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Abstract A classical result by Alexander Grigor’yan states that on a stochastically
complete manifold non-negative superharmonic L1-functions are necessarily con-
stant. In this paper we construct explicit examples showing that, in the presence of
an anisotropy of the space, the reverse implication does not hold. We also consider
natural geometric situations where stochastically incomplete manifolds do not posses
the above mentioned L1-Liouville property for superharmonic functions.
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1 Introduction

Let (M, g) be an m-dimensional Riemannian manifold. We use the symbol � to
denote the negative-definite Laplace-Beltrami operator of M. Thus, if M = R, � =
+d2/dx2. By a superharmonic function we mean a function u ∈ C0 (M) ∩ W1,2

loc (M)

satisfying �u ≤ 0 in the sense of distributions, namely,

−
∫

M
〈∇u,∇ϕ〉 dv ≤ 0,
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for every 0 ≤ ϕ ∈ W1,2
loc . By reversing the inequality we obtain the notion of subhar-

monic function and by replacing the inequality with an equality we get a harmonic
function. By elliptic regularity, harmonic functions are necessarily smooth.

In general, there is no obstruction for a manifold to support many (super)
harmonic functions. Indeed, according to a theorem due to Greene and Wu [4], any
m-dimensional, non-compact Riemannian manifold can be embedded into R

2m+1 by
harmonic functions. On the other hand, the presence of superharmonic functions
enjoying some special property is intimately related to the geometry of the underly-
ing space. Thus, for instance, if the geodesically complete manifold (M, g) supports
a non-constant, positive superharmonic function then M is non-parabolic and, in
particular,

∫ +∞ r
vol (Br (o))

dr < +∞,

for some origin o ∈ M. Here, Br (o) denotes the geodesic ball of M centered at o and
of radius r > 0. In this spirit one gives the following

Definition 1 A smooth Riemannian manifold (M, g) is said to satisfy the L1-
Liouville property, (shortly, M is L1-Liouville), if every superharmonic function
0 ≤ u ∈ L1 (M) must be constant.

According to a nice result by Alexander Grigor’yan [5], later extended to non-
linear operators modeled on the p-Laplacian (see [7, 11]) in order to understand
whether or not a manifold is L1-Liouville one may simply consider the behavior of its
Green kernel G (x, y). We recall that this latter is the minimal, positive, fundamental
solution of −�.

Theorem 2 The Riemannian manifold (M, g) is L1-Liouville if and only if, for some
(hence any) x ∈ M,

∫
M

G (x, y) dv (y) = +∞.

Note that, in case that M is parabolic, we have G ≡ +∞ and the integrability
condition is trivially satisfied. However, in this case, we already know that positive
superharmonic functions (without any further restriction) must be constant.

In [5], A. Grigor’yan makes a clever use of the equivalence established in Theorem
2 to obtain a neat geometric condition implying the L1-Liouville property. This is
achieved by relating the (non-)integrability of the Green function with a further
stochastic property of the manifold, namely, its stochastic completeness. Recall
that (M, g) is stochastically complete (for the Brownian motion with infinitesimal
generator �) if for some (hence every) x ∈ M,

∫
M

pt (x, y) dv (y) = 1,

where pt (x, y) stands for the heat kernel of M, i.e., the minimal, positive funda-
mental solution of the heat operator � − ∂/∂t. From the probabilistic viewpoint, this
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means that the explosion time of the Brownian motion on M is almost surely infinite.
Recall also that G (x, y) and pt (x, y) are related by

G (x, y) =
∫ +∞

0
pt (x, y) dt.

Therefore, applying Tonelli’s Theorem, from Theorem 2 we immediately deduce

Corollary 3 A stochastically complete manifold is L1-Liouville.

In particular, since a geodesically complete manifold (M, g) is stochastically
complete provided, for some origin o ∈ M,

∫ +∞ r
log (vol (Br (o)))

dr = +∞ (1)

one may conclude the validity of the next

Corollary 4 A geodesically complete Riemannian manifold (M, g) is L1-Liouville
provided the volume growth condition 1 is satisf ied.

So far we have essentially celebrated A. Grigor’yan work on the subject. From the
above discussion, some natural questions arise.

Problems (a) Does the converse of Corollary 3 hold? (b) If not, are there natural
geometric situations where a given (necessarily stochastically incomplete) manifold is
not L1-Liouville? (c) More ambitiously, to what extent and under which conditions
the validity of the L1-Liouville property implies that the manifold is stochastically
complete?

In this paper we address questions (a) and (b). The more ambitious (c) will be the
subject of future investigations.

In the case of a model manifold

Mm
σ = ([0, +∞) × S

m−1, dt2 + σ (t)2 dθ2) ,

it is easy to see that stochastic completeness is in fact equivalent to the L1-Liouville
property. Indeed, the Green’s kernel with pole at o of Mm

σ is given by

G(x, o) = cm

∫ +∞

r

1

σ m−1(t)
dt

so that, interchanging the order of integration,
∫

M
G(x, o)dx = cm

∫ ∞

0
σ m−1(r)dr

∫ ∞

r

1

σ m−1(t)
dt

= cm

∫ +∞

0
dt

∫ t
0 σ m−1(r)dr

σ m−1(t)
,

which shows that the condition for stochastic completeness [6, Proposition 3.2] and
that for the validity of the L1-Liouville property of a model manifold coincide.
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The investigation around these very natural questions would benefit of different
viewpoints on the notion of stochastic completeness. We will make a constant use
of the following equivalent description in the language of maximum principles at
infinity (see [9, 10]).

Theorem 5 A Riemannian manifold (M, g) is stochastically complete if and only if,
for every u ∈ C2 (M) satisfying supM u = u∗ < +∞, there exists a sequence {xk} ⊂ M
along which

(i) u (xk) > u∗ − 1

k
, (ii) �u (xk) <

1

k
.

2 Two Examples

This section is devoted to show that, in general, an L1-Liouville manifold may be
stochastically incomplete. This answers in the negative Problem (a) stated in the
previous section. To this purpose, we begin by constructing an explicit example with
two ends and this will be accomplished in two steps.

First Step Recall that the connected sum M1#M2 of equidimensional Riemannian
manifolds is stochastically incomplete provided either M1 or M2 are stochastically
incomplete. See [1, Lemma 3.1]. This is a very special case of the following general
fact which follows quite easily using the viewpoint of Theorem 5.

Proposition 6 Let (M, g) be a complete manifold and let E1, ..., Ek be the ends of
M with respect to any smooth, compact domain � ⊂ M. Then M is stochastically
complete if and only if, for every j = 1, ..., k, either of the following conditions is
verif ied:

(i) There exists a compact domain Dj together with a diffeomorphism f j : ∂ Dj →
∂ E j such that the gluing Mj = Dj ∪ f j E j is a stochastically complete manifold
(without boundary).

(ii) The Riemannian double D
(
E j

)
is a stochastically complete manifold (without

boundary).

In particular, consider the 2-dimensional model manifolds

M2
σ j

= ([0, +∞) × S
1, dt2 + σ j (t)2 dθ2

)
,

j = 1, 2, where we require

∫ +∞
σ1 (t) dt = +∞

and
∫ +∞ ∫ r

0 σ2 (t) dt

σ2 (r)
dr < +∞.
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The first condition means that M2
σ1

has infinite volume. On the other hand, by a well
known characterization, [6, Proposition 3.2], the second condition is equivalent to
requiring that M2

σ2
be stochastically incomplete. Let

M = M2
σ1

#M2
σ2

where the connected sum is performed using embedded disks D centered at the poles
of the manifolds. By the above considerations, (M, g) is stochastically incomplete. In
particular, M is non-parabolic, therefore, it possesses a Green function G < +∞.

Second Step We now perform a conformal change of the metric g. We define

g̃ = λ2g,

where λ > 0 is any smooth function with the following properties:

(a) Outside a neighborhood of M2
σ1

\D ⊂ M, λ ≡ 1.

(b) Outside a neighborhood of M2
σ2

\D ⊂ M, λ satisfies

λ (t, θ) ≥ 1√
min[t1,t]×S1 Gx0 (x)

,

where x0 is any point in M2
σ2

\D ⊂ M and, without loss of generality, [t1,+∞) ×
S

1 ⊂ M2
σ1

has the original metric dt2 + σ 2
1 (t) dθ2.

Conclusion We claim that M̃ = (M, g̃) is stochastically incomplete and possesses
the L1-Liouville property. Indeed, according to (a), and using Proposition 6, we see
that M̃ is stochastically incomplete. In particular, M̃ is non-parabolic. Actually, since

�g̃ = 1

λ2
�g,

it follows that the Green function G̃ of M̃ satisfies

G̃ = G.

Therefore,
∫

M̃
G̃ (x0, y) dṽ (y) =

∫
M̃

G (x0, y) λ2 (y) dv (y)

≥ lim
t→+∞

∫
[t1,t]×S1⊂M2

σ1

G (x0, y) λ2 (y) dv (y)

≥ C
∫ +∞

t1
σ1 (t) dt

= +∞,

and by Theorem 2 we conclude that the Riemannian manifold M̃ is L1-Liouville.
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Actually, a variation of the above construction allows us to produce an example of
a stochastically incomplete L1-Liouville manifold with only one end. As above, we
start with a 2-dimensional stochastically incomplete model

M2
σ = ([0, +∞) × S

1, g = dr2 + σ (r)2 dθ2
)
,

with σ(r) increasing and diverging to infinity at infinity, and (radial) Green’s function
with pole at o, G(o, x) = G(o, r(x)). We perform the conformal change of metric

g̃ = λ2g

with a conformality factor λ(x) ≥ 1 such that λ(x) = 1 if x = reiθ with −π/2 ≤ θ ≤
π/2 and λ(x) ≥ G(o, r)−1/2 if x = reiθ with r > 1 and 3π/4 ≤ θ ≤ 5π/4. Denoting as
above with a tilde the quantities relative to the conformal metric g̃ and, using again
the fact that G̃(o, x) = G(o, x) and that dṽ = λ2dv = λ2σdrdθ we see that

∫
M̃

G̃(o, x)dṽ ≥
∫

[1,∞)×[3π/4,5π/4]
G

(
o, reiθ ) λ

(
reiθ )2

σ(r)drdθ

≥ π/2
∫ ∞

1
σ(r)dr = +∞,

and M̃ is L1-Liouville. On the other hand, let

vo(r) =
∫ r

0
σ(t)−1

∫ t

0
σ(s)ds dt,

and let v
(
reiθ

) = vo(r) cos(θ). Then v tends to its supremum along the ray rei0 and,
using �̃ = λ−2� and �vo = 1 we deduce that in the region where −π/4 ≤ θ ≤ π/4
and σ(r)2 > 2 sup vo we have

�̃v
(
reiθ ) = 1

λ(reiθ )2

(
�vo(r) cos(θ) − 1

σ(r)2
vo(r) cos(θ)

)
≥

√
2

4
.

Thus v does not satisfy the maximum principle at infinity and M̃ is not stochastically
complete.

The examples above stress the fact that equivalence between stochastic com-
pleteness and the validity of the L1-Liouville property depends very much on the
rotational invariance of the models. In the presence of a strong anisotropy, it is
possible that Brownian motion may explode in finite time in certain directions and
yet the L1-Liouville property holds, due to the fact that the Green’s kernel is big
enough in other regions (or ends of the manifold).

The first example constructed in Section 2 fits very well in this order of ideas. In
fact, inspection of that example shows that the stochastically incomplete end remains
essentially untouched whereas the background metric is conformally modified only
on the end responsible for the validity of the L1-Liouville property.

While, the second example shows that the L1-Liouville property does not imply
even a weak form of stochastic completeness where it is required that at least one of
the ends of the manifold is stochastically complete.
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3 Mean Exit Time and the L1-Liouville Property

As remarked above, stochastic completeness and the L1-Liouville property are
equivalent on models, but, in general, a stochastically incomplete manifold may be
L1-Liouville. We are thus naturally led to investigating general geometric conditions
that guarantee that a given (stochastically incomplete) manifold is not L1-Liouville.
In this section we will focus our attention on curvature conditions both of intrinsic
and of extrinsic nature. In both cases we shall use the notion of “global mean exit
time” that we are going to introduce.

Let (M, g) be a complete Riemannian manifold and let o ∈ M be a fixed reference
point. The mean exit time of the Brownian motion from the ball BR (o) is defined as
the (positive) solution of the Dirichlet problem{

�ER = −1 on BR (o)

ER = 0 on ∂ BR (o) .

Note that ER is a smooth function on BR (o). Moreover, if GR (x, y) denotes the
Dirichlet Green function of BR (o), then, we have the representation formula

ER (x) =
∫

BR(o)

GR (x, y) dv (y) .

Since GR (x, y) ↗ G (x, y) as R ↗ +∞, by monotone convergence we deduce that

ER (x) ↗ E (x) =
∫

M
G (x, y) dv (y) .

We call E (x) the global mean exit time of M. With this terminology and notation, M
is not L1-Liouville if and only if E is a genuine (say, finite) function. In particular,
on a stochastically complete manifold, the global mean exit time must be infinite. On
the other hand, we point out that, according to Section 2, there exist stochastically
incomplete manifolds with infinite global mean exit time, thus showing that, in
general, the global mean exit time does not carry enough information on the
explosion of the Brownian motion because of the possible presence of direction along
which explosion can occur in finite time.

3.1 Intrinsic Curvature Restrictions

We shall prove the following

Theorem 7 Let (M, g) be a complete Riemannian manifold of dimension m with a
pole o. Assume that the distance function r (x) = dM (x, o) satisf ies

�r ≥ (m − 1)
σ ′

σ
, on M (2)

where σ : [0, +∞) → [0, +∞) is the warping function of the m-dimensional model
manifold Mm

σ . If Mm
σ is not L1-Liouville (equivalently, stochastically incomplete) then

M is not L1-Liouville.

Remark 8 Since the model Mm
σ is stochastically incomplete, we already know by

comparison arguments that M itself is stochastically incomplete. See [6] and, e.g.,
[3] where the more general case of weighted manifolds is considered.
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Remark 9 By standard comparison arguments for the Laplacian of the distance
function, condition 2 follows from the radial sectional curvature condition

Secrad (x) ≤ −σ ′′

σ
(r (x)) .

Note that the above result allows us to recover the already noted equivalence of
stochastic completeness and L1-Liouville property of model manifolds.

Proof Define

FR (r) =
∫ R

r

∫ t
0 σ m−1 (s) ds

σ m−1 (t)
dt (3)

and

F (r) =
∫ +∞

r

∫ t
0 σ m−1 (s) ds

σ m−1 (t)
dt. (4)

Since, by assumption, Mm
σ is stochastically incomplete, we have

F (r) < +∞, ∀r.

Direct computations show that the transplanted function FR (r (x)) satisfies
{

�FR ≤ −1 on BR (o)

FR = 0 on ∂ BR (o) .

Therefore, by comparison on bounded domains,

ER (x) ≤ FR (r (x)) on BR,

and letting R → +∞ we conclude

E (x) ≤ F (r (x)) .

This proves that M is not L1-Liouville.

3.2 Minimal Submanifolds

This subsection aims to showing that the L1-Liouville property of a proper minimal
submanifold 
 of a manifold with a pole N depends on the curvature of the ambient
space. In particular, in the case where N is a model with warping function σ , if the
m-dimensional model manifold Mm

σ is not L1-Liouville, and σ satisfies a technical
isoperimetric condition, then 
 is not L1-Liouville. As alluded to above, we shall
use a global mean exit time comparison argument which extends a previous result by
Markovsen, [8] (see also [2]).

Theorem 10 Let f : 
 ↪→ N be an m-dimensional properly immersed minimal sub-
manifold into a complete n-dimensional Riemannian manifold N. Assume that the
sectional curvature of N satisf ies

KN ≤ −G(ρ(y))
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where G is a smooth even function on R and ρ (y) = dN (y, p) denotes the Riemannian
distance function from a f ixed point p ∈ N. Let σ be the solution of the initial value
problem {

σ ′′ = Gσ

σ(0) = 0, σ ′(0) = 1

and assume that

σ ′ ≥ 0

and

t →
∫ t

0 σ m−1

σ m(t)
is non-increasing on (0,+∞). (5)

Then, for every extrinsic ball BN
R centered at p in Nn with radius R < injN(p), the

mean exit time E f −1(BN
R )(x) satisf ies

E f −1(BN
R ) (x) ≤ FR ◦ ρ ◦ f (x) ,

where FR is def ined in Eq. 3. In particular, if injN(p) = +∞, and

t →
∫ t

0 σ m−1

σ m−1
∈ L1(+∞) (6)

then 
 is not L1-Liouville.

Proof Markvorsen [8], obtained the comparison result in the case of constant
curvature reference spaces, which correspond to the choices

σ(t) = t, σ (t) = k−1 sin(kt), σ (t) = k−1 sinh(kt),

with k > 0. Actually, it is possible to extend Markvorsen arguments to the more
general setting of Theorem 10 by using the function

F R (t) = FR ◦ i−1 (t) ,

with

i (t) =
∫ t

0
σ (s) ds.

We are going to exhibit a more straightforward argument which avoids the use of the
auxiliary function F R.

Recall that if f : M → N is an isometric immersion and ϕ : N → R and F : R →
R are smooth, then for every X ∈ Tx M we have

Hess(F ◦ ϕ ◦ f )(X, X) = F ′′(ϕ( f (x)))〈∇Nϕ, df X〉2

+ F ′(ϕ( f (x)))
[
HessNϕ(df X, df X) + 〈∇Nϕ, I I(X, X)〉

]
.

If ϕ = ρ is the distance function, then the assumption on the sectional curvature of
N implies

HessNρ(Y, Y) ≥ σ ′

σ

[〈Y, Y〉 − 〈∇Nρ, Y〉2
]
.
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Thus, assuming that f is minimal and that F ′ ≤ 0 and setting for ease of notation
ρx = ρ( f (x)), we obtain

�(F ◦ ρ ◦ f )(x) ≤ m
(

F ′ σ
′

σ

)
(ρx) +

(
F ′′ − F ′ σ

′

σ

)
(ρx)

m∑
i=1

〈∇Nρ, df Xi〉2,

where {Xi} is an orthonormal basis on Tx M.
Now, if F = FR, then we have

F ′
R(r) = −

∫ r
0 σ m−1 (s) ds

σ m−1 (r)
< 0

and

F ′′
R(r) = −1 − (m − 1)

σ ′

σ
F ′

R,

so substituting,

�(F ◦ ρ ◦ f )(x) ≤ m
(

F ′ σ
′

σ

)
(ρx) −

(
1 + m

σ ′

σ
F ′

R(ρx)

) m∑
i=1

〈∇Nρ, df Xi〉2. (7)

Complete {df Xi}m
i=1 to an orthonormal basis {df Xi}m

i=1 ∪ {X j}n
j=m+1 on T f (x)N, and

note that
∑

i

〈∇Nρ, df Xi〉2 +
∑

j

〈∇Nρ, Y j〉2 = 1. (8)

On the other hand, using assumption (Eq. 5) in the form

σ m−1∫ t
0 σ m−1

≤ m
σ ′

σ
,

we have

m
σ ′

σ
F ′

R = −m
σ ′

σ

∫ t
0 σ m−1 (s) ds

σ m−1 (t)
≤ −1.

Inserting this latter and Eq. 8 into inequality 7 we finally obtain

�(F ◦ ρ ◦ f )(x) ≤ −
∑

i

〈∇Nρ, df Xi〉2 + m
σ ′

σ
F ′

R

∑
j

〈∇Nρ, Y j〉2

≤ −
∑

i

〈∇Nρ, df Xi〉2 −
∑

j

〈∇Nρ, Y j〉2 = −1.

Thus,

�(FR ◦ ρ ◦ f ) ≤ −1 on f −1(B
Ng

R ),

and since both E f −1(BN
R ) and FR ◦ ρ ◦ f vanish on ∂ f −1(BN

R), the first assertion in the
statement follows from the comparison principle.
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The second assertion follows letting R → +∞, so that f −1(BN
R) ↗ M and

ER(x) ↗ E(x), while

FR(r) ↗
∫ +∞

r

∫ t
0 σ m−1 (s) ds

σ m−1 (t)
dt,

and, as seen above, the assumption that Mm
σ is not L1-Liouville amounts to the fact

that the integral on the right hand side is finite.

Note that Eq. 6 amounts to the fact that the m-dimensional model manifold Mm
σ

is not L1-Liouville.
We also remark that, since σ is non-decreasing, for every n ≥ m

∫ R

r

∫ t
0 σ n−1 (s) ds

σ n−1 (t)
dt ≤

∫ R

r

∫ t
0 σ m−1 (s) ds

σ m−1 (t)
dt,

so condition 6 also implies that the n-dimensional model Nn
σ is not L1-Liouville, and

therefore, by Theorem 7 the same holds for the manifold N.

Example 11 For m = 2, an admissible choice of the function σ(r) is given by

σ(r) = r + 4r3er4

which corresponds to

G (r) = 8er4

4r2er4 + 1

(
8r8 + 18r4 + 3

) � r6.

Thus, from Theorem 10, if follows that if 
 is a 2-dimensional, properly immersed,
minimal surface into an n-dimensional Cartan-Hadamard manifold N satisfying

KN ≤ −G(ρ(y))

then 
 is not L1-Liouville.
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