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inequalities for generalized fractional integral operators on Orlicz–Morrey spaces
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1 Introduction

In this paper we investigate some boundedness properties of the generalized frac-
tional integral operators on Orlicz–Morrey spaces. The fractional integral operator
Iα , 0 < α < 1, is defined by

Iα f (x) :=
∫

Rn

f (y)

|x − y|n(1−α)
dy,

and the fractional maximal operator Mα , 0 ≤ α < 1, is defined by

Mα f (x) := sup
x∈Q∈Q

1
|Q|1−α

∫
Q

| f (y)| dy.

Here, we use the notation Q to denote the family of all cubes in R
n with sides parallel

to the coordinate axes and |Q| to denote the volume of Q. Let 0 < p ≤ p0 < ∞. For
an Lp locally integrable function f on R

n we set

‖ f‖Mp, p0 := sup
Q∈Q

|Q|1/p0

(
1

|Q|
∫

Q
| f (x)|p dx

)1/p

.

We will call the (classical) Morrey space Mp, p0(Rn) = Mp, p0 the subset of all Lp

locally integrable functions f on R
n for which ‖ f‖Mp, p0 is finite. Applying Hölder’s

inequality, we see that

‖ f‖Mp1 , p0 ≥ ‖ f‖Mp2 , p0 for all p0 ≥ p1 ≥ p2 > 0.

This tells us that

Lp0 = Mp0, p0 ⊂ Mp1, p0 ⊂ Mp2, p0 for all p0 ≥ p1 ≥ p2 > 0.

Morrey spaces, which were introduced by C. Morrey in order to study regularity
questions which appear in the Calculus of Variations, describe local regularity more
precisely than Lebesgue spaces and are widely used not only in harmonic analysis
but also in partial differential equations (c.f. [4]).

The positivity of the Schrödinger operator L = −� − |v|2 holds if, for u ∈ C∞
0 (Rn)

and 0 < K < 1,

‖uv‖L2 ≤ K‖ |∇u| ‖L2 . (1.1)

Indeed, integration by parts says that

〈Lu, u〉 = ‖ |∇u| ‖2
L2 − ‖uv‖2

L2 ≥ (1 − K2)‖ |∇u| ‖2
L2 > 0.

Thus, it is important to determine the smallest constant K = Kv such that
Eq. 1.1 holds. One way to prove Eq. 1.1 is by means of the inequality | f (x)| ≤
CI1/n(|∇ f |)(x), which follows from the classical Sobolev integral representation (c.f.
[18, p. 125]). Therefore one is now led to consider weighted inequality of Lebesgue
spaces (so-called the trace inequality)

‖g · Iα f‖Lp ≤ Kg‖ f‖Lp, 1 < p < 1/α. (1.2)

This inequality was studied by many authors (see [5, Introduction]) and Kerman and
Sawyer established the following.
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The trace inequality 1.2 holds if and only if for all cubes Q ∈ Q there exists a
constant K > 0 such that∫

Q
Mα[|g|pχQ](x)p′

dx ≤ K p′
∫

Q
|g(x)|p dx < ∞, (1.3)

where χQ denotes the characteristic function of cube Q and p′ = p/(p − 1) is
the conjugate exponent number of p.

We shall now define the modified (classical) Morrey space M̃p, 1/α(Rn) = M̃p, 1/α

by the set of all Lp locally integrable functions g on R
n for which Eq. 1.3 holds, and

define the norm ‖g‖M̃p, 1/α by the smallest constant that satisfies Eq. 1.3. We would
like to know the relation between the class M̃p, 1/α and the corresponding ordinary
Morrey spaces.

It follows that

‖ f‖Mp, 1/α ≤ ‖ f‖M̃p, 1/α ≤ C‖ f‖Mq, 1/α , 1 < p < q ≤ 1/α. (1.4)

Indeed,
( |Q|αp

|Q|
∫

Q
| f (x)|p dx

)p′

= |Q|αp
( |Q|α

|Q|
∫

Q
| f (x)|p dx

)p′

≤ |Q|αp

|Q|
∫

Q
Mα[| f |pχQ](x)p′

dx

≤ ‖ f‖p′

M̃p, 1/α

|Q|αp

|Q|
∫

Q
| f (x)|p dx < ∞.

This yields that |Q|α
(

1
|Q|

∫
Q

| f (x)|p dx
)1/p

≤ ‖ f‖M̃p, 1/α and that the left inequality

of Eq. 1.4 by taking the supremum over Q. Using Hölder’s inequality, we have

|Q|α
|Q|

∫
Q

| f (x)|p dx ≤ |Q|α
(

1
|Q|

∫
Q

| f (x)|q dx
)1/q (

1
|Q|

∫
Q

| f (x)|(p−1)q′
dx

)1/q′

.

This implies

Mα[| f |pχQ](x) ≤ ‖ f‖Mq, 1/α

(
M[| f |(p−1)q′

χQ](x)
)1/q′

,

where M = M0 denotes the Hardy–Littlewood maximal operator. The right inequal-
ity of Eq. 1.4 then follows by this and the Lp′/q′

-boundedness of M (see also Claim 4.5
to follow). We emphasize that in the right inequality of Eq. 1.4 the parameter q of
the integration satisfies proper inequality p < q.

The extension of the trace inequality 1.2 from Lebesgue spaces to Morrey spaces
was due to Olsen in [11]. He showed that

‖g · Iα f‖Mp, p0 ≤ C‖g‖Mq, 1/α‖ f‖Mp, p0 , 1 < p ≤ p0 < 1/α, 1 < p < q ≤ 1/α.

(1.5)

We emphasize again that the parameter q of the integration satisfies the proper
inequality p < q.
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The third author showed further in [19] that

‖g · Iα f‖Mp, p0 ≤ C‖g‖Mp, 1/α‖ f‖Mq, p0 , 0 < p ≤ 1 < q ≤ p0 < 1/α. (1.6)

We emphasize now that 1 < q.
The purpose of this paper is, motivated by these three proper inequalities

contained in Eqs. 1.4–1.6, to study the boundedness properties of the generalized
fractional integral operators on Orlicz–Morrey spaces. In general, Orlicz–Morrey
spaces can describe more accurately the local regularity with the parameter q close to
p or 1 (c.f. [15]), and, were introduced and studied by Nakai in [9] and [10]. However,
our definition of the spaces is different from that due to Nakai.

The remainder of this paper is organized as follows: Main results can be found
in the beginning of Sections 2 and 3. In Section 2 we describe Orlicz–Morrey spaces
and establish some norm inequalities (the trace inequality and the Olsen inequality)
for the generalized fractional integral operators. We give further a necessary and
sufficient condition for which the Orlicz maximal operator is “locally bounded”.
Section 3 is devoted to investigating Morrey spaces with small parameters. We
introduce some Morrey-norm equivalences and verify the boundedness properties of
the generalized fractional integral operators for the small parameters. The accurate
description of Orlicz–Morrey spaces works well in this problem. Section 4 has several
examples of our main results. Finally, in Section 5 we state and prove some additional
results. Throughout this paper all the notations are standard or will be defined as
needed.

2 Orlicz–Morrey Spaces

In this section we define Orlicz–Morrey spaces and establish some norm inequalities
for the generalized fractional integral operators. Especially, we give a necessary and
sufficient condition for which the Orlicz maximal operator is locally bounded.

2.1 Definitions and Results

The letter C will be used for constants that may change from one occurrence
to another. Constants with subscripts, such as C1, C2, do not change in different
occurrences. By A ≈ B we mean that c−1 B ≤ A ≤ cB with some positive constant
c independent of appropriate quantities. For any 1 < p < ∞ we will write p′ for the
conjugate exponent number given by 1/p + 1/p′ = 1. All “cubes” in R

n are assumed
to have their sides parallel to the coordinate axes, Q to denote the family of all such
cubes and �(Q) to denote the side-length of Q. For Q ∈ Q we use cQ to denote the
cube with the same center as Q, but with side-length c�(Q). We denote |E| by the
Lebesgue measure of E ⊂ R

n. We will denote by D the family of all dyadic cubes in
R

n. We will also write, for the sake of simplicity, for any cube Q ∈ Q and any locally
integrable function f

mQ( f ) := 1
|Q|

∫
Q

f (x) dx.
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Let ρ : [0, ∞) → [0, ∞] be a suitable function. We define the generalized frac-
tional integral operator Tρ and the generalized fractional maximal operator Mρ by

Tρ f (x) :=
∫

Rn
f (y)

ρ(|x − y|)
|x − y|n dy,

Mρ f (x) := sup
x∈Q∈Q

ρ(�(Q))mQ(| f |).

If ρ(t) ≡ tnα , 0 < α < 1, then Tρ = Iα and Mρ = Mα . We now define the condition
that we need to postulate of a function ρ for the generalized fractional integral
operator Tρ .

Definition 2.1 By the “Dini condition” we mean that
∫ 1

0

ρ(s)
s

ds < ∞, (2.1)

while the “weaker growth condition” is that there are constants δ, c > 0, 0 ≤ ε < 1
with the property that

sup
s∈(t/2, t]

ρ(s) ≤ c
∫ δ(1+ε)t

δ(1−ε)

2 t

ρ(s)
s

ds for all t > 0. (2.2)

In the sequel, for the generalized fractional integral operator Tρ , we always assume
that ρ satisfies Eqs. 2.1 and 2.2, and, then denote the set of all such functions by G0.
We will write, when ρ ∈ G0,

ρ̃(t) :=
∫ t

0

ρ(s)
s

ds.

Remark 2.2 Typical examples of ρ(t) that we envisage are, for 0 < α < 1,

ρ(t) ≡
{

tnα

log(e/t) , 0 < t ≤ 1,

tnα log(et), 1 ≤ t < ∞,

and, for c > 0,

ρ(t) ≡
{

tnα, 0 < t ≤ 1,

ect−ne−ct2
, 1 ≤ t < ∞.

The second one is used to control the Bessel potential (see [18]). In our previous
papers [16] and [17] we have assumed that ρ satisfies

1
C

≤ ρ(s)
ρ(t)

≤ C, if
1
2

≤ s
t

≤ 2. (2.3)

This implies

sup
s∈(t/2, t]

ρ(s) ≤ C
∫ t

t/2

ρ(s)
s

ds.

However, this condition cannot reflect the rapid decay of integral kernel at infinity
such as the Bessel potential. For this reason, following mainly [12], we postulate the
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“weaker growth condition” on ρ. As we will see below, ρ enjoys the same sufficient
conditions for the boundedness properties.

To describe Orlicz–Morrey spaces, we recall some definitions and notation.
A function 	 : [0, ∞) → [0, ∞] is said to be a Young function if it is left-

continuous, convex and increasing, and if 	(0) = 0 and 	(t) → ∞ as t → ∞. We say
that 	 is a normalized Young function when 	 is a Young function and 	(1) = 1. It
is easy to see that tp, 1 ≤ p < ∞, is a normalized Young function.

A Young function 	 is said to satisfy the �2-condition, denoted 	 ∈ �2, if for
some K > 1

	(2t) ≤ K	(t) for all t > 0.

Meanwhile, a Young function 	 is said to satisfy the ∇2-condition, denoted 	 ∈ ∇2,
if for some K > 1

	(t) ≤ 1
2K

	(Kt) for all t > 0.

The function 	(t) ≡ t satisfies the �2-condition but fails the ∇2-condition. If 1 <

p < ∞, then 	(t) ≡ tp satisfies both conditions. The complementary function 	̄ of a
Young function 	 is defined by

	̄(t) := sup{ts − 	(s) : s ∈ [0, ∞)}.
Then 	̄ is also a Young function and ¯̄	 = 	. Notice that 	 ∈ ∇2 if and only if 	̄ ∈ �2.
For the other properties of Young functions and the examples, see [9, p. 196] or the
book [14]. In Section 5 we collect some examples as well.

Given a Young function 	, define the Orlicz space L	(Rn) = L	 by the Luxem-
berg norm

‖ f‖L	 := inf
{
λ > 0 :

∫
Rn

	

( | f (x)|
λ

)
dx ≤ 1

}
.

When 	(t) ≡ t p, 1 ≤ p < ∞, ‖ f‖L	 = ‖ f‖Lp . We need the following basic two facts.

Generalized Hölder’s inequality:
∫

Rn
| f (x)g(x)| dx ≤ C‖ f‖L	‖g‖L	̄;

The dual equation:

‖ f‖L	 ≈ sup
{‖ fg‖L1 : ‖g‖L	̄ ≤ 1

}
.

Given a Young function 	, define the mean Luxemburg norm of f on a cube
Q ∈ Q by

‖ f‖	, Q := inf
{
λ > 0 : 1

|Q|
∫

Q
	

( | f (x)|
λ

)
dx ≤ 1

}
.

When 	(t) ≡ t p, 1 ≤ p < ∞,

‖ f‖	, Q =
(

1
|Q|

∫
Q

| f (x)|p dx
)1/p

,
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that is, the mean Luxemburg norm coincides with the (normalized) Lp norm. It
should be noticed that

‖ f‖	, Q = ‖τ�(Q)[ fχQ]‖L	, (2.4)

where τδ , δ > 0, is the dilation operator τδ f (x) = f (δx). It follows from this relation
and generalized Hölder’s inequality that for any cube Q ∈ Q

mQ(| fg|) ≤ C‖ f‖	, Q‖g‖	̄, Q. (2.5)

The Orlicz maximal operator, for any Young function �, is defined by

M� f (x) := sup
x∈Q∈Q

‖ f‖�, Q.

Now let us introduce Orlicz–Morrey spaces.

Definition 2.3 Let G1 be the set of all functions φ : [0, ∞) → [0, ∞) such that φ(t)
is nondecreasing but that φ(t)t−n is nonincreasing. Let φ ∈ G1 and let 	 be a Young
function. The Orlicz–Morrey space L	, φ(Rn) = L	, φ consists of all locally integrable
functions f on R

n for which the norm

‖ f‖L	,φ := sup
Q∈Q

φ(�(Q))‖ f‖	, Q

is finite. In particular, in order that the characteristic function of the unit cubes
belongs to L	, φ , it should be always assumed that

sup
t>1

φ(t)
	−1(tn)

< ∞.

If 	(t) ≡ tp and φ(t) ≡ tn/p0 , 1 ≤ p ≤ p0 < ∞, then L	, φ = Mp, p0 . That is, then
Orlicz–Morrey spaces coincide with (classical) Morrey spaces. When 	(t) ≡ tp, 1 ≤
p < ∞, we will denote L	, φ by Mp, φ . In this case we will call it the (generalized)
Morrey space. In Section 3 we consider Mp, φ even for 0 < p < 1.

Remark 2.4

(1) The class G1 is a natural one for defining L	, φ . We shall verify that, for any
suitable function φ : [0, ∞) → [0, ∞), the norm defined by

‖ f‖L	,φ := sup
Q∈Q

φ(�(Q))‖ f‖	, Q

is equivalent to a norm ‖ f‖L	,φ2 for some φ2 ∈ G1. Indeed, if we let

φ1(t) = sup
t′∈[0, t]

φ(t′),

then φ1(t) is nondecreasing and ‖ f‖	, φ ≈ ‖ f‖	, φ1 . Similarly, if we let

φ2(t) = tn sup
t′≥t

φ1(t′)t′−n,
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then φ2(t) is nondecreasing but φ2(t)t−n is nonincreasing and ‖ f‖	, φ1 ≈ ‖ f‖	, φ2 .
These hold from the fact that, for any cube Q ∈ Q and any positive number
t′ ≤ �(Q),

‖ f‖	, Q ≤ 2n+1 sup
Q′∈Q: Q′⊂Q, �(Q′)=t′

‖ f‖	, Q′

and that, for all cubes Q1 ⊂ Q2,

|Q1| ‖ f‖	, Q1 ≤ C|Q2| ‖ f‖	, Q2 ,

which can be proved by using the simple geometric fact and another character-
ization of the Luxemburg norm (c.f. [14, p. 69])

‖ f‖	, Q ≤ inf
s>0

{
s + s

|Q|
∫

Q
	

( | f (x)|
s

)
dx

}
≤ 2‖ f‖	, Q.

(2) We also remark that if φ ∈ G1 then it automatically satisfies the doubling
condition

φ(2t) ≤ 2nφ(t) for all t > 0.

(3) As a special case when ψ(t) ≡ 1, we have L	, φ = L∞ with norm equivalence.
Indeed, it is not so hard to see that L	, φ ↪→ L∞. To see the converse, we take
f ∈ L	, φ arbitrarily. Then we have

‖ f‖	, Q ≤ ‖ f‖L	,φ

for all cubes Q ∈ Q, which implies

1
|Q|

∫
Q

	

( | f (x)|
‖ f‖L	,φ

)
dx ≤ 1.

If a sequence {Q j}∞j=1 of cubes shrinks to a Lebesgue point x of 	 ◦ f , then we
have

	

( | f (x)|
‖ f‖L	,φ

)
= lim

j→∞
1

|Q j|
∫

Q j

	

( | f (y)|
‖ f‖L	,φ

)
dy ≤ 1.

The set of all Lebesgue points of 	 ◦ f being almost equal to R
n, we see that

L	, φ ←↩ L∞.
(4) The class G1 is a good class of describing intersection spaces. Indeed, we

have that max(φ1, φ2) ∈ G1 whenever φ1, φ2 ∈ G1 and that L	, φ1 ∩ L	, φ2 =
L	, max(φ1, φ2) with norm equivalence.

We define an auxiliary space too.

Definition 2.5 Let φ ∈ G1 and let 	 be a Young function. The space L̃	, φ(Rn) = L̃	, φ

consists of all locally integrable functions g on R
n for which the norm

‖g‖L̃	,φ := sup
{‖Mφ[gwχQ]‖	̄, Q : Q ∈ Q, ‖w‖	̄, Q ≤ 1

}
is finite. Here, Mφ is the generalized fractional maximal operator.

Related to the space L̃	, φ , we need the following notion too.
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Definition 2.6 Let 	 and � be Young functions. We say that “the Orlicz maximal
operator M� is locally bounded in the norm determined by 	”, when it satisfies

‖M� [gχQ]‖	, Q ≤ C‖g‖	, Q for all cubes Q ∈ Q.

Remark 2.7 When φ(t) ≡ tnα , 0 < α < 1, and 	(t) ≡ tp, 1 < p < 1/α, the space L̃	, φ

can be characterized by the condition 1.3 (see [5, Theorem 2.3]). That is, then we
have L̃	, φ = M̃p, 1/α . We do not know whether the Orlicz counterpart of Eq. 1.3 is
available or not. Following [12], using the local boundedness property of the Orlicz
maximal operator, we can find Orlicz–Morrey spaces which are embeded into L̃	, ψ

(see Claim 2.13 to follow).

We now state our first results, which are the extension of those in [16, 17] to
Orlicz–Morrey spaces.

Theorem 2.8 Let ρ ∈ G0, φ ∈ G1 and 	 ∈ ∇2. Suppose that
∫ ∞

t

ρ(s)
sφ(s)

ds ≤ C
ρ̃(t)
φ(t)

for all t > 0. (2.6)

Then

‖g · Tρ f‖L	, φ ≤ C‖g‖L̃	, ρ̃ ‖ f‖L	,φ .

Theorem 2.9 Let � be a Young function. With the same condition posed in Theorem 2.8,
if, in addition, M�̄ is locally bounded in the norm determined by 	̄, then we have

‖g · Tρ f‖L	, φ ≤ C‖g‖L�, ρ̃ ‖ f‖L	,φ .

Theorems 2.8 and 2.9 are the trace inequalities of the generalized fractional
integral operators for Orlicz–Morrey spaces.

Theorem 2.10 Let ρ ∈ G0, φ, ψ ∈ G1, 	 ∈ ∇2 and 0 < a ≤ 1. Set

η(t) ≡ φ(t)a, �(t) ≡ 	(t1/a).

Suppose that

ρ̃(t)
φ(t)

+
∫ ∞

t

ρ(s)
sφ(s)

ds ≤ C
ψ(t)
η(t)

for all t > 0. (2.7)

Then

‖g · Tρ f‖L�, η ≤ C‖g‖L̃�,ψ ‖ f‖L	,φ .

Theorem 2.10 is a general form of Theorem 2.8 (letting a ≡ 1) and is the Olsen
inequality of the generalized fractional integral operators for Orlicz–Morrey spaces.
In Section 4 we will encounter some examples.

Letting g(x) ≡ 1 and ψ(t) ≡ 1 in Theorem 2.10, we can recover the boundedness
property of Tρ by noticing that (see Corollary 2.19 to follow) if �̄ ∈ ∇2 then

sup
{‖M[wχQ]‖�̄, Q : Q ∈ Q, ‖w‖�̄, Q ≤ 1

} = C,
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where M is the Hardy–Littlewood maximal operator.

Corollary 2.11 Let ρ ∈ G0, φ ∈ G1, 	 ∈ ∇2 and 0 < a ≤ 1. Set

η(t) ≡ φ(t)a, �(t) ≡ 	(t1/a).

Suppose that �̄ ∈ ∇2 and that

ρ̃(t)
φ(t)

+
∫ ∞

t

ρ(s)
sφ(s)

ds ≤ C
η(t)

for all t > 0.

Then

‖Tρ f‖L�, η ≤ C‖ f‖L	,φ .

In Theorem 5.4, using the method developed in the last part of the proof of
Lemma 2.22, we reprove this corollary directly without the assumption �̄ ∈ ∇2.
Corollary 2.11 generalizes [16, Corollary 1.7]. In [8] Nakai studied the boundness
of the generalized fractional integral operator Tρ on Orlicz spaces. Since, we cannot
recover Orlicz spaces as a special case of our Orlicz–Morrey spaces, we dare not
compare Corollary 2.11 with [8, Theorem 3.1].

2.2 Principal Lemma

The proof of the previous results relies upon the following principal lemma
(Lemma 2.12). We shall make some remarks since it would be somehow complicated.

Let ρ ∈ G0, φ ∈ G1 and 	 ∈ ∇2. Then, by letting ψ(t) ≡ ρ̃(t), (2) of Lemma 2.12
yields

‖g · Tρ f‖L	,φ ≤ C‖g‖L̃	, ρ̃ ‖Mf‖L	,φ , (2.8)

if Eq. 2.6 holds. Once we verify Eq. 2.8, Theorem 2.8 will have been an immediate
consequence of the boundedness of the Hardy–Littlewood maximal operator M on
the Orlicz–Morrey space L	, φ (see Corollary 2.21 to follow). While, by letting g(x) ≡
1 and ψ(t) ≡ 1 and noticing that ‖1‖L̃	, 1 = C when 	̄ ∈ ∇2, (2) of Lemma 2.12 yields

‖Tρ f‖L	,φ ≤ C‖Mρ̃ f‖L	,φ , (2.9)

if 	̄ ∈ ∇2 and
∫ ∞

t

ρ(s)
sρ̃(s)φ(s)

ds ≤ C
φ(t)

for all t > 0.

The inequality 2.9 means that the Orlicz–Morrey norm of the generalized fractional
integral operator Tρ f can be controled by that of the generalized fractional max-
imal operator Mρ̃ f . Sometimes, assuming Eq. 2.3 for example, one can verify the
converse. In general, in spite of losing the linearity, one could expect less singularity
to Mρ̃ than Tρ . This Morrey norm equivalence is first proved by Adams and Xiao
in [2]. To prove Theorem 2.10, we need more infomation between the generalized
fractional integral operators and the generalized fractional maximal operators in the
framework of Orlicz–Morrey spaces. In some sense, Lemma 2.12 is the link between
Eqs. 2.8 and 2.9.
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Lemma 2.12 Let ρ ∈ G0, φ,ψ, η ∈ G1 and let 	 be a Young function.

(1) Assume that
∫ ∞

t

ρ(s)
sφ(s)

ds ≤ C
ψ(t)
η(t)

for all t > 0. (2.10)

Then

‖g · Tρ f‖L	, η ≤ C‖g‖L̃	,ψ

(‖Mρ̃/ψ f‖L	, η + ‖ f‖M1, φ

)
.

(2) Assume that
∫ ∞

t

ρ(s)ψ(s)
sρ̃(s)φ(s)

ds ≤ C
ψ(t)
φ(t)

for all t > 0. (2.11)

Then

‖g · Tρ f‖L	,φ ≤ C‖g‖L̃	,ψ ‖Mρ̃/ψ f‖L	, φ .

Proof We denote by D the family of all dyadic cubes in R
n. First of all we notice that,

in general, if φ ∈ G1 then it automatically satisfies the doubling condition

φ(2t) ≤ 2nφ(t) for all t > 0.

A geometric observation shows that

‖ f‖L	,φ ≈ sup
Q∈D

φ(�(Q))‖ f‖	, Q. (2.12)

We assume that f and g are nonnegative. Noticing Eq. 2.12, for any Q0 ∈ D we wish
to estimate

‖g · Tρ f‖	, Q0 .

By a duality argument, noticing Eq. 2.4, it suffices to estimate

1
|Q0|

∫
Q0

w(x)g(x)Tρ f (x) dx

for all nonnegative measurable functions w such that

‖w‖	̄, Q0
≤ 1.

We now set, for all t > 0,

ρ̂(t) :=
∫ δ(1+ε)t

δ(1−ε)

2 t

ρ(s)
s

ds.

Then, by Eq. 2.2 we have

sup
s∈(t/2, t]

ρ(s) ≤ cρ̂(t). (2.13)

For simplicity, we will write

c1 ≡ δ(1 − ε)

2
and c2 ≡ δ(1 + ε).
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It follows that

Tρ f (x) =
∑
ν∈Z

∫
2ν−1<|x−y|≤2ν

f (y)
ρ(|x − y|)
|x − y|n dy

≤ C
∑
ν∈Z

ρ̂(2ν)

2nν

∫
|x−y|≤2ν

f (y) dy

≤ C
∑
ν∈Z

∑
Q∈D: Q�x, �(Q)=2ν

ρ̂(�(Q))

|Q|
∫

3Q
f (y) dy

= C
∑
Q∈D

ρ̂(�(Q))

|Q|
∫

3Q
f (y) dy · χQ(x)

= C
∑
Q∈D

ρ̂(�(Q))m3Q( f ) · χQ(x),

where we use the notation mQ( f ) := 1
|Q|

∫
Q

f (x) dx.

We now let
{
D1(Q0) := {Q ∈ D : Q ⊂ Q0}
D2(Q0) := {Q ∈ D : Q � Q0}

and evaluate the quantities, for i = 1, 2,

Ji := 1
|Q0|

∫
Q0

w(x)g(x)

⎛
⎝ ∑

Q∈Di(Q0)

ρ̂(�(Q))m3Q( f )χQ(x)

⎞
⎠ dx.

Denote by N0 an integer such that

N0 ≈ 1 + log2
1 + ε

1 − ε
.

Then a geometric observation shows that

∑
ν∈Z

χ(c1, c2)(2
ν) ≤ N0.

Consequently, for any dyadic cube R ∈ D, we have

∑
q∈D: Q⊂R

ρ̂(�(Q))

∫
3Q

f (y) dy =
log2 �(R)∑
ν=−∞

ρ̂(2ν)

⎛
⎝ ∑

Q∈D: Q⊂R, �(Q)=2ν

∫
3Q

f (y) dy

⎞
⎠

≤ C
∫

3R
f (y) dy

⎛
⎝

log2 �(R)∑
ν=−∞

ρ̂(2ν)

⎞
⎠

≤ CN0ρ̃(�(c2 R))

∫
3R

f (y) dy.
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Once we verify this fact, it has been essentially shown in [17] (see also Lemma 3.8
below) that there exist a collection of dyadic cubes {Qk, j} ⊂ D1(Q0) and a collection
of disjoint measurable sets {E0} ∪ {Ek, j} such that

E0 ⊂ Q0, Ek, j ⊂ Qk, j, |Q0| ≤ 2|E0|, |Qk, j| ≤ 2|Ek, j|, Q0 = E0 ∪
⋃
k, j

Ek, j

and that

C|Q0|J1 ≤ ρ̃(�(c2 Q0))mQ0(wg)m3Q0( f )|E0|
+

∑
k, j

ρ̃(�(c2 Qk, j))mQk, j(wg)m3Qk, j( f )|Ek, j|.

Noticing, by use of the doubling condition of ψ ,

ρ̃(�(c2 Qk, j))mQk, j(wg)m3Qk, j( f )

≤ Cψ(�(Qk, j))mQk, j(wg) · ρ̃(�(c0 Qk, j))

ψ(�(c0 Qk, j))
mc0 Qk, j( f ),

where c0 ≡ max(c2, 3), and then

ρ̃(�(c2 Qk, j))mQk, j(wg)m3Qk, j( f )|Ek, j| ≤ C
∫

Ek, j

Mψ [wg](x)Mρ̃/ψ f (x) dx,

we have

J1 ≤ C
|Q0|

∫
Q0

Mψ [wg](x)Mρ̃/ψ f (x) dx.

It follows from generalized Hölder’s inequality 2.5 that

J1 ≤ C‖Mψ [wg]‖	̄, Q0
‖Mρ̃/ψ f‖	, Q0 .

Recalling that ‖w‖	̄, Q0
≤ 1, we have (see Definition 2.5)

‖Mψ [wg]‖	̄, Q0
≤ ‖g‖L̃	,ψ

and, hence, we obtain

J1 ≤ C‖g‖L̃	, ψ ‖Mρ̃/ψ f‖	, Q0 . (2.14)

Thus, the estimate for J1 is now valid.
Let us turn to the estimate of J2. It follows for any Q ∈ Q that

ρ̂(�(Q))m3Q( f ) ≤ ‖ f‖M1, φ

ρ̂(�(Q))

φ(�(3Q))
≤ C

∫ �(c2 Q)

�(c1 Q)

ρ(s)
sφ(s)

ds,

where we have used the fact that φ(t) is nondecreasing and the doubling condition of
φ when c2 > 3. As a consequence

J2 ≤ C‖ f‖M1, φ mQ0(wg)
∑

Q∈D2(Q0)

∫ �(c2 Q)

�(c1 Q)

ρ(s)
sφ(s)

ds

≤ C‖ f‖M1, φ mQ0(wg)

∫ ∞

�(c1 Q0)

ρ(s)
sφ(s)

ds ≤ C‖ f‖M1, φ mQ0(wg)
ψ(�(Q0))

η(�(Q0))
.
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Here, we have invoked the condition 2.10 and the doubling condition of ψ and η. It
follows immediately from the definition of the mean Luxemburg norm that

‖χQ0‖	, Q0 = 	−1(1).

These imply that

J2 ≤ Cη(�(Q0))
−1‖ f‖M1, φ ψ(�(Q0))mQ0(wg)

and that

ψ(�(Q0))mQ0(wg) ≤ mQ0

(
Mψ [wgχQ0 ]

)
≤ C	−1(1)‖Mψ [wg]‖	̄, Q0

≤ C	−1(1)‖g‖L̃(	, ψ)
,

where in the second inequality we have used generalized Hölder’s inequality 2.5.
Thus, we obtain

J2 ≤ Cη(�(Q0))
−1‖g‖L̃	,ψ ‖ f‖M1, φ . (2.15)

It follows from Eqs. 2.14 and 2.15 that

Cη(�(Q0))‖g · Tρ f‖	, Q0 ≤ ‖g‖L̃	,ψ

(
η(�(Q0))‖Mρ̃/ψ f‖	, Q0 + ‖ f‖M1, φ

)
≤ ‖g‖L̃	,ψ

(‖Mρ̃/ψ f‖L	, η + ‖ f‖M1, φ

)
.

By taking the supremum over all dyadic cubes Q0 ∈ D in the left side, (1) of the
theorem is now verified.

Finally, (2) of the theorem holds from the following two facts. First, for any Q ∈ Q
we have, recalling that c0 ≡ max(c2, 3),

ρ̂(�(Q))m3Q( f ) ≤ C
ρ̂(�(Q))ψ(�(c0 Q))

ρ̃(�(c0 Q))
· ρ̃(�(c0 Q))

ψ(�(c0 Q))
mc0 Q( f )

≤ C
ρ̂(�(Q))ψ(�(c0 Q))

ρ̃(�(c0 Q))
· 1
|Q|

∫
Q

Mρ̃/ψ f (x) dx

≤ C‖Mρ̃/ψ f‖L	,φ

ρ̂(�(Q))ψ(�(c0 Q))

ρ̃(�(c0 Q))φ(�(Q))
.

Second, by use of the facts that ψ(t), φ(t) and ρ̃(t) are nondecreasing and ψ and φ

satisfy the doubling condition and use of the condition 2.11 we have

∑
Q∈D2(Q0)

ρ̂(�(Q))ψ(�(c0 Q))

ρ̃(�(c0 Q))φ(�(Q))
≤ C

∞∑
ν=1+log2 �(Q0)

∫ c22nu

c12nu

ρ(s)ψ(s)
sρ̃(s)φ(s)

ds

≤ C
ψ(�(Q0))

φ(�(Q0))
.

These imply

J2 ≤ Cφ(�(Q0))
−1‖g‖L̃	, ψ ‖Mρ̃/ψ f‖L	,φ . (2.16)

The desired inequality then follows from Eqs. 2.14 and 2.16. ��
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Following [12], we wish to find Orlicz–Morrey spaces which are embeded
into L̃	, ψ .

Claim 2.13 Let ψ ∈ G1 and let 	 and � be Young functions. Assume that M�̄ is
locally bounded in the norm determined by 	̄. Then

‖g‖L̃	,ψ ≤ C‖g‖L�,ψ .

Proof Fix a cube R. By generalized Hölder’s inequality 2.5 and the definition of the
Orlicz–Morrey norm, we have, for any Q ∈ Q,

ψ(�(Q))mQ(wgχR) ≤ C‖g‖L�,ψ ‖wχR‖�̄, Q.

This yields

Mψ [wgχR](x) ≤ C‖g‖L�,ψ M�̄ [wχR](x).

Then, using the assumption M�̄ is locally bounded in the norm determined by 	̄, we
have

‖Mψ [wgχR]‖	̄, R ≤ C‖g‖L�,ψ ‖M�̄ [wχR]‖	̄, R ≤ C‖g‖L�,ψ ‖w‖	̄, R.

This means the statement of the lemma (see Definition 2.5). ��

2.3 The Local Boundedness Property

In this part, motivated by Claim 2.13, we investigate the local boundedness property
of the Orlicz maximal operators. Recall that 	 is a normalized Young function when
	 is a Young function and 	(1) = 1. In general, for a Young function 	 it should be
remarked that {

θ	(t) ≥ 	(θ t) if 0 < θ < 1,

θ	(t) ≤ 	(θ t) if 1 < θ < ∞.

Indeed, since 	 is convex and 	(0) = 0, for 0 < θ < 1,

	(θ t) = 	((1 − θ)0 + θ t) ≤ (1 − θ)	(0) + θ	(t) = θ	(t)

and, for 1 < θ < ∞,

θ	(t) = θ	(θ−1θ t) ≤ θθ−1	(θ t) = 	(θ t).

The following lemma is the localized version of so-called the “Wiener–Stein equiva-
lence” and is essentially found in [12, Lemma 4.1].

Lemma 2.14 Suppose that � is a normalized Young function and that f is a nonneg-
ative locally integrable function. Then, for any cube Q and any number t > ‖ f‖�,Q,

∫
{x∈Q: f (x)>t}

�

(
f (y)

2nt

)
dy ≤ ∣∣{x ∈ Q : M� [ fχQ](x) > t

}∣∣

≤ C
∫

{x∈Q: f (x)>t/2}
�

(
2 f (y)

t

)
dy. (2.17)
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In particular, if � ∈ �2 then

C−1
∫

{x∈Q: f (x)>t}
�

(
f (y)

t

)
dy ≤ ∣∣{x ∈ Q : M� [ fχQ](x) > t

}∣∣

≤ C
∫

{x∈Q: f (x)>t/2}
�

(
f (y)

t

)
dy.

Proof First, we notice that the maximal operator M� is subadditive and that for all
cubes R ‖χR‖�, R = �−1(1) = 1. Using these observations and the standard idea of
writing f as f = f1 + f2, where f1(x) = f (x) if f (x) > t/2 and f1(x) = 0 otherwise,
we have

M� [ fχQ](x) ≤ M� [ f1χQ](x) + t/2.

This implies

{
x ∈ Q : M� [ fχQ](x) > t

} ⊂ {
x ∈ Q : M� [ f1χQ](x) > t/2

}
.

It follows from the well-known Wiener covering lemma that there exists the set of
disjoint cubes {Q j} such that

Q j ⊂ Q, t/2 < ‖ f1‖�, Q j,
{

x ∈ Q : M� [ f1χQ](x) > t/2
} ⊂

⋃
j

3Q j.

We now see that
1

|Q j|
∫

Q j

�

(
2 f1(x)

t

)
dx > 1; if it were not, then by the definition of

the mean Luxemberg norm we would have t/2 ≥ ‖ f1‖�, Q j , which is a contradiction.

This implies that |Q j| <

∫
Q j

�

(
2 f1(x)

t

)
dx and that the right inequality of Eq. 2.17.

Let D(Q) be the collection of all dyadic subcubes of Q, that is, all those cubes
obtained by dividing Q into 2n congruent cubes of half its length, dividing each
of those into 2n congruent cubes, and so on. By convention, Q itself belongs to
D(Q). Since, t > ‖ f‖�, Q, by use of standard argument of the Calderón-Zygmund
decomposition, there exists a disjoint collection of maximal (with inclusion) dyadic
cubes {Q j} ⊂ D(Q) such that

t < ‖ f‖�, Q j,
{

x ∈ Q : M� [ fχQ](x) > t
} ⊃

⋃
j

Q j.

Let Q̃ j ∈ D(Q) be the unique dyadic cube containing Q j with side-length twice that
of Q j. In general, one knows that ‖ f‖	, Q ≤ δn‖ f‖	, δQ for any cube Q and any δ > 1.
Thus, we have

‖ f‖�, Q j ≤ 2n‖ f‖�, Q̃ j

and by the maximality of Q j

‖ f‖�, Q j ≤ 2n‖ f‖�, Q̃ j
≤ 2nt.
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It follows from the definition of the mean Luxemberg norm and the fact that �(t) is
a nondecreasing function that

1 ≥ 1
|Q j|

∫
Q j

�

(
f (x)

‖ f‖�, Q j

)
dx ≥ 1

|Q j|
∫

Q j

�

(
f (x)

2nt

)
dx.

This yields that |Q j| ≥
∫

Q j

�

(
f (x)

2nt

)
dx and that the left inequality of Eq. 2.17,

by observing further that
⋃

j

Q j ⊃ {x ∈ Q : f (x) > t}, which holds by the Lebesgue

differential theorem. ��

Remark 2.15 Following the proof of Lemma 2.14, we see that

∣∣{x ∈ Q : M� [ fχQ](x) > t
}∣∣ ≤ C

∫
Q∩{| f |>t/2}

�

(
2| f (x)|

t

)
dx for all t > 0.

Lemma 2.16 Let � be a normalized Young function. Suppose that normalized Young
functions 	, 	1 and 	2 fulf ill, for some positive constants C1 and C2,

	1(C1t) − 1 ≤
∫ t

1
�

(
t
s

)
	′(s) ds ≤ 	2(C2t) for all t > 1.

Then, for any Q ∈ Q,

C−1‖ f‖	1, Q ≤ ‖M� [ fχQ]‖	, Q ≤ C‖ f‖	2, Q.

In particular, the boundedness of M� does not depend on the values of 	(t) and �(t),
t less than one (see also Claim 5.1).

Proof First, we verify

‖M� [ fχQ]‖	, Q ≤ C‖ f‖	2, Q.

By Remark 2.15 for all t > 0 we have

∣∣{x ∈ Q : M� [ fχQ](x) > t
}∣∣ ≤ C

∫
Q∩{| f |>t/2}

�

(
2| f (x)|

t

)
dx.

It follows from this inequality that
∫

Q
	

(
M� [ fχQ](x)

)
dx =

∫ ∞

0
|{x ∈ Q : M� [ fχQ](x) > t}|	′(t) dt

≤ |Q| + C
∫ ∞

1

(∫
Q∩{| f |>t/2}

�

(
2| f (x)|

t

)
dx

)
	′(t) dt

= |Q| + C
∫

Q∩{| f |>1/2}

(∫ 2| f (x)|

1
�

(
2| f (x)|

t

)
	′(t) dt

)
dx

≤ |Q| + C
∫

Q
	2(2C2| f (x)|) dx.
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For any λ > 0, replacing | f (x)| by
| f (x)|

λ
, we have

1
|Q|

∫
Q

	

(
M� [ fχQ](x)

λ

)
dx ≤ 1 + C

1
|Q|

∫
Q

	2

(
2C2| f (x)|

λ

)
dx.

This yields, by the definition of the mean Luxemburg norm, for some C > 1

1
|Q|

∫
Q

	

(
M� [ fχQ](x)

C‖ f‖	2, Q

)
dx ≤ 1,

which proves the desired inequality.
Next, we verify the converse. Without loss of generality, we may assume that

‖M� [ fχQ]‖	, Q = 1. This means that

1
|Q|

∫
Q

	
(
M� [ fχQ](x)

)
dx ≤ 1.

We now claim that then ‖ f‖�, Q ≤ 1. If it were not, then we must have the above
integral mean is bigger than one, which contradicts to our normalization above, by
virtue of the fact that for almost every x ∈ Q ‖ f‖�, Q ≤ M� [ fχQ](x).

We wish to prove ‖ f‖	1, Q ≤ C. Lemma 2.14 yields that, by noticing ‖ f‖�, Q ≤ 1,

|Q| ≥
∫

Q
	

(
M� [ fχQ](x)

)
dx

=
∫ ∞

0
|{x ∈ Q : M� [ fχQ](x) > t}|	′(t) dt

≥
∫ ∞

1

(∫
Q∩{| f |>t}

�

( | f (x)|
2nt

)
dx

)
	′(t) dt

=
∫

Q∩{| f |>1}

(∫ | f (x)|

1
�

( | f (x)|
2nt

)
	′(t) dt

)
dx

and further that

|Q| ≥
∫

Q∩{| f |>2n}

(∫ | f (x)|/2n

1
�

( | f (x)|
2nt

)
	′(t) dt

)
dx

≥
∫

Q∩{| f |>2n}
	1(2−nC1| f (x)|) dx − |Q ∩ {| f | > 2n}|

≥
∫

Q
	1(2−nC1| f (x)|) dx − (	1(C1) + 1)|Q|.

This yields, for some C > 0,

1
|Q|

∫
Q

	1

( | f (x)|
C

)
dx ≤ 1

and, hence, ‖ f‖	1, Q ≤ C. The proof is now complete. ��
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Proposition 2.17 Let 	 and � be normalized Young functions. Then the following
are equivalent.

(1) The maximal operator M� is locally bounded in the norm determined by 	;
(2) The functions 	 and � satisfy

∫ t

1
�

(
t
s

)
	′(s) ds ≤ 	(Ct) for some C > 0 and for all t > 1;

(3) The functions 	 and � satisfy

∫ t

1
	

(
t
s

)
� ′(s) ds ≤ 	(Ct) for some C > 0 and for all t > 1.

In [6, 7] Kita established similar results for �(t) ≡ t on L	.

Proof We have already proved that (2) implies (1). First, we verify (1) implies (2).
Suppose that (1), namely, assume that there exists a constant C0 ≥ 1 such that

1
|Q|

∫
Q

	

(
M� [ fχQ](x)

C0‖ f‖	, Q

)
dx ≤ 1.

We now claim that then ‖ f‖�, Q ≤ C0‖ f‖	, Q. If it were not, then we would have
the above integral mean is bigger than one, which contradicts to our normalization
above, by virtue of the fact that for almost every x ∈ Q ‖ f‖�, Q ≤ M� [ fχQ](x). Thus,
we have by Lemma 2.16

|Q| ≥
∫

Q
	

(
M� [ fχQ](x)

C0‖ f‖	, Q

)
dx

=
∫ ∞

0

∣∣{x ∈ Q : M� [ fχQ](x) > C0‖ f‖	, Q · s
}∣∣ 	′(s) ds

≥
∫ ∞

1

∫
Q∩{| f |>C0‖ f‖	, Q·s}

�

( | f (x)|
2nC0‖ f‖	, Q · s

)
dx 	′(s) ds

≥
∫

Q∩{| f |>2nC0‖ f‖	, Q}

∫ | f (x)|/(2nC0‖ f‖	, Q)

1
�

( | f (x)|
2nC0‖ f‖	, Q · s

)
	′(s) ds dx.

If we set f (x) ≡ χR(x) with R ∈ Q contained in Q and let t = (2nC0‖ f‖	, Q)−1, then
we have

∫ t

1
�

(
t
s

)
	′(s) ds ≤ |Q|

|R| .

Observing that

	(2nC0t) = 	

(
1

‖ f‖	, Q

)
= |Q|

|R| ,

we obtain the desired inequality.
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Next, we verify (3) implies (2). Carrying out integration by parts, we have

∫ t

1
�

(
t
s

)
	′(s) ds =

[
�

(
t
s

)
	(s)

]t

1
+ t

∫ t

1
� ′

(
t
s

)
	(s)

ds
s2

= 	(t) − �(t) +
∫ t

1
	

(
t
s

)
� ′(s) ds

≤ 	(t) + 	(Ct) ≤ 	(Ct).

Here, we have used changed variables
t
s

�→ s. The converse, (2) implies (3), is similar,

once we notice that

�(t) ≤ 1
	(2) − 	(1)

∫ 2

1
�

(
2t
s

)
	′(s) ds

≤ 1
	(2) − 	(1)

∫ 2t

1
�

(
2t
s

)
	′(s) ds

≤ 1
	(2) − 	(1)

	(2Ct)

≤ 	(Ct), t > 1.

��

Claim 2.18

(1) Let 	 be a normalized Young function and �(t) ≡ tp, 1 ≤ p < ∞. Suppose that
s1−p	′(s), s > 1, is nondecreasing. Then the following are equivalent.

(a) The maximal operator M� is locally bounded in the norm determined
by 	;

(b) There exists some constant C > 0 such that

tp
∫ t

1

	′(s)
sp

ds ≤ 	(Ct) for all t > 1;

(c) There exists some constant K > 1 such that

	(t) ≤ 1
2K p

	(Kt) for all t > 1.

(3) The normalized Young functions 	 and � satisfy

∫ t

1
	

(
t
s

)
� ′(s) ds ≤ 	(Ct) for some C > 0 and for all t > 1

provided that there exist some constant K > 1 and some positive summable
sequence {a j} such that, for all j ∈ N and for all t > 1,

�(K j+1)	(K− jt) ≤ a j	(t).
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Proof We first prove (1). We have already proved the equivalence of (a) and (b).
We verify (b) implies (c). By the assumption, s1−p	′(s) is nondecreasing, we have for
μ > 1

	(Cμt) ≥ (μt)p
∫ μt

t

	′(s)
sp

ds ≥ μpt	′(t)
∫ μt

t

1
s

ds ≥ μp	(t) log μ,

where we have used the fact that
	(t)

t
≤ 	′(t) which holds from the convexity. It

follows by letting μ big enough so that C−p log μ > 2 and then by setting K = Cμ

that

2K p	(t) ≤ 	(Kt).

This is the desired inequality. We verify the converse. It follows for an appropriate
N > 1 that

∫ t

1

	′(s)
sp

ds ≤
N∑

j=0

∫ K− jt

K− j−1t

	′(s)
sp

ds ≤
N∑

j=0

	(K− jt)
(K− j−1t)p

= K p

tp

N∑
j=0

K pj	(K− jt) ≤ K p

tp
	(t)

N∑
j=0

2− j ≤ 1
tp

	(2K pt).

This proves the desired inequality.
Next we prove (2). It follows for an appropriate N > 1 that

∫ t

1
	

(
t
s

)
� ′(s) ds ≤

N∑
j=0

∫ K j+1

K j
	

(
t
s

)
� ′(s) ds ≤

N∑
j=0

	

(
t

K j

) ∫ K j+1

K j
� ′(s) ds

≤
N∑

j=0

	

(
t

K j

)
�(K j+1) ≤ 	(t)

⎛
⎝�(K) +

N∑
j=1

a j

⎞
⎠ ≤ 	(Ct).

This is the desired inequality. ��

As a special case we can recover the classical result on the ∇2-condition.

Corollary 2.19 Let 	 ∈ ∇2. Then

‖M[ fχQ]‖	, Q ≈ ‖ f‖	, Q,

where M is the Hardy–Littlewood maximal operator. Moreover, the converse is also
true.

Proof We need only notice that 	′(s) is a nondecreasing function. ��

2.4 Some Additional Lemmas

Using Lemma 2.16, we show that the condition which gives the boundedness of the
Orlicz maximal operators on Orlicz–Morrey spaces.
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Proposition 2.20 Let φ ∈ G1. Suppose that normalized Young functions �, 	, 	1 and
	2 satisfy the same condition posed in Lemma 2.16. Then

‖ f‖L	1 , φ ≤ ‖M� f‖L	,φ ≤ C (‖ f‖L	2 , φ + ‖ f‖L�,φ ) . (2.18)

Proof Since, for any cube Q ∈ Q and any point x ∈ Q, M� f (x) ≥ M� [ fχQ](x), we
see that the left inequality of Eq. 2.18 by Lemma 2.16. Thus, we verify the right
inequality.

It follows from the subadditivity of M� that

‖M� f‖L	,φ ≤ sup
Q∈Q

φ(�(Q))‖M�[ fχ3Q]‖	, Q + sup
Q∈Q

φ(�(Q))‖M�[ fχ(3Q)c ]‖	, Q.

Using Lemma 2.16, the fact that φ(t) is nondecreasing and that, for any δ > 1,
‖ f‖	, Q ≤ δn‖ f‖	, δQ, we have

sup
Q∈Q

φ(�(Q))‖M�[ fχ3Q]‖	, Q ≤ 3n sup
Q∈Q

φ(�(Q))‖M� [ fχQ]‖	, Q ≤ C‖ f‖L	2 , φ .

We notice that

sup
x∈Q

M� [ fχ(3Q)c ](x) ≤ 3n inf
x∈Q

M� [ fχ(3Q)c ](x). (2.19)

This holds from the fact that, for fixed x ∈ Q, if R ∈ Q satisfies R � x and R ∩
(3Q)c �= ∅, then 3R must contain Q. It follows from Eq. 2.19 that

‖M� [ fχ(3Q)c ]‖	, Q ≤ C inf
x∈Q

M� [ fχ(3Q)c ](x).

Since φ(t) is nondecreasing,

sup
Q∈Q

φ(�(Q)) inf
x∈Q

M� [ fχ(3Q)c ](x) ≤ ‖ f‖L�,φ

and we obtain the right inequality of Eq. 2.18. ��

Corollary 2.21 If 	 ∈ ∇2 then

‖Mf‖L	, φ ≈ ‖ f‖L	,φ ,

where M is the Hardy–Littlewood maximal operator.

Proof Notice that when �(t) ≡ t

‖ f‖L�,φ = ‖ f‖M1, φ ≤ C‖ f‖L	,φ . (2.20)

This inequality, Claim 2.18 and Proposition 2.20 yield the corollary. ��

Lemma 2.22 Let φ ∈ G1, 0 < a ≤ 1 and let 	 be a Young function. Set

ψ(t) ≡ φ(t)a, �(t) ≡ 	(t1/a).

Then

‖Mφ/ψ f‖L�,ψ ≤ C‖Mf‖L	, φ .
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Proof Fix x ∈ R
n. Then for any cube Q � x we see that

φ(�(Q))1−amQ(| f |) ≤ φ(�(Q))1−a Mf (x)

and that

φ(�(Q))1−amQ(| f |) = φ(�(Q))−aφ(�(Q))mQ(| f |) ≤ Cφ(�(Q))−a‖Mf‖L	, φ .

These imply

φ(�(Q))1−amQ(| f |) ≤ C min
(
φ(�(Q))1−a Mf (x) , φ(�(Q))−a‖Mf‖L	,φ

)
≤ C sup

t>0
min

(
t1−a Mf (x) , t−a‖Mf‖L	,φ

)

= C‖Mf‖1−a
L	, φ Mf (x)a,

where in the last inequality we have used 0 < a ≤ 1. This yields, for every cube
Q ∈ Q,

‖Mφ1−a f‖�, Q ≤ C‖Mf‖1−a
L	, φ ‖(Mf )a‖�, Q.

It follows from the definition of the mean Luxemburg norm that

‖(Mf )a‖�, Q = inf
{
λ > 0 : 1

|Q|
∫

Q
�

(
Mf (x)a

λ

)
dx ≤ 1

}

= inf
{
λ > 0 : 1

|Q|
∫

Q
	

(
Mf (x)

λ1/a

)
dx ≤ 1

}
= ‖Mf‖a

	, Q.

Thus, we have

φ(�(Q))a‖Mφ1−a f‖�, Q ≤ C‖Mf‖1−a
L	, φ

(
φ(�(Q))‖Mf‖	, Q

)a ≤ C‖Mf‖L	,φ .

Taking the supremum over all cubes Q ∈ Q in the left side, we have the desired
inequality. ��

2.5 Proof of Theorems 2.8–2.10

Combining the previous results, we can prove the theorems.
First, noticing that M1 = M (the Hardy–Littlewood maximal operator), Theorem

2.8 follows from (2) of Lemma 2.12 and Corollary 2.21. Similarly, Theorem 2.9
follows from Claim 2.13. Next, Theorem 2.10 holds from the following.

We notice that the condition 2.7 yields
∫ ∞

t

ρ(s)
sφ(s)

ds ≤ C
ψ(t)
η(t)

for all t > 0.

Thus, it follows from (1) of Lemma 2.12 that

‖g · Tρ f‖L�, η ≤ C‖g‖L̃�,ψ

(‖Mρ̃/ψ f‖L�, η + ‖ f‖M1, φ

)
.

Also, the condition 2.7 implies

ρ̃(t)
ψ(t)

≤ C
φ(t)
η(t)

.
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Thus, it follows from Lemma 2.22 that

‖Mρ̃/ψ f‖L�, η ≤ C‖Mφ/η f‖L�, η ≤ C‖Mf‖L	, φ .

Because 	 ∈ ∇2, by Corollary 2.21 we have

‖Mf‖L	, φ ≤ C‖ f‖L	,φ .

Noticing also Eq. 2.20, we obtain the desired inequality

‖g · Tρ f‖L�, η ≤ C‖g‖L̃�,ψ ‖ f‖L	,φ

and complete the proof of Theorem 2.10.

3 Morrey Spaces with Small Parameters

In this section, focusing on Morrey spaces with small parameters we establish some
norm inequalities for the generalized fractional integral operators. The accurate
description of Orlicz–Morrey spaces works well in this problem.

Let φ ∈ G1 and 0 < p < ∞. Set

‖ f‖Mp, φ := sup
Q∈Q

φ(�(Q))

(
1

|Q|
∫

Q
| f (x)|p dx

)1/p

and define the (generalized) Morrey spaces Mp, φ(Rn) = Mp, φ by this quasi norm
‖ · ‖Mp, φ . We write the Orlicz–Morrey space L	, φ as ML(logL) j, φ , j ∈ N, in the case
when 	(t) ≡ t(log(2 + t)) j. When j = 1 we simply write ML(logL), φ for ML(logL)1, φ .

We now state our second results.

Theorem 3.1 Let ρ ∈ G0, φ ∈ G1 and 0 < p < 1. Assume that the condition 2.6;
∫ ∞

t

ρ(s)
sφ(s)

ds ≤ C
ρ̃(t)
φ(t)

for all t > 0.

Then

‖g · Tρ f‖Mp, φ ≤ C‖g‖Mp, ρ̃ ‖ f‖M1, φ .

Theorem 3.2 With the same condition posed in Theorem 3.1, we have

‖g · Tρ f‖M1, φ ≤ C‖g‖M1, ρ̃ ‖ f‖ML(logL), φ .

Theorem 3.3 Let ρ ∈ G0, φ, ψ ∈ G1 and 0 < p < r ≤ 1. Assume that

ρ̃(t)
φ(t)

+
∫ ∞

t

ρ(s)
sφ(s)

ds ≤ C
ψ(t)

φ(t)p/r
for all t > 0. (3.1)

Then

‖g · Tρ f‖Mr, φ p/r ≤ C‖g‖Mr, ψ ‖ f‖M1, φ .

In Section 4 we will encounter some examples.
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3.1 Some Lemmas

To prove the theorems we need the following basic lemmas.

Lemma 3.4 Let φ ∈ G1 and 0 < p < 1. Then

‖Mf‖Mp, φ ≈ ‖ f‖M1, φ .

Proof Since, 0 < p < 1, (Mf )p is an A1-weight, that is, for any Q ∈ Q, we have

mQ((Mf )p) ≤ C inf
x∈Q

Mf (x)p

(c.f. [3, Chapter II]). This implies

‖Mf‖Mp, φ ≤ C sup
Q∈Q

φ(�(Q)) inf
x∈Q

Mf (x).

We can easily obtain the reverse inequality of this one;

φ(�(Q)) inf
x∈Q

Mf (x) = φ(�(Q))

(
1

|Q|
∫

Q
inf
x∈Q

Mf (x)p dy
)1/p

≤ φ(�(Q))

(
1

|Q|
∫

Q
Mf (y)p dy

)1/p

≤ ‖Mf‖Mp, φ .

Consequently we have

‖Mf‖Mp, φ ≈ sup
Q∈Q

φ(�(Q)) inf
x∈Q

Mf (x).

Because the right-hand side dominates ‖ f‖M1, φ , we consider the converse.
First, we notice that by the geometric observation

sup
x∈Q

M[ fχ(3Q)c ](x) ≤ 3n inf
x∈Q

M[ fχ(3Q)c ](x). (3.2)

This follows from the fact that, for a fixed point x ∈ Q, if R ∈ Q satisfies R � x and
R ∩ (3Q)c �= ∅, then 3R engulfs Q. It follows from Eq. 3.2 and the subadditivity of
M that

φ(�(Q)) inf
x∈Q

Mf (x) ≤ φ(�(Q)) inf
x∈Q

M[ fχ3Q](x) + 3nφ(�(Q)) inf
x∈Q

M[ fχ(3Q)c ](x).

Since φ(t) is nondecreasing we have

φ(�(Q)) inf
x∈Q

M[ fχ(3Q)c ](x) ≤ ‖ f‖M1, φ .

For any t > 0 one knows that (c.f. Remark 2.15)

t |{x ∈ Q : M[ fχ3Q](x) > t}| ≤ 3n
∫

3Q
| f (y)| dy.
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Taking t = 12nm3Q(| f |), we see that there exists a point x0 ∈ Q so that Mf (x0) ≤ t.
This yields

φ(�(Q)) inf
x∈Q

M[ fχ3Q](x) ≤ 12nφ(�(3Q))m3Q(| f |) ≤ 12n‖ f‖M1, φ .

These complete the proof. ��

Lemma 3.5 Let φ ∈ G1 and j ∈ N. Then

‖M j f‖M1, φ ≈ ‖ f‖ML(logL) j, φ ,

where M j denotes the j-fold composition of the Hardy–Littlewood maximal operator
M. In particular,

‖Mf‖M1, φ ≈ ‖ f‖ML(logL), φ .

Proof We have for t > 1

1 +
∫ t

1

t
s
{s(log(2 + s)) j−1}′ ds ≈ t(log(2 + t)) j.

Thus, applying Proposition 2.20 with �(t) = t, 	(t) = t(log(2 + t)) j−1 and 	1(t) =
	2(t) = t(log(2 + t)) j, we obtain (see also Eq. 2.20)

‖Mf‖ML(logL) j−1 , φ ≈ ‖ f‖ML(logL) j, φ .

This yields the lemma by an inductive argument. ��

Lemma 3.6 Let φ ∈ G1 and 0 < p ≤ r < ∞. Then

‖Mφ1−p/r f‖Mr, φ p/r ≤ C‖Mf‖Mp, φ .

Proof Let x ∈ R
n be a fixed point. For every cube Q � x we see that

φ(�(Q))1−p/rmQ(| f |) ≤ φ(�(Q))1−p/r Mf (x)

and that

φ(�(Q))1−p/rmQ(| f |) ≤ φ(�(Q))1−p/r inf
y∈Q

Mf (y)

≤ φ(�(Q))−p/rφ(�(Q))

(
1

|Q|
∫

Q
Mf (y)p dy

)1/p

≤ φ(�(Q))−p/r‖Mf‖Mp, φ .

These imply

φ(�(Q))1−p/rmQ(| f |) ≤ min
(
φ(�(Q))1−p/r Mf (x) , φ(�(Q))−p/r‖Mf‖Mp, φ

)
≤ sup

t≥0
min

(
t1−p/r Mf (x) , t−p/r‖Mf‖Mp, φ

)

= ‖Mf‖1−p/r
Mp, φ Mf (x)p/r.
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This yields

Mφ1−p/r f (x)r ≤ ‖Mf‖r−p
Mp, φ Mf (x)p

and

φ(�(Q))p/r
(

1
|Q|

∫
Q

Mφ1−p/r f (x)r dx
)1/r

≤ ‖Mf‖1−p/r
Mp, φ

(
φ(�(Q))

(
1

|Q|
∫

Q
Mf (x)p dx

)1/p
)p/r

≤ ‖Mf‖Mp, φ .

Taking the supremum over all cubes Q ∈ Q in the left side, we have the desired
inequality. ��

3.2 Principal Lemma Revisited

The same as before the proof of the previous results relies upon the following
principal lemma.

Lemma 3.7 Let ρ ∈ G0, φ, ψ, η ∈ G1 and 0 < p ≤ 1.

(1) Assume that the condition 2.10;∫ ∞

t

ρ(s)
sφ(s)

ds ≤ C
ψ(t)
η(t)

for all t > 0.

Then

‖g · Tρ f‖Mp, η ≤ C‖g‖Mp, ψ

(‖Mρ̃/ψ f‖Mp, η + ‖ f‖M1, φ

)
.

(2) Assume that the condition 2.11;∫ ∞

t

ρ(s)ψ(s)
sρ̃(s)φ(s)

ds ≤ C
ψ(t)
φ(t)

for all t > 0.

Then

‖g · Tρ f‖Mp, φ ≤ C‖g‖Mp, ψ ‖Mρ̃/ψ f‖Mp, φ .

Proof Except for some sufficient modifications, the proof of the lemma follows the
argument in [19]. Retaining the same notation as the proof of Lemma 2.12, we recall
that

Tρ f (x) ≤ C
∑
Q∈D

ρ̂(�(Q))m3Q( f )χQ(x).

Noticing Eq. 2.12, for any Q0 ∈ D we wish to estimate
(∫

Q0

(
g(x)Tρ f (x)

)p
dx

)1/p

. (3.3)

In the same manner as the proof of Lemma 2.12, we set{
D1(Q0) := {Q ∈ D : Q ⊂ Q0},
D2(Q0) := {Q ∈ D : Q � Q0}.
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Let us define as before, for i = 1, 2,

Fi(x) :=
∑

Q∈Di(Q0)

ρ̂(�(Q))m3Q( f )χQ(x)

and we shall estimate (∫
Q0

(g(x)Fi(x))p dx
)1/p

.

The case i = 1 We need the following lemma, the proof of which is straightforward
and is omitted (see [13, 19]).

Lemma 3.8 For a nonnegative function h in L∞(Q0) we let γ0 := mQ0(h) and c :=
2n+1. For k = 1, 2, . . . let

Dk :=
⋃

Q∈D1(Q0): mQ(h)>γ0ck

Q.

Considering the maximal cubes with respect to inclusion, we can write

Dk =
⋃

j

Qk, j,

where the cubes {Qk, j} ⊂ D1(Q0) are nonoverlapping. By virtue of the maximality of
Qk, j one has

γ0ck < mQk, j(h) ≤ 2nγ0ck.

Let

E0 := Q0 \ D1, Ek, j := Qk, j \ Dk+1.

Then {E0} ∪ {Ek, j} is a disjoint family of sets which decomposes Q0 and satisf ies

|Q0| ≤ 2|E0|, |Qk, j| ≤ 2|Ek, j|. (3.4)

Also, we set

D0 := {
Q ∈ D1(Q0) : mQ(h) ≤ γ0c

}

Dk, j := {
Q ∈ D1(Q0) : Q ⊂ Qk, j, γ0ck < mQ(h) ≤ γ0ck+1} .

Then

D1(Q0) = D0 ∪
⋃
k, j

Dk, j. (3.5)

Let us return to the proof. We need only verify that∫
Q0

g(x)p F1(x)p dx ≤ C‖g‖p
Mp, ψ

∫
Q0

Mρ̃/ψ f (x)p dx. (3.6)

Inserting the definition of F1, we have∫
Q0

g(x)p F1(x)p dx =
∑

Q∈D1(Q0)

ρ̂(�(Q))m3Q( f )
∫

Q
g(x)p F1(x)p−1 dx.
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Letting h = gp, we shall apply Lemma 3.8 to estimate this quantity. Retaining the
same notation as Lemma 3.8 and noticing Eq. 3.5, we have∫

Q0

g(x)p F1(x)p dx =
∑

Q∈D0

ρ̂(�(Q))m3Q( f )
∫

Q
g(x)p F1(x)p−1 dx

+
∑
k, j

∑
Q∈Dk, j

ρ̂(�(Q))m3Q( f )
∫

Q
g(x)p F1(x)p−1 dx.

We first evaluate
∑

Q∈Dk, j

ρ̂(�(Q))m3Q( f )
∫

Q
g(x)p F1(x)p−1 dx. (3.7)

Noticing p − 1 ≤ 0 and the definition of F1, we see that

F1(x)p−1 ≤ (
ρ̂(�(Qk, j))m3Qk, j( f )

)p−1 for all x ∈ Qk, j.

It follows from this inequality and the definition of Dk, j that Eq. 3.7 is bounded by

(
ρ̂(�(Qk, j))m3Qk, j( f )

)p−1
γ0ck+1

∑
Q∈Dk, j

ρ̂(�(Q))

∫
3Q

f (y) dy.

By virtue of the support condition we have

∑
Q∈Dk, j

ρ̂(�(Q))

∫
3Q

f (y) dy =
log2 �(Qk, j)∑

ν=−∞
ρ̂(2ν)

⎛
⎝ ∑

Q∈Dk, j: �(Q)=2ν

∫
3Q

f (y) dy

⎞
⎠

≤ C
∫

3Qk, j

f (y) dy

⎛
⎝

log2 �(Qk, j)∑
ν=−∞

ρ̂(2ν)

⎞
⎠

≤ Cρ̃(�(c2 Qk, j))

∫
3Qk, j

f (y) dy.

This implies

Eq. 3.7 ≤ C
(
ρ̃(�(c2 Qk, j))m3Qk, j( f )

)p
γ0ck+1 |Qk, j|.

If we invoke relations 3.4; |Qk, j| ≤ 2|Ek, j| and

γ0ck < mQk, j(g
p) ≤ ‖g‖p

Mp, ψ ψ(�(Qk, j))
−p,

which follows from the definition of the Morrey norm, then

Eq. 3.7 ≤ Cρ̃(�(c0 Qk, j))
p mc0 Qk, j( f )p ‖g‖p

Mp, ψ ψ(�(Qk, j))
−p |Ek, j|

≤ C‖g‖p
Mp, ψ

∫
Ek, j

Mρ̃/ψ f (x)p dx.

Similarly, we have

∑
Q∈D0

ρ̂(�(Q))m3Q( f )
∫

Q
g(x)p F1(x)p−1 dx ≤ C‖g‖p

Mp, ψ

∫
E0

Mρ̃/ψ f (x)p dx.
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Summing up all factors, we obtain Eq. 3.6, by noticing {E0} ∪ {Ek, j} is a disjoint
family of sets which decomposes Q0.

The case i = 2 An estimate cruder than the case i = 1 suffices. By a property of the
dyadic cubes we have

F2(x) =
∑

Q∈D2(Q0)

ρ̂(�(Q))m3Q( f ) for all x ∈ Q0.

For all Q ∈ D2(Q0), recalling that c0 ≡ max(c2, 3), it follows from the definition of
Morrey norm that

ρ̂(�(Q))m3Q( f ) ≤ C
ρ̂(�(Q))ψ(�(c0 Q))

ρ̃(�(c0 Q))
inf
x∈Q

Mρ̃/ψ f (x)

≤ C
ρ̂(�(Q))ψ(�(c0 Q))

ρ̃(�(c0 Q))

(
1

|Q|
∫

Q
Mρ̃/ψ f (x)p dx

)1/p

≤ C‖Mρ̃/ψ f‖Mp, φ

ρ̂(�(Q))ψ(�(c0 Q))

ρ̃(�(c0 Q))φ(�(Q))
.

Since ψ(t), φ(t) and ρ̃(t) are nondecreasing and ψ and φ satisfy the doubling
condition, we have

F2(x) ≤ C‖Mρ̃/ψ f‖Mp, φ

∑
Q∈D2(Q0)

ρ̂(�(Q))ψ(�(c0 Q))

ρ̃(�(c0 Q))φ(�(Q))

≤ C‖Mρ̃/ψ f‖Mp, φ

∞∑
ν=1+log2 �(Q0)

∫ c22ν

c12ν

ρ(s)ψ(s)
sρ̃(s)φ(s)

ds

≤ C‖Mρ̃/ψ f‖Mp, φ

∫ ∞

c1�(Q0)

ρ(s)ψ(s)
sρ̃(s)φ(s)

ds

≤ C‖Mρ̃/ψ f‖Mp, φ

ψ(�(Q0))

φ(�(Q0))
,

where in the last inequality we have used the condition 2.11 and the doubling
condition of ψ and φ. This pointwise estimate gives

(∫
Q0

(g(x)F2(x))p dx
)1/p

≤ C‖Mρ̃/ψ f‖Mp, φ

(∫
Q0

g(x)p dx
)1/p

ψ(�(Q0))

φ(�(Q0))

≤ C‖Mρ̃/ψ f‖Mp, φ ‖g‖Mp, ψ |Q0|1/p φ(�(Q0))
−1.

Thus, we have

(∫
Q0

(g(x)F2(x))p dx
)1/p

≤ C‖Mρ̃/ψ f‖Mp, φ ‖g‖Mp, ψ |Q0|1/p φ(�(Q0))
−1. (3.8)
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It follows from Eqs. 3.3, 3.6 and 3.8 that

Cφ(�(Q0))

(
1

|Q0|
∫

Q0

(
g(x)Tρ f (x)

)p
dx

)1/p

≤ ‖g‖Mp, ψ

(
φ(�(Q0))

(
1

|Q0|
∫

Q0

Mρ̃/ψ f (x)p dx
)1/p

+ ‖Mρ̃/ψ f‖Mp, φ

)

≤ 2‖g‖Mp, ψ ‖Mρ̃/ψ f‖Mp, φ .

By taking the supremum over all dyadic cubes Q0 ∈ D in the left side, (2) of
Lemma 3.7 is verified.

Lemma 3.7 (1) holds by the same argument using

F2(x) ≤ ‖ f‖M1, φ

∑
Q∈D2(Q0)

ρ̂(�(Q))

φ(�(3Q))

≤ C‖ f‖M1, φ

∫ ∞

c1�(Q0)

ρ(s)
sφ(s)

ds ≤ C‖ f‖M1, φ

ψ(�(Q0))

η(�(Q0))
,

where we have used the condition 2.10. This implies (with the same argument as
above)

(∫
Q0

(g(x)F2(x))p dx
)1/p

≤ C‖g‖Mp, ψ ‖ f‖M1, φ |Q0|1/p η(�(Q0))
−1. (3.9)

The desired inequality then follows from Eqs. 3.3, 3.6 and 3.9. The proof of Lemma
3.7 is now complete. ��

3.3 Proof of Theorems 3.1–3.3

Combining the previous lemmas, we can prove Theorems 3.1–3.3.
Theorem 3.1 follows from (2) of Lemmas 3.4 and 3.7. Similarly, Theorem 3.2 is

a consequence of (2) of Lemmas 3.5 and 3.7. By the same argument as the proof of
Theorem 2.10, Theorem 3.3 can be obtained from Lemmas 3.4 and 3.6 and (1) of
Lemma 3.7.

4 Some Examples

In this section we see some examples. In the following lemma, we introduce a
sufficient condition for which φ(t) ≡ ψ(ρ̃(t)) fulfills the condition 2.6.

Lemma 4.1 Let ρ ∈ G0. If a nonnegative, nondecreasing and dif ferentiable function
ψ(t) satisf ies

C0 := inf
t>0

tψ ′(t)
ψ(t)

> 1, (4.1)

then φ(t) ≡ ψ(ρ̃(t)) fulf ills the condition 2.6. More precisely, then,∫ ∞

t

ρ(s)
sψ(ρ̃(s))

ds ≤ (C0 − 1)−1 ρ̃(t)
ψ(ρ̃(t))

for all t > 0.
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Proof It follows that

∫ ∞

t

ρ(s)
sψ(ρ̃(s))

ds ≤ (C0 − 1)−1
∫ ∞

t

(
ρ̃(s) ψ ′(ρ̃(s))

ψ(ρ̃(s))
− 1

)
ρ(s)

sψ(ρ̃(s))
ds

= (C0 − 1)−1
∫ ∞

t
−

(
ψ(ρ̃(s)) − ρ̃(s) ψ ′(ρ̃(s))

ψ(ρ̃(s))2

ρ(s)
s

)
ds

= (C0 − 1)−1
∫ ∞

t
−

(
ρ̃(s)

ψ(ρ̃(s))

)′
ds ≤ (C0 − 1)−1 ρ̃(t)

ψ(ρ̃(t))
,

where we have used ρ̃ ′(s) = ρ(s)
s

. ��

Example 4.2 From Lemma 4.1 we see that ρ̃(t)b , b > 1, satisfies the condition 2.6.
Letting, for b > 1,

ψ(t) ≡
{

tb

log(e/t) , 0 < t ≤ 1,

tb log(et), 1 ≤ t < ∞,

we see also that ψ(ρ̃(t)) satisfies the condition 2.6.

Examples 4.3

(1) Let 1 < p < ∞ and δ > 1. Set

	(t) ≡ tp, �(t) ≡ tp

[log(2 + t)]δ .

Then, checking the condition posed in (3) of Proposition 2.17, we see that M�

is locally bounded in the norm determined by 	.
(2) Let 1 ≤ q < p < ∞ and δ ∈ R. Set

	(t) ≡ tp[log(2 + t)]δ, �(t) ≡ tq.

Then M� is locally bounded in the norm determined by 	. Indeed, checking
the condition posed in (2) of Proposition 2.17, we have

∫ t

1
�

(
t
s

)
	′(s) ds ≈ tq

∫ t

1
sp−q−1[log(2 + s)]δ ds ≤ Ctp[log(2 + t)]δ.

Claim 4.4 Let 1 < p < ∞ and δ ≥ 0. Then, the complementary function of 	(t) ≡
t p[log(2 + t)](p−1)δ is approximately �(t) ≡ tp′

[log(2 + t)]δ .

Proof Let us assume that t � 1. The derivatives of 	 and � are given by

	′(t) ≈ tp−1[log(2 + t)](p−1)δ, � ′(t) ≈ tp′−1

[log(2 + t)]δ .
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Therefore, it follows that

(	′ ◦ � ′)(t) ≈
(

tp′−1[log(2 + t)]−δ
)p−1 [

log
(
2 + t p−1[log(2 + t)]−δ

)](p−1)δ

≈ t[log(2 + t)]−(p−1)δ[log(2 + t)](p−1)δ

= t.

By symmetry the same can be said for � ′ ◦ 	′. Thus, we have

(	′ ◦ � ′)(t) ≈ t, (� ′ ◦ 	′)(t) ≈ t.

Since the functions 	′ and � ′ are doubling, it follows that

(	′)−1(t) ≈ � ′(t), (� ′)−1(t) ≈ 	′(t).

Now that

	̄(t) ≈
∫ t

0
(� ′)−1(s)ds, �̄(t) ≈

∫ t

0
(	′)−1(s)ds,

we see that

�(t) ≈ 	̄(t), 	(t) ≈ �̄(t).

The proof is now complete. ��

Recall the space M̃p, 1/α , which is introduced in Section 1. The following claim
shows the accurate description of Orlicz–Morrey spaces (see Eq. 1.4 in Section 1).

Claim 4.5 Let 0 < α < 1, 1 < p < q ≤ 1/α and δ > 1. Set

ψ(t) ≡ tnα, �(t) ≡ tp[log(2 + t)](p−1)δ.

Then

‖ f‖Mp, 1/α ≤ ‖ f‖M̃p, 1/α ≤ C‖ f‖L�,ψ ≤ C‖ f‖Mq, 1/α .

Proof We need only verify that

‖ f‖M̃p, 1/α ≤ C‖ f‖L�,ψ .

Using generalized Hölder’s inequality 2.5, we have for any Q ∈ Q

|Q|α
|Q|

∫
Q

| f (x)|p dx ≤ C|Q|α‖ f‖�, Q‖ | f |p−1 ‖�̄, Q.

This implies

Mα[| f |pχQ](x) ≤ ‖ f‖L�,ψ M�̄ [| f |p−1χQ](x).
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Since, M	̄ is locally bounded in the norm determined by 	(t) ≡ tp′
, which holds from

Claim 4.4 and Examples 4.3, we obtain∫
Q

Mα[| f |pχQ](x)p′
dx ≤ C‖ f‖p′

L�,ψ

∫
Q

| f (x)|p dx < ∞.

This is our desired inequality. ��

In view of the significant example in [17], we remark that the space M̃p, 1/α is the
proper subset of the space Mp, 1/α .

Theorem 2.9 (2), Claim 2.13, Examples 4.2, 4.3 and Claim 4.4 yield the following.

Examples 4.6

(1) Let ρ ∈ G0, 1 < p < ∞, b > 1 and δ > 1. Set

φ(t) ≡ ρ̃(t)b , �(t) ≡ tp[log(2 + t)](p−1)δ.

Assume that

sup
t>1

(
φ(t)
tn/p

+ ρ̃(t)
�−1(tn)

)
< ∞.

Then

‖g · Tρ f‖Mp, φ ≤ C‖g‖L�, ρ̃ ‖ f‖Mp, φ .

(2) Let 0 < α < 1, 1 < p ≤ p0 < 1/α and δ > 1. Set

ψ(t) ≡ tαn, �(t) ≡ tp[log(2 + t)](p−1)δ.

Assume that

sup
t>1

ψ(t)
�−1(tn)

< ∞.

Then

‖g · Iα f‖Mp, p0 ≤ C‖g‖L�,ψ ‖ f‖Mp, p0 .

This example sharpens the Olsen inequality 1.5, which is introduced in Sec-
tion 1.

(3) Let ρ ∈ G0, 1 < p < q < ∞, b > 1 and δ > 0. Set

φ(t) ≡ ρ̃(t)b , 	(t) ≡ tp[log(2 + t)]δ.
Assume that

sup
t>1

(
φ(t)

	−1(tn)
+ ρ̃(t)

tn/q

)
< ∞.

Then

‖g · Tρ f‖L	,φ ≤ C‖g‖Mq, ρ̃ ‖ f‖L	,φ .

(4) Let 0 < α < 1, 1 < p < p0 < 1/α, 1 < p < q ≤ 1/α and δ > 0. Set

φ(t) ≡ tn/p0 , 	(t) ≡ tp[log(2 + t)]δ.
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Then

‖g · Iα f‖L	,φ ≤ C‖g‖Mq, 1/α‖ f‖L	,φ .

We remark that

‖g · Iα f‖L	,φ ≥ ‖g · Iα f‖Mp, p0 .

Thus, this example also sharpens the Olsen inequality 1.5.

We dare restate Theorems 3.1–3.3 in terms of the fractional integral operator Iα .

Examples 4.7 Let 0 < α < 1.

(1) Let 0 < p < 1 ≤ p0 < 1/α. Then

‖g · Iα f‖Mp, p0 ≤ C‖g‖Mp, 1/α‖ f‖M1, p0 .

(2) Let p = 1 < p0 < 1/α. Then

‖g · Iα f‖M1, p0 ≤ C‖g‖M1, 1/α‖ f‖ML(logL), p0 .

(3) Let 0 < p < r ≤ 1, 0 < p ≤ p0 < 1/α, 0 < r ≤ q0, 0 < r ≤ r0, 1/r0 = 1/q0 +
1/p0 − α and p/p0 = r/r0. Then

‖g · Iα f‖Mr, r0 ≤ C‖g‖Mr, q0 ‖ f‖M1, p0 .

Examples 4.7 give us that

‖g · Iα f‖Mp, p0 ≤ C‖g‖Mp, 1/α ‖ f‖ML(logL), p0 , 0 < p ≤ 1 < p0 < 1/α.

This example sharpens Eq. 1.6, which is introduced in Section 1.

5 Some Additional Results

Finally, we state and verify some additional results.

Claim 5.1 Let φ ∈ G1 and let 	1 and 	2 be Young functions. If, for all t > 1 	1(t) =
	2(t), then

L	1, φ = L	2, φ

with norm equivalence.

Proof By symmetry, we wish only verify that

L	1, φ ⊂ L	2, φ.

Let f ∈ L	1, φ . We first prove, for any Q ∈ Q,

‖ f‖	2, Q ≤ C‖ f‖	1, Q.
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Without loss of generality, we may assume that ‖ f‖	1, Q = 1. Then we have
∫

Q
	2(| f (x)|) dx =

∫
Q∩{| f |≤1}

	2(| f (x)|) dx +
∫

Q∩{| f |>1}
	2(| f (x)|) dx

≤ 	2(1)|Q| +
∫

Q∩{| f |>1}
	2(| f (x)|) dx.

Since, 	2(t) = 	1(t), t > 1, we have
∫

Q∩{| f |>1}
	2(| f (x)|) dx =

∫
Q∩{| f |>1}

	1(| f (x)|) dx ≤
∫

Q
	1(| f (x)|) dx ≤ |Q|,

where in the last inequality we have used the fact that ‖ f‖	1, Q = 1. These imply

1
|Q|

∫
Q

	2

( | f (x)|
1 + 	2(1)

)
dx ≤ 1

and ‖ f‖	2, Q ≤ 1 + 	2(1). Therefore, we have by the definition of the Orlicz–Morrey
norm ‖ f‖L(	2 , φ) ≤ (1 + 	2(1))‖ f‖L(	1 , φ) . ��

The following theorem covers the outrange of Theorem 3.3.

Theorem 5.2 Let ρ ∈ G0, φ,ψ ∈ G1 and 0 < p ≤ r < ∞. Suppose that the
condition 3.1;

ρ̃(t)
φ(t)

+
∫ ∞

t

ρ(s)
sφ(s)

ds ≤ C
ψ(t)

φ(t)p/r
for all t > 0.

(1) Let 0 < p ≤ r < q < ∞, p �= 1 and r > 1. Then

‖g · Tρ f‖Mr, φ p/r ≤ C‖g‖Mq, ψ ‖ f‖Mmax(1,p), φ .

(2) Let 0 < p < r < q < ∞ and p = 1. Then

‖g · Tρ f‖Mr, φ1/r ≤ C‖g‖Mq, ψ ‖ f‖ML(logL), φ .

Proof The special case of Lemma 2.12 gives us that, for 1 < r < q < ∞,

‖g · Tρ f‖Mr, φ p/r ≤ C‖g‖Mq, ψ

(‖Mρ̃/ψ f‖Mr, φ p/r + ‖ f‖M1, φ

)
.

Noticing that
ρ̃(t)
ψ(t)

≤ Cφ(t)1−p/r, we have by Lemma 3.6

‖Mρ̃/ψ f‖Mr, φ p/r ≤ ‖Mφ1−p/r f‖Mr, φ p/r ≤ C‖Mf‖Mp, φ .

Thus, we obtain

‖g · Tρ f‖Mr, φ p/r ≤ C‖g‖Mq, ψ (‖Mf‖Mp, φ + ‖ f‖M1, φ ) .

Lemmas 3.4 and 3.5 and Eq. 2.20 yield the theorem. ��

Letting g(x) ≡ 1 and ψ(t) ≡ 1 in Theorem 5.2 and using Lemma 4.1, we have the
following corollary, which extends the classical theorem due to Adams in [1].
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Corollary 5.3 Suppose that ψ satisfy Eq. 4.1. Let ρ ∈ G0 and set φ(t) ≡ ψ(ρ̃(t)).

(1) Let 0 < p < r < ∞ and p �= 1. Assume that

sup
t>0

tψ(t)p/r−1 ≤ C.

Then

‖Tρ f‖Mr, φ p/r ≤ C‖ f‖Mmax(1,p), φ .

(2) Let 1 < r < ∞. Assume that

sup
t>0

tψ(t)1/r−1 ≤ C.

Then

‖Tρ f‖Mr, φ1/r ≤ C‖ f‖ML(logL), φ .

Using the same method developed in the last part of the proof of Lemma 2.22, we
can directly reprove Corollary 2.11 without the assumption �̄ ∈ ∇2.

Theorem 5.4 Let ρ ∈ G0, φ ∈ G1, 	 ∈ ∇2 and 0 < a ≤ 1. Set

η(t) ≡ φ(t)a, �(t) ≡ 	(t1/a).

Suppose that the condition

ρ̃(t)
φ(t)

+
∫ ∞

t

ρ(s)
sφ(s)

ds ≤ C
η(t)

for all t > 0.

Then

‖Tρ f‖L�, η ≤ C‖ f‖L	,φ .

Proof Fix x ∈ R
n. We may assume that f is nonnegative and Tρ f (x) is finite. Then

we see that there exists R > 0 such that∫
{|x−y|≤R}

f (y)
ρ(|x − y|)
|x − y|n dy = Tρ f (x)

2
.

Retaining the same notation as the proof of Lemma 2.12, we have by Eq. 2.13 that

Tρ f (x)

2
=

0∑
j=−∞

∫
{2 j−1 R<|x−y|≤2 j R}

f (y)
ρ(|x − y|)
|x − y|n dy

≤ C
0∑

j=−∞

ρ̂(2 j R)

(2 j R)n

∫
{|x−y|≤2 j R}

f (y) dy

≤ CMf (x)

0∑
j=−∞

ρ̂(2 j R) ≤ CMf (x)

∫ c2 R

0

ρ(s)
s

ds = Cρ̃(c2 R)Mf (x).
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We have also that

Tρ f (x)

2
=

∞∑
j=1

∫
{2 j−1 R<|x−y|≤2 j R}

f (y)
ρ(|x − y|)
|x − y|n dy

≤ C
∞∑
j=1

ρ̂(2 j R)

(2 j R)n

∫
{|x−y|≤2 j R}

f (y) dy

= C
∞∑
j=1

ρ̂(2 j R)

φ(2 j R)

φ(2 j R)

(2 j R)n

∫
{|x−y|≤2 j R}

f (y) dy

≤ C‖ f‖L	,φ

∞∑
j=1

ρ̂(2 j R)

φ(2 j R)

≤ C‖ f‖L	,φ

∫ ∞

c1 R

ρ(s)
sφ(s)

ds,

where we have used the fact that φ(s) is a nondecreasing and doubling function. By
the condition for any t > 0 we have

ρ̃(t) ≤ Cφ(t)1−a,

∫ ∞

t

ρ(s)
sφ(s)

ds ≤ Cφ(t)−a

and by the doubling condition of φ

ρ̃(c2 R) ≤ Cφ(R)1−a,

∫ ∞

c1 R

ρ(s)
sφ(s)

ds ≤ Cφ(R)−a.

Thus, we obtain

Tρ f (x) ≤ C min
(
φ(R)1−a Mf (x) , φ(R)−a‖Mf‖L	, φ

)

≤ C sup
t>0

min
(
t1−a Mf (x) , t−a‖Mf‖L	, φ

)

= C‖Mf‖1−a
L	, φ Mf (x)a.

Once we have verified this inequality, the remainder of the proof is the same as the
last part of the proof of Lemma 2.22, by noticing Corollary 2.18. ��

Theorem 5.4 and Example 4.2 yield the following.

Example 5.5 Let ρ ∈ G0, 	 ∈ ∇2 and b > 1. Set

φ(t) ≡ ρ̃(t)b , η(t) ≡ ρ̃(t)b−1, �(t) ≡ 	(tb/(b−1)).

Then

‖Tρ f‖L�, η ≤ C‖ f‖L	,φ .
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Example 5.6 Let δ ≥ 1 and b > 1. Set

ρ(t) ≡ min
(
t, (1 + |logt|)δ−1

)
,

φ(t) ≡ min
(
t, (1 + |logt|)δ)b

,

η(t) ≡ min
(
t, (1 + |logt|)δ)b−1

and set

	(t) ≡ exp(t1/δb ) − 1, �(t) ≡ exp(t1/δ(b−1)) − 1.

Then

‖Tρ f‖L�, η ≤ C‖ f‖L	,φ .

We remark that ρ̃(t) ≈ min
(
t, (1 + |logt|)δ) and sup

t>1

φ(t)
	−1(tn)

< ∞.

We see that this example is valid only after deleting the assumption �̄ ∈ ∇2, since
t(log(2 + t))δ(b−1) /∈ ∇2.

Proposition 5.7 Let 	 and � be normalized Young functions. Then the following are
equivalent.

(1) The Orlicz maximal operator M� is L	-bounded;
(2) The functions 	 and � satisfy

∫ t

0
�

(
t
s

)
	′(s) ds ≤ 	(Ct) for some C > 0 and for all t > 0;

(3) The functions 	 and � satisfy
∫ t

0
	

(
t
s

)
� ′(s) ds ≤ 	(Ct) for some C > 0 and for all t > 0.

Proof The proof is obtained by an argument similar to Proposition 2.17. ��
Acknowledgement The authors are very grateful to the anonymous referee for his/her careful
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readership.

References

1. Adams, D.: A note on Riesz potentials. Duke Math. J. 42, 765–778 (1975)
2. Adams, D., Xiao, J.: Nonlinear potential analysis on Morrey spaces and their capacities. Indiana

Univ. Math. J. 53, 1629–1663 (2004)
3. Garcia-Cuerva, J., Rubio de Francia, J.L.: Weighted norm inequalities and related topics. In:

Mathematics Student, vol. 116. North-Holland, Amsterdam (1985)
4. Gilbarg, D., Trudinger, S.N.: Elliptic Partial Differential Equations of Second Order, 2nd edn.

Springer, Berlin (1983)
5. Kerman, R., Sawyer, E.: The trace inequality and eigenvalue estimates for Schrödinger operators.

Ann. Inst. Fourier (Grenoble) 36, 207–228 (1986)
6. Kita, H.: On maximal functions in Orlicz spaces. Proc. Am. Math. Soc. 124, 3019–3025 (1996)
7. Kita, H.: On Hardy–Littlewood maximal functions in Orlicz spaces. Math. Nachr. 183, 135–155

(1997)



556 Y. Sawano et al.

8. Nakai, E.: On generalized fractional integrals. Taiwan. J. Math. 5, 587–602 (2001)
9. Nakai, E.: Generalized fractional integrals on Orlicz–Morrey spaces. In: Banach and Function

Spaces, pp. 323–333. Yokohama Publishers, Yokohama (2004)
10. Nakai, E.: Orlicz–Morrey spaces and the Hardy–Littlewood maximal function. Stud. Math. 188,

193–221 (2008)
11. Olsen, P.: Fractional integration, Morrey spaces and Schrödinger equation. Commun. Partial

Differ. Equ. 20, 2005–2055 (1995)
12. Pérez, C.: Two weighted inequalities for potential and fractional type maximal operators. Indiana

Univ. Math. J. 43, 663–683 (1994)
13. Pérez, C.: Sharp Lp-weighted Sobolev inequalities. Ann. Inst. Fourier (Grenoble) 45, 809–824

(1995)
14. Rao, M.M., Ren, D.Z.: Theory of Orlicz Spaces. Marcel Dekker, New York (1991)
15. Sawano, Y., Sobukawa, T., Tanaka, H.: Limiting case of the boundedness of fractional inte-

gral operators on nonhomogeneous space. J. Inequal. Appl. 16 pp. (2006). doi:10.1155/JIA/
2006/92470

16. Sawano, Y., Sugano, S., Tanaka, H.: A note on generalized fractional integral operators on gen-
eralized Morrey spaces. Boundary Value Problems 2009, 18 pp. (2009). doi:10.1155/2009/835865

17. Sawano, Y., Sugano, S., Tanaka, H.: Generalized fractional integral operators and fractional
maximal operators in the framework of Morrey spaces. Trans. Am. Math. Soc. (2011, to appear)

18. Stein, M.E.: Singular Integrals and Differentiability Properties of Functions. Princeton
University Press, Princeton (1970)

19. Tanaka, H.: Morrey spaces and fractional operators. J. Aust. Math. Soc. 88, 247–259 (2010)

http://dx.doi.org/10.1155/JIA/2006/92470
http://dx.doi.org/10.1155/JIA/2006/92470
http://dx.doi.org/10.1155/2009/835865

	Orlicz--Morrey Spaces and Fractional Operators
	Abstract
	Introduction
	Orlicz--Morrey Spaces
	Definitions and Results
	Principal Lemma
	The Local Boundedness Property
	Some Additional Lemmas
	Proof of Theorems 2.8--2.10

	Morrey Spaces with Small Parameters
	Some Lemmas
	Principal Lemma Revisited
	Proof of Theorems 3.1--3.3

	Some Examples
	Some Additional Results
	References



