφ(Y(t, y)).ζ h,k,y(t)], (21)
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where ζ h,k,y is the solution of

dζ h,k,y(t)
dt = Bζ h,k,y(t)+DG(Y(t, y)).ζ h,k,y(t)+D2G(Y(t, y)).(ηh,y(t), ηk,y(t)),

ζ h,k,y(0) = 0.

In [6], the key point for obtaining the weak order 1/2 is to control the derivatives
|Du(t, y)|β and |(−B)βD2u(t, y)(−B)γ |L(H), with β < 1/2 and γ < 1/2—with the
identifications of Remark 2.1. Moreover, to obtain a long-time weak estimate we
need to prove some exponential decreasing of such quantities when time t goes to
infinity. The two Propositions below are the essential results we thus need.

Proposition 5.1 There exists a constant μ̃ > 0 such that for any 0 ≤ β < 1, for any
t > 0 and y ∈ H

|Du(t, y)|β ≤ Cβ

(
1 + 1

tβ

)
e−μ̃t(1 + |y|2). (22)

Proposition 5.2 There exists a constant μ̃ > 0 such that for any 0 ≤ β, γ < 1/2, for
any t > 0 and y ∈ H

|(−B)βD2u(t, y)(−B)γ |L(H) ≤ Cβ,γ

(
1 + 1

tη
+ 1

tβ+γ

)
e−μ̃t(1 + |y|2). (23)

Remark 5.3 According to the identifications made in Remark 2.1, Proposition 5.1 is
a bound on the norm ofDu(t, y) ∈ H, with respect to the norm |.|β .

Proposition 5.2 is a bound on the linear operator (−B)βD2u(t, y)(−B)γ , defined
such that for any h,k ∈ H

< (−B)βD2u(t, y)(−B)γh,k > = < D2u(t, y)
(
(−B)β)h

)
, (−B)γk >

= D2u(t, y).
(
(−B)β)h, (−B)γ )k

)
,

where in the last equality we just rewrite the identification of the second-order
derivative with a linear operator.

The singularity t−η in Eq. 23 is a consequence of the regularity properties satisfied
by G. Since in general during the proof of Theorem 1.1, we need β + γ to be close to
1, and therefore greater than η, only the second singularity t−β−γ plays a role.

The proofs require several steps. First in Lemma 5.4 below we prove estimates for
a finite horizon and general 0 ≤ β, γ < 1/2; then in Lemma 5.6 we study the long-
time behaviour in the particular case β = γ = 0; we finally conclude with the proofs
of Propositions 5.1 and 5.2.

First, we prove estimates of these quantities for 0 < t ≤ 1—see Lemmas 4.4 and
4.5 in [6], with a difference coming from the assumptions made on the nonlinear
coefficient G:
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Lemma 5.4 For any 0 ≤ β < 1/2, 0 ≤ γ < 1/2, there exist constants Cβ and Cβ,γ such
that for any y ∈ H and any 0 < t ≤ 1

|Du(t, y)|β ≤ Cβ

tβ

|(−B)βD2u(t, y)(−B)γ |L(H) ≤ Cβ,γ

(
1

tη
+ 1

tβ+γ

)
.

Remark 5.5 If we take another time interval ]0,Tmax] instead of ]0, 1], the constants
Cβ and Cβ,γ are a priori exponentially increasing in Tmax.

The estimate on Du is valid for β < 1, and not only for β < 1/2.

Proof Owing to Eqs. 20 and 21, we only need to prove the following almost sure
estimates, for some constants Cβ and Cβ,γ—which may vary from line to line below:
for any 0 < t ≤ 1

|ηh,y(t)| ≤ Cβ

tβ
|h|−β

|ζ h,k,y(t)| ≤ Cβ,γ

tη
|h|−β |k|−γ , (24)

where the parameter η is defined in Assumption 2.5.
We use mild formulations, and the regularization properties of the semi-group

given in Proposition 2.4:

|ηh,y(t)| =
∣∣∣∣etBh+

∫ t

0
e(t−s)BDG(Y(s, y)).ηh,y(s)ds

∣∣∣∣

≤ Cβ

tβ
|h|−β + C

∫ t

0
|ηh,y(s)|ds,

and by the Gronwall Lemma we get the result.
For the second-order derivative, we moreover use the properties ofG in Assump-

tion 2.5 to get

|ζ h,k,y(t)| = |
∫ t

0
e(t−s)BDG(Y(s, y)).ζ h,k,y(s)ds

+
∫ t

0
e(t−s)BD2G(Y(s, y)).(ηh,y(s), ηk,y(s))ds|

≤ C
∫ t

0
|ζ h,k,y(s)|ds+

∫ t

0

Cβ,γ

(t − s)η
|ηh,y(s)||ηk,y(s)|ds

≤ C
∫ t

0
|ζ h,k,y(s)|ds+ Cβ,γ |h|−β |k|−γ t1−η−β−γ

∫ 1

0

1

(1 − s)ηsβ+γ
ds.

To conclude, it remains to use the Gronwall Lemma, since for any 0 < t ≤ 1 we get
t1−η−β−γ ≤ t−η, thanks to the assumption β + γ < 1. ��

Thanks to the dissipativity property expressed in Proposition 2.6, we can prove
the result in the case β = γ = 0. We notice that the proof would be straightforward
under a strict dissipativity assumption—since then ηh,y(t) and ζ h,k,y(t)would decrease
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exponentially in t; in the general case ηh,y(t) and ζ h,k,y(t) are exponentially increasing
in time so that we can not work directly. Here the result comes from the estimate (15)
of Proposition 4.7.

Lemma 5.6 There exist constants C and c > 0 such that for any t ≥ 0 and any y ∈ H

|Du(t, y)| ≤ Ce−ct(1 + |y|2) and |D2u(t, y)|L(H) ≤ Ce−ct
(

1 + 1

tη

)
(1 + |y|2). (25)

Proof The Bismut-Elworthy-Li formula states that if 
 : H → R is a function of
class C2 with bounded derivatives and with atmost quadratic growth—i.e. there exists
M(
) > 0 such that for any y ∈ H we have |
(y)| ≤ M(
)(1+ |y|2)—then we can
calculate the first and the second order derivatives of (t, y) �→ v(t, y) := E
(Y(t, y))
with respect to y. First, we have for any y ∈ H and h ∈ H

Dv(t, y).h = 1

t
E

[∫ t

0
< ηh,y(s),dW(s) > 
(Y(t, y))

]

= 2

t
E

[∫ t/2

0
< ηh,y(s),dW(s) > v(t/2,Y(t/2, y))

]
; (26)

the second equality is a consequence of the identity v(t, y) = Ev(t/2,Y(t/2, y))
obtained with theMarkov property, and of the first equality applied with the function
v(t/2, .).

Using the second formula of Eq. 26, we obtain a formula for the second order
derivative: for any y ∈ H and h, k ∈ H,

D2v(t, y).(h,k) = 2

t
E

[∫ t/2

0
< ζ h,k,y(s),dW(s) > v(t/2,Y(T/2, y))

]

+2

t
E

[∫ t/2

0
< ηh,y(s),dW(s) > Dv(t/2,Y(t/2)).ηk,y(t/2)

]
. (27)

We then see, using Lemmas 4.1 and 5.4—with β = γ = 0—that there exists C > 0
such that for any 0 < t ≤ 1, y ∈ H, h, k ∈ H

|Dv(t, y).h| ≤ C√
t
M(
)(1 + |y|2)|h|,

|D2v(t, y).(h,k)| ≤ C
t
M(
)(1+ |y|2)|h||k|. (28)

Now when t ≥ 1 the Markov property implies that u(t, y) = Eu(t − 1,Y(1, y)), and
by Eq. 16 we have

|u(t− 1, y)−
∫
H
φdμ| ≤ Ce−c(t−1)(1 + |y|2).

If we choose 
t(y) = u(t − 1, y)− ∫
H φdμ, we have u(t, y) = E
t(Y(1, y))+∫

H φdμ, with M(
t) ≤ Ce−c(t−1). With Eq. 28 at time 1, we obtain for t ≥ 1

|Du(t, y).h| ≤ Ce−c(t−1)(1 + |y|2)|h|
|D2u(t, y).(h,k)| ≤ Ce−c(t−1)(1 + |y|2)|h||k|.
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Moreover by Lemma 5.4 we have a control when 0 ≤ t ≤ 1, so that with a change of
constants we get the result. ��

We can finally prove the Propositions 5.1 and 5.2. The key tool is the Markov
property of the process Y which yields the following formula: for any t ≥ 1

u(t, y) = E[u(t − 1,Y1(y))]. (29)

To get the exponential decreasing, we use Lemma 5.6 at time t − 1 when t ≥ 1,
while |h|−β appears from ηh,y(1), and with estimates coming from Lemma 5.4.

Proof of Propositions 5.1 and 5.2 Using Eq. 29 and Lemma 5.6, for any t ≥ 1 we have

|Du(t, y).h| ≤ Ce−c(t−1)
E[(1 + |Y(1, y)|2)|ηh,y(1)|] ≤ Ce−c(t−1)(1 + |y|2)|h|−β,

where the last estimate comes from Lemmas 4.1 and 5.4. Combining this estimate
with the result of Lemma 5.4, which gives an estimate for t ≤ 1, we obtain Eq. 22. For
the second order derivatives, Lemma 5.4 gives an estimate for t ≤ 1, and for t ≥ 1 we
use Eq. 29 to see that

D2u(t, y).(h,k) = E[D2[u(t − 1,Y(1, y))].(h,k)]
=ED2u(t−1,Y(1, y)).(ηh,y(1),ηk,y(1))+EDu(t− 1,Y(1, y)).ζ h,k,y(1).

Using Lemma 5.6, we get an exponential decreasing; thanks to Lemma 4.1 and to the
estimates in the proof of Lemma 5.4 at time 1, we obtain

|D2u(t, y).(h,k)| ≤ Ce−c(t−1)(1 + |y|2)|h|−β |k|−γ .

Then Eq. 23 easily follows. ��

5.3 Proof of Corollary 1.2

The first estimate is a simple consequence of Theorem 1.1, and of the exponential
convergence to equilibrium of the continuous-time process—see Eq. 16. We then get

|E[φ(Ym(τ, y))] −
∫
H
φdμ| ≤ C(1 + |y|3)

(
1

m1/2−κ
+ τ 1/2−κ

)
+ C(1 + |y|2)e−cmτ .

If μτ is an ergodic invariant probability measure of (Ym(τ, .))m, then since φ is
bounded for μτ -almost any y ∈ H we have by the ergodic Theorem the following
convergence when M → +∞:

1

M

M∑
m=1

E[φ(Ym(τ, y))] →
∫
H
φ(y)μτ (dy).

To conclude, it remains to choose a initial condition y in this non-empty set, and to
use Cesaro Lemma on the right-hand side of the estimate.

We notice that if μτ is an invariant probability measure, not necessarily ergodic,
having a finite moment of order 3, then it is enough to integrate the inequality above
with respect to μτ .
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6 Proof of the Estimates

We need to control the terms given in Eq. 19, according to the decomposition (18).
We recall that constants C must be independent from the dimension N and the final
time T = mτ .

6.1 Estimate of u(T, x)− E[u(T − τ,Y1)]

The Markov property gives

u(T, y) = E[φ(Y(T, y))] = E[u(T − τ,Y(τ, y))].
If 0 < κ < 1/2, using Lemma 4.2 and Proposition 5.1 we get

|u(T, y)− E[u(T − τ,Y1)]|
≤ C(1 + (T − τ)−1/2+κ )e−μ̃(T−τ )(E|Y(τ, y)− Y1|2−1/2+κ )

1/2(1 + |y|2).
We can write

Y(τ, y)− Y1 = (eτB − Rτ )y+
∫ τ

0
e(τ−s)BG(Y(s, y))ds− τRτG(y)

+
∫ τ

0
e(τ−s)BdW(s)−√

τRτ χ1.

We use the following properties to estimate the first line in this equality:

|(−B)−1/2+κ(eτB − Rτ )|L(H) ≤ cτ 1/2−κ ,

|esB|L(H) ≤ 1 for s ≥ 0,

|Rτ |L(H) ≤ 1,

|(−B)−1/2+κ .| ≤ c|.|;
therefore the first line in the last expression is almost surely bounded by C(τ 1/2−κ +
τ)(1 + |y|).

For the second line, we have

E

∣∣∣∣(−B)−1/2+κ

∫ τ

0
e(τ−s)BdW(s)

∣∣∣∣
2

= E

∫ τ

0
|(−B)−1/2+κe(τ−s)B|2L2(H)ds

≤ τ |(−B)−1/2+κ |2L2(H)

≤ cτ ;
the last term is controlled in the same way: E|(−B)−1/2+κ

√
τRτ χ1|2 ≤ cτ . Therefore

we have

|u(T, x)− E[u(T − τ,Y1)]| ≤ C(1 + |y|3)(1 + (T − τ)−1/2+κ )e−μ̃(T−τ )τ 1/2−κ . (30)

We thus understand that to obtain weak order 1/2 requires to be careful in the
estimate. Here we used Lemma 4.2 instead of Lemma 5.6; otherwise looking at
E|Y(τ, y)− Y1|2 would have not been sufficient. The control of the other terms must
be done in the same spirit.
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6.2 Estimate of ak

We have

ak = E

∫ tk+1

tk
< BỸ(t)− BτYk,Du(T − t, Ỹ(t)) > dt

= E

∫ tk+1

tk
< (B− Bτ )Yk,Du(T − t, Ỹ(t)) > dt

+E

∫ tk+1

tk
< B(Ỹ(t)− Yk),Du(T − t, Ỹ(t)) > dt

:= a1
k + a2

k.

6.2.1 Estimate of a1
k

We use the equality Bτ − B = τRτ B2. We also decompose a1
k using expression (9):

a1,1
k = −τE

∫ tk+1

tk
< Rτ B2Rk

τ y,Du(T − t, Ỹ(t)) > dt

a1,2
k = −τE

∫ tk+1

tk
< Rτ B2τ

k−1∑
l=0

Rk−l
τ G(Yl),Du(T − t, Ỹ(t)) > dt

a1,3
k = −τE

∫ tk+1

tk
< Rτ B2√τ

k−1∑
l=0

Rk−l
τ χl+1,Du(T − t, Ỹ(t)) > dt;

then a1
k = a1,1

k + a1,2
k + a1,3

k .

1. Estimate of a1,1
k

The idea is to “share” B2 between different factors—thanks to regularization
properties of the semi-group (Rk

τ )k∈N and to Lemma 4.2—in order to increase
the order of convergence.

|a1,1
k |≤ τE

∫ tk+1

tk
|Rτ (−B)1/2+2κ|L(H)|(−B)1−κRk

τ |L(H)|y|H|(−B)1/2−κDu(T−t,Ỹ(t))|dt

≤ C|y|ττ−1/2−2κ t−1+κ
k

∫ tk+1

tk
(1 + (T − t)−1/2+κ)e−μ̃(T−t)

E(1 + |Ỹ(t)|2)dt,

thanks to Lemma 3.2 and Proposition 5.1.
By taking expectation, thanks to Lemma 4.3 we have

m−1∑
k=1

|a1,1
k | ≤ C|y|τ 1/2−2κ

m−1∑
k=1

1

t1−κ
k

∫ tk+1

tk

(
1 + 1

(T − t)1/2−κ

)
e−μ̃(T−t)(1 + |y|2)dt

≤ Cκ (1 + |y|3)τ 1/2−2κ
∫ T

0

1

t1−κ(T − t)1/2−κ
dt

≤ T−(1/2−2κ)Cκ (1 + |y|3)τ 1/2−2κ
∫ 1

0

1

s1−κ(1 − s)1/2−κ
ds,
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and we obtain

m−1∑
k=1

|a1,1
k | ≤ C(1 + |y|3)T−(1/2−2κ)τ 1/2−2κ . (31)

2. Estimate of a1,2
k

First we write

|a1,2
k | ≤ CτE

∫ tk+1

tk
|Rτ (−B)1/2+2κ|L(H)|τ(−B)1−κ

×
k−1∑
l=0

Rk−l
τ G(Yl)||(−B)1/2−κDu(T − t, Ỹ(t))|dt.

Using Lemma 3.2, we can prove the following useful inequality: for τ ≤ τ0 and
any k ≥ 1

τ

k∑
l=1

1

(lτ)1−κ

1

(1 + μ0τ)lκ
≤ Cκ . (32)

Indeed,

τ

k∑
l=1

1

(lτ)1−κ

1

(1 + μ0τ)lκ
≤ C

∫ tk

0

1

t1−κ

1

(1 + μ0τ)
κ t

τ

dt

≤
∫ ∞

0

1

t1−κ
e−t κ

τ
log(1+μ0τ )dt

≤
∫ ∞

0

1

s1−κ
e−sds

(
τ

κ log(1 + μ0τ)

)κ

≤ Cκ .

Since G is supposed to be bounded, the estimate (32) yields

|τ(−B)1−κ

k−1∑
l=0

Rk−l
τ G(Yl)| ≤ C‖G‖∞τ

k∑
l=1

1

(lτ)1−κ

1

(1 + μ0τ)lκ
≤ Cκ .

With Lemma 4.3 and Proposition 5.2, we can now write

|a1,2
k | ≤ C(1 + |y|2)τ 1/2−2κ

∫ tk+1

tk

(
1 + 1

(T − t)1/2−κ

)
e−μ̃(T−t)dt,

and we get

m−1∑
k=1

|a1,2
k | ≤ C(1 + |y|2)τ 1/2−2κ . (33)

3. Estimate of a1,3
k

The analysis of this term is more complicated. We recall that since noise is
white in space, for any t > 0, E|(−B)γWB(t)|2 < +∞ if and only if γ < 1/4; as
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a consequence, the strategy used above to control a1,1
k can not be used directly—

otherwise we could only obtain order 1/4.
In [6], an integration by parts formula is used to deal with the lack of regularity
of the stochastic integral appearing in the definition of a1,3

k . An additionnal
difficulty arises in our situation because the estimate given in Lemma 4.5 is not
uniform with respect to time. Instead, we remark that the two problems—lack of
regularity and bad time dependence—do not occur at the same time; therefore
a decomposition of the interval [0, tk] into [0, tk − 1] and [tk − 1, tk]—for k large
enough—can help to treat the problems separately.
Let us explain more concretely the situation at the continuous time level: we
have to treat—at the finite dimensional approximation level, but with a bound
independent from dimension—an expression involving B2

∫ t
0 e

(t−s)BdW(s). The
idea to get rid of this expression is to use an integration by parts formula on the
whole interval. We can also see that we can do this integration by parts only on
a subinterval of size independent from t: indeed given T0 > 0,if t ≥ T0 we have a
decomposition

∫ t

0
e(t−s)BdW(s) =

∫ t−T0

0
e(t−s)BdW(s)+

∫ t

t−T0

e(t−s)BdW(s).

The first term is equal to eT0B
∫ t−T0

0 e(t−T0−s)BdW(s), so that thanks to regulariza-
tion properties of the semi-group (etB)—see Proposition 2.4—multiplication by
B2 is possible—in other words we do not require an integration by parts to get
a bound independent from the dimension; to treat the second term, the lack of
regularity remains but can still be treated by the integration by parts, with the
advantage of involving a smaller interval—of size T0, where at the discrete time
level below we can use a uniform control of all quantities, thanks to Lemma 4.5.
Then the same idea of “sharing” B2 can be used again to get order 1/2.
For the discrete-time setting, the choice of T0 is important: below, we need to
use the second estimate of Lemma 3.2 with β = 4 + 1/2 + κ , with 0 < κ < 1/2.
Given τ0 > 0, we then choose T0 = 5τ0.
Let us now explain develop this program for the discrete time situation: by using
Eq. 10, we make the decomposition

a1,3
k = −τE

∫ tk+1

tk
< Rτ B2√τ

k−1∑
l=0

Rk−l
τ χl+1,Du(T − t, Ỹ(t)) > dt

= −τE

∫ tk+1

tk
<

∫ tk

0
Rτ B2Rk−ls

τ dW(s),Du(T − t, Ỹ(t)) > dt

= −τE

∫ tk+1

tk
<

∫ (tk−T0)∨0

0
Rτ B2Rk−ls

τ dW(s),Du(T − t, Ỹ(t)) > dt

− τE

∫ tk+1

tk
<

∫ tk

(tk−T0)∨0
Rτ B2Rk−ls

τ dW(s),Du(T − t, Ỹ(t)) > dt.
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For the first term—which is equal to 0 when tk < T0—we use the Cauchy-
Schwarz inequality and we directly get

|E <

∫ (tk−T0)∨0

0
Rτ B2Rk−ls

τ dW(s),Du(T − t, Ỹ(t)) > |

≤
(
E|

∫ (tk−T0)∨0

0
Rτ B2Rk−ls

τ dW(s)|2
)1/2

(E|Du(T − t, Ỹ(t))|2)1/2

≤ C(1 + |y|2)e−c(T−t),

thanks to Lemmas 5.6 and 4.3, and to the following inequality—we remark that
in the integral below tk−ls ≥ T0:

E|
∫ (tk−T0)∨0

0
Rτ B2Rk−ls

τ dW(s)|2

=
∫ (tk−T0)∨0

0
|Rτ B2Rk−ls

τ |2L2(H)ds

=
∫ (tk−T0)∨0

0
Tr(R2

τB
4R2(k−ls)

τ )ds

≤
∫ (tk−T0)∨0

0
|R2+(k−ls)

τ |L(H)|(−B)4+1/2+κR(k−ls)
τ |L(H)dsTr((−B)−1/2−κ)

≤ C
∫ (tk−T0)∨0

0

1

(1 + μ0τ)k−ls t4+1/2+κ

k−ls

ds

≤ C
∫ (tk−T0)∨0

0

1

(1 + μ0τ)k−ls
ds

≤ C
∫ +∞

0

1

(1 + μ0τ)s/τ
ds

≤ C,

when τ ≤ τ0, where we have used the two inequalities of Lemma 3.2. Indeed,
τ ≤ τ0 and tk−ls ≥ T0 imply k− ls ≥ T0

τ0
= 5 ≥ 4 + 1/2 + κ . Then

∣∣∣∣τE
∫ tk+1

tk
<

∫ (tk−T0)∨0

0
Rτ B2Rk−ls

τ dW(s),Du(T − t, Ỹ(t)) > dt

∣∣∣∣

≤ C
∫ tk+1

tk
e−μ̃(T−t)dt(1 + |y|2)τ.

For the second term, we use the integration by parts formula of Lemma 4.4 to
get

τE

∫ tk+1

tk
<

∫ tk

(tk−T0)∨0
Rτ B2Rk−ls

τ dW(s),Du(T − t, Ỹ(t)) > dt

= −τE

∫ tk+1

tk

∫ tk

(tk−T0)∨0
Tr

(
Rk−ls

τ B2RτD
2u(T − t, Ỹ(t))DsỸ(t)

)
dsdt.
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If h ∈ H, (tk − T0) ∨ 0 ≤ s ≤ tk ≤ t < tk+1, with Eq. 13 we see that

Dh
s Ỹ(t) = Dh

s Yk +
∫ t

tk
(BτDh

s Yk + RτG(Yk)Dh
s Yk)dλ

+ RτDh
s (W(t)−W(tk))

= Dh
s Yk + (t − tk)(BτDh

s Yk + RτG(Yk)Dh
s Yk).

Therefore, since |τBτ |L(H) ≤ C

|Dh
s Ỹ(t)|β ≤ c|Dh

s Yk|β,
and taking supremum over h with |h| ≤ 1 we get

|(−B)βDsỸ(t)|L(H) ≤ c|(−B)βDsYk|L(H). (34)

The last quantity is estimated thanks to Lemma 4.5:

|Dh
s Yk|β ≤ C(1 + LGτ)

k−ls

(
1 + 1

(1 + μ0τ)(1−β)(k−ls)tβk−ls

)
|h|.

When τ ≤ τ0 and (tk − T0) ∨ 0 ≤ s ≤ tk ≤ t < tk+1, we see that (1 + LGτ)
k−ls is

bounded by a constant.
We can then control the second term of a1,3

k with

τE

∫ tk+1

tk

∫ tk

(tk−T0)∨0
|Rτ (−B)1/2+2κ |L(H)|(−B)1−3 κ

2 Rk−ls
τ |L(H)Tr((−B)−1/2− κ

2 )

× |(−B)1/2−κ/2D2u(T − t, Ỹ(t))(−B)1/2−κ/2|L(H)|(−B)κDsỸ(t)|L(H)dsdt

≤ Cτ 1/2−2κ
∫ tk+1

tk

∫ tk

(tk−T0)∨0
t
−1+3 κ

2
k−ls

1

(1 + μ0τ)
(k−ls)3 κ

2

×
(

1 + t−κ
k−ls

1

(1 + μ0τ)(k−ls)(1−κ)

)
ds

×
(

1 + 1

(T − t)η
+ 1

(T − t)1−κ

)
e−μ̃(T−t)(1 + |y|2)dt,

using Proposition 5.2 and Lemmas 4.5 and 3.2.
On the one hand, we have

∫ tk

(tk−T0)∨0
t
−1+3 κ

2
k−ls

1

(1 + μ0τ)
(k−ls)3 κ

2
ds ≤

∫ tk

0

1

s1−3 κ
2

1

(1 + μ0τ)
3 κ

2 s/τ
ds ≤ C < +∞,

for τ ≤ τ0, thanks to Eq. 32.
On the other hand,

m−1∑
k=1

∫ tk+1

tk

(
1 + 1

(T − t)η
+ 1

(T − t)1−κ

)
e−μ̃(T−t)dt

≤
∫ +∞

0

(
1 + 1

tη
+ 1

t1−κ

)
e−μ̃tdt < +∞.
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Therefore

m−1∑
k=1

|a1,3
k | ≤ C(1 + |y|2)τ 1/2−2κ . (35)

6.2.2 Estimate of a2
k

We decompose a2
k using the definition of Ỹ—see Eq. 13:

a2,1
k = E

∫ tk+1

tk
(t− tk) < BBτYk,Du(T − t, Ỹ(t)) > dt

a2,2
k = E

∫ tk+1

tk
(t− tk) < BRτG(Yk),Du(T − t, Ỹ(t)) > dt

a2,3
k = E

∫ tk+1

tk
<

∫ t

tk
BRτdW(s),Du(T − t, Ỹ(t)) > dt;

then a2
k = a2,1

k + a2,2
k + a2,3

k .

1. Estimate of a2,1
k

Since BBτ = Rτ B2, a2,1
k is bounded by the same expression as a1

k: by Eqs. 31, 33,
35 we have

m−1∑
k=1

|a2,1
k | ≤ C(1 + |y|3)(1 + T−(1/2−2κ))τ 1/2−2κ . (36)

2. Estimate of a2,2
k

We have

|a2,2
k | ≤ τE

∫ tk+1

tk
|(−B)1/2+κRτ |L(H)|G(Yk)||(−B)1/2−κDu(T − t, Ỹ(t))|dt

≤ ‖G‖∞τ 1/2−κ

∫ tk+1

tk

(
1 + 1

(T − t)1/2−κ

)
e−μ̃(T−t)dt.

We then have

m−1∑
k=1

|a2,2
k | ≤ Cτ 1/2−κ . (37)

3. Estimate of a2,3
k

We again use the integration by parts formula (14) to rewrite a2,3
k :

a2,3
k = E

∫ tk+1

tk
<

∫ t

tk
BRτdW(s),Du(T − t, Ỹ(t)) > dt

= E

∫ tk+1

tk

∫ t

tk
Tr(Rτ BD

2u(T − t, Ỹ(t))DsỸ(t))dsdt.

From Eq. 13, for tk ≤ s ≤ t ≤ tk+1 we have Dh
s Ỹ(t) = Rτh; as a consequence, we

do not need to use the same trick as in the control of a1,3
k .
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Then we have

|a2,3
k | ≤ E

∫ tk+1

tk
(t− tk)Tr(RτBD

2u(T − t, Ỹ(t))Rτ )dt

≤ cτ
∫ tk+1

tk
|Rτ (−B)1/2+κ/2|L(H)Tr((−B)−1/2−κ/2)|(−B)κRτ |L(H)

× |(−B)1/2−κ/2D2u(T − t, Ỹ(t))(−B)1/2−κ/2|L(H)dt

≤ c(1 + |y|2)τ 1/2−3κ/2
∫ tk+1

tk

(
1 + 1

(T − t)η
+ 1

(T − t)1−κ

)
e−μ̃(T−t)dt.

Therefore

m−1∑
k=1

|a2,3
k | ≤ C(1 + |y|2)τ 1/2−3κ/2. (38)

With the previous estimates on a1 and a2, we get

m−1∑
k=1

|ak| ≤ C(1 + |y|3)(1 + T−(1/2−2κ))τ 1/2−2κ . (39)

6.3 Estimate of bk

We have

bk = E

∫ tk+1

tk
< G(Ỹ(t))− RτG(Yk),Du(T − t, Ỹ(t)) > dt

= E

∫ tk+1

tk
< (I − Rτ )G(Yk),Du(T − t, Ỹ(t)) > dt

+E

∫ tk+1

tk
< G(Ỹ(t))− G(Yk),Du(T − t, Ỹ(t)) > dt

:= b 1
k + b 2

k.

6.3.1 Estimate of b 1
k

This term is easy to treat: we have

|b 1
k| ≤ E

∫ tk+1

tk
|(−B)−1/2+κ(I − Rτ )|L(H)|G(Yk)||(−B)1/2−κDu(T − t, Ỹ(t))|dt

≤ C(1 + |y|)2)τ 1/2−κ

∫ tk+1

tk

(
1 + 1

(T − t)1/2−κ

)
e−μ̃(T−t)dt,

where we have used Proposition 5.1, and the following inequality for 0 ≤ β ≤ 1:

|(−B)−β(I − Rτ )|L(H) ≤ Cβτ
β . (40)
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Then we see that

m−1∑
k=1

|b 1
k| ≤ C(1 + |y|)2)τ 1/2−κ . (41)

6.3.2 Estimate of b 2
k

To estimate |b 2
k|, we write the scalar product in coordinates with respect to the

orthonormal basis ( fi), and then we expand the terms thanks to the Itô formula.
If we note Gi =< G, fi > and ∂i =< D., fi >, we have

< G(Ỹ(t))−G(Yk),Du(T − t, Ỹ(t)) >=
∑
i

(Gi(Ỹ(t))−Gi(Yk))∂iu(T − t, Ỹ(t)).

The above sum is finite, because we work with finite dimensional approximations.
Itô formula gives for tk ≤ t < tk+1

Gi(Ỹ(t))−Gi(Yk) = 1

2

∫ t

tk
Tr(Rτ R∗

τD
2Gi(Ỹ(s)))ds

+
∫ t

tk
< BτYk,DGi(Ỹ(s)) > ds

+
∫ t

tk
< RτG(Yk),DGi(Ỹ(s)) > ds

+
∫ t

tk
< DGi(Ỹ(s)), RτdW(s) > .

We naturally define b 2, j
k , for j ∈ {1, 2, 3, 4}, and we now control each term.

1. Estimate of b 2,1
k

By definition, we have

b 2,1
k =

∫ tk+1

tk
E

1

2

∫ t

tk

∑
i

Tr(Rτ R∗
τD

2Gi(Ỹ(s)))ds∂iu(T − t, Ỹ(t))dt.

Using the orthonormal basis ( fk)k given by Assumption 2.2, and recalling that
the sums are finite, we can calculate:

∑
i

Tr(Rτ R∗
τD

2Gi(Ỹ(s)))∂iu(T − t, Ỹ(t))

=
∑
i

Tr(D2Gi(Ỹ(s))RτR∗
τ )∂iu(T − t, Ỹ(t))

=
∑
i

∑
j

< D2Gi(Ỹ(s))
1

(1 + μ jτ)2
f j, f j > ∂iu(T − t, Ỹ(t))

=
∑
i

∑
j

1

(1 + μ jτ)2
D2Gi(Ỹ(s)).( f j, f j)∂iu(T − t, Ỹ(t)).
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Using the Cauchy-Schwarz inequality (where j is fixed), we get
∣∣∣∣∣
∑
i

D2Gi(Ỹ(s)).( f j, f j)∂iu(T − t, Ỹ(t))

∣∣∣∣∣

≤
(∑

i

|D2Gi(Ỹ(s)).( f j, f j)|2
μ

2η
i

)1/2 (∑
i

μ
2η
i |∂iu(T − t, Ỹ(t))|2

)1/2

.

The second factor of this expression is |(−B)ηDu(T − t, Ỹ(t))|H; we control it
thanks to Proposition 5.1. The first factor is controlled thanks to Assumption 2.5:

(∑
i

|D2Gi(Ỹ(s)).( f j, f j)|2
μ

2η
i

)1/2

= |(−B)−ηD2G(Ỹ(s)).( f j, f j)|

≤ C| f j|H| f j|H ≤ C,

since ( f j) j is an orthonormal system.
Therefore∣∣∣∣∣

∑
i

Tr(RτR∗
τD

2Gi(Ỹ(s)))∂iu(T − t, Ỹ(t))

∣∣∣∣∣
≤ C(1 + |y|2)

(
1 + 1

(T − t)η

)
e−μ̃(T−t)

∞∑
j=0

1

(1 + μ jτ)2

≤ C(1 + |y|2)
(

1 + 1

(T − t)η

)
e−μ̃(T−t)τ−1/2−κ

∞∑
j=0

(μ jτ)
1/2+κ

(1 + μ jτ)2

1

μ
1/2+κ

j

≤ C(1 + |y|2)
(

1 + 1

(T − t)η

)
e−μ̃(T−t)τ−1/2−κ .

Then

|b 2,1
k | ≤ C(1 + |y|2)τ 1/2−κ

∫ tk+1

tk

(
1 + 1

(T − t)η

)
e−μ̃(T−t)dt,

and

m−1∑
k=1

|b 2,1
k | ≤ C(1 + |y|2)τ 1/2−κ . (42)

2. Estimate of b 2,2
k

Thanks to Eqs. 9 and 10, we have

b 2,2
k =E

∫ tk+1

tk

∫ t

tk

∑
i

<Bτ Rk
τ y+Bτ τ

k−1∑
l=0

Rk−l
τ G(Yl),DGi(Ỹ(s))>∂iu(T−t, Ỹ(t))dsdt

+E

∫ tk+1

tk

∫ t

tk

∑
i

< Bτ

∫ tk

0
Rk−lr

τ dW(r),DGi(Ỹ(s)) > ∂iu(T − t, Ỹ(t))dsdt

:= b 2,2,1
k + b 2,2,2

k .
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(i) For the first term, recalling that Bτ = BRτ and that G is bounded, we have

|b 2,2,1
k | =

∣∣∣∣∣E
∫ tk+1

tk

∫ t

tk
< DG(Ỹ(s)).

(
Bτ Rk

τ y+ Bτ τ

k−1∑
l=0

Rk−l
τ G(Yl)

)
,

Du(T − t, Ỹ(t)) > dsdt

∣∣∣∣∣

≤ E

∫ tk+1

tk

∫ t

tk
|(−B)κRτ |L(H)(|(−B)1−κRk

τ y|

+ τ

k−1∑
l=0

|(−B)1−κRk−l
τ |L(H)|G(Yl)|)

× |Du(T − t, Ỹ(t))|dsdt

≤ Cτ 1−κ

∫ tk+1

tk
(1 + |y|2)e−μ̃(T−t)dt

×
(
t−1+κ
k |y| + τ

k−1∑
l=0

1

t(1−κ)

k−l

1

(1 + μ0τ)(k−l)κ

)

≤ Cτ 1−κ (1 + |y|3)
(

1

t1−κ
k

+ 1

)∫ tk+1

tk
e−μ̃(T−t)dt,

if τ ≤ τ0—see Eq. 32.
Therefore

m−1∑
k=1

|b 2,2,1
k | ≤ Cτ 1−κ (|y| + 1)

m−1∑
k=1

(
1

t1−κ
k

+ 1

)∫ tk+1

tk
e−μ̃(T−t)dt

≤ Cτ 1−κ (1 + |y|3)
∫ T

0

(
1

t1−κ
+ 1

)
e−μ̃(T−t)dt

≤ Cτ 1−κ (1 + |y|3)
(∫ T

0

1

t1−κ

C
(T − t)1/2−κ

dt + 1

)

≤ Cτ 1−κ (1 + |y|3)
(
T−(1/2−2κ)

∫ 1

0

1

s1−κ

C
(1 − s)1/2−κ

dt + 1

)

≤ Cτ 1−κ (1 + |y|3)(T−(1/2−2κ) + 1).
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(ii) For the second term, we again use an integration by parts, after a decom-
position of the time interval—as in the estimates for a1,3

k . We introduce the
same parameter T0 = 5τ0. First,

b 2,2,2
k = E

∫ tk+1

tk

∫ t

tk

∑
i

< Bτ

∫ tk

0
Rk−lr

τ dW(r),

DGi(Ỹ(s)) > ∂iu(T − t, Ỹ(t))dsdt

= E

∫ tk+1

tk

∫ t

tk

∑
i

< Bτ

∫ (tk−T0)∨0

0
Rk−lr

τ dW(r),

DGi(Ỹ(s)) > ∂iu(T − t, Ỹ(t))dsdt

+ E

∫ tk+1

tk

∫ t

tk

∑
i, j,m

< Bτ

∫ tk

(tk−T0)∨0
Rk−lr

τ fm,

f j > dβm(r)∂ jGi(Ỹ(s))∂iu(T − t, Ỹ(t))dsdt

=: b 2,2,2,1
k + b 2,2,2,2

k .

For b 2,2,2,1
k , we can work directly and see that

|b 2,2,2,1
k | ≤ |E

∫ tk+1

tk

∫ t

tk

∑
i

< Bτ

∫ (tk−T0)∨0

0
Rk−lr

τ dW(r),

DGi(Ỹ(s)) > ∂iu(T − t, Ỹ(t))dsdt|

≤
∫ tk+1

tk

∫ t

tk
E| < DG(Ỹ(s)).Bτ

∫ (tk−T0)∨0

0
Rk−lr

τ dW(r),

Du(T − t, Ỹ(t)) > |dsdt

≤
∫ tk+1

tk

∫ t

tk

(
E|Bτ

∫ (tk−T0)∨0

0
Rk−lr

τ dW(r)|2
)1/2

(E|Du(T− t, Ỹ(t))> |2)1/2dsdt

≤ Cτ
∫ tk+1

tk
e−μ̃(T−t)(1 + |y|2),

thanks to Lemmas 4.3, 5.6 and to the following estimate for τ ≤ τ0

E|Bτ

∫ (tk−T0)∨0

0
Rk−lr

τ dW(r)|2 ≤ E|B2Rτ

∫ (tk−T0)∨0

0
Rk−lr

τ dW(r)|2 ≤ C,

thanks to the estimate proved to control a1,3
k .
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For b 2,2,2,2
k , we can write thanks to the Malliavin integration by parts (14) and

with the chain rule

b 2,2,2,2
k = E

∫ tk+1

tk

∫ t

tk

∑
i, j,m

< Bτ

∫ tk

(tk−T0)∨0
Rk−lr

τ fm, f j > dβm(r)∂ jGi(Ỹ(s))∂iu

×(T − t, Ỹ(t))dsdt

= E

∫ tk+1

tk

∫ t

tk

∫ tk

(tk−T0)∨0

∑
i, j,m,n

< Bτ Rk−lr
τ fm, f j > ∂2

j,nGi(Ỹ(s))

< Dm
r Ỹ(s), fn > ∂iu(T − t, Ỹ(t))drdsdt

+E

∫ tk+1

tk

∫ t

tk

∫ tk

(tk−T0)∨0

∑
i, j,m,n

< Bτ Rk−lr
τ fm, f j > ∂ jGi(Ỹ(s))∂2

i,nu

×(T − t, Ỹ(t)) < Dm
r Ỹ(t), fn > drdsdt

= E

∫ tk+1

tk

∫ t

tk

∫ tk

(tk−T0)∨0

∑
i,m

D2Gi(Ỹ(s))(BτRk−lr
τ fm,Dm

r Ỹ(s))∂iu

×(T − t, Ỹ(t))drdsdt

+E

∫ tk+1

tk

∫ t

tk

∫ tk

(tk−T0)∨0

∑
i,m

< Bi(s, t)BτRk−lr
τ fm,Dm

r Ỹ(t) > drdsdt

= E

∫ tk+1

tk

∫ t

tk

∫ tk

(tk−T0)∨0

∑
i

Tr
(
(DrỸ(s))∗D2Gi(Ỹ(s))BτRk−lr

τ

)
∂iu

×(T − t, Ỹ(t))drdsdt

+E

∫ tk+1

tk

∫ t

tk

∫ tk

(tk−T0)∨0

∑
i

Tr
(
(DrỸ(t)∗Bi(s, t)BτRk−lr

τ

)
drdsdt,

where we define a linear operator on H by

< Bi(s, t)h,k > = < DGi(Ỹ(s)),h >

+∞∑
n=0

∂2
i,nu(T − t, Ỹ(t)) < k, fn >

= < DGi(Ỹ(s)),h >< D2u(T − t, Ỹ(t)). fi, k > .

We have
∑

i < Bi(s, t)h,k >= D2u(T − t, Ỹ(t)).(DG(Ỹ(s)).h,k), and

∣∣∣∣∣
∑
i

Bi(s, t)|L(H) ≤
∣∣∣∣∣DG(Ỹ(s))|L(H)|D2u(T − t, Ỹ(t))|L(H);
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so we can write, for (tk − T0) ∨ 0 ≤ r ≤ tk

∣∣∣∣∣
∑
i

Tr
(
(DrỸ(t)∗Bi(s, t)Bτ Rk−lr

τ

)∣∣∣∣∣

≤ |DrỸ(t)|L(H)

∣∣∣∣∣
∑
i

Bi(s, t)

∣∣∣∣∣
L(H)

|(−B)1−3κ/2Rk−lr
τ |L(H)

× |Rτ (−B)1/2+2κ |L(H)Tr((−B)−1/2−κ/2)

≤ Cτ−1/2−2κ t−1+3κ/2
k−lr

1

(1 + μ0τ)(k−lr )3κ/2
e−μ̃(T−t),

using Proposition 5.2, Lemma 4.5—since (1 + LGτ)
k−lr ≤ C—Lemma 3.2 and

estimate (34).
The other term is a little more complicated, because we are not able to control
D2G(Ỹ(s)) in H. We proceed as in the estimate of b 2,1

k , and we directly calculate
the trace.

∣∣∣∣∣
∑
i

Tr
(
(DrỸ(s))∗D2Gi(Ỹ(s))BτRk−lr

τ

)
∂iu(T − t, Ỹ(t))

∣∣∣∣∣

≤ |DrỸ(s)|L(H)

∣∣∣∣∣
∑
i

Tr
(
D2Gi(Ỹ(s))BτRk−lr

τ

)
∂iu(T − t, Ỹ(t))

∣∣∣∣∣

≤ |DrỸ(s)|L(H)

∑
i, j

|D2Gi(Ỹ(s)).( f j, f j)|
μ
η

i

μ j

(1 + μ jτ)1+k−lr
μ
η

i |∂iu(T − t, Ỹ(t))|

≤ |DrỸ(s)|L(H)|(−B)ηDu(T − t, Ỹ(t))|H
∑
j

|(−B)−ηD2G(Ỹ(s)).( f j, f j)|

× μ j

(1 + μ jτ)1+k−lr
,

thanks to the Cauchy-Schwarz inequality.
By using the same analysis as in the estimation of b 2,1

k , we see that the above
expression is bounded by

C|DrỸ(s)|L(H)|(−B)ηDu(T − t, Ỹ(t))|H
∑
j

μ j

(1 + μ jτ)1+k−lr
;

but the last sum is equal to Tr(Bτ Rk−lr
τ ), so that we see that indeed the two

expressions in b 2,2,2
k are bounded by the same expression.
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Therefore

|b 2,2,2,2
k |

≤ E

∫ tk+1

tk

∫ t

tk

∫ tk

(tk−T0)∨0
Cτ−1/2−2κ t−1+3κ/2

k−lr

e−μ̃(T−t)

(1 + μ0τ)(k−lr )3κ/2

×
(

1 + 1

(T − t)η

)
(1 + |y|2)drdsdt

≤ C(1 + |y|2)τ 1/2−2κ
∫ tk+1

tk

(
1 + 1

(T − t)η

)
e−μ̃(T−t)dt

∫ tk

0
t−1+3κ/2
k−lr

1

(1 + μ0τ)(k−lr )3κ/2
dr

≤ C(1 + |y|2)τ 1/2−2κ
∫ tk+1

tk

(
1 + 1

(T − t)η

)
e−μ̃(T−t)dt,

as already proved—see Eq. 32.
Now gathering estimates for b 2,2,2,1

k and b 2,2,2,2
k , we obtain

m−1∑
k=1

|b 2,2,2
k | ≤ C(1 + |y|2)τ 1/2−2κ . (43)

3. Estimate of b 2,3
k We have

b 2,3
k = E

∫ tk+1

tk

∫ t

tk

∑
i

< RτG(Yk),DGi(Ỹ(s)) > ∂iu(T − t, Ỹ(t))dsdt

= E

∫ tk+1

tk

∫ t

tk
< Du(T − t, Ỹ(t)),DG(Ỹ(s)).(RτG(Yk)) > dsdt.

Using that G andDG are bounded, we easily see that

|b 2,3
k | ≤ C(1 + |y|2)τ

∫ tk+1

tk
e−μ̃(T−t)dt,

and that

m−1∑
k=1

|b 2,3
k | ≤ C(1 + |y|2)τ. (44)
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4. Estimate of b 2,4
k

We use the integration by parts formula of Lemma 4.4 to get

b 2,4
k =

∫ tk+1

tk

∫ t

tk

∑
i

< DGi(Ỹ(s)), RτdW(s) > ∂iu(T − t, Ỹ(t))dt

= E

∫ tk+1

tk

∫ t

tk
Tr

(
(DsỸ(t))∗D2u(T − t, Ỹ(t))DG(Ỹ(s))Rτ

)
dsdt

= E

∫ tk+1

tk

∫ t

tk
Tr

(
RτD

2u(T − t, Ỹ(t))DG(Ỹ(s))Rτ

)
dsdt,

using the identityDh
s Ỹ(t) = Rτh when tk ≤ s ≤ t ≤ tk+1, as in the estimate of a2,3

k .
Now

|b 2,4
k | ≤ E

∫ tk+1

tk

∫ t

tk
|(Rτ (−B)1/2+κ |L(H)|DG(Ỹ(s))|L(H)|Rτ |L(H)

×|D2u(T − t, Ỹ(t))|L(H)Tr((−B)−1/2−κ)dsdt

≤ C(1 + |y|2)τ 1/2−κ

∫ tk+1

tk

(
1 + 1

(T − t)η

)
e−μ̃(T−t)dt,

and
m−1∑
k=1

|b 2,4
k | ≤ C(1 + |y|2)τ 1/2−κ . (45)

6.3.3 Estimate of bk: conclusion

With Eqs. 41, 42, 43, 44 and 45, we get

m−1∑
k=1

|bk| ≤ Cτ 1/2−2κ . (46)

6.4 Estimate of ck

We have, using the symmetry of Rτ ,

1

2
I − 1

2
Rτ R∗

τ = Rτ (I − Rτ )
∗ + 1

2
(I − Rτ )(I − Rτ )

∗,

and

ck = 1

2
E

∫ tk+1

tk
Tr((I − Rτ R∗

τ )D
2u(T − t, Ỹ(t)))dt

= 1

2
E

∫ tk+1

tk
Tr((I − Rτ )(I − Rτ )

∗D2u(T − t, Ỹ(t)))dt

+E

∫ tk+1

tk
Tr(Rτ (I − Rτ )

∗D2u(T − t, Ỹ(t)))dt

:= c1
k + c2

k.
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6.4.1 Estimate of c1
k

We have, using inequality (40)

|c1
k| ≤

1

2
E

∫ tk+1

tk
Tr((−B)−1/2+κ(I − Rτ )

2(−B)−1/2+κ)

×|(−B)1/2−κD2u(T − t, Ỹ(t))(−B)1/2−κ|L(H)dt

≤ C(1 + |y|2)
∫ tk+1

tk
|(−B)−1/2+3κ(I − Rτ )|L(H)|I − Rτ |L(H)Tr((−B)−1/2−κ)

×
(

1 + 1

(T − t)η
+ 1

(T − t)1−κ

)
e−μ̃(T−t)dt

≤ C(1 + |y|2)τ 1/2−3κ
∫ tk+1

tk

(
1 + 1

(T − t)η
+ 1

(T − t)1−κ

)
e−μ̃(T−t)dt.

Then

m−1∑
k=1

|c1
k| ≤ C(1 + |y|2)τ 1/2−3κ . (47)

6.4.2 Estimate of c2
k

We have, using inequality (40)

|c2
k| ≤ E

∫ tk+1

tk
Tr((−B)−1/2+κRτ (I − Rτ )(−B)−1/2+κ)

× |(−B)1/2−κD2u(T − t, Ỹ(t))(−B)1/2−κ|L(H)dt

≤ C(1 + |y|2)
∫ tk+1

tk
|(−B)−1/2+κ(I − Rτ )(−B)2κ|L(H)Tr((−B)−1/2−κ)

×
(

1 + 1

(T − t)η
+ 1

(T − t)1−κ

)
e−μ̃(T−t)dt

≤ C(1 + |y|2)τ 1/2−3κ
∫ tk+1

tk

(
1 + 1

(T − t)η
+ 1

(T − t)1−κ

)
e−μ̃(T−t)dt.

Then

m−1∑
k=1

|c2
k| ≤ C(1 + |y|2)τ 1/2−3κ . (48)

6.4.3 Estimate of ck: conclusion

With Eq. 47 and 48, we get

m−1∑
k=1

|ck| ≤ C(1 + |y|2)τ 1/2−3κ . (49)
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6.5 Conclusion

We put together estimates (39), (46), (49) and (30); then passing to the limit with
respect to dimension, we get the result.
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