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Abstract Analytic capacity is associated with the Cauchy kernel 1/z and the
L∞-norm. For n ∈ N, one has likewise capacities related to the kernels Ki(x) =
x2n−1

i /|x|2n, 1 ≤ i ≤ 2, x = (x1, x2) ∈ R2. The main result of this paper states that the
capacities associated with the vectorial kernel (K1, K2) are comparable to analytic
capacity.
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The analytic capacity of a compact subset E of the plane is defined by

γ (E) = sup | f ′(∞)|
where the supremum is taken over those analytic functions in C \ E such that
| f (z)| ≤ 1 for all z ∈ C \ E and f ′(∞) = limz→∞ z( f (z) − f (∞)). Sets of zero an-
alytic capacity are exactly the removable sets for bounded analytic functions, as
shown by Ahlfors, and thus γ (E) quantifies the non-removability of E. Early work
on analytic capacity used basically one complex variable methods (see, e.g., [1, 10]
and [33]). Analytic capacity may be written as

γ (E) = sup |〈T, 1〉|, (1)

where the supremum is taken over all complex distributions T supported on E whose
Cauchy potential f = 1/z ∗ T is in the closed unit ball of L∞(C). Expression 1 shows
that analytic capacity is formally an analogue of classical logarithmic capacity, in
which the logarithmic kernel has been replaced by the complex kernel 1/z. This
suggests that real variables techniques could help in studying analytic capacity, in
spite of the fact that the Cauchy kernel is complex. In fact, significant progress in the
understanding of analytic capacity was achieved when real variables methods were
systematically used ([3, 6, 16, 17, 27] and [30]), in particular the Calderón-Zygmund
theory of the Cauchy singular integral.

Recall that for a Borel set E with finite length, 0 < H1(E) < ∞, David and Léger
(see [13]) proved that the L2(H1|E)−boundedness of the singular integral associated
with the Cauchy kernel (or even with one of its coordinate parts x1/|x|2, x2/|x|2, x =
(x1, x2) ∈ R2) implies that E is rectifiable. We recall that a set in R2 is rectifiable if it is
contained, up to an H1-negligible set, in a countable union of 1-dimensional Lipschitz
graphs. In [4] we extended this result to any kernel of the form x2n−1

i /|x|2n, i = 1, 2,
n ∈ N, providing the first non-trivial examples of operators not directly related to the
Cauchy transform whose L2−boundedness implies rectifiability.

In this paper we introduce capacities associated with these kernels. For n ≥ 1,
write x = (x1, x2) ∈ R2 and consider the kernels

K1(x) = x2n−1
1 /|x|2n and K2(x) = x2n−1

2 /|x|2n. (2)

For compact sets E ⊂ R2, we define

γn(E) = sup |〈T, 1〉|,
the supremum taken over those real distributions T supported on E such that for
i = 1, 2, the potentials Ki ∗ T are in the unit ball of L∞(R2).

We will show that the above defined capacity is comparable to analytic capacity,
that is,

Theorem 1 There exists some positive constant C such that for all compact sets
E ⊂ R2,

C−1γn(E) ≤ γ (E) ≤ Cγn(E).

The main motivation to study these capacities is getting a better understanding of
the relation between the operators whose L2−boundedness implies rectifiability and
the comparability of analytic capacity and the capacities related to the kernels of such
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operators. It is worth to mention that if one considers the kernel k(x1, x2) = x1x2
2/|x|4,

then the comparability result between analytic capacity and the capacity related to
the kernel k does not hold. See Section 1.1 for more details.

For our second main result, we turn to the higher dimensional setting. Motivated
by the paper [15], we set n = 1 and consider capacities in Rd, associated with the
kernels xi/|x|2, 1 ≤ i ≤ d.

For a compact E ⊂ Rd set

�(E) = sup {|〈T, 1〉|} ,

where the supremum is taken over those real distributions T supported on E such

that the vector field
x

|x|2 ∗ T is in the unit ball of L∞(Rd, Rd). Notice that, for d = 2,

due to [27], �(E) is comparable to the analytic capacity γ (E) . Finally, for 1 ≤ k ≤ d,
set

�k̂(E) = sup
{
|〈T, 1〉| :

∥∥∥∥ xi

|x|2 ∗ T

∥∥∥∥∞
≤ 1, 1 ≤ i ≤ d, i �= k

}
. (3)

Thus we require the boundedness of d − 1 components of the vector valued poten-
tial x/|x|2 ∗ T with Riesz kernel of homogeneity −1.

In the plane, an easy complex argument (see [15]) shows that

γ (E) ≈ �k̂(E), k = 1, 2. (4)

However in higher dimensions, this is an open question and indeed very little is
known about these capacities �k̂. The reason why �k̂ is difficult to understand in
higher dimensions is that boundedness of d − 1 potentials does not provide any linear
growth condition on the distribution T. Concretely, it is not true that boundedness
of xi/|x|2 ∗ T, 1 ≤ i ≤ d − 1, implies that for each cube Q one has

|〈T, ϕQ〉| ≤ Cl(Q), (5)

for each test function ϕQ ∈ C∞
0 (Q) satisfying ‖ϕQ‖∞ ≤ 1 and ‖∇ϕQ‖∞ ≤ l(Q)−1. See

Section 5 of [15] for some examples of such phenomenon. Here l(Q) stands for the
side length of Q.

In [15] it was shown that the capacities �k̂(E) are finite. Moreover, the following
higher dimensional version of Eq. 4 was also shown: for d ≥ 3,

�(E) ≈ �k̂(E), 1 ≤ k ≤ d, (6)

assuming an extra growth condition on the definition of the capacities �k̂(E).
Naturally, the following open question appeared: is it true that Eq. 6 holds without
any growth condition on the definition of �k̂(E)?

Our next result deals with this question and answers it in the affirmative sense,
replacing the capacity �k̂, 1 ≤ k ≤ d, by the capacity �k̂,+, which is a version of �k̂ in
the sense that one replaces the real distributions in Eq. 3 by positive measures. It is
defined as follows, given a compact set E ⊂ Rd,

�k̂,+(E) = sup μ(E),

the supremum taken over those positive measures μ supported on E such that the
potentials μ ∗ xi/|x|2, 1 ≤ i ≤ d, i �= k, are in the unit ball of L∞(Rd).
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Theorem 2 There exists some positive constant C such that for all compact sets
E ⊂ Rd

C−1�k̂,+(E) ≤ �(E) ≤ C�k̂,+(E).

The paper is organized as follows, Section 1.1 contains some examples of ca-
pacities that are not comparable to analytic capacity. In Section 1.2 we present a
sketch of the proof of Theorem 1. It becomes clear that the proof depends on two
facts: the close relationship between the quantities one obtains after symmetrization
of the kernels 1/z and x2n−1

i /|x|2n, i = 1, 2, and a localization L∞ estimate for the
scalar kernels x2n−1

i /|x|2n. In Section 2 we deal with the symmetrization issue and in
Section 3 with the localization estimate. In Section 4 we show an exterior regularity
property of γn needed for the proof of Theorem 1. In Section 5 we prove Theorem 2.
Finally, in Section 6 we present various additional results.

1 Preliminaries

1.1 Some Capacities that are Not Comparable to Analytic Capacity

Let K be some Calderón-Zygmund kernel of homogeneity −1 and consider its
associated capacity γK which is defined as follows: for a compact set E ⊂ R2,

γK(E) = sup{|〈T, 1〉|},
the supremum taken over all distributions supported on the set E and such that K ∗ T
is an L∞− function with ‖K ∗ T‖∞ ≤ 1.

As we already stated in the Introduction, we are interested in characterizing
which are the homogeneous Calderón-Zygmund kernels whose related capacity
is comparable to the analytic capacity γ . We are as well interested in the open
problem of fully characterizing the homogeneous Calderón-Zygmund operators
whose boundedness in L2(H1|E) implies the rectifiability of E (see [13, 17] and
[4]). We think that both characterizations are deep problems in the area as even
the candidate classe of “reasonable” kernels for the problems is far from clear.
The relation between the two problems is illustrated in the Proposition 3 below.
As a consequence, Corollary 5 shows that for some Calderón-Zygmund kernels, the
capacities related to them are not comparable to analytic capacity.

Proposition 3 Let E ⊂ R2 be a compact set with H1(E) < ∞. Let K be some
Calderón-Zygmund kernel of homogeneity −1 and SK its associated Calderón-
Zygmund operator. If γK(E) ≈ γ (E) and SK : L2(H1|E) → L2(H1|E), then E is not
purely unrectif iable.

Proof Let F ⊂ E be such that H1(F) > 0 and H1|F has linear growth. Set μ = H1|F.
From the L2(μ)−boundedness of SK, we get that each SK is of weak type (1, 1)

with respect to μ. This follows from the standard Calderón-Zygmund theory if
the measure is doubling and by an argument from [22] in the general case. By a
standard dualization process (see [7], [5, Theorem 23], [31] and [18]) we get that for
each compact set G ⊂ F with 0 < μ(G) < ∞, there exists a function h supported



Capacities Associated with Calderón-Zygmund Kernels 917

on G, 0 ≤ h ≤ 1, such that
∫

G
hdμ ≥ Cμ(G) and ‖SK(hdμ)‖∞ = ‖K ∗ hdμ‖∞ ≤ 1.

Therefore γK(E) > 0 and γ (E) > 0 as well. Then by [6], E is not purely unrectifiable
(recall that a set E is purely unrectifiable if the intersection of E with any curve of
finite length has zero 1-dimensional Hausdorff measure). ��

From Proposition 3 we obtain the following corollary:

Corollary 4 Let K be some Calderón-Zygmund kernel of homogeneity −1 and SK its
associated Calderón-Zygmund operator. Suppose γK ≈ γ . If E ⊂ R2 is a compact set
with H1(E) < ∞ and SK is bounded in L2(H1|E), then E is rectif iable.

Proof If E were not rectifiable, then taking a purely unrectifiable compact subset
F ⊂ E with H1(F) > 0 and using that, by Proposition 3, γK(F) ≈ γ (F), we would get
that F is not purely unrectifiable, a contradiction. ��

In [12], it is shown that there exist homogeneous kernels, such as H(x1, x2) = x1x2
2

|x|4 ,
x = (x1, x2) ∈ R2, whose corresponding singular integrals are L2-bounded on purely
unrectifiable sets. We consider now the capacity related to this kernel H, namely γH .
As a consequence of Proposition 3 we obtain the following corollary

Corollary 5 There exists some compact set E ⊂ R2 with γ (E) = 0 and γH(E) > 0.

It is worth saying that Huovinen’s method does not work for the kernels we are
considering in Eq. 2, namely his construction does not give a purely unrectifiable set
when changing the kernel H by the kernels in Eq. 2.

1.2 Sketch of the Proof of Theorem 1

In this section we will sketch the proof of the two inequalities appearing in the
statement of Theorem 1. The first one is the following, for a compact set E ⊂ R2,

γn(E) ≤ C γ (E). (7)

For the proof of this inequality we need to introduce the Cauchy transform with
respect to an underlying positive Radon measure μ satisfying the linear growth
condition

μ(B(x, r)) ≤ C r, x ∈ R
2, r ≥ 0. (8)

Given ε > 0 we define the truncated Cauchy transform at level ε as

Cε( f μ)(z) =
∫

|w−z|>ε

f (w)

w − z
dμ(w), z ∈ R

2, (9)

for f ∈ L2(μ). For a finite measure μ, the growth condition on μ insures that each
Cε is a bounded operator on L2(μ) with operator norm ‖Cε‖L2(μ) possibly depending
on ε. We say that the Cauchy transform is bounded on L2(μ) when the truncated
Cauchy transforms are uniformly bounded on L2(μ). Call L(E) the set of positive
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Radon measures supported on E which satisfy Eq. 8 with C = 1 . One defines the
capacities γop(E) and γ+(E) by

γop(E) = sup{μ(E) : μ ∈ L(E) and ‖C‖L2(μ) ≤ 1},

γ+(E) = sup{μ(E) : μ ∈ L(E) and ‖1
z

∗ μ‖∞ ≤ 1}.

Clearly γ+(E) ≤ γ (E). The deep result in [27] asserts that in fact γ+(E) is comparable
to the anality capacity of E. In [26], it was proved that the capacitiy γ+(E) is
comparable to γop(E), that is, for some positive constant C one has

C−1 γop(E) ≤ γ+(E) ≤ C γop(E), (10)

for each compact set E ⊂ R2. We remind the reader that the first inequality in Eq. 10
depends on a simple but ingenious duality argument due to Davie and Øksendal
(see [7, p. 139], [5, Theorem 23, p. 107] and [32, Lemma 4.2]).

From the first inequality in Eq. 10 we get that for some constant C and all compact
sets E,

γop(E) ≤ C γ (E).

To prove Eq. 7 we will estimate γn(E) by a constant times γop(E). The natural way
to perform that is to introduce the capacity γn,op(E) and check the validity of the two
estimates

γn(E) ≤ C γn,op(E) (11)

and

γn,op(E) ≤ C γop(E). (12)

To define γn,op, first we introduce the truncated transform Sn,ε( f μ)(x) associated
with the vectorial kernel K = (K1, K2) with Ki(x) = x2n−1

i /|x|2n, i = 1, 2, as in Eq. 9,
but with the Cauchy kernel replaced by the vector valued kernel K just defined. We
also set

‖Sn‖L2(μ) = sup
ε>0

‖Sn,ε‖L2(μ),

and

γn,op(E) = sup{μ(E) : μ ∈ L(E) and ‖Sn‖L2(μ) ≤ 1 }.
One proves Eq. 12 by checking that the symmetrization of the Cauchy kernel is

controlled by the symmetrization of kernel K (see Lemma 6 and Corollary 9). In fact,
we prove in Corollary 8 that for a positive measure μ having linear growth, the L2(μ)

boundedness of the Cauchy transform is equivalent to the L2(μ) boundedness of the
operators Sn. Therefore, the capacities γn,op(E) and γop(E) are comparable. Here the
fact that we are dealing with kernels of homogeneity −1 plays a key role, because, as
it is shown by Farag in [9], they enjoy a special positivity property which is missing in
general. See Section 2 for complete details.

The proof of Eq. 11 depends on Tolsa’s proof of γ (E) ≤ C γop(E). One of the
technical points that we need to prove in our setting is a localization result for the
potentials we deal with in this case, namely for the potentials associated with the
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kernels Ki, i = 1, 2. Specifically, in Section 3 we prove that there exists a positive
constant C such that, for each compactly supported distribution T and for each
coordinate i, we have∥∥∥∥∥

x2n−1
i

|x|2n
∗ ϕQT

∥∥∥∥∥∞
≤ C

(∥∥∥∥∥
x2n−1

i

|x|2n
∗ T

∥∥∥∥∥∞
+ G(T)

)
(13)

for each square Q and each ϕQ ∈ C∞
0 (Q) satisfying ‖ϕQ‖∞ ≤ 1 and ‖∇ϕQ‖∞ ≤

l(Q)−1. Here G(T) is some constant related to the linear growth of T (see Section 3
for a definition).

Once Eq. 13 is at our disposition, we claim that inequality (Eq. 11) can be proved
by adapting the scheme of the proof of Theorems 1.1 in [27] and 7.1 in [28]. As
Lemma 16 shows, the capacities γn, n ∈ N, enjoy the exterior regularity property.
This is also true for the capacities γn,+, defined by

γn,+(E) = sup

{
μ(E) :

∥∥∥∥∥
x2n−1

j

|x|2n
∗ μ

∥∥∥∥∥∞
≤ 1, j = 1, 2

}
,

just by the weak � compactness of the set of positive measures with total variation not
exceeding 1. Therefore we can approximate a general compact set E by sets which
are finite unions of squares of the same side length in such a way that the capacities γn

and γn,+ of the approximating sets are as close as we wish to those of E. As in Eq. 10,
one has, using the Davie-Øksendal Lemma for several operators [18, Lemma 4.2],

C−1 γn,op(E) ≤ γn,+(E) ≤ C γn,op(E).

Thus we can assume, without loss of generality, that E is a finite union of squares
of the same size. This will allow to implement an induction argument on the size of
certain rectangles. The first step involves rectangles of diameter comparable to the
side length of the squares whose union is E.

The starting point of the general inductive step in [27] and [28] consists in the
construction of a positive Radon measure μ supported on a compact set F which
approximates E in an appropriate sense. The set F is defined as the union of a special
family of squares {Qi}N

i=1 that cover the set E and approximate E at an appropriate
intermediate scale. One then sets

F =
N⋃

i=1

Qi.

The construction of the approximating set F implies that γn,+(F) ≤ C γn,+(E). This
part of the proof extends without any obstruction to our case because of the positivity
properties of the symmetrization of our kernels (see Section 2). To construct the
measure μ, observe that the definition of γn(E) gives us a real distribution S0

supported on E such that

(1) γn(E) ≤ 2|〈S0, 1〉|.
(2)

∥∥∥∥∥
x2n−1

j

|x|2n
∗ S0

∥∥∥∥∥∞
≤ 1, 1 ≤ j ≤ 2.

Consider now functions ϕi ∈ C∞
0 (2Qi), 0 ≤ ϕi ≤ 1, ‖ϕi‖∞ ≤ 1 and ‖∇ϕi‖∞ ≤

l(Qi)
−1 and

∑N
i=1 ϕi = 1 on

⋃
i Qi. We define now simultaneously the measure μ and
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an auxiliary measure ν, which should be viewed as a model for S0 adapted to the
family of squares {Qi}N

i=1. For each square Qi take a concentric segment 	i of length
a small fixed fraction of γn(E ∩ 2Qi) and set

μ =
N∑

i=1

H1
|	i

and ν =
N∑

i=1

〈S0, ϕi〉
H1(	i)

H1
|	i

.

We have dν = bdμ, with b = 〈ϕi, ν0〉
H1(	i)

on 	i. At this point we need to show that our

function b is bounded, to apply later a suitable T(b) Theorem. To estimate ‖b‖∞ we
use the localization inequalities (Eq. 13). Thus, |〈S0, ϕi〉| ≤ C γn(2Qi ∩ E), for 1 ≤
i ≤ N. It is now easy to see that γn(E) ≤ C μ(F):

γn(E) ≤ 2 |〈S0, 1〉| = 2

∣∣∣∣∣
N∑

i=1

〈S0, ϕi〉
∣∣∣∣∣ ≤ C

N∑
i=1

γn(2Qi ∩ E) = C μ(F).

Notice that the construction of F and μ gives readily that γn(E) ≤ C μ(F), and
γn,+(F) ≤ C γn,+(E), which tells us that F is not too small but also not too big.
However, one cannot expect the operator Sn to be bounded on L2(μ). One has to
carefully look for a compact subset G of F such that μ(F) ≤ C μ(G), the restriction
μG of μ to G has linear growth and Sn is bounded on L2(μG) with dimensional
constants. This completes the proof because then

γn(E) ≤ C μ(F) ≤ C μ(G) ≤ C γn,op(G) ≤ C γn,op(F)

≤ C γn,+(F) ≤ C γn,+(E) ≤ C γn,op(E).

We do not insist in summarizing the intricate details, which can be found in [27] and
[28], of the definition of the set G and of the application of the T(b) Theorem of [23].

The second inequality in Theorem 1 is

γ (E) ≤ Cγn(E). (14)

Since by [27], γ (E) ≈ γop(E), and as we mentioned above we have

γop(E) ≤ Cγn,op(E), (15)

we get that γ (E) ≤ Cγop(E) ≤ Cγn,op(E). The duality arguments used to prove the
first inequality in Eq. 10 can also be used in our setting, therefore γn,op(E) ≤
Cγn,+(E) holds. Finally, by definition, γn,+(E) ≤ γn(E). This shows how Eq. 14 in
Theorem 1 can be proved.

2 Symmetrization Process and L2−boundedness

The symmetrization process for the Cauchy kernel introduced in [20] has been
succesfully applied to many problems of analytic capacity and L2 boundedness of
the Cauchy integral operator (see [17, 21, 27], and the book [24], for example). In
the recent paper [4], the symmetrization method was also used to give the first non-
trivial examples of operators not directly related to the Cauchy transform whose
L2−boundedness implies rectifiability.
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Given three distinct points in the plane, z1, z2 and z3, one finds out, by an
elementary computation that

c(z1, z2, z3)
2 =

∑
σ

1

(zσ(1) − zσ(3))(zσ(2) − zσ(3))
(16)

where the sum is taken over the permutations of the set {1, 2, 3} and c(z1, z2, z3) is
Menger curvature, that is, the inverse of the radius of the circle through z1, z2 and z3.
In particular Eq. 16 shows that the sum on the right hand side is a non-negative
quantity.

In R2 and for 1 ≤ i ≤ 2 the quantity

pi(z1, z2, z3) = Ki(z1 − z2) Ki(z1 − z3) + Ki(z2 − z1) Ki(z2 − z3)

+Ki(z3 − z1) Ki(z3 − z2),

is the obvious analogue of the right hand side of Eq. 16 for the kernel Ki(x) =
x2n−1

i /|x|2n. In [4] it was shown that for any three distinct points z1, z2, z3 ∈ R2, the
quantities pi(z1, z2, z3), 1 ≤ i ≤ 2, are also non negative and they vanish if and only
if the three points are colinear.

The relationship between the quantity pi(z1, z2, z3), 1 ≤ i ≤ 2, and the L2 es-
timates of the operator with kernel x2n−1

i /|x|2n is as follows. Take a compactly
supported positive Radon measure μ in R2 with linear growth. Given ε > 0 consider
the truncated transform Ti

ε(μ) of μ associated with the kernel Ki, as in Section 1.2.
Then we have (see in [21] the argument for the Cauchy integral operator)

∣∣∣∣
∫

|Ti
ε(μ)(x)|2 dμ(x) − 1

3
pi,ε(μ)

∣∣∣∣ ≤ C‖μ‖,

C being a positive constant depending only on n and the linear growth constant of μ,
and

pi,ε(μ) =
∫∫∫

Sε

pi(x, y, z) dμ(x) dμ(y) dμ(z),

with

Sε = {(x, y, z) : |x − y| > ε, |x − z| > ε and |y − z| > ε}.

It is worth saying now that for n = 1 and i = 1, 2, pi(z1, z2, z3) = 1
2

c(z1, z2, z3)
2.

For n > 1, it is in general not true that pi(z1, z2, z3), i = 1, 2, is comparable to
Menger curvature c(z1, z2, z3)

2. The next two lemmas show that the sum of the
above defined permutations, p1(z1, z2, z3) + p2(z1, z2, z3) is comparable to Menger
curvature, c(z1, z2, z3)

2.

Lemma 6 There exists a constant c1 = c1(n), such that for all distinct points z1, z2,

z3 ∈ R2,

p1(z1, z2, z3) + p2(z1, z2, z3) ≥ c1c(z1, z2, z3)
2.
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Proof It suffices to prove the claim for any triple (0, z, w), z �= w ∈ R2 \ {0}. For any
line L denote by θV(L) and θH(L) the smallest angle that L forms with the vertical
and horizontal axes respectively. Then at least two of the angles,

θV(L0,z), θV(L0,w), θV(Lz,w)

or at least two of the angles

θH(L0,z), θH(L0,w), θH(Lz,w)

are greater or equal than π/4. Without loss of generality we can assume that

θV(L0,z) ≥ π

4
and θV(L0,w) ≥ π

4
. (17)

Now let θ = θV(Lz,w). Let c be some very small constant, depending on n, that will
be chosen later.

Case 1 θ ≥ c.

As in Lemma 2.3 in [4], we have that for z = (x, y) and w = (a, b),

p1(0, z, w) ≥ n
( |x|

|z|
)2n−2 ( |a|

|w|
)2n−2 ( |x − a|

|z − w|
)2n−2 sin2(z, w)

|z − w|2 . (18)

By Eq. 17 we have that

|x|
|z| >

1
2
,

|a|
|w| >

1
2

(19)

and by the assumption in this case,

|x − a|
|z − w| ≥ sin c.

Furthermore,

c(0, z, w) = 2 sin(z, w)

|z − w| .

By Eq. 18,

p1(0, z, w) ≥ c1c(0, z, w)2,

for some positive constant c1 depending on n.

Case 2 θ < c.

In this case, notice that by Eq. 19,∣∣|x| − |a|∣∣ ≤ |x − a| = |z − w| sin θ ≤ |z| sin θ + |w| sin θ

≤ 2|x| sin θ + 2|a| sin θ.

Hence,

1 − 2 sin θ

1 + 2 sin θ
|a| ≤ |x| ≤ 1 + 2 sin θ

1 − 2 sin θ
|a|



Capacities Associated with Calderón-Zygmund Kernels 923

and since θ < c and c will be chosen very small, it follows that

|a|
2

≤ |x| ≤ 2|a|. (20)

Combining Eqs. 20 and 19 we obtain that

|w|
4

≤ |z| ≤ 4|w|. (21)

Expanding p1(0, z, w) we get

p1(0, z, w) = x2n−1a2n−1

|z|2n|w|2n
+ (x − a)2n−1

|z − w|2n

(
x2n−1

|z|2n
− a2n−1

|w|2n

)

= A + B,

where the last equality is a definition for A and B. Since

|x2n−1 − a2n−1| ≤ |x − a| (|x|2n−2 + |x|2n−3|a| + · · · + |x||a|2n−3 + |a|2n−2) ,

then by Eq. 20,

|x2n−1 − a2n−1| ≤ (2n − 1)22n−2|x − a||x|2n−2. (22)

Arguing in the same way and using Eq. 21 we obtain∣∣|w|2n − |z|2n
∣∣

|z|2n|w|2n
≤ 8n 42n−1

∣∣|z| − |w|∣∣
|w|2n+1 . (23)

Notice that

x2n−1

|z|2n
− a2n−1

|w|2n
= x2n−1 − a2n−1

|z|2n
+ a2n−1

(
1

|z|2n
− 1

|w|2n

)
.

Therefore from Eqs. 22 and 23 we get

|B| ≤ (sin θ)2n−1

|z − w|

(
(2n − 1)22n−2|x − a||x|2n−2

|z|2n
+ 8n 42n−1

∣∣|z| − |w|∣∣|a|2n−1

|w|2n+1

)

≤ (sin θ)2n−1
(

(2n − 1)22n−2

|z|2 + 8n 42n−1

|w|2
)

≤ (sin θ)2n−1
(

16n42n−1

|w|2
)

.

On the other hand, by Eqs. 19 and 21,

|A| =
( |x|

|z|
)2n−1 ( |a|

|w|
)2n−1 1

|w||z| ≥
(

1
4

)2n 1
|w|2

Therefore choosing c ≤ 1
104n

we obtain that

p1(0, z, w) ≥ 1
2

(
1
4

)2n 1
|w|2 .

Since it follows easily that c(0, z, w) ≤ 2
|w| , the proof is complete. ��
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Lemma 7 There exists a positive constant C = C(n) such that for all distinct points
z1, z2, z3 ∈ R2,

pi(z1, z2, z3) ≤ C c(z1, z2, z3)
2, 1 ≤ i ≤ 2.

Proof Without loss of generality fix i = 1. Since p1 is translation invariant, it is
enough to estimate the permutations p1(0, z, w) for any two distinct points z = (x, y),
w = (a, b) ∈ R2 \ {0} such that

|z| ≤ |z − w| and |w| ≤ |z − w|. (24)

As shown in Proposition 2.1 in [4],

p1(0, z, w) = A(z, w)

|z|2n|w|2n|z − w|2n
, (25)

where

A(z, w) =
n∑

k=1

(
n
k

)
x2(n−k)a2(n−k)(x − a)2(n−k) Fk(z, w) (26)

and

Fk(z, w) = x2k−1a2k−1(y − b)2k + x2k−1(x − a)2k−1b 2k − a2k−1(x − a)2k−1 y2k.

Notice also that

(xb − ay)2 = |z|2|w|2 sin2(z, w) = 1
4
|z|2|w|2|z − w|2c(0, z, w)2. (27)

Case 1 a = 0.

In this case, notice that Fn(z, w) = x4n−2b 2n and all sumands in Eq. 26 are zero,
apart from the last one. Therefore, using Eqs. 27 and 24,

p1(0, z, w) = x4n−4b 2n−2

|z|2n|w|2n|z − w|2n
x2b 2

= 1
4

|z|2|w|2|z − w|2x4n−4b 2n−2

|z|2n|w|2n|z − w|2n
c(0, z, w)2

≤ 1
4

|x|2n−2

|z − w|2n−2 c(0, z, w)2 ≤ 1
4

c(0, z, w)2.
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Case 2 a �= 0 and b �= 0.

Let t = x/a and s = y/b . Then Fk can be rewritten as follows

Fk(z, w)

a4k−2b 2k
=

( x
a

)2k−1 ( y
b

− 1
)2k +

( x
a

)2k−1 ( x
a

− 1
)2k−1 −

( x
a

− 1
)2k−1 ( y

b

)2k

= t2k−1(s − 1)2k + t2k−1(t − 1)2k−1 − (t − 1)2k−1s2k

= P(s, t),

the last identity being the definition of the polynomial P(s, t). Then, for some
polynomial Q(s, t),

P(s, t) = (s − t)2 Q(s, t),

because if we consider P as a polynomial of the variable s with parameter t , i.e.
Pt(s) := P(s, t), we obtain easily that

Pt(t) = P′
t(t) = 0.

It is also immediate to check that the degree of P is 4k − 2 and the smallest degree
of the monomials of P is 2k.

Therefore

Q(s, t) =
4k−4∑

l+l′=2k−2

cl,l′ tlsl′ .

By Eqs. 27 and 24, for each 1 ≤ k ≤ n,

|Fk(z, w)| =
∣∣∣a4k−4b 2k−2(xb − ay)2 Q

( x
a
,

y
b

)∣∣∣
= 1

4
|a|4k−4|b |2k−2|z|2|w|2|z − w|2c(0, z, w)2

∣∣∣Q
( x

a
,

y
b

)∣∣∣
≤ C(n)|a|4k−4|b |2k−2 |z|2|w|2|z − w|2 c(0, z, w)2

4k−4∑
l+l′=2k−2

∣∣∣ x
a

∣∣∣l ∣∣∣ y
b

∣∣∣l′

= C(n)|z|2|w|2|z − w|2c(0, z, w)2
4k−4∑

l+l′=2k−2

|a|4k−4−l|b |2k−2−l′ |x|l|y|l′

≤ C(n)|z|2|w|2|z − w|2c(0, z, w)2
4k−4∑

l+l′=2k−2

|w|6k−6−(l+l′)|z|l+l′

= C(n)|z|2k|w|2k|z − w|2 c(0, z, w)2
4k−4∑

l+l′=2k−2

|w|4k−4−(l+l′)|z|l+l′−2k+2

≤ C(n)|z|2k|w|2k|z − w|2 c(0, z, w)2
4k−4∑

l+l′=2k−2

|z − w|4k−4−(l+l′)+l+l′−2k+2

≤ C(n)|z|2k|w|2k|z − w|2k c(0, z, w)2.
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Then, from Eq. 25 we conclude that

p1(0, z, w) =
n∑

k=1

(
n
k

)
x2(n−k)a2(n−k)(x − a)2(n−k)

|z|2n|w|2n|z − w|2n
Fk(z, w)

≤ C(n)

( |x|
|z|

)2n ( |a|
|w|

)2n ( |x − a|
|z − w|

)2n

c(0, z, w)2
n∑

k=1

(
n
k

)

≤ C(n) c(0, z, w)2.

Case 3 b = 0.

In this case Fk(z, w) = a2k−1 y2k(x2k−1 − (x − a)2k−1). Hence by Eq. 27

F1(z, w) = a2 y2 = 1
4
|z|2|w|2|z − w|2c(0, z, w)2. (28)

For 1 < k ≤ n, by using Eq. 27 again,

Fk(z, w) = a2k−1 y2k(x2k−1 − (x − a)2k−1)

= a2 y2a2k−3 y2k−2(x2k−1 − (x − a)2k−1)

= 1
4
|z|2|w|2|z − w|2c(0, z, w)2a2k−3 y2k−2

2k−2∑
j=0

(
2k − 1

j

)
x ja2k−1− j.

And using Eq. 24 we estimate,

|Fk(z, w)| ≤ C(n)c(0, z, w)2|z|2|w|2|z − w|2|w|2k−3|z|2k−2
2k−2∑

j

|z| j|w|2k−1− j

≤ C(n)c(0, z, w)2|z|2k|w|2k|z − w|2
2k−1∑
j=0

|z| j|w|2k−2− j

= C(n)c(0, z, w)2|z|2k|w|2k|z − w|2
2k−1∑
j=0

|z − w| j|z − w|2k−2− j

≤ C(n)c(0, z, w)2|z|2k|w|2k|z − w|2k.

The previous estimate combined with Eq. 28 implies that for 1 ≤ k ≤ n

|Fk(z, w)| ≤ C(n)c(0, z, w)2|z|2k|w|2k|z − w|2k.

Therefore, from Eq. 25 we derive that

p1(0, z, w) ≤ C(n) c(0, z, w)2

in an identical manner to case 1. ��

From these two lemmas and the relationship between the symmetrization method
and the L2-norm we obtain the following:
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Corollary 8 Let Sn be the operator associated with the vectorial kernel K = (K1, K2),
with Ki = x2n−1

i /|x|2n, n ∈ N and 1 ≤ i ≤ 2. If μ is a compactly supported positive
measure in the plane having linear growth, the Cauchy transform of μ is bounded
on L2(μ) if and only if Sn is bounded on L2(μ).

We state now inequalities 12 and 15, because they are immediate consequences of
the preceding corollary.

Corollary 9 There exists a positive constant C such that for any compact set E ⊂ R2,

C−1 γop(E) ≤ γn,op(E) ≤ C γop(E).

It is worth to mention that for n = 1, it was proven in [15] that Corollary 8 remains
valid if the operator S1 is replaced by one of its coordinates, S1

1 or S2
1, (here Si

1 is the
operator with kernel xi/|x|2, i = 1, 2).

3 Growth Conditions and Localization

We need the following reproduction formula for the kernels Ki(x) = x2n−1
i /|x|2n:

Lemma 10 If a function f (x) has continuous derivatives up to order one, then it is
representable in the form

f (x) = (ϕ1 ∗ K1)(x) + (ϕ2 ∗ K2)(x), x ∈ R
2, (29)

where for i = 1, 2,

ϕi = Si(∂i f ) := c∂i f + S̃i(∂i f ), (30)

for some constant c and Calderón-Zygmund operators S̃1 and S̃2.

The proof of Lemma 10 is a consequence of the following two lemmas:

Lemma 11 For m ≥ 0,

m∑
k=0

(−1)k 22k k!
(2k + 1)!(m − k)! = 1

(2m + 1) m! .

Proof We will show that

m∑
k=0

(−1)k
(

m
k

)
ak = 1

2m + 1
, (31)

where

ak = (2k k!)2

(2k + 1)! .

Notice that Eq. 31 is equivalent to saying that the binomial transform of the
sequence ak is 1/(2m + 1) (see [11]). Since the binomial transform is an involution of
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sequences, Eq. 31 is equivalent to regaining the original sequence am by the inversion
formula

am =
m∑

k=0

(−1)k
(

m
k

)
1

2k + 1
. (32)

To prove this identity, consider the Newton binomial formula

(1 − x)m =
m∑

k=0

(−1)k
(

m
k

)
xk

and multiply on both sides by x−1/2. Integration between 0 and 1 gives now
∫ 1

0
(1 − x)mx−1/2dx = 2

m∑
k=0

(−1)k
(

m
k

)
1

2k + 1
.

Recall that ∫ 1

0
(1 − x)mx−1/2dx = B

(
1
2
, m + 1

)
,

B(x, y) being the beta function. Since it is easily seen that

B
(

1
2
, m + 1

)
= 2

(2m m!)2

(2m + 1)! = 2am,

Eq. 32 follows. ��

The next lemma computes the Fourier transform of the kernel Ki = x2n−1
i /|x|2n,

1 ≤ i ≤ 2, n ≥ 1, by using Lemma 11.

Lemma 12 For n ≥ 1, 1 ≤ i ≤ 2,

K̂i(ξ) = c
ξi

|ξ |2n
p(ξ1, ξ2), (33)

where p(ξ1, ξ2) is a homogeneous polynomial of degree 2n − 2 with no non-vanishing
zeros.

Proof Without loss of generality fix i = 1. For n ≥ 1, let En be the fundamental
solution of the n−th power �n of the Laplacian in the plane, that is

En(x) = |x|−(2−2n)(α + β log |x|2), (34)

for some positive constants α and β depending on n (see [2]). Notice that, since
�n En = δ0, then

̂(∂2n−1
1 En)(ξ) = c

ξ 2n−1
1

|ξ |2n

for some constant c. We will show that for some positive coefficients b 2m, 0 ≤ m ≤
n − 1,

(∂2n−1
1 En)(x) = c

x1

|x|2n

n−1∑
m=0

b 2mx2m
1 x2(n−1−m)

2 . (35)
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Notice that Eq. 33 follows from this fact.
To compute ∂2n−1

1 En, we will use the following formula from [14]:

L(∂)En =
n−1∑
ν=0

1
2ν ν! �ν L(x)

(
1
r

∂

∂r

)2n−1−ν

En(r), (36)

where r = |x| and L(x) = x2n−1
1 . First notice that for 0 ≤ ν ≤ n − 1, we have

�ν(x2n−1
1 ) =

(
2n − 1

2ν

)
(2ν)! x2n−2ν−1

1 ,

and for 0 ≤ k ≤ n − 1, one can check

(
1
r

∂

∂r

)n+k

En(r) = 2n(n − 1)! (−1)k 2k k!
r2+2k

.

Plugging these, with k = n − 1 − ν, into Eq. 36 we get

∂2n−1
1 En(x) = 22n−1(n − 1)! x1

r2n

n−1∑
ν=0

aν x2(n−ν−1)
1 r2ν, (37)

where

aν = (2ν)!
22ν ν!

(
2n − 1

2ν

)
(−1)n−ν−1 (n − 1 − ν)!.

We claim that the homogeneous polynomial of degree 2n − 2 appearing in Eq. 37,

p(x1, x2) =
n−1∑
ν=0

aν x2(n−ν−1)
1 r2ν, (38)

has positive coefficients. To prove this, write r2 = x2
1 + x2

2. Then

p(x) =
n−1∑
ν=0

aν x2(n−ν−1)
1 (x2

1 + x2
2)

ν

=
n−1∑
ν=0

ν∑
k=0

aν

(
ν

k

)
x2(n−ν+k−1)

1 x2(ν−k)
2 =

n−1∑
m=0

b 2mx2m
1 x2(n−1−m)

2 ,

where for 0 ≤ m ≤ n − 1,

b 2m =
m+1∑
k=1

an−k

(
n − k

m + 1 − k

)

= (2n − 1)!
22n (n − m − 1)!

m∑
k=0

(−1)k 22k k!
(2k + 1)! (m − k)! .
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Applying now Lemma 11, we get that for 0 ≤ m ≤ n − 1,

b 2m = (2n − 1)!
22n (n − m − 1)!

1
(2m + 1) m! > 0,

which completes the proof of Eq. 35 and the lemma. ��

Proof of Lemma 10 By Lemma 12, taking the Fourier transform in Eq. 29 is equiva-
lent to

f̂ (ξ) = ϕ̂1(ξ)
ξ1

|ξ |2
p(ξ1, ξ2)

|ξ |2n−2 + ϕ̂2(ξ)
ξ2

|ξ |2
p(ξ2, ξ1)

|ξ |2n−2 ,

where p is some homogeneous polynomial of degree 2n − 2 with no non-vanishing
zeros.

Define the operator R1 associated with the kernel

r̂1(ξ1, ξ2) = p(ξ1, ξ2)

|ξ |2n−2 .

One defines also R2, associated with r2, where r2 is given by r̂2(ξ1, ξ2) = r̂1(ξ2, ξ1).

Since p is a homogeneous polynomial of degree 2n − 2, it can be decomposed as

p(ξ1, ξ2) =
n−1∑
j=0

p2 j(ξ1, ξ2)|ξ |2n−2−2 j,

where p2 j are homogeneous harmonic polynomials of degree 2 j (see [25, Sec-
tion 3.1.2 p. 69]). Therefore, the operators Ri, 1 ≤ i ≤ 2, can be written in the form

Ri f = af + p. v.
�(x/|x|)

|x|2 ∗ f, (39)

for some constant a and � ∈ C∞(S1) with zero average. Consequently, by [8, Theo-
rem 4.15, p. 82], the operators Ri, 1 ≤ i ≤ 2, are invertible and the inverse operators,
say Si, 1 ≤ i ≤ 2, have the same form, namely the operators Si, associated with the
kernels si, 1 ≤ i ≤ 2, defined by

ŝ1(ξ) = |ξ |2n−2

p(ξ1, ξ2)
and ŝ2(ξ) = |ξ |2n−2

p(ξ2, ξ1)
,

can be written as in Eq. 39, too. Therefore, setting

ϕi = Si(∂i f ),

for 1 ≤ i ≤ 2, finishes the proof of Lemma 10. ��
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Observe that for a compactly supported distribution T with bounded Cauchy
potential

|〈T, ϕQ〉| =
∣∣∣∣
〈
T,

1
πz

∗ ∂ϕQ

〉∣∣∣∣ =
∣∣∣∣
〈

1
πz

∗ T, ∂ϕQ

〉∣∣∣∣

≤ 1
π

∥∥∥∥1
z

∗ T

∥∥∥∥∞
‖∂ϕQ‖L1(Q) ≤ 1

π

∥∥∥∥1
z

∗ T

∥∥∥∥∞
l(Q),

whenever ϕQ satisfies ‖∂ϕQ‖L1(Q) ≤ l(Q).

In our present case we do have a similar growth condition: if T is a compactly sup-
ported distribution with bounded potentials K1 ∗ T and K2 ∗ T, then by Lemma 10

|〈T, ϕQ〉| = ∣∣〈T, K1 ∗ S1(∂1ϕQ) + K2 ∗ S2(∂2ϕQ)
〉∣∣

≤ ∣∣〈K1 ∗ T, S1(∂1ϕQ)
〉∣∣ + ∣∣〈K2 ∗ T, S2(∂2ϕQ)

〉∣∣
≤ ‖K1 ∗ T‖∞ ‖S1(∂1ϕQ)‖L1(R2) + ‖K2 ∗ T‖∞ ‖S2(∂2ϕQ)‖L1(R2)

≤ (‖K1 ∗ T‖∞ + ‖K2 ∗ T‖∞) l(Q), (40)

whenever ϕQ satisfies

‖Si(∂iϕQ)‖L1(R2) ≤ l(Q), for i = 1, 2. (41)

The next lemma states a sufficient condition for a test function to satisfy condi-
tions 41.

Lemma 13 Let 1 < q0 < ∞ and assume that fQ is a test function supported on the
square Q satisfying,

‖∂i fQ‖Lq0 (Q) ≤ l(Q)2/q0−1, for 1 ≤ i ≤ 2.

Then,

‖Si(∂i fQ)‖L1(R2) ≤ Cl(Q) for 1 ≤ i ≤ 2.

Proof Without loss of generality fix i = 1. Let p0 be the dual exponent to q0. By
Hölder’s inequality and the fact that the operator S1 is bounded in Lq0(R2), 1 < q0 <

∞, we get

‖S1(∂1 fQ)‖L1(2Q) ≤ Cl(Q)2/p0‖S1(∂1 fQ)‖Lq0 (R2)

≤ Cl(Q)2/p0‖∂1 fQ‖Lq0 (Q)

≤ Cl(Q).

To estimate the L1 norm outside 2Q, notice first that since ∂1 fQ is supported on
Q, by Eq. 30,

‖S1(∂1 fQ)‖L1((2Q)c) = ‖S̃1(∂1 fQ)‖L1((2Q)c).
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Integrating by parts to take one derivative to the kernel K of S̃1 and then using Fubini
we obtain

‖S1(∂1 fQ)‖L1((2Q)c) = C
∫

(2Q)c
|
∫

Q
∂1 fQ(z)K(z − y) dz| dy

= C
∫

(2Q)c
|
∫

Q
fQ(z)∂1 K(z − y) dz| dy

≤ C‖ fQ‖L1(Q) l(Q)−1

≤ C
∫

|∇ fQ|,

the last estimate coming from the Cauchy-Schwarz inequality, together with a well
known result of Maz’ya (see [19, Section 1.1.4, p. 15] and [19, Section 1.2.2, p. 24])
stating that

‖ fQ‖2 ≤ C
∫

|∇ fQ|.

Now Hölder’s inequality together with ‖∂i fQ‖Lq0 (Q) ≤ l(Q)2/q0−1, 1 ≤ i ≤ 2, gives the
desired estimate, namely

‖S1(∂1 fQ)‖L1((2Q)c) ≤ Cl(Q).

��

Fix 1 < q0 < 2. We say that a distribution T has linear growth if

G(T) = sup
ϕQ

|〈T, ϕQ〉|
l(Q)

< ∞,

where the supremum is taken over all ϕQ ∈ C∞
0 (Q) satisfying the normalization

inequalities

‖∂iϕQ‖Lq0 (Q) ≤ 1, for 1 ≤ i ≤ 2. (42)

Notice that from Eq. 40 and Lemma 13, if T is a compactly supported distribution
with bounded potentials k1 ∗ T and k2 ∗ T, then T has linear growth.

We now state the localization lemma we need.

Lemma 14 Let T be a compactly supported distribution in R2 with linear growth
such that (x2n−1

i /|x|2n) ∗ T is in L∞(R2) for some n ∈ N and 1 ≤ i ≤ 2. Let Q be
a square and assume that ϕQ ∈ C∞

0 (Q) satisf ies ‖ϕQ‖∞ ≤ C and ‖∇ϕQ‖∞ ≤ l(Q)−1.
Then (x2n−1

i /|x|2n) ∗ ϕQT is in L∞(R2) and

∥∥∥∥∥
x2n−1

i

|x|2n
∗ ϕQT

∥∥∥∥∥∞
≤ C

(∥∥∥∥∥
x2n−1

i

|x|2n
∗ T

∥∥∥∥∥∞
+ G(T)

)
,

for some positive constant C.
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For the proof we need the following result.

Lemma 15 Let T be a compactly supported distribution in R2 with linear growth
and assume that Q is a square and ϕQ ∈ C∞

0 (Q) satisf ies ‖ϕQ‖∞ ≤ 1 and ‖∇ϕQ‖∞ ≤
l(Q)−1. Then, for each coordinate i, the distribution (x2n−1

i /|x|2n) ∗ ϕQT is an inte-
grable function in the interior of 1

4 Q and

∫
1
4 Q

∣∣∣∣∣
(

x2n−1
i

|x|2n
∗ ϕQT

)
(y)

∣∣∣∣∣ dy ≤ C G(T) l(Q)2,

where C is a positive constant.

Proof of Lemma 15 The proof of this lemma follows the lines of Lemma 13 in [15],
although now the growth conditions we have are different from the ones in [15]
(see Eq. 42). We write the proof for the sake of completeness.

Without loss of generality set i = 1 and write K1(x) = x2n−1
1 /|x|2n. We will prove

that K1 ∗ ϕQT is in Lp0(2Q) where p0 is the dual exponent of q0 (see Eq. 42).
Therefore we need to estimate the action of K1 ∗ ϕQT on functions ψ ∈ C∞

0 (2Q)

in terms of ‖ψ‖q0 . We clearly have

〈K1 ∗ ϕQT, ψ〉 = 〈T, ϕQ(K1 ∗ ψ)〉.
We claim that, for an appropriate positive constant C, the test function

ϕQ(K1 ∗ ψ)

C l(Q)
2

p0
−1‖ψ‖q0

(43)

satisfies the normalization inequalities 42 in the definition of G(T). Once this is

proved, by the definition of G(T) we get that |〈K1∗ϕQT, ψ〉|≤C l(Q)
2

p0 ‖ψ‖q0 G(T),

and therefore ‖K1 ∗ ϕQT‖Lp0 (2Q) ≤ C l(Q)
2

p0 G(T). Hence

1
| 1

4 Q|
∫

1
4 Q

|(K1 ∗ ϕQT)(x)| dx ≤ 16
1

|Q|
∫

Q
|(K1 ∗ ϕQT)(x)| dx

≤ 16
(

1
|Q|

∫
Q

|(K1 ∗ ϕQT)(x)|p0 dx
) 1

p0

≤ C G(T),

which proves Lemma 15.
By Lemma 13, to prove the claim we only have to show that for 1 ≤ i ≤ 2,

‖∂i
(
ϕQ (K1 ∗ ψ)

) ‖Lq0 (Q) ≤ C ‖ψ‖q0 .

Clearly, for 1 ≤ i ≤ 2, we have

∂i
(
ϕQ (K1 ∗ ψ)

) = ϕQ ∂i(K1 ∗ ψ) + ∂iϕQ (K1 ∗ ψ) = A + B,

where the last identity is the definition of A and B.
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To estimate the Lq0 -norm of B we recall that |K1(x)| ≤ C |x|−1. Hence, for
1 ≤ i ≤ 2,

‖∂iϕQ (K1 ∗ ψ)‖Lq0 (Q) ≤ C ‖∂iϕQ‖∞
(∫

Q

(∫
2Q

|ψ(y)|
|x − y|dy

)q0

dx
)1/q0

≤ C‖ψ‖q0 ,

where the last inequality comes from Schur’s Lemma applied to the operator
with kernel K(x, y) = |x − y|−1χ2Q(x)χ2Q(y) and the fact that ‖∂iϕQ‖∞ ≤ l(Q)−1,
1 ≤ i ≤ 2 . We therefore conclude that ‖B‖q0 ≤ C‖∂iϕQ (K1 ∗ ψ)‖q0 ≤ C ‖ψ‖q0 .

We turn now to the term A. We remark that, for 1 ≤ i ≤ 2,

∂i K1 ∗ ψ = c ψ + S(ψ), (44)

where S is a smooth homogeneous convolution Calderón-Zygmund operator and
c some constant. This can be seen by computing the Fourier transform of ∂i K1

and then using that each homogeneous polynomial can be decomposed in terms
of homogeneous harmonic polynomials of lower degrees (see [25, Section 3.1.2
p. 69]). Since Calderón-Zygmund operators are bounded in Lq0(R2), 1 < q0 < ∞,
and ‖ϕQ‖∞ ≤ C, we get that ‖A‖q0 ≤ C ‖ψ‖q0 . This completes the estimate of term
A and the proof of Eq. 43. ��

Proof of Lemma 14 Here we argue as in Lemma 12 in [15]. We write the proof for
the sake of completeness. Without loss of generality take i = 1. Let x ∈ R2 \ 3

2 Q.

Then K1(x − y) ϕQ(y) is in C∞
0 (Q) as a function of y. Since for all y ∈ R2, |∂i(K1(x −

y) ϕQ(y))| ≤ C l(Q)−2, 1 ≤ i ≤ 2, the function c l(Q) K1(x − y) ϕQ(y) satisfies the
normalization conditions 42 for some small constant c. Therefore

|(K1 ∗ ϕQT)(x)| = |〈T, K1(x − ·) ϕQ〉| ≤ c−1 G(T),

for all x ∈ R2 \ 3
2 Q. We are now left with the case x ∈ 3

2 Q. Since K1 ∗ T and ϕQ are
bounded functions, we can write

|(K1 ∗ ϕQT)(x)| ≤ |(K1 ∗ ϕQT)(x) − ϕQ(x)(K1 ∗ T)(x)| + ‖ϕQ‖∞‖K1 ∗ T‖∞.

Let ψQ ∈ C∞
0 (R2) be such that ψQ ≡ 1 in 2Q, ψQ ≡ 0 in (4Q)c, ‖ψQ‖∞ ≤ C and

‖∇ψQ‖∞ ≤ C l(Q)−1. Then one is tempted to write

|(K1 ∗ ϕQT)(x) − ϕQ(x)(K1 ∗ T)(x)| ≤ |〈T, ψQ(ϕQ − ϕQ(x))K1(x − ·)〉|

+ ‖ϕQ‖∞|〈T, (1 − ψQ)K1(x − ·)〉|.

The problem is that the first term on the right hand side above does not make any
sense because T is acting on a function of y which is not necessarily differentiable
at the point x. To overcome this difficulty one needs to resort to a standard regular-
ization process. Take χ ∈ C∞(B(0, 1)) such that

∫
χ = 1 and set χε(x) = ε−2 χ(x/ε).
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It is enough to prove that χε ∗ K1 ∗ ϕQT is uniformly bounded, since χε ∗ K1 ∗ ϕQT
converges weakly to K1 ∗ ϕQT in the distributinal sense, as ε → 0. We have

|(χε ∗ K1 ∗ ϕQT)(x) − ϕQ(x)(χε ∗ K1 ∗ T)(x)|

≤ |〈T, ψQ(ϕQ − ϕQ(x))(χε ∗ K1)(x − ·)〉|

+ ‖ϕQ‖∞|〈T, (1 − ψQ)(χε ∗ K1)(x − ·)〉|

= A1 + A2.

To deal with term A1 set Kx
1,ε(y) = (χε ∗ K1)(x − y). We claim that, for an appropri-

ate small constant c, the test function

fQ = c l(Q)ψQ(ϕQ − ϕQ(x))Kx
1,ε,

satisfies the normalization inequalities 42 in the definition of G(T), with ϕQ replaced
by fQ and Q by 4Q. If this is the case, then

A1 ≤ c−1l(Q)−1|〈T, fQ〉| ≤ C G(T).

To prove the normalization inequalities 42 for the function fQ we have to show
that for 1 ≤ i ≤ 2,

‖∂i fQ‖Lq0 (4 Q) ≤ Cl(Q)2/q0−1. (45)

To prove Eq. 45 we first notice that the regularized kernel χε ∗ K1 satisfies the
inequality

|(χε ∗ K1)(x)| ≤ C
|x| , x ∈ R

2 \ {0}, (46)

where C is a positive constant, which, in particular, is independent of ε. This can
be proved by standard estimates which we omit. Moreover, by Eq. 44, for 1 ≤ i ≤ 2,
we have

(χε ∗ ∂i K1)(x) = c χε(x) + (χε ∗ S)(x),

where S is a smooth homogeneous convolution Calderón-Zygmund operator. As
such, its kernel H satisfies the usual growth condition |H(x)| ≤ C/|x|2. From this
is not difficult to show that for some positive constant C,

|(χε ∗ S)(x)| ≤ C
|x|2 , x ∈ R

2 \ {0}. (47)
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We have, for 1 ≤ i ≤ 2,

∂i
(
ψQ(ϕQ − ϕQ(x))k1,x

ε

) = ψQ (ϕQ − ϕQ(x))∂i k1,x
ε + ∂i(ψQ(ϕQ − ϕQ(x))) k1,x

ε .

Therefore

‖∂i fQ‖Lq0 (4Q) ≤ Cl(Q)

(∫
4Q

|ψQ(y) (ϕQ(y) − ϕQ(x)) ∂ik1,x
ε (y)|q0 dy

) 1
q0

+ Cl(Q)

(∫
4Q

|∂i
(
ψQ(ϕQ − ϕQ(x)

)
k1,x

ε (y)|q0 dy
) 1

q0

= A11 + A12.

Using Eq. 46 one obtains

A12 ≤ Cl(Q)
1

l(Q)

(∫
4Q

|(k1,x
ε )(y)|q0 dy

) 1
q0 ≤ Cl(Q)

2
q0

−1
.

To estimate A11 we resort to Eq. 47 and the fact that q0 < 2, which yields

A11 = Cl(Q)

(∫
4Q

|ψQ(y)(ϕQ(y) − ϕQ(x))∂ik1,x
ε (y)|q0 dy

) 1
q0

≤ Cl(Q)‖∇ϕQ‖∞
(∫

4Q

dy
|y − x|q0

dy
) 1

q0 ≤ Cl(Q)
2

q0
−1

.

We now turn to A2. By Lemma 15, there exists a Lebesgue point of K1 ∗ ϕQT,
x0 ∈ Q, such that |(K1 ∗ ψQT)(x0)| ≤ C G(T). Then

|(K1 ∗ (1 − ψQ)T)(x0)| ≤ C (‖K1 ∗ T‖∞ + G(T)).

The analogous inequality holds as well for the regularized potentials appearing in
A2, for ε small enough and with constants independent of ε. Therefore

A2 ≤ C |〈T, (1 − ψQ)(k1,x
ε − k1,x0

ε )〉| + C (‖K1 ∗ T‖∞ + G(T)).

To estimate |〈T, (1 − ψQ)(k1,x
ε − k1,x0

ε )〉|, we decompose R2 \ {x} into a union of
rings

N j = {z ∈ R
2 : 2 j l(Q) ≤ |z − x| ≤ 2 j+1 l(Q)}, j ∈ Z,

and consider functions ϕ j in C∞
0 (R2), with support contained in

N∗
j = {z ∈ R

2 : 2 j−1 l(Q) ≤ |z − x| ≤ 2 j+2 l(Q)}, j ∈ Z,
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such that ‖ϕ j‖∞ ≤ C and ‖∇ϕ j‖∞ ≤ C (2 j l(Q))−1, and
∑

j ϕ j = 1 on R2 \ {x}. Since
x ∈ 3

2 Q the smallest ring N∗
j that intersects (2Q)c is N∗

−3. Therefore we have

|〈T, (1 − ψQ)(k1,x
ε − k1,x0

ε )〉| =
∣∣∣∣∣∣
〈

T,
∑
j≥−3

ϕ j(1 − ψQ)(k1,x
ε − k1,x0

ε )

〉∣∣∣∣∣∣

≤
∣∣∣∣∣∣
〈

T,
∑
j∈I

ϕ j(1 − ψQ)(k1,x
ε − k1,x0

ε )

〉∣∣∣∣∣∣

+
∑
j∈J

|〈T, ϕ j(k1,x
ε − k1,x0

ε )〉|,

where I denotes the set of indices j ≥ −3 such that the support of ϕ j intersects 4Q
and J the remaining indices, namely those j ≥ −3 such that ϕ j vanishes on 4Q. Notice
that the cardinality of I is bounded by a positive constant.

Set

g = C l(Q)
∑
j∈I

ϕ j(1 − ψQ) (k1,x
ε − k1,x0

ε ),

and for j ∈ J

g j = C 22 j l(Q) ϕ j (k1,x
ε − k1,x0

ε ).

We now show that the test functions g and g j, j ∈ J, satisfy the normalization
inequalities 42 in the definition of G(T) for an appropriate choice of the (small)
constant C . Once this is available, using the linear growth condition of T we obtain

|〈T, (1 − ψQ)(k1,x
ε − k1,x0

ε )〉| ≤ Cl(Q)−1|〈T, g〉|

+ C
∑
j∈J

(22 jl(Q))−1|〈T, g j〉|

≤ C G(T) + C
∑
j≥−3

2− j G(T) ≤ C G(T),

which completes the proof of Lemma 14.
Checking the normalization inequalities for g and g j is easy. First notice that the

support of g is contained in a square λ Q for some universal constant λ. On the other
hand the support of g j is contained in 2 j+2 Q. By Lemma 13, we have to show that
for 1 ≤ i ≤ 2, and some 1 < q0 < ∞,

‖∂ig‖Lq0 (λ Q) ≤ Cl(Q)2/q0−1, (48)

and for j ∈ J,

‖∂ig j‖Lq0 (2 j+2 Q) ≤ C(2 jl(Q))2/q0−1. (49)
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To show Eq. 48 we take ∂i in the definition of g, apply Leibnitz’s formula and
estimate in the supremum norm each term in the resulting sum. We get

‖∂ig‖∞ ≤ C l(Q)

1∑
k=0

1
l(Q)k

1
l(Q)2−k

= C
1

l(Q)
,

which yields Eq. 48 immediately.
For Eq. 49, applying a gradient estimate, we get

‖∂ig j‖∞ ≤ C 22 j l(Q)

1∑
k=0

1
(2 j l(Q))k

l(Q)

(2 j l(Q))2+1−k
= C

1
2 j l(Q)

,

which yields Eq. 49 readily. ��

4 Outer Regularity

In what follows, we will show that the capacities γn are outer regular.

Lemma 16 Let {Ek}k be a decreasing sequence of compact sets in R2, with intersection
the compact set E ⊂ R2. Then γn(E) = lim

k→∞
γn(Ek).

Proof The limit limk→∞ γ 1
n (Ek) clearly exists and limk→∞ γn(Ek) ≥ γn(E). To prove

the converse inequality, let Tk be a distribution supported on Ek such that, for 1 ≤
i ≤ 2, f i

k = Ki ∗ Tk is in the unit ball of L∞(R2) and

γn(Ek) − 1
k

< |〈Tk, 1〉| ≤ γn(Ek).

By taking a subsequence if necessary, we may assume that, for 1 ≤ i ≤ 2, f i
k converges

weakly ∗ in L∞(R2) to some function f i such that ‖ f i‖∞ ≤ 1.
We will show that Tk converges to some distribution T such that T ∗ K1 and T ∗

K2 are also in the unit ball of L∞(R2). Then

γn(E) ≥ 〈T, 1〉 = lim
k→∞

〈Tk, 1〉 = lim
k→∞

γn(Ek),

and we will be done.
Let us first check that the limit of {Tk}k exists in the topology of distributions. This

is equivalent to saying that, for any ϕ ∈ C∞
c (R2), the limit limk→∞〈Tk, ϕ〉 exists. Using

the reproducing formula 29, we deduce that

〈Tk, ϕ〉 = 〈Tk, S1(∂1ϕ) ∗ K1 + S2(∂2ϕ) ∗ K2〉
= 〈Tk ∗ K1, S1(∂1ϕ)〉 + 〈Tk ∗ K2, S2(∂2ϕ)〉,

which is convergent, since by Lemma 13, Si(∂iϕ) ∈ L1(R2), 1 ≤ i ≤ 2, and f i
k = Tk ∗

K1, 1 ≤ i ≤ 2, is weak * convergent in L∞(R2).
To see that, for 1 ≤ i ≤ 2, T ∗ Ki is in the unit ball of L∞(R2), we take a radial

function χ ∈ C∞(R2),
∫

χ = 1, supported in the unit ball and, as usual, we denote
χε(x) = ε−2χ(ε−1x). Then it is enough to prove that χε ∗ T ∗ Ki is in the unit ball
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of L∞(R2) for all ε > 0. This follows easily: denoting Kε
i = χε ∗ Ki, for each x ∈ R2,

we have

Tk ∗ Kε
i (x) = 〈Tk, Kε

i (x − ·)〉.
Notice moreover that ‖Tk ∗ Kε

i ‖∞ = ‖χε ∗ (Tk ∗ Ki)‖∞ ≤ 1. Now, let ψ0 ∈ C∞
c (R2) be

such that it equals 1 in the 1-neighborhood of E, so that Tk = ψ0 Tk for k big enough.
Then

Tk ∗ Kε
i (x) = 〈ψ0 Tk, Kε

i (x − ·)〉 = 〈Tk, ψ0 Kε
i (x − ·)〉,

which converges to 〈T, ψ0 Kε
i (x − ·)〉 = 〈T, Kε

i (x − ·)〉 = T ∗ Kε
i (x) as k → ∞. Since

|Tk ∗ Kε
i (x)| ≤ 1 for all k, we deduce that |T ∗ Kε

i (x)| ≤ 1 as wished, too. ��

5 Proof of Theorem 2

For the proof of Theorem 2, recall the following result from [15]:

Theorem 17 [15] For a compact set E ⊂ Rd,

�(E) ≈ sup μ(E), (50)

the supremum taken over those positive measures μ supported on E with linear growth
such that for 1 ≤ i ≤ d, i �= k, the potentials xi

|x|2 ∗ μ are in L∞(μ) with
∥∥ xi

|x|2 ∗ μ
∥∥∞ ≤ 1.

Notice that the only difference between Eq. 50 and Theorem 2 is the extra linear
growth condition required on the positive measure μ. Hence, to prove Theorem 2, we
have to get rid of this growth condition and still mantain the comparability between
the capacities. Below, in Lemma 20, we show that if we are given a positive measure
supported on E with

∥∥ xi
|x|2 ∗ μ

∥∥∞ ≤ 1 for i �= k, 1 ≤ i ≤ d, then this measure grows
linearly in a big piece of its support E. Thus Theorem 2 holds.

For a Borel measure μ, the curvature of μ, which was introduced in [20], is the
nonnegative number c2(μ) defined by

c2(μ) =
∫∫∫

c(x, y, z)2dμ(x)dμ(y)dμ(z),

where c(x, y, z) is the inverse of the radius of the circumcircle of the triangle (x, y, z),
that is the Menger curvature of the triple (x, y, z) (see Section 2).

The following result, that will be needed in what follows, is a version of
[26, Lemma 5.2] for Rd. Its proof uses the curvature theorem of G. David and Léger
[13, Proposition 1.2].

Lemma 18 Let μ be some Radon measure supported on B(x0, R), with

�∗
μ(x) = lim sup

r→0

μ(B(x, r))
r

≤ 1 for μ -a.e. x ∈ R
d.

If c2(μ) ≤ C2 μ(B(x0, R)), then μ(B(x0, R)) ≤ MR, where M is some constant de-
pending only on C2.
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From the preceding lemma we get the following.

Lemma 19 Let μ be a f inite Borel measure supported on a ball B(x0, R). Suppose that

�1
μ(x) = lim

r→0

μ(B(x, r))
r

= 0 for μ-a.e. x ∈ Rd.

Then,

(
μ(B(x0, R))

R

)2

≤ c1
c2(μ)

μ(B(x0, R))
, (51)

for some absolute constant c1.

Proof Consider the measure μ̃ =
(

‖μ‖
c2(μ)

)1/2
μ. Notice that

c2(μ̃) =
( ‖μ‖

c2(μ)

)3/2

c2(μ) = ‖μ̃‖.

Applying Lemma 18 to μ̃ with C2 = 1, we infer that there exists an absolute constant
M such that μ̃(B(x0, R)) ≤ MR, and thus

μ(B(x0, R)) ≤ M
(

c2(μ)

μ(B(x0, R))

)1/2

R,

which is equivalent to Eq. 51, with c1 = M2. ��

Remark For x, y, z ∈ Rd set Ki(x) = xi/|x|2, 1 ≤ i ≤ d, and let

pi(x, y, z) = Ki(x − y) Ki(x − z) + Ki(y − x) Ki(y − z) + Ki(z − x) Ki(z − y).

Given any subset of d − 1 elements of {1, 2, · · · , d}, Sd−1, we define, for a positive
measure μ (without atoms, say),

p(μ) =
∑

i∈Sd−1

∫∫∫
pi(x, y, z) dμ(x) dμ(y) dμ(z).

Due [15, Corollary 2 and Theorem 4], Lemma 18 also holds in Rd when replacing
the Menger curvature by the permutations associated with any set of d − 1 compo-
nents of the vectorial kernel x/|x|2 in Rd. Therefore we recover Lemmas 18 and 19
with c2(μ) replaced by p(μ).

Given M > 0, we say that a ball B = B(x, r) is non M-Ahlfors (or simply, a non
Ahlfors ball) if

�μ(B) := μ(B)

r
> M.
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Lemma 20 Let μ be a positive measure on Rd such that
∥∥ xi

|x|2 ∗ μ
∥∥∞ ≤ 1, for i ∈ Sd−1.

Let Aμ

M ⊂ Rd be the union of all non M-Ahlfors balls. If M is big enough, then

μ(Aμ

M) ≤ 1
2

μ(Rd).

Proof Let ϕ be a non negative radial C∞ function supported on B(0, 1) with L1 norm
equal to 1, and denote ϕt(x) = t−nϕ(x/t), for t > 0. Observe that for i ∈ Sd−1, the
measure μt = ϕt ∗ μ satisfies∥∥∥∥ xi

|x|2 ∗ μt

∥∥∥∥∞
=

∥∥∥∥ϕt ∗
(

xi

|x|2 ∗ μ

)∥∥∥∥∞
≤ 1.

Moreover, �1
μt

(x) = 0 for every x ∈ Rd and μt has linear growth with some constant
depending on t (since the density of μt is a C∞ function with compact support), and
thus,

p(μt)=3
∑

i∈Sd−1

∥∥∥∥ xi

|x|2 ∗ μt

∥∥∥∥
2

L2(μt)

≤ 3
∑

i∈Sd−1

∥∥∥∥ xi

|x|2 ∗ μt

∥∥∥∥
2

∞
μt(R

d) ≤ 3(d − 1) ‖μ‖. (52)

For t > 0, denote

Aμ

M,t =
⋃

B ball:�μ(B)≥M
r(B)≥t

B.

Notice that if r(B) ≥ t, then μt(2B) ≥ μ(B) and thus �μt (2B) ≥ �μ(B)/2. Then by
the preceding remark, if B is one of the balls appearing in the union that defines
Aμ

M,t,

p(μt�2B) ≥ c−1
1

M2

4
μt(2B) ≥ c−1

1
M2

4
μ(B). (53)

By the 5r-covering lemma, there exists a family of non M-Ahlfors balls (for μ),
B j, j ∈ I, such that the balls 2B j are disjoint, and

Aμ

M,t ⊂
⋃
j∈I

10B j.

Moreover, the balls B j can be taken so that aB j is an M-Ahlfors ball for each a ≥ 2
(just by considering maximal balls in the union that defines Aμ

M,r). So we have

μ(10B j) ≤ 10M r(B j) ≤ 10 μ(B j).

Then, by Eqs. 53 and 52,

μ(Aμ

M,t) ≤
∑
j∈I

μ(10B j) ≤ 10
∑
j∈I

μ(B j) ≤ 40 c1

M2

∑
j∈I

p(μt�2B j)

≤ 40 c1

M2 p(μt) ≤ 120(d − 1) c1

M2 ‖μ‖.

So if M is chosen big enough, μ(Aμ

M,t) ≤ μ(Rd)/2, and letting t → 0, the lemma
follows. ��
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Remark Lemmas 19 and 20 also hold in R2 replacing Menger curvature by the
permutations of the kernel x2n−1

i /|x|2n, 1 ≤ i ≤ 2, n ≥ 1, and the kernel xi/|x|2 by
the kernel x2n−1

i /|x|2n, respectively, because in [4] we proved David-Léger’s theorem
with these permutations instead of the usual curvature.

6 Some Remarks on Related Capacities

6.1 Extensions of Theorem 1 to Other Capacities

For n ≥ 1 and 1 ≤ j ≤ 2, we set Kn
j (x) = x2n−1

j /|x|2n. For n, m ≥ 1 and each compact
set E ⊂ R2, we define the following capacity:

γn,m(E) = sup{|〈T, 1〉|},

the supremum taken over all distributions T supported on E with potentials T ∗ Kn
1

and T ∗ Km
2 in the unit ball of L∞(R2).

Using the same arguments as in Lemma 10, one could show that each function
f (x) with continuous derivatives up to order one is representable in the form

f (x) = (ϕ1 ∗ Kn
1 )(x) + (ϕ2 ∗ Km

2 )(x), x ∈ R
2,

where the functions ϕi, i = 1, 2, are defined by the formula ϕi(x) = Si(∂i f )(x), with
Si, 1 ≤ i ≤ 2, being Calderón-Zygmund operators. Moreover the localization result
of Lemma 14 and the outer regularity property of Lemma 16 also apply in this
setting. Therefore, using the same techniques, one obtains the comparability between
analytic capacity and γn,m, namely that there exists some positive constant C such that
for all compact sets E of the plane

C−1γn,m(E) ≤ γ (E) ≤ Cγn,m(E).

In fact, following the proofs in [27] and [28] (see also [15]), one can show that
for compact sets E ⊂ R2, a given capacity (associated with some Calderón-Zygmund
kernel K with homogeneity −1) defined as

γK(E) = sup{|〈T, 1〉| : T distribution , spt T ⊂ E, ‖T ∗ K‖∞ ≤ 1},

is comparable to the analytic capacity γ (E) provided the following properties hold:

• The symmetrization method: one has to ensure that when symmetrizing the
kernel K (as in Eq. 16) the quantity obtained is non-negative and comparable
to Menger curvature.

• The localization property: we need that our kernel K localizes in the uniform
norm. By this we mean that if T is a compactly supported distribution such that
T ∗ K is a bounded function then ϕT ∗ K is also bounded for each compactly
supported C1 function ϕ and we have the corresponding estimate.

• The outer regularity property (see Section 4).
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6.2 Outer Regularity and Finiteness of the Capacities γ 1
n and γ 2

n

Motivated by [15] and [4], we introduce now capacities related to only one kernel,
Ki = x2n−1

i /|x|2n, n ∈ N. For 1 ≤ i ≤ 2, we set

γ i
n(E) = sup |〈T, 1〉|,

the supremum taken over those real distributions T supported on E such that the
potential Ki ∗ T is in the unit ball of L∞(R2).

It is clear from the definition that for each compact set E, 1 ≤ i ≤ 2,

γn(E) ≤ γ i
n(E).

Little is known about these capacities γ i
n(E), because a growth condition like Eq. 5

(see also Eq. 40) cannot be deduced from the L∞−boundedness of only one potential
(see Section 5 of [15] for some examples on this fact for the case n = 1). We show
that these capacities are finite and satisfy the outer regularity property. For this, we
need the reproduction formula stated below.

Lemma 21 If a function f (x1, x2) has continuous derivatives up to order 2, then, for
1 ≤ i ≤ 2, it is representable in the form

f (x) = (ϕi ∗ Ki)(x), (54)

where

∂iϕi = Si(� f ) = c� f + S̃i(� f ), (55)

for some constant c and the operators Si, S̃i as in Lemma 10.

Proof Without loss of generality fix i = 1. By Lemma 12, we know that

K̂1(ξ) = c
ξ1

|ξ |2n
p(ξ1, ξ2), (56)

where p(ξ1, ξ2) is a homogeneous polynomial of degree 2n − 2 with no non-vanishing
zeros. Let S1 be the operator with kernel

ŝ1(ξ) = |ξ |2n−2

p(ξ1, ξ2)
.

By [8, Theorem 4.15, p. 82] (see also the proof of Lemma 10), since the polynomial p
has no non-vanishing zeros, the operators Si, 1 ≤ i ≤ 2, can be writen as Si = c id +S̃i,
were S̃1 and S̃2 are Calderón-Zygmund operators.

Now taking Fourier transform on Eq. 55 with i = 1, we obtain

ξ1ϕ̂1(ξ) = |ξ |2 f̂ (ξ)
|ξ |2n−2

p(ξ1, ξ2)
,

which together with Eq. 56 gives

f̂ (ξ) = cϕ̂1(ξ)
ξ1

|ξ |2n
p(ξ1, ξ2) = ϕ̂1(ξ)K̂1(ξ).

Therefore the lemma is proven. ��



944 V. Chousionis et al.

In [15] it was shown that for a square Q ⊂ R2, the capacities γ i
1, 1 ≤ i ≤ 2, satisfy

γ i
1(Q) ≤ Cl(Q). We will now extend this result to the capacities γ i

n, 1 ≤ i ≤ 2 and
n ≥ 1.

Lemma 22 For any square Q ⊂ R2 and 1 ≤ i ≤ 2, we have γ i
n(Q) ≤ Cl(Q).

Proof Without loss of generality assume i = 1. Let T be a distribution supported
on Q such that the potential K1 ∗ T ∈ L∞(R2). Write Q = I1 × I2, with I j, 1 ≤ j ≤
2, being intervals in R, and let ϕQ ∈ C∞

0 (2Q) be such that ‖ϕQ‖∞ ≤ C, ‖∇ϕQ‖∞ ≤
C l(Q)−1, ‖∇2ϕQ‖∞ ≤ C l(Q)−2 and

ϕQ(x) = ϕ1(x1)ϕ2(x2),

with ϕ1(x1) = 1 on I1, ϕ1(x1) = 0 on (2I1)
c,

∫ ∞
−∞ ϕ1 = 0, ϕ2 ≥ 0, ϕ2 ≡ 1 on I2 and ϕ2 ≡

0 on (2I2)
c.

Since our distribution T is supported on Q, using Eq. 54 with f and ϕ1 replaced
by ϕQ and ψ respectively,

|〈T, 1〉| = |〈T, ϕQ〉| = |〈K1 ∗ T, ψ〉| ≤ ‖K1 ∗ T‖∞‖ψ‖1,

where ψ(x1, x2) = ∫ x1

−∞ �ϕQ(t, x2)dt + ∫ x1

−∞ S̃i(�ϕQ)(t, x2)dt. Therefore, the lemma
will be proven once we show that ‖ψ‖1 ≤ Cl(Q).

Set ψ1(x1, x2) = ∫ x1

−∞ �ϕQ(t, x2)dt. Notice that since the support of ϕQ is 2Q and∫ ∞
−∞ ϕ1 = 0, then the support of ψ1 is also 2Q and writing 2I1 = [a, b ], we get

‖ψ1‖1 ≤ ‖∂1ϕQ‖1 +
∫

2Q
|∂2

2 ϕ2(x2)|
∣∣ ∫ x1

a
ϕ1(t)dt

∣∣dx1dx2 ≤ Cl(Q).

Set ψ2(x1, x2) = ∫ x1

−∞ S̃1(�ϕQ)(t, x2)dt and let K(x) = K(x1, x2) be the kernel of
S̃1. Then,

‖ψ2‖1 =
∫

3Q
|ψ2(x)|dx +

∫
(3Q)c

|ψ2(x)|dx

≤
∫

3Q

∣∣∣∣
∫ x1

−∞
(K ∗ �ϕQ)(t, x2)dt

∣∣∣∣ dx +
∫

(3Q)c

∣∣∣∣
∫ x1

−∞
(K ∗ �ϕQ)(t, x2)dt

∣∣∣∣ dx

= A + B.

Recall that Q = I1 × I2 and write 3I1 = [z1, z2]. Then

B =
∫

(3Q)c

∣∣∣∣
∫ x1

−∞
(K ∗ �ϕQ)(t, x2)dt

∣∣∣∣ dx

≤
∫

(3Q)c

x1<z1

∣∣∣∣
∫ x1

−∞
(K ∗ �ϕQ)(t, x2)dt

∣∣∣∣ dx +
∫

(3Q)c

x1∈[z1,z2]

∣∣∣∣
∫ x1

−∞
(K ∗ �ϕQ)(t, x2)dt

∣∣∣∣ dx

+
∫

(3Q)c

x1>z2

∣∣∣∣
∫ x1

−∞
(K ∗ �ϕQ)(t, x2)dt

∣∣∣∣ dx = B1 + B2 + B3.
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We deal now with B1. By Fubini and standard estimates for the kernel of a
Calderón-Zygmund operator we get

B1 =
∫

(3Q)c

x1<z1

∣∣∣∣
∫ x1

−∞
(K ∗ �ϕQ)(t, x2)dt

∣∣∣∣ dx

≤ C
∫

(3Q)c

x1<z1

∫
2Q

|ϕQ(w)|
∫ x1

−∞
dt

|w − (t, x2)|4 dw dx

≤ Cl(Q)2
∫

(3Q)c

x1<z1

∫ x1

−∞
dt

|(t, x2)|4 dw dx.

Using that

∫ x1

−∞
dt

|(t, x2)|4 ≤ C
|x|3 ,

we get

B1 ≤ Cl(Q)2
∫

(3Q)c

dx
|x|3 ≤ Cl(Q)2l(Q)−1 = Cl(Q).

Now we split B2 in two terms:

B2 =
∫

(3Q)c

∣∣∣∣
∫ z1

−∞
(K ∗ �ϕQ)(t, x2)dt

∣∣∣∣ dx +
∫

(3Q)c

x1∈[z1,z2]

∣∣∣∣
∫ x1

z1

(K ∗ �ϕQ)(t, x2)dt

∣∣∣∣ dx.

The first term above is B1 with x1 replaced by z1. For the second term in B2, say B22,
we use Tonelli and estimates for the kernel of a Calderón-Zygmund operator. Then
we obtain

B22 =
∫

(3Q)c

x1∈[z1,z2]

∣∣∣∣
∫ x1

z1

(K ∗ �ϕQ)(t, x2)dt

∣∣∣∣ dx

≤
∫

(3Q)c

x1∈[z1,z2]

∫ x1

z1

∫
2Q

|ϕQ(w)||�K(w − (t, x2))| dw dt dx

≤ C
∫

(3Q)c

x1∈[z1,z2]

∫
2Q

|ϕQ(w)|
∫ x1

z1

dt
|w − (t, x2)|4 dw dx

≤ Cl(Q)l(Q)2l(Q)−2 = Cl(Q).

To deal with B3, notice that since
∫ ∞

−∞
S̃1(�ϕQ)(t, x2)dt = 0, one has

∫ x1

−∞
(K ∗ �ϕQ)(t, x2)dt = −

∫ ∞

x1

(K ∗ �ϕQ)(t, x2)dt,

so one argues as above.
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We are now left with the term A. Recall that 3I1 = [z1, z2] and write

A =
∫

3Q

∣∣∣∣
∫ x1

−∞
(K ∗ �ϕQ)(t, x2)dt

∣∣∣∣ dx

≤
∫

3Q
x1<z1

∣∣∣∣
∫ x1

−∞
(K ∗ �ϕQ)(t, x2)dt

∣∣∣∣ dx +
∫

3Q
x1∈[z1,z2]

∣∣∣∣
∫ x1

−∞
(K ∗ �ϕQ)(t, x2)dt

∣∣∣∣ dx

+
∫

3Q
x1>z2

∣∣∣∣
∫ x1

−∞
(K ∗ �ϕQ)(t, x2)dt

∣∣∣∣ dx = A1 + A2 + A3.

By Fubini and standard estimates for the kernel of a Calderón-Zygmund operator,
we obtain

A1 =
∫

3Q
x1<z1

∣∣∣∣
∫ x1

−∞

∫
2Q

�ϕQ(w)K(w − (t, x2))dwdt

∣∣∣∣ dx

≤ C
∫

3Q
x1<z1

∫
2Q

|�ϕQ(w)|
∫ x1

−∞
dt

|w − (t, x2)|2 dwdx

≤ C
∫

3Q

dx
|x| ≤ Cl(Q).

Now we split A2 in two terms

A2 =
∫

3Q

∣∣∣∣
∫ z1

−∞
(K ∗ �ϕQ)(t, x2)dt

∣∣∣∣ dx +
∫

3Q
x1∈[z1,z2]

∣∣∣∣
∫ x1

z1

(K ∗ �ϕQ)(t, x2)dt

∣∣∣∣ dx

= A21 + A22.

The term A21 is treated as A1 with x1 replaced by z1. For A22, we use Tonelli,
the Cauchy-Schwarz inequality and the fact that Calderón-Zygmund operators are
bounded in L2. Then we get,

A22 ≤
∫

3I2

∫
3I1

∫
3I1

∣∣S̃1(�ϕQ)(t, x2)
∣∣ dt dx1 dx2

=
∫

3I1

∫
3I2

∫
3I1

∣∣S̃1(�ϕQ)(t, x2)
∣∣ dt dx2 dx1

≤ C l(Q) ‖S̃1(�ϕQ)‖L1(3Q) ≤ C l(Q)2 ‖�ϕQ‖2 ≤ Cl(Q).

The estimate of A3 is obtained similarly to B3. ��

As a consequence of the above result we have

Corollary 23 For any compact set E ⊂ R2 and 1 ≤ i ≤ 2, γ i
n(E) ≤ Cdiam(E).

We show now that the capacities γ i
n, 1 ≤ i ≤ 2, satisfy the exterior regularity

property, like the γn (see Lemma 16).

Lemma 24 Let {Ek}k be a decreasing sequence of compact sets in R2, with intersection
the compact set E ⊂ R2. Then, for 1 ≤ i ≤ 2, γ i

n(E) = lim
k→∞

γ i
n(Ek).
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Proof Without loss of generality set i = 1. Let us see that limk→∞ γ 1
n (Ek) = γ 1

n (E).
Clearly, the limit exists and limk→∞ γ 1

n (Ek) ≥ γ 1
n (E). To prove the converse inequal-

ity, let Tk be a distribution supported on Ek such that fk = K1 ∗ Tk is in the unit ball
of L∞(R2) and

γ 1
n (Ek) − 1

k
< |〈Tk, 1〉| ≤ γ 1

n (Ek).

By taking a subsequence if necessary, we may assume that fk converges weakly ∗ in
L∞(R2) to some function f such that ‖ f‖∞ ≤ 1.

We will show that Tk converges to some distribution T such that T ∗ K1 is also in
the unit ball of L∞(R2). Then

γ 1
n (E) ≥ 〈T, 1〉 = lim

k→∞
〈Tk, 1〉 = lim

k→∞
γ 1

n (Ek),

and we will be done.
Let us first check that the limit of {Tk}k exists in the topology of distributions.

This is equivalent to saying that, for any ϕ ∈ C∞
c (R2), the limit limk→∞〈Tk, ϕ〉 exists.

To this end, let u be a vector of the form u = (u1, 0) such that

supp(ϕ(· − u)) ∩ U1(E) = ∅,

where U1(E) denotes the 1-neighborhood of E. In this way, for k big enough,

〈Tk, ϕ〉 = 〈Tk, ϕ − ϕ(· − u)〉.
It is easy to check that there exists a function ψ ∈ C∞

c (R2) such that ∂1ψ = ϕ − ϕ(· −
u). Then, using the reproducing formula 54, we deduce that

〈Tk, ϕ〉 = 〈Tk, ∂1ψ〉 = 〈Tk, S1(�ψ) ∗ K1〉 = 〈Tk ∗ K1, S1(�ψ)〉,
which is convergent, since S1(�ψ) ∈ L1(R2) arguing as in Lemma 13, and fk = Tk ∗
K1 is weak * convergent in L∞(R2).

To see that T ∗ K1 is in the unit ball of L∞(R2), we take a radial function
χ ∈ C∞(R2),

∫
χ = 1, supported in the unit ball and, as usual, we denote χε(x) =

ε−2χ(ε−1x). Then it is enough to prove that χε ∗ T ∗ K1 is in the unit ball of L∞(R2)

for all ε > 0. This follows easily: denoting Kε
1 = χε ∗ K1, for each x ∈ R2, we have

Tk ∗ Kε
1(x) = 〈Tk, Kε

1(x − ·)〉.
Notice moreover that ‖Tk ∗ Kε

1‖∞ = ‖χε ∗ (Tk ∗ K1)‖∞ ≤ 1. Now, let ψ0 ∈ C∞
c (R2)

be such that it equals 1 in U1(E), so that Tk = ψ0 Tk for k big enough. Then

Tk ∗ Kε
1(x) = 〈ψ0 Tk, Kε

1(x − ·)〉 = 〈Tk, ψ0 Kε
1(x − ·)〉,

which converges to 〈T, ψ0 Kε
1(x − ·)〉 = 〈T, Kε

1(x − ·)〉 = T ∗ Kε
1(x) as k → ∞. Since

|Tk ∗ Kε
1(x)| ≤ 1 for all k, we deduce that |T ∗ Kε

1(x)| ≤ 1 as wished, too. ��

Remark With little additional effort one can show that T ∗ K1 = f in the above
proof.
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