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Abstract We characterize the locally finite networks admitting non-constant har-
monic functions of finite energy. Our characterization unifies the necessary existence
criteria of Thomassen (J Comb Theory, Ser B 49:87–102, 1990) and of Lyons and
Peres (2011) with the sufficient criterion of Soardi (1991). We also extend a necessary
existence criterion for non-elusive non-constant harmonic functions of finite energy
due to Georgakopoulos (J Lond Math Soc, 2010).
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1 Introduction

One of the standard problems in the study of infinite electrical networks is to specify
under what conditions a network is in OHD, that is, every harmonic function of finite
energy is constant [5, 7, 8, 10]. The purpose of this paper is to characterize the
networks in OHD.

There are two general sufficient criteria for a network to be in OHD. Let us
illustrate these by a simple example, the infinite ladder shown in Fig. 1.

The first criterion, due to Thomassen [9] and to Lyons and Peres [5], implies that
this network is in OHD if the resistances of the rungs are small enough, the sum of
their conductances is infinite. The second, folklore, criterion [5] is that a network
is in OHD if it is recurrent. For the ladder, Nash-Williams’s recurrence criterion [5]
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Fig. 1 For which resistance
function is the infinite
ladder in OHD?

implies that this is the case if on each side of the ladder the sum of the resistances is
infinite.

Our characterization of the networks in OHD implies both these sufficient criteria.
Conversely it shows that, in a sense, they are the only two reasons that can force a
network to be in OHD. Let G/A/B be the graph obtained from G by contracting each
of the disjoint sets A and B to a vertex. Our characterization is:

Theorem 1.1 A connected locally f inite network (G, r) is not in OHD if and only
if there are transient vertex-disjoint subnetworks A and B such that the contraction
G/A/B admits a potential ρ of f inite energy with ρ(A) �= ρ(B).

Since networks containing transient networks are transient, it is clear that Theo-
rem 1.1 implies the second sufficient criterion mentioned earlier. It is also not hard
to deduce the sufficient criterion of Thomassen, Lyons and Peres formally from
Theorem 1.1; see Section 4.

In our ladder example, it is easy to show that up to slight modification the only
two transient vertex-disjoint subnetworks A and B of the infinite ladder are the
two infinite sides of the ladder. It is easy to show that a side of the ladder is
transient if and only if the sum over its resistances is finite. As here G/A/B has
only the two contraction vertices A and B, the unique (up to adding a constant)
potential in G/A/B with ρ(A) − ρ(B) = U has the energy U2 times the sum over
the conductances of the rungs. Hence Theorem 1.1 yields that the infinite ladder is in
OHD if and only if the sum over the conductances of the rungs is infinite or the sum
over the resistances of any side of the ladder is infinite. Note that the last requirement
is slightly stronger than the second sufficient criterion.

Theorem 1.1 also implies some new and easily applicable existence criteria for
non-constant harmonic functions. The following corollary strengthens the well-
known fact [4] that a network (G, r) with

∑
e∈E(G) 1/r(e) < ∞ is in OHD:

Corollary 1.2 Let (G, r) be a connected locally f inite network, and let S be a set of
edges such that G − S is connected and

∑
e∈S 1/r(e) is f inite. The network (G − S, r)

is in OHD if and only if (G, r) is. (Here G − S denotes the graph obtained from G by
deleting S and then all isolated vertices.)

We show that the condition “
∑

e∈S 1/r(e) is finite” is best possible in a very strong
sense; see Section 4 for details.

Our next corollary offers an example application of Theorem 1.1 where A, B and
ρ can be constructed explicitly from the properties of the graph. Its special case of
unit resistances was already treated in [7].
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Corollary 1.3 Let (G, r) be a connected locally f inite network. If G has a cut F such
that

∑
e∈F 1/r(e) is f inite, and there are two components of G − F each containing a

transient network, then (G, r) is not in OHD.

A harmonic function is non-elusive if it satisfies the mean-value property not
only at vertices but, more generally, at every finite cut; see Section 5 for a precise
definition. We generalize the above mentioned criterion of Thomassen, Lyons and
Peres so as to extend a necessary criterion for the existence of non-elusive non-
constant harmonic functions of finite energy due to Georgakopoulos [4], which needs
a completely new proof.

This paper is organized as follows: We begin in Section 2 by giving the basic
definitions. After proving the main result in Section 3, we draw further conclusions
from it in Section 4. In Sections 5 and 6, we extend a theorem of Georgakopoulos as
indicated above.

2 Definitions and Basic Facts

We will be using the terminology of Diestel [3] for graph theoretical terms. All graphs
will be locally finite if we do not explicitly say something different.

A network is a pair (G, r), where G is an (undirected) (multi-) graph and r :
E(G) → R>0 a function assigning a resistance to every edge. Let c(e) := 1/r(e) be the
conductance of e. A network is locally f inite if the graph is. A function h : V(G) → R

is called a potential.
A harmonic function is a potential satisfying the mean-value property at every

vertex v, that is, h(v) is the mean-value over the h-values of its neighbors weighted
with the corresponding conductance:

h(v) =
⎛

⎝
∑

e={v,w}
c(e)

⎞

⎠

−1
∑

e={v,w}
h(w)c(e)

A network is in OHD if every harmonic function of finite energy is constant.

2.1 Kirchhoff’s Cycle Law (K2)

A directed edge is an ordered triple (e, x, y), where e ∈ E(G), x, y ∈ e, x �= y. For
�e = (e, x, y), define init(�e) := x, ter(�e) := y and ←−e := (e, y, x). Let �E(G) be the set of
all directed edges of G.

A potential ρ induces a function on the directed edges via f (�e) := [ρ(init(�e)) −
ρ(ter(�e))]/r(e). This function f is antisymmetric, that is, f (�e) = − f (←−e ) holds for
every directed edge �e. Moreover, f satisfies Kirchhoff’s cycle-law, which we state
after a few definitions. Every cycle C of G corresponds to a directed cycle �C,
defined as follows: Let v0e0v1...vnenv0 be one of the orientations of C. We define:
�C := {(ei, vi−1, vi)|0 ≤ i ≤ n}, where i − 1 is evaluated in Z/nZ. Note that �C does
depend on the chosen orientation. Similarly one defines for a walk K a directed
walk �K.
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An antisymmetric function ϕ on the directed edges satisf ies Kirchhof f’s cycle law
(K2) if for every directed cycle �C in G, there holds:

∑

�e∈ �C
r(e)ϕ(�e) = 0 (K2)

Notice that (K2) also holds for directed closed walks if it holds for all cycles. The
product r(e)ϕ(�e) is called the voltage of �e. Kirchhoff’s cycle law says that the sum of
voltages along every cycle is zero.

2.2 Kirchhoff’s Node Law (K1)

An antisymmetric function ϕ : �E → R satisf ies Kirchhof f’s node law (K1) at v if:
∑

�e∈ �E|v=ter(�e)
ϕ(�e) = 0 (K1)

Call the sum on the left the accumulation of ϕ at v. Note that a potential satisfies
the mean-value property at v if and only if the induced function on �E satisfies (K1)
at v. A v-f low of intensity I is an antisymmetric function having accumulation I at
v and satisfying (K1) at every other vertex. Similarly, a p-q-f low of intensity I has
accumulation −I at p and I at q and satisfies (K1) at every other vertex.

The following lemma implies the well-known fact that every finite connected
network is in OHD.

Lemma 2.1 Let (G′, r′) be a f inite network and let f be a f low of intensity zero with
f (�e) > 0 for some directed edge �e. Then there exists a directed cycle �C with �e ∈ �C and
f (�c) > 0 for every �c ∈ �C.

Proof Color a vertex v gray if there is a directed path �P from ter(�e) to v such that
f ( �p) > 0 for all �p ∈ �P. For every directed edge �g pointing from a gray vertex to one
that is not gray, we have f (�g) ≤ 0. As f satisfies (K1) at the finite cut between the
gray vertices and the rest, f (�g) = 0. Thus �e is not in this cut and, since ter(�e) is gray,
init(�e) is gray, too. Thus there is a directed path �P from ter(�e) to init(�e) and this path
combined with �e forms the desired cycle. 
�

2.3 Energy

The Energy of ϕ is defined as E(ϕ) := ∑
e∈E r(e)ϕ2(e). As common in the liter-

ature [5, 7], we will only study functions of finite energy. The requirement of
finite energy turns the antisymmetric functions into a Hilbert-space via 〈 f, g〉 :=∑

e∈E r(e) f (�e)g(�e). In this Hilbert-space the norm is the square-root of the energy.
This is structurally interesting and allows us to profit from the following tool:

Lemma 2.2 ([6], Theorem 4.10) If C is a non-empty, closed, convex subset of a Hilbert
space, then there is a unique point y ∈ C of minimum norm among all elements of C.

Another tool is the Cauchy–Schwarz-inequality which will be used to estimate the
energy of a flow.
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2.4 The Free and the Wired Current

Given a p-q-flow f , let I( f ) denote its intensity. If f is induced by a potential ρ, then
the potential dif ference U( f ) between p and q is ρ(p) − ρ(q). There are two special
flows called the free and the wired current. For a detailed description see [5] or [2]
where we generalize results of this paper to functions with finite �p-norm.

The wired current W[G, r, p, q, I, U] between p and q with intensity I is the unique
p-q-flow with intensity I and minimal energy in (G, r). In fact the wired current also
satisfies Kirchhoff’s cycle law. The parameter U is the potential difference between
p and q depending linearly on I. The ratio RW := U

I is called the wired ef fective
resistance between p and q.

The free current F [G, r, p, q, I, U] between p and q with voltage U is induced by
the unique potential with potential difference U between p and q and minimal energy
in (G, r). In fact the free current is also a p-q-flow of intensity I depending linearly
on U . The ratio RF := U

I is called the free ef fective resistance between p and q. If it is
clear by the context, we will omit some of the information G, r, p, q, I, U .

The wired and the free current are extremal in the following sense:

Theorem 2.3 (Doyle [2] or [5]) A connected locally f inite network is in OHD if and
only if F [p, q, I] = W[p, q, I] for all vertices p and q.

In the following, we will describe the free current as a limit of flows in finite
networks. Having fixed an enumeration of the vertices, let G[Vn] be the subgraph of
G induced on the first n vertices. Note that we can force every G[Vn] to be connected
and assume that n is so big that p, q ∈ G[Vn]. Fixing U > 0, let Fn be the unique p-
q-flow in the finite network on G[Vn] with potential difference U .

It can be shown that limn→∞ Fn(�e) = F [U](�e) for every edge e and limn→∞E(Fn) =
E(F [U]). As Fn is a p-q-flow in a finite network, there holds E(Fn) = I(Fn)U , see for
example [1] (Proposition 18.1). This yields:

E(F [I, U]) = IU and E(F [I, U]) = U2/RF (1)

There is a similar description for the wired current as a limit of flows in finite
networks, see [5] (Proposition 9.2). As above, it can be shown that

E(W[I, U]) = IU and E(W[I, U]) = U2/RW

3 Proof of the Main Result

A network is transient if for some vertex v there is a v-flow of non-zero intensity
with finite energy. This definition is equivalent to the common one using random
walks; see [11], Theorem 4.51. Let G/A/B denote the graph obtained from G by
contracting each of A and B to a vertex. Our main result is:

Theorem 1.1 A connected locally f inite network (G, r) is not in OHD if and only
if there are transient vertex-disjoint subnetworks A and B such that the contraction
G/A/B admits a potential ρ of f inite energy with ρ(A) �= ρ(B).
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Proof of the forward implication of Theorem 1.1 Let h be a non-constant harmonic
function of finite energy. As usual, h induces a function hE on the directed edges
via hE((e, v, w)) := h(v)−h(w)

r(e) . Since h is non-constant, there is a directed edge �d
with hE( �d) > 0. Define a := init( �d), b := ter( �d) and I := hE( �d). Let A be the graph
induced by vertices v lying on some finite directed path �W from v to a with h(�e) > 0
for all �e ∈ �W, see Fig. 2.

Our first task is to construct an a-flow of intensity I in A with finite energy,
beginning with the restriction f ′ of hE to A, having accumulation at least I at a and
non-negative accumulation at every other vertex. In order to obtain a function with
accumulation exactly I at a and zero at every other vertex, we apply Lemma 2.2 on
the set of all antisymmetric functions g in A with

• 0 ≤ g(�e) ≤ hE(�e) if hE(�e) ≥ 0
• accumulation at least I at a and non-negative at every other vertex.

Note that f ′ is in this set and the set is closed because all functions in the set
have energy at most E(h). Lemma 2.2 yields an element f with minimal energy. By
minimality, f has accumulation I at a and zero at every other vertex. Indeed, if f
accumulates a positive amount at a vertex v aside from a, there is a directed edge
�e terminating at v with f (�e) > 0. When decreasing f (�e) by less then the minimum
of f (�e) and the amount accumulated, f stays in the set and gets less energy, a
contradiction.

Thus f witnesses that A is transient. Similarly the graph B defined as the graph
induced by the set of vertices v lying on some finite directed path �W from b to v with
h(�e) > 0 for all �e ∈ �W is transient. The subnetworks A and B are disjoint because
any vertex in A ∩ B is contained in a directed cycle �C with hE(�c) > 0 for every �c ∈ �C,
contradicting that hE satisfies (K2).

Having proved that A and B are transient, it remains to construct a potential
ρ of finite energy with ρ(A) �= ρ(B) in G/A/B. Let h̄ be the function obtained
from h by cutting off any values larger than h(a) and smaller than h(b); more
precisely, if h(v) is bigger than h(a), we let h̄(v) := h(a) and if h(v) is smaller than
h(b), we let h̄(v) := h(b). All other values are not changed. By the construction
of G/A/B, the potential h̄ is constant on every contraction-set. So it defines a
potential ρ on G/A/B. Since h̄ has smaller energy than h by construction, ρ has finite
energy. 
�

Fig. 2 The construction of A.
Only the edge-directions �e
with hE(�e) > 0 are drawn
in this figure

d

b a

B A
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Before we can prove the converse direction, we need some intermediate
results.

Lemma 3.1 Let G be a locally f inite graph and let r, r′ : E → R>0 be resistance
functions which dif fer only on f initely many edges. Then (G, r) is in OHD if and only
if (G, r′) is.

Proof By symmetry, it is sufficient to prove one direction. It suffices to prove the
assertion when e = pq is the only edge with r(e) �= r′(e), for applying this recursively,
once for each edge e with r(e) �= r′(e), yields the general case.

Let h be a non-constant harmonic function of finite energy in (G, r). The desired
harmonic function in (G, r′) will be constructed as a difference of two potentials
of p-q-flows. The first one is h considered as a potential in (G, r′). The second
is a multiple of the potential f that induces the free current F [r′, p, q, U = 1]:
note that there is a real number I, depending linearly on h(p) − h(q), such that
h − I f is harmonic in (G, r′). Since h and I f have finite energy, h − I f has finite
energy, too. As r and r′ differ only on e, we have F [r′, p, q, U = 1] = F [r, p, q,

U = 1], and further h − I f is non-constant in (G, r) and thus non-constant in (G, r′),
as well. 
�

With a similar proof one can strengthen the above Lemma, allowing r and r′
to assume the value zero and infinity. This has the same effect as contracting and
deleting edges. In order to be able to do so, we need to impose the additional
requirement that the edges with infinite resistance do not separate the graph, see
Lemma 4.3. One can also state this stronger version of Lemma 3.1 for non-elusive
harmonic functions. In that case the additional requirement is not needed if we
consider harmonic functions being non-constant in at least one connectedness-
component.

In the following Proposition 3.2 we do the calculations extracted from the converse
implication of Theorem 1.1 which follows afterwards.

Proposition 3.2 Let ρ be a potential of f inite energy in a connected locally f inite
network (G, r) with ρ(p) − ρ(q) = U for some p, q ∈ V and U > 0. Then for all
n ∈ R and I > 0 there exists a f inite edge set D and a resistance function rD with
rD|G−D = r|G−D such that E(F [rD, p, q, I]) ≥ n. Moreover, we can choose D disjoint
from the set of edges vw with ρ(v) = ρ(w).

The idea of the proof of Proposition 3.2 is to make the resistances in D so large
that the free effective resistance R between p and q gets as large as desired. Thus
E(F [rD, p, q, I]) = RI2 can be made as large as desired.

Proof Given n, I and U , choose ε so small that U2

ε
I2 ≥ n. First of all, we define D

and rD so that ρ has energy less than ε in (G, rD). Recall that the energy of ρ in (G, r)
is E(ρ) = ∑

vw∈E(G)
(ρ(v)−ρ(w))2

r(vw)
. Thus we can choose D so large that the energy of ρ

in (G − D, r|G−D) is less than ε
2 . Note that we can choose D disjoint from the set of

edges vw with ρ(v) = ρ(w). As required, we set rD|G−D = r|G−D. To force the energy
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of ρ to be less than ε in (G, rD), we choose rD on D so large that the energy of ρ in
(D, rD|D) is less than ε

2 .
Having defined D and rD, it remains to calculate the energy of the free current

F [rD, I]. The definition of the free current yields E(F [rD, U]) ≤ ε. By Eq. 1,
we obtain for the intensity of F [rD, U] that I(F [rD, U]) = E(F [rD,U])

U ≤ ε
U . This

yields:

E(F [rD, I]) = E(F [rD, U]) I2

I(F [rD, U])2 = U
I2

I(F [rD, U]) ≥ U2

ε
I2 ≥ n.


�

We can now put the above tools together to prove the remaining part of
Theorem 1.1.

Proof of the converse implication of Theorem 1.1 As A and B are transient, for some
a ∈ A, b ∈ B, there are an a-flow fa of finite energy with intensity I > 0 and a
b -flow fb of finite energy with the same intensity I, which we extend both with the
value zero to functions on �E. Then f := fb − fa is an a-b -flow of intensity I being
zero on E − E(A) − E(B). Furthermore there is a potential ρ of finite energy with
U := ρ(A) − ρ(B) > 0 in G/A/B.

Finding a harmonic function in (G, r) directly might be quite hard, instead we will
manipulate the resistances using Proposition 3.2 such that we can find a harmonic
function in the manipulated network, and then we apply Lemma 3.1 to deduce that
(G, r) also admits a harmonic function.

In order to apply Proposition 3.2, we extend ρ to a potential ρ ′ in G by assigning
the value of the contraction set to all vertices in the set. Since ρ has finite energy,
ρ ′ does. Thus Proposition 3.2 yields for (G, r), ρ ′ and n > E( f ) a set of edges D
and an assignment rD such that E(F [rD, I]) > E( f ). Since f is zero on D, f is an
a-b -flow in (G, rD), yielding E( f ) ≥ E(W[rD, I]). So F [rD, I] − W[rD, I] is a non-
constant harmonic function of finite energy in (G, rD), giving rise to one in (G, r) by
Lemma 3.1. 
�

4 Consequences of Theorem 1.1

In this section we will derive further consequences from Theorem 1.1.

4.1 Networks not in OHD

The following Corollary 1.3 offers an example application of Theorem 1.1, where
the subnetworks A, B and the potential ρ can be constructed explicitly using the
properties of the graph. Its special case of unit resistances was already treated in [7],
Theorem 4.20.

Corollary 1.3 Let (G, r) be a connected locally f inite network. If G has a cut F such
that

∑
e∈F 1/r(e) is f inite, and there are two components of G − F each containing a

transient network, then (G, r) is not in OHD.
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Fig. 3 The situation of
Corollary 1.3. The cut F,
drawn thick, separates
the transient networks

F

Proof Pick for both A and B one of the above transient networks (Fig. 3). The
potential ρ is defined as follows: it assigns the value 1 to every vertex of the
component of G/A/B − F containing A, and zero to every other vertex. Recall that
the energy of the potential ρ is

∑
{v,w}∈E

(ρ(v)−ρ(w))2

r(e) . As
∑

e∈F 1/r(e) is finite, ρ has
finite energy. Thus Theorem 1.1 yields the assumption. 
�

4.2 Networks in OHD

In several occasions Theorem 1.1 can also be used in the other direction, to prove
that a network is in OHD. This is done in the following Corollaries 4.1 and 4.2, which
we describe qualitatively at first. For simplicity, all edges have the resistance 1. For
a subgraph S of G, we abbreviate G[V(S)] by simply G[S]. Note that every infinite
locally finite graph G contains a sequence S1, S2, ... of subgraphs such that G − Sn+1

has a finite component Ci containing G[⋃n
i=1 Si], see Fig. 4.

Corollary 4.2 states that if there are only few edges from Ci to Si for sufficiently
many i, then G is in OHD. In addition to that, Corollary 4.1 states that if the graph-
diameter of Si is small for sufficiently many i, then G is in OHD.

Corollary 4.1 [9] Let (G, r) be a connected locally f inite network with r(e) = 1 for
every edge e. Suppose G contains inf initely many vertex-disjoint f inite connected
subgraphs S1, S2, ... such that G − Sn+1 has a f inite component containing G[⋃n

i=1 Si].
If

∑
1/diam(Si) = ∞, then (G, r) is in OHD.

Here diam(Si) is the graph-diameter of Si. Lyons and Peres [5] proved a gener-
alization of Corollary 4.1 to arbitrary resistances which is proved by Theorem 1.1
similarly.

Fig. 4 The separators Si and
the finite components Ci.
The edges from Ci to
Si are drawn thick

Ci

S iCi −1 Si −1
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Proof Assume there is a non-constant harmonic function of finite energy in G:
Theorem 1.1 yields transient vertex-disjoint subnetworks A and B and a potential
ρ of finite energy with ρ(A) �= ρ(B). By extending the value of the contraction set to
all vertices of the set, ρ defines a potential ρ ′ on G, having finite energy.

Our aim is to show that ρ ′ has infinite energy, which yields the desired contradic-
tion. For this, it will be useful to find vertices ai ∈ A ∩ Si and bi ∈ B ∩ Si for all but
finitely many i.

Let us start finding these vertices. Let A′ be an infinite connected component
of A and pick a ∈ A′. Let na be the distance in G between a and S1. As G − Sn+1

has a finite component containing G[⋃n
i=1 Si] and the subgraphs Si are disjoint,

it follows for all j ≥ na that the vertex a is contained in the finite component of
G − S j+1 containing S1. Thus the connected infinite set A′ contains a vertex a j+1

of the separator S j+1. We define B′, nb and b j+1 analogously for b instead of a.
Define U := ρ ′(A) − ρ ′(B) and E(ρ ′|Si) := ∑

{v,w}∈Si

(ρ ′(v)−ρ ′(w))2

r(vw)
. Having proved

for all i ≥ m := max{np, nq} + 1 that there are ai ∈ A ∩ Si and bi ∈ B ∩ Si, we
calculate:

E(ρ ′) ≥
∑

i≥m

E(ρ ′|Si) ≥
∑

i≥m

E(F [Si, ai, bi, U]) ≥ U2
∑

i≥m

1/diam(Si) = ∞

as desired. 
�

For the next corollary, we need the following definition: Given a subgraph Ci of G,
we let RN(Ci) denote the resistance neighborhood of Ci, which is defined as

∑ 1
r(e) ,

summing over all edges e having one end-vertex in Ci and one outside. In the case
where all resistances are 1, the number RN(Ci) is the size of the neighborhood of Ci.
If a network is not in OHD, then by Theorem 1.1 it contains a transient subnetwork,
witnessing that the network itself is transient. Thus the Nash–Williams-criterion [5]
for not transient graphs yields:

Corollary 4.2 Let (G, r) be a connected locally f inite network. Suppose G con-
tains inf initely many vertex-disjoint f inite connected subgraphs S1, S2, ... such that
G − Sn+1 has a f inite component Ci containing G[⋃n

i=1 Si]. If
∑ 1

RN(Ci)
= ∞, then

(G, r) is in OHD.

The special case of unit resistances was treated by Thomassen in [10].

4.3 OHD and the Deletion of Edges

The following result extends the well-known fact [4] that a network (G, r) with∑
e∈E(G) 1/r(e) < ∞ is in OHD. With a light abuse of notation, let G − S denote the

graph obtained from G by deleting the set of edges S and then all isolated vertices.

Corollary 1.2 Let (G, r) be a connected locally f inite network, and let S be a set of
edges such that G − S is connected and

∑
e∈S 1/r(e) is f inite. The network (G − S, r)

is in OHD if and only if (G, r) is.

The condition that
∑

e∈S 1/r(e) is finite is best possible in the following strong
sense. Given any set S with

∑
e∈S 1/r(e) = ∞, there is a network N1 = (G, r) that
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Fig. 5 The network (G, r)
where the set S is thick

S

is in OHD but (G − ϕ(S), r) is not. Here ϕ is a bijection satisfying r(e) = r(ϕ(e)),
which formally ensures that the incidence structure of S is not taken into account
but the sizes of the resistances are. The converse is also true: given any set S with∑

e∈S 1/r(e) = ∞, there is a network N2 = (G, r) that is not in OHD but (G − ϕ(S), r)
is. In particular, the best possible terms for both directions of the upper theorem
agree. In a slight abuse of notation, we skip ϕ in the following.

In the following, we construct N1 and N2, starting with N1. Letting (G − S, r) be
a double ray of which the resistances sum up to 1, ensures by Corollary 1.3 that
(G − S, r) is not in OHD. We attach the edges of S to the double ray so that the graph
G is an infinite ladder and every edge of S is a rung of that ladder, see Fig. 5. With
Theorem 5.1, proved in Section 5, it is straightforward to check that G is in OHD.

Having constructed N1, we now construct N2. Letting G − S be the infinite ladder
and choosing the resistances so that

∑
e∈E 1/r(e) = 1, ensures (G − S, r) is in OHD by

Corollary 1.2 or Corollary 4.2.
Thus it remains to attach the set S so that (G, r) is not in OHD, which is done as

follows: as
∑

e∈S 1/r(e) = ∞, we can partition S into finite sets Hi, where i ∈ N, so
that

∑
e∈Hi

1/r(e) ≥ 2i. Let e0, e1, ... be any enumeration of the horizontal edges of
the ladder. For every edge ei, we attach each edge of Hi between the end-vertices of
ei, see Fig. 6. This has the same effect as assigning a resistance smaller than 2−i to the
edge ei. Thus by Corollary 1.3 the network (G, r) is not in OHD.

Having seen that Corollary 1.2 is best possible, we proceed with its proof.

Fig. 6 The set S, drawn thick,
attached to the infinite ladder
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Proof of the converse implication of Corollary 1.2 Assuming that G − S admits a
non-constant harmonic function of finite energy, our aim is to find transient vertex-
disjoint subnetworks A and B and a potential ρ ′ of finite energy with ρ ′(A) �= ρ ′(B)

in G/A/B to apply Theorem 1.1 in G. Applying Theorem 1.1 in G − S yields the
desired A and B and a potential ρ of finite energy with ρ(A) < ρ(B) in G/A/B − S.
Define the potential ρ ′ via:

ρ ′(v) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ(v) if ρ(A) ≤ ρ(v) ≤ ρ(B)

ρ(A) if ρ(v) ≤ ρ(A)

ρ(B) if ρ(B) ≤ ρ(v)

ρ(A) if v /∈ G − S

As ρ ′(A) �= ρ ′(B), it remains to check that ρ ′ has finite energy: its energy is at most
that of ρ plus the energy on the edges of S which is at most P2 ∑

e∈S 1/r(e), where
P := |ρ ′(A) − ρ ′(B)|. This completes the proof. 
�

Before we can prove the converse direction, we need some intermediate results.
The following Lemma 4.3 is Corollary 1.2 specialized to the case that S is finite and
is proved similar to Lemma 3.1.

Lemma 4.3 Let (G, r) be a connected locally f inite network and let S be a f inite set of
edges such that G − S is connected. Then (G, r) is in OHD if and only if (G − S, r) is.

Recall that an a-f low of intensity I is an antisymmetric function having accumu-
lation I at a and satisfying (K1) at every other vertex. Intuitively, the following
Proposition 4.4 states that if an a-flow of finite energy has small enough values on
a set of edges S, then the a-flow gives rise to an a-flow of finite energy in G − S.

Proposition 4.4 Let fa be an a-f low of intensity I with f inite energy in a connected
locally f inite network (G, r) and let S be a set of edges such that

∑
s∈S | fa(�s)| ≤ I/4.

Then there is an a-f low f ′
a in (G − S, r) with intensity at least I/2 satisfying 0 ≤ f ′

a(�e) ≤
fa(�e) if fa(�e) ≥ 0. In particular, f ′

a has f inite energy.

Proof In order to obtain f ′
a, we apply Lemma 2.2 on the set of all antisymmetric

functions g in G − S with

• 0 ≤ g(�e) ≤ fa(�e) if fa(�e) ≥ 0,
• accumulation at least I at a,
• ∑

v∈V−{a} |accu(v)| ≤ I/2, where accu(v) is the accumulation of g at v.

Note that the restriction of fa to G − S is in this set and the set is closed because
all functions in the set have energy at most E( fa). Lemma 2.2 yields an element f ∗
with minimal energy. By minimality, f ∗ satisfies (K1) at every vertex that is not a
or a neighbor of a. Indeed, if f ∗ accumulates wlog a positive amount at a vertex v

aside from a or one of its neighbors, there is a directed edge �e terminating at v with
f ∗(�e) > 0. When decreasing f ∗(�e) by less then the minimum of f ∗(�e) and the amount
accumulated, f ∗ stays in the set and gets less energy, a contradiction.

Let f ′
a be the function obtained from f ∗ by changing the values of the edges

between a and its neighbors such that (K1) is satisfied at all neighbors of a.
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By minimality we can assume that 0 ≤ f ′
a(�e) ≤ f ∗(�e) ≤ fa(�e) if fa(�e) ≥ 0. As we

demanded
∑

v∈V−{a} |accu(v)| ≤ I/2 for f ∗, the accumulation of f ′
a at a is at least

I/2. This completes the proof. 
�

Proof of the forward implication of Corollary 1.2 Assume G admits a non-constant
harmonic function of finite energy. Applying Theorem 1.1 to (G, r) yields vertex-
disjoint subnetworks A and B, an a-flow fa of intensity I > 0 with finite energy in
A, a b -flow fb of intensity I > 0 with finite energy in B and a potential ρ of finite
energy with ρ(A) �= ρ(B) in G/A/B. Let us first consider the special case where∑

s∈S | fa(�s)| + ∑
s∈S | fb (�s)| < ε where ε = I/4. Since by Proposition 4.4 the functions

fa and fb give rise to an a-flow of non-zero intensity with finite energy in A − S and a
b -flow of non-zero intensity with finite energy in B − S, it suffices to find a potential
ρ ′ of finite energy with ρ ′(A − S) �= ρ ′(B − S) in (G − S)/(A − S)/(B − S) for prov-
ing the special case applying once again Theorem 1.1. Since G/A/B − S is obtained
from (G − S)/(A − S)/(B − S) by identifying vertices, let ρ ′ of a vertex in (G − S)/

(A − S)/(B − S) be the ρ-value of the corresponding identification-set. As ρ has
finite energy and ρ(p) �= ρ(q), the potential ρ ′ has finite energy and ρ ′(A − S) �=
ρ ′(B − S), proving the special case by Theorem 1.1.

Having treated the special case where
∑

s∈S | fa(�s)| + ∑
s∈S | fb (�s)| < ε, it remains

to deduce the general case from this special case. For this purpose, we first
show that

∑
s∈S | fa(�s)| is finite. Applying Cauchy–Schwarz-inequality (

∑
s∈S xs ys)

2 ≤∑
s∈S x2

s

∑
s∈S y2

s with xs := 1/
√

r(s), ys := √
r(s)| fa(�s)|, yields:

(
∑

s∈S

| fa(�s)|
)2

≤
∑

s∈S

1
r(s)

∑

s∈S

r(s) f 2
a (s)

As both terms on the right side are finite,
∑

s∈S | fa(�s)| is finite. Thus we can
partition S into S1 and S2 such that

∑
s∈S1

| fa(�s)| + ∑
s∈S1

| fb (�s)| < ε and S2 is finite.
By the special case, we obtain that G − S1 is not in OHD. Hence by Lemma 4.3
G − S1 − S2 is not in OHD, completing the proof. 
�

5 Non-Elusive Harmonic Functions

Recently, Georgakopoulos [4] introduced the concept of non-elusiveness, which we
will present now. One can define the accumulation of ϕ at a finite cut E(X, X ′)
as well:

ϕ(X, X ′) :=
∑

�e|init(�e)∈X,ter(�e)∈X ′
ϕ(�e)

A p-q-flow with intensity I is called non-elusive if for every finite cut E(X, X ′)
with p and q on the same side of the cut, the accumulation is zero. It follows for
p ∈ X, q ∈ X ′ that ϕ(X, X ′) = ϕ({p}, V − {p}) = ϕ(V − {q}, {q}) = I.

Note that in a finite network every flow is non-elusive. In some sense,
non-elusiveness ensures that (K1) also holds for the ends of the Freudenthal-
compactification. For details see [4].

A harmonic function is non-elusive if the induced antisymmetric function is non-
elusive. Notice that there is a non-constant non-elusive harmonic function (of finite
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energy) in a connected graph if and only if there is one in at least one maximal
2-connected subgraph. In particular, non-elusive harmonic functions on trees are
constant.

In this section we will generalize Corollary 4.1 to extend a theorem of
Georgakopoulos about non-elusive harmonic functions. For this, we need some
definitions. A subgraph S of a graph G is called a barricade around the edge e ∈
E(G − S) if both of the following requirements hold, see Fig. 7:

1. The component of G − S containing e is finite and called the barricaded area
A(S, e).

2. The intersection of S with any component of G − A(S, e) is connected.

The boundary ∂S of a barricade S is the neighborhood of the barricaded area
A(S, e). For a subset C of a barricade S, define ∂C := ∂S ∩ C. Let R(x ↔ y; G, r), or
just R(x ↔ y; G) if r is fixed, denote the effective resistance between the vertices x
and y in a connected finite network (G, r).

For a component C of a barricade, define the weak ef fective resistance diameter
wRD by:

wRD(C) := sup{R(x ↔ y; C)|x, y ∈ ∂C}
Furthermore, define the weak ef fective resistance diameter wRD of a barricade

as the sum of the weak effective resistance diameters of the components of the
barricade. Note that in the case of unit resistances, wRD(S) is at most the graph
diameter of S.

The following theorem states that if the weak effective resistance diameters of
a sequence of barricades does not grow too fast, then every non-elusive harmonic
function of finite energy is constant.

Theorem 5.1 Let (G, r) be a connected locally f inite network which has for every
edge e ∈ E(G) inf initely many edge-disjoint barricades S1, S2, ... around e with∑∞

n=1 1/wRD(Sn) = ∞. Then every non-elusive harmonic function of f inite energy
is constant.

Theorem 5.1 generalizes the Unique Currents from Internal Connectivity-Theorem
from Lyons and Peres [5] which implies Corollary 4.1. As Theorem 5.1 can be

Fig. 7 An example of a
barricade. No proper
subgraph of the barricade S,
drawn thick, is again a
barricade. Deleting an edge
of S or the vertex of S with
three neighbors in S, violates
requirement 1. Deleting any
other vertex of S, violates
requirement 2

S

A (S,e)
e
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meaningfully applied to graphs with more than one end, Theorem 5.1 is stronger
than the aforementioned Theorem, which only holds for one ended graphs. If G is
2-connected, then in Theorem 5.1 it is enough to check the condition just for one
edge e:

Corollary 5.2 Let (G, r) be a 2-connected locally f inite network which has, for some
edge e ∈ E(G), inf initely many edge-disjoint barricades S1, S2, ... around e with∑∞

n=1 1/wRD(Sn) = ∞. Then every non-elusive harmonic function of f inite energy
is constant.

Proof Given infinitely many edge-disjoint barricades S1, S2, ... around e with∑∞
n=1 1/wRD(Sn) = ∞, we will show for every edge e′ that all but finitely many

of these barricades are barricades around e′, too. Let S be any set of edge-disjoint
barricades separating e and e′. It is sufficient to prove that S is finite. Let P be any
finite path containing e and e′. It suffices to show that each vertex p on P is contained
in only finitely many barricades of S . The 2-connectedness of G yields that if the
vertex p is in some S ∈ S , then, by requirement 2 of the barricade-properties, S
contains at least one edge incident with p, as well. As G is locally finite, S is finite,
completing the proof. 
�

The following theorem of Georgakopoulos can be deduced by Theorem 5.1.

Theorem 5.3 [4] Let (G, r) be a connected locally f inite network such that
∑

e∈E r(e)<∞.
Then every non-elusive harmonic function of f inite energy is constant.

Proof For the proof, we first check the following fact.

In every locally finite graph for every edge e there are infinitely
many disjoint finite barricades Sn around e.

(2)

Assume finitely many finite barricades around e are already constructed, our
task is to define one more being disjoint with the previous ones. As G is locally
finite, there is a finite connected subgraph A containing e and all so far constructed
barricades. Since G is locally finite, there is a finite barricade with A as barricaded
area, proving (2).

By (2) for every edge e there are infinitely many edge-disjoint barricades Sn

around e. Define D := ∑
e∈E r(e). As

∑∞
n=1 1/wRD(Sn) ≥ ∑∞

n=1 1/D = ∞, Theorem
5.1 yields the assertion.

6 Proof of Theorem 5.1

In the proof of Theorem 5.1, assume there exists a non-elusive non-constant har-
monic function h of finite energy in (G, r). Before proving Theorem 5.1, we will
show (3) below, transforming the resistance condition

∑∞
n=1 1/wRD(Sn) = ∞ into a

voltage condition. Later on, we will use the voltage condition instead of the resistance
condition. Define the voltage at a barricade Si as U(h|Si) := ∑

A max{|h(a1) − h(a2)|,
where a1, a2 ∈ ∂ A}, summing over all components A of Si.

For every ε > 0 there is a barricade Si with voltage U(h|Si) < ε. (3)
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Intuitively, this means that small resistances at the barricades imply small voltages
at the barricades.

Proof of (3) The tools of Section 2 hold only for connected network. As Si is not
necessarily connected, we will construct a connected auxiliary graph S′

i by identifying
vertices of different components of Si for applying the tools in S′

i.
To begin with the construction of S′

i, we enumerate the components of Si with
1, .., k. For every component A j, in the boundary ∂ A j we have vertices s j and t j for
which |h(s j) − h(t j)| attains its maximum.

We obtain the auxiliary graph S′
i from Si by identifying t j with s j+1 for all j ≤ k − 1.

Note that the effective resistance between s1 and tk in S′
i is at most wRD(Si). Let F

be the free current in S′
i between s1 and tk with voltage U(h|Si).

As h induces a potential in S′
i, in S′

i we can relate wRD(Si) to U(h|Si) in the
following way:

U(h|Si)
2 = (U (F))2 ≤Eq. 1

≤ wRD(Si) · E(F) ≤minimizing property of F wRD(Si) · E(h|Si)

Here E(h|Si) is the energy of h on the edges of Si. If we assume in contrast to (3) that
there is an ε > 0 such that U(h|Si) ≥ ε for all i, then we get a contradiction to the fact
that energy is finite as follows:

E(h) ≥
∑

i

E(h|Si) ≥last inequation
∑

i

U(h|Si)
2

wRD(Si)
≥ ε2

∑

i

1
wRD(Si)

= ∞

This proves (3). We can now prove Theorem 5.1. 
�

Proof of Theorem 5.1 Assume there exists a non-elusive non-constant harmonic
function h of finite energy in (G, r). As usual, h induces a function hE on the directed
edges via hE((e, v, w)) := h(v)−h(w)

r(e) . Since h is non-constant, there is a directed edge
�e with hE(�e) > 0. The voltage condition (3) yields a barricade Si around e with
U(h|Si) < ε for ε := hE(�e)r(e).

To obtain a contradiction, we seek a cycle violating Kirchhoff’s cycle law. This will
be done in two steps. Firstly, we find a cycle heavily violating Kirchhoff’s cycle law
in an auxiliary graph G′ which we obtain from G by contracting each component of
G − A(Si, e) to a vertex. Secondly, we extend this cycle to a cycle in G using only
edges of Si. As U(h|Si) < ε, we will be able to show that in this new cycle (K2) is still
violated.

Let us now construct the above mentioned cycle in G′. As the barricaded area
A(Si, e) is finite and therefore G − A(Si, e) has only finitely many components, G′ is
finite. Since hE is non-elusive, the restriction h′

E of hE to E(G′) is a flow of intensity
zero in G′. Thus Lemma 2.1 yields a directed cycle �C′ in G′ with �e ∈ �C′ and h′

E(�c) > 0
for every �c ∈ �C′.

Having found this cycle �C′ in G′, we will extend its edge set E( �C′), considered as
a set of edges in G, into a cycle in G; see Fig. 8. Note that E( �C′) has at most two
vertices in any component of G − A(Si, e). Let K be any component of G − A(Si, e)
where E( �C′) has exactly two vertices, say v and w. Since Si is a barricade, v and w

are contained in Si and thus there is a v-w-path WK in Si ∩ K. The desired cycle C in
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Fig. 8 The construction of C.
The gray set E( �C′) can be
extended to a cycle in G
by just adding edges of
the barricade Si drawn
thick in this figure

Si

A (Si, e)
e

E (
→

C' )

G is the union of E( �C′) with such paths WK for all K. Indeed, as different paths W
are disjoint and intersect �C′ only in end-vertices, this union is in fact a cycle.

For the desired contradiction, it remains to check that �C violates Kirchhoff’s cycle
law: the voltage-sum of the directed edges in �C′ is at least ε = hE(�e)r(e), whereas the
sum over the voltages of the edges of Si is at most U(h|Si) < ε. Thus hE violates (K2),
completing the proof. 
�
Acknowledgements I am very grateful to Agelos Georgakopoulos for his great supervision of this
project. I thank the anonymous referee for his good and quick report.

References

1. Biggs, N.L.: Algebraic potential theory on graphs. Bull. Lond. Math. Soc. 29, 641–682 (1997)
2. Carmesin, J.: Harmonic functions of finite �p-norm in infinite networks (2011, in preparation)
3. Diestel, R.: Graph Theory, 3rd edn. Springer, Berlin (2005). Electronic edition available at: http://

www.math.uni-hamburg.de/home/diestel/books/graph.theory
4. Georgakopoulos, A.: Uniqueness of electrical currents in a network of finite total resistance. J.

Lond. Math. Soc. 82(1), 256–272 (2010). doi:10.1112/jlms/jdq034
5. Lyons, R., Peres, Y.: Probability on Trees and Networks. Cambridge University Press,

Cambridge (2011, in preparation). Current version available at http://mypage.iu.edu/∼rdlyons/
prbtree/prbtree.html

6. Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1974)
7. Soardi, P.M.: Potential Theory on Infinite Networks. Springer, New York (1991)
8. Soardi, P.M., Woess, W.: Uniqueness of currents in infinite resistive networks. Discrete Appl.

Math. 31(1), 37–49 (1991)
9. Thomassen, C.: Transient random walks, harmonic functions, and electrical currents in infinite

electrical networks. Technical Report Mat-Report n. 1989-07, The Technical Univ. of Denmark
(1989)

10. Thomassen, C.: Resistances and currents in infinite electrical networks. J. Comb. Theory, Ser. B
49, 87–102 (1990)

11. Woess, W.: Denumerable Markov Chains. EMS Textbooks in Mathematics (2009)

http://www.math.uni-hamburg.de/home/diestel/books/graph.theory
http://www.math.uni-hamburg.de/home/diestel/books/graph.theory
http://dx.doi.org/10.1112/jlms/jdq034
http://mypage.iu.edu/~rdlyons/prbtree/prbtree.html
http://mypage.iu.edu/~rdlyons/prbtree/prbtree.html

	A Characterization of the Locally Finite Networks Admitting Non-Constant Harmonic Functions of Finite Energy
	Abstract
	Introduction
	Definitions and Basic Facts
	Kirchhoff's Cycle Law (K2)
	Kirchhoff's Node Law (K1)
	Energy
	The Free and the Wired Current

	Proof of the Main Result
	Consequences of Theorem 1.1
	Networks not in OHD
	Networks in OHD
	OHD and the Deletion of Edges

	Non-Elusive Harmonic Functions
	Proof of Theorem 5.1
	References


