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518 Y. Sawano et al.

1 Introduction

In this paper we investigate some boundedness properties of the generalized frac-
tional integral operators on Orlicz-Morrey spaces. The fractional integral operator
1,,0 < a < 1,is defined by

I f(x) ::/R %dy,

and the fractional maximal operator M,,0 < « < 1, is defined by

1
M, f0) = sup —— f | F )l dy.

regeo |0 0

Here, we use the notation Q to denote the family of all cubes in R” with sides parallel
to the coordinate axes and | Q| to denote the volume of Q. Let0 < p < py < oo. For
an L” locally integrable function f on R" we set

1 1/p
I Fllagero == sup | Q]P0 (7/ If(x)l”dx> .
0c0 101 Jo

We will call the (classical) Morrey space MP?Po(R") = MP-Po the subset of all L?
locally integrable functions f on R” for which || f|| apr. 7 is finite. Applying Holder’s
inequality, we see that

I fllagerro = Nl fllageero for all pg > p1 > ps > 0.

This tells us that
LPo = MPo-Poc MPrPo . MP2PO forall po > p; > p» > 0.

Morrey spaces, which were introduced by C. Morrey in order to study regularity
questions which appear in the Calculus of Variations, describe local regularity more
precisely than Lebesgue spaces and are widely used not only in harmonic analysis
but also in partial differential equations (c.f. [4]).

The positivity of the Schrédinger operator L = —A — |v|? holds if, for u € Cyo(R™)
and 0 < K < 1,

luvlize < K| [Vul || 2 (1.1)
Indeed, integration by parts says that
(Lu, u) = |||Vul 7> — lwvl|3. = (= K»)[||Vul |7, > 0.

Thus, it is important to determine the smallest constant K = K, such that
Eq. 1.1 holds. One way to prove Eq. 1.1 is by means of the inequality | f(x)| <
CIL;x(IV f)(x), which follows from the classical Sobolev integral representation (c.f.
[18, p. 125]). Therefore one is now led to consider weighted inequality of Lebesgue
spaces (so-called the trace inequality)

g Lo fllLr = Kl fllLe, 1 <p<T1/a. (1.2)

This inequality was studied by many authors (see [5, Introduction]) and Kerman and
Sawyer established the following.
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Orlicz-Morrey Spaces and Fractional Operators 519

The trace inequality 1.2 holds if and only if for all cubes Q € Q there exists a
constant K > 0 such that

/ M, lIgI” xol(x)? dx < K” / lg(x)|? dx < oo, (1.3)
) Q

where x denotes the characteristic function of cube Q and p’ = p/(p — 1) is
the conjugate exponent number of p.

We shall now define the modified (classical) Morrey space MP:/#(R") = MP- 1/«
by the set of all L? locally integrable functions g on R” for which Eq. 1.3 holds, and
define the norm ||g|l i, by the smallest constant that satisfies Eq. 1.3. We would
like to know the relation between the class M 1/# and the corresponding ordinary
Morrey spaces.

It follows that

I fllmpare < Wl agpie < Clfllmare, 1< p<q <1/ (1.4)
Indeed,
W[ pd>p’= (@/ d)
<|Q| QIf(X)I x 10| 0| QIf(X)I x
|O|*P

M,[| fI? Pd
|Q|/Q [1£17 xol(0)” dx

10y /Qlf(x)|de< .

1/p
This yields that | Q|” (|Q| / [ f(x)|? dx) < Il fll 4.1« and that the left inequality
of Eq. 1.4 by taking the supremum over Q. Using Holder’s inequality, we have

|Q|a 2 g a( 0y )1/4( (D d > 1/q'
vl /Qlf(x)l ¥ <10 |Q|/|f(x)| x |Q|/|f(x)| o)

This implies

/ 1/q'
MTIF17x0106) = 1 llago e (MI AP0 xol) ™

where M = M, denotes the Hardy-Littlewood maximal operator. The right inequal-
ity of Eq. 1.4 then follows by this and the L?/4 -boundedness of M (see also Claim 4.5
to follow). We emphasize that in the right inequality of Eq. 1.4 the parameter g of
the integration satisfies proper inequality p < g.

The extension of the trace inequality 1.2 from Lebesgue spaces to Morrey spaces
was due to Olsen in [11]. He showed that

lg - Lo fllmero < Cliglpavell fllagrre, 1< p<po<l/a,l<p<gq=lja
(1.5)

We emphasize again that the parameter g of the integration satisfies the proper
inequality p < q.
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520 Y. Sawano et al.

The third author showed further in [19] that

I8« Lo fllpmrro < Cliglar el fllparo, 0 < p<1<gq=po<la (1.6)

We emphasize now that 1 < q.

The purpose of this paper is, motivated by these three proper inequalities
contained in Eqs. 1.4-1.6, to study the boundedness properties of the generalized
fractional integral operators on Orlicz-Morrey spaces. In general, Orlicz-Morrey
spaces can describe more accurately the local regularity with the parameter g close to
por 1 (cf. [15]), and, were introduced and studied by Nakai in [9] and [10]. However,
our definition of the spaces is different from that due to Nakai.

The remainder of this paper is organized as follows: Main results can be found
in the beginning of Sections 2 and 3. In Section 2 we describe Orlicz-Morrey spaces
and establish some norm inequalities (the trace inequality and the Olsen inequality)
for the generalized fractional integral operators. We give further a necessary and
sufficient condition for which the Orlicz maximal operator is “locally bounded”.
Section 3 is devoted to investigating Morrey spaces with small parameters. We
introduce some Morrey-norm equivalences and verify the boundedness properties of
the generalized fractional integral operators for the small parameters. The accurate
description of Orlicz—Morrey spaces works well in this problem. Section 4 has several
examples of our main results. Finally, in Section 5 we state and prove some additional
results. Throughout this paper all the notations are standard or will be defined as
needed.

2 Orlicz-Morrey Spaces

In this section we define Orlicz-Morrey spaces and establish some norm inequalities
for the generalized fractional integral operators. Especially, we give a necessary and
sufficient condition for which the Orlicz maximal operator is locally bounded.

2.1 Definitions and Results

The letter C will be used for constants that may change from one occurrence
to another. Constants with subscripts, such as C;, C,, do not change in different
occurrences. By A ~ B we mean that ¢c”' B < A < ¢B with some positive constant
¢ independent of appropriate quantities. For any 1 < p < co we will write p’ for the
conjugate exponent number given by 1/p + 1/p’ = 1. All “cubes” in R” are assumed
to have their sides parallel to the coordinate axes, Q to denote the family of all such
cubes and ¢(Q) to denote the side-length of Q. For O € Q we use cQ to denote the
cube with the same center as Q, but with side-length c£(Q). We denote |E| by the
Lebesgue measure of E C R”. We will denote by D the family of all dyadic cubes in
R". We will also write, for the sake of simplicity, for any cube Q € Q and any locally
integrable function f

1
= — dx.
mo(f) |Q|/Qf(x) x
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Orlicz-Morrey Spaces and Fractional Operators 521

Let p: [0, 0c0) — [0, o] be a suitable function. We define the generalized frac-
tional integral operator 7, and the generalized fractional maximal operator M, by

T, f(x) = / S )” (e yﬁ') dy,

sup p(E(Q)mo(| -

xeQeQ

Mpf(x) :

If p() =",0 <a <1, then T, = I, and M, = M,. We now define the condition
that we need to postulate of a function p for the generalized fractional integral
operator T),.

Definition 2.1 By the “Dini condition” we mean that
/ PO 45 < oo, 2.1)
0 N

while the “weaker growth condition” is that there are constants §,¢ > 0,0 <¢ < 1
with the property that

S(14¢e)t p( )
sup p(s) < c/ —=dsforallt> 0. (2.2)
s s

se(t/2, 1] 200

In the sequel, for the generalized fractional integral operator 7,, we always assume
that p satisfies Egs. 2.1 and 2.2, and, then denote the set of all such functions by G.

We will write, when p € Gy,
. p(s)
() ;:/ —ds.
0

Remark 2.2 Typical examples of p(f) that we envisage are, for 0 < o < 1,

a
pt) = { Tog(e/1) 0<t<l,

" log(et), 1<t< oo,

and, for ¢ > 0,

o e, 0<t<l,
1) = 2
P e 1<t < oo.

The second one is used to control the Bessel potential (see [18]). In our previous
papers [16] and [17] we have assumed that p satisfies

1
12O ol o5 oy 2.3)
p(t) 27t
This implies
t
sup p(s) <C & d
se(t/2,1] t)2 S

However, this condition cannot reflect the rapid decay of integral kernel at infinity
such as the Bessel potential. For this reason, following mainly [12], we postulate the
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“weaker growth condition” on p. As we will see below, p enjoys the same sufficient
conditions for the boundedness properties.

To describe Orlicz-Morrey spaces, we recall some definitions and notation.

A function @ : [0, co) — [0, oo] is said to be a Young function if it is left-
continuous, convex and increasing, and if ®(0) = 0 and ®(f) — oo ast — oco. We say
that @ is a normalized Young function when @ is a Young function and ®(1) = 1. It
is easy to see that 7, 1 < p < oo, is a normalized Young function.

A Young function @ is said to satisfy the A,-condition, denoted ® € A,, if for
some K > 1

O2t) < Ko(¢) forallt > 0.

Meanwhile, a Young function & is said to satisfy the V,-condition, denoted ® € V,,
if for some K > 1

1
d(r) < ﬁCD(Kt) forallz > 0.

The function ®(f) =t satisfies the A,-condition but fails the V,-condition. If 1 <
p < oo, then @ (¢) = ¢* satisfies both conditions. The complementary function @ of a
Young function & is defined by

O(t) := supfts — P(s) : s € [0, 00)}.

Then @ is also a Young function and ® = ®. Notice that & € V, if and only if ® € A,.
For the other properties of Young functions and the examples, see [9, p. 196] or the
book [14]. In Section 5 we collect some examples as well.

Given a Young function ®, define the Orlicz space L®(R") = L® by the Luxem-

berg norm
I fll e ::inf{A ~0: / ®<|fix)|) dx < 1}.

When () = 2,1 < p <00, || flize = || fllr- We need the following basic two facts.

Generalized Holder’s inequality:

/1; | f0)g)dx < Cl fllzollgll 2o
The dual equation:

I fllce ~ sup {Il fgller : llgllze < 1}

Given a Young function &, define the mean Luxemburg norm of f on a cube

Qe Qby
||f||¢,Q:=inf{x>o: @/ch('f;")') dx < 1}.

When &(¢) =7, 1 < p < o0,

1 1/p
1 flloo = (|Q|/Q|f<x>|de> ,
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that is, the mean Luxemburg norm coincides with the (normalized) L? norm. It
should be noticed that

I flle.0 = lITeol fxolllze, (24)

where 15, § > 0, is the dilation operator t5 f(x) = f(5x). It follows from this relation
and generalized Holder’s inequality that for any cube Q € Q

mo(lfgh) = Cli flle. 0llglls. o (25)

The Orlicz maximal operator, for any Young function W, is defined by

MY f(x) == sup Il fllw, o-

xeQe
Now let us introduce Orlicz-Morrey spaces.
Definition 2.3 Let G, be the set of all functions ¢ : [0, co) — [0, o0) such that ¢ (¢)
is nondecreasing but that ¢ ()" is nonincreasing. Let ¢ € G, and let ® be a Young

function. The Orlicz-Morrey space L% ¢ (R") = L ¢ consists of all locally integrable
functions f on R” for which the norm

I fllgo.s := sup ¢LCONI fllo, 0
0eQ

is finite. In particular, in order that the characteristic function of the unit cubes
belongs to £% ¢, it should be always assumed that

sup 4 < 00
=1 ()

If &) =1” and ¢ () =17, 1 < p < po < oo, then L>?® = MP Po_ That is, then
Orlicz-Morrey spaces coincide with (classical) Morrey spaces. When @ (¢) =7, 1 <
p < oo, we will denote L% ¢ by MP %, In this case we will call it the (generalized)
Morrey space. In Section 3 we consider M? ¢ evenfor0 < p < 1.

Remark 2.4

(1) The class G, is a natural one for defining £®¢. We shall verify that, for any
suitable function ¢ : [0, co) — [0, co), the norm defined by

I flizes == sup (LN fllo, 0
0eQ

is equivalent to a norm || f|| ze., for some ¢, € G;. Indeed, if we let

$1() = sup $(r),

r'el0,1]

then ¢ (¢) is nondecreasing and || fllo,¢ = || fllo, ¢,- Similarly, if we let

@2 (1) = " sup 1 ()",

>t
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@

®)

4)

then ¢, () is nondecreasing but ¢, ()" is nonincreasing and || fllo, ¢, ~ || fll®, ¢,
These hold from the fact that, for any cube Q € Q and any positive number

=40,

I flle o < 2" sup I flle, o
0'€Q: 0'cO. Q)=

and that, for all cubes Q; C Q,,
[O11 1 fllo, 0, < ClO2| I fllo, 0,

which can be proved by using the simple geometric fact and another character-
ization of the Luxemburg norm (c.f. [14, p. 69])

q:(lfix)l

. s
||f||¢,Qs;gg{s+— )dx} <2l flle, o-

101 Jo

We also remark that if ¢ € G; then it automatically satisfies the doubling
condition

¢(2f) <2"¢p(¢) forall t > 0.

As a special case when ¥ (1) = 1, we have L% ¢ = L>® with norm equivalence.
Indeed, it is not so hard to see that £L®?% < L>®. To see the converse, we take
f € L?? arbitrarily. Then we have

I fllo.Q < Il fllcoe
for all cubes Q € Q, which implies

i @Y
0] /Qq’ <||f||z:®-¢> =l

If a sequence {Q}72, of cubes shrinks to a Lebesgue point x of ® o f, then we

have
[f 0l ) 1 ( L FO)I )
® =lim — [ @ dy <1
<||f||.c¢~¢ oo 10l Jo,  \Il fllge.s Y=

The set of all Lebesgue points of ® o f being almost equal to R”, we see that
LY o [

The class G, is a good class of describing intersection spaces. Indeed, we
have that max(¢;, ¢») € G; whenever ¢, ¢, € G; and that L9 N L ¢ =
L max(@1,92) with norm equivalence.

We define an auxiliary space too.

Definition 2.5 Let ¢ € G, and let ® be a Young function. The space £L®¢(R") = £ ¢
consists of all locally integrable functions g on R” for which the norm

gl zo.s = sup {IIMylgwixollls, o = Q€ Q. lwls o <1}

is finite. Here, M, is the generalized fractional maximal operator.

Related to the space L%, we need the following notion too.
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Orlicz-Morrey Spaces and Fractional Operators 525

Definition 2.6 Let ® and ¥ be Young functions. We say that “the Orlicz maximal
operator MY is locally bounded in the norm determined by ®”, when it satisfies

MY [gxollle. 0 < Cliglle. o for all cubes O € Q.

Remark 2.7 When ¢(r) = ",0 <« < 1,and (1) = 1, 1 < p < 1/a, the space L ¢
can be characterized by the condition 1.3 (see [5, Theorem 2.3]). That is, then we
have £%? = MP-'/*. We do not know whether the Orlicz counterpart of Eq. 1.3 is
available or not. Following [12], using the local boundedness property of the Orlicz

maximal operator, we can find Orlicz-Morrey spaces which are embeded into LoV
(see Claim 2.13 to follow).

We now state our first results, which are the extension of those in [16, 17] to
Orlicz-Morrey spaces.

Theorem 2.8 Let p € Gy, ¢ € G, and ® € V,. Suppose that
/OO p(s) o)
t

50) ds < Cm forallt > 0. (2.6)

Then

g~ Ty fllgo.s < Clgllgosll fllgoe-

Theorem 2.9 Let W be a Young function. With the same condition posed in Theorem 2.8,
if. in addition, M¥ is locally bounded in the norm determined by ®, then we have

g Ty fllgo.s < Cliglgwsll fllgoe.

Theorems 2.8 and 2.9 are the trace inequalities of the generalized fractional
integral operators for Orlicz-Morrey spaces.

Theorem 2.10 Let p € Gy, ¢, ¥ € G, ® € Vo and 0 < a < 1. Set
n) =0, W) = o).

Suppose that

() < p(s) Y (1)
m +/; 50) ds < C% forallt > 0. (2.7)

Then

g - Tp fllcvn < Cligl oyl fll zoo.

Theorem 2.10 is a general form of Theorem 2.8 (letting a = 1) and is the Olsen
inequality of the generalized fractional integral operators for Orlicz-Morrey spaces.
In Section 4 we will encounter some examples.

Letting g(x) = 1 and ¢ () = 1 in Theorem 2.10, we can recover the boundedness
property of T, by noticing that (see Corollary 2.19 to follow) if ¥ € V, then

sup {| M[wxolllg, o : Q€ Q. llwly o <1} =C.
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where M is the Hardy-Littlewood maximal operator.

Corollary 2.11 Letp € Gy, ¢ € Gy, ® € Voand 0 < a < 1. Set
N0 =0, W)=,
Suppose that W € V, and that

B0, [* 00 4 €
¢@  J s(s) n(

forallt > 0.

Then

1T, fllgen < Cll fllzoo.

In Theorem 5.4, using the method developed in the last part of the proof of
Lemma 2.22, we reprove this corollary directly without the assumption ¥ € V.
Corollary 2.11 generalizes [16, Corollary 1.7]. In [8] Nakai studied the boundness
of the generalized fractional integral operator T, on Orlicz spaces. Since, we cannot
recover Orlicz spaces as a special case of our Orlicz-Morrey spaces, we dare not
compare Corollary 2.11 with [8, Theorem 3.1].

2.2 Principal Lemma

The proof of the previous results relies upon the following principal lemma
(Lemma 2.12). We shall make some remarks since it would be somehow complicated.

Let p € Gy, ¢ € G; and ® € V,. Then, by letting ¥ (t) = 5(), (2) of Lemma 2.12
yields

g~ Tp fllces < Cligl zos IMfllcos, (28)

if Eq. 2.6 holds. Once we verify Eq. 2.8, Theorem 2.8 will have been an immediate
consequence of the boundedness of the Hardy-Littlewood maximal operator M on
the Orlicz-Morrey space L® ¢ (see Corollary 2.21 to follow). While, by letting g(x) =
1 and ¥ (¢) = 1 and noticing that ||1|| 7., = C when ® € Vs, (2) of Lemma 2.12 yields

1T, fllces < CIiMj fllgos, (2.9)

if ® € V, and

/m&dsf Lf01rallt> 0.
¢ SP()P(s) o)

The inequality 2.9 means that the Orlicz-Morrey norm of the generalized fractional
integral operator T, f can be controled by that of the generalized fractional max-
imal operator M; f. Sometimes, assuming Eq. 2.3 for example, one can verify the
converse. In general, in spite of losing the linearity, one could expect less singularity
to M; than T,. This Morrey norm equivalence is first proved by Adams and Xiao
in [2]. To prove Theorem 2.10, we need more infomation between the generalized
fractional integral operators and the generalized fractional maximal operators in the
framework of Orlicz—-Morrey spaces. In some sense, Lemma 2.12 is the link between
Eqgs. 2.8 and 2.9.
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Lemma 2.12 Let p € Gy, ¢, ¥, n € Gy and let © be a Young function.

(1) Assume that

ds < C——= forallt > 0. (2.10)

/ * p(s) Y ()
¢ SP(s) n()

Then

g - Tp fllcor < Cligh oo (1M fllcon + 1l fllpre) -

(2) Assume that

ds < C—= forallt > 0. (2.11)

/°° p($)y(s) 40)
¢ SP(9)P(s) ¢

Then

lg- T, fllces < Clgll sov I Mppy fllcos.

Proof We denote by D the family of all dyadic cubes in R". First of all we notice that,
in general, if ¢ € G, then it automatically satisfies the doubling condition
¢(2t) <2"¢(¢) for all t > 0.

A geometric observation shows that

I fllzo.e =~ sup QNI fllo, o (2.12)
QeD

We assume that f and g are nonnegative. Noticing Eq. 2.12, for any Q, € D we wish
to estimate

g~ To flle, 0o

By a duality argument, noticing Eq. 2.4, it suffices to estimate
1
— [ wx)g(x)T, f(x)dx
[Qol J o,
for all nonnegative measurable functions w such that
lwlis, g, < 1.
We now set, forall ¢ > 0,

s(1+e)t
o) == f pE) ds.

(1) Ky
3 t

Then, by Eq. 2.2 we have

sup p(s) < cp(o). (2.13)
se(t/2.1]

For simplicity, we will write

5(1—¢)
Cl =

and ¢, = 8(1 + ¢).
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It follows that

px—yD
T, f(x) = / 751
f g vl x— y\<2‘ |X—Y|" Y
p(2")
C d
< ZZ STl A fydy

pL(Q))
=Cc>y > o f3Qf(y)dy

veZ QeD: QO>x, L(Q)=2"

pL(Q)) f
Ee 10 X fydy- xox)

= C ) AEQIMso(f) - xo).

QeD

1
where we use the notation mo(f) := @ / f(x) dx.
)

We now let

{DI(QO) ={0eD: Q0 cC Q)
Dy(Qo) :={0 e€D: Q2 Oo}

and evaluate the quantities, fori = 1, 2,

1
Ji= |QO|/QOw(X)g(x)( > ﬁ(E(Q))mag(f)XQ(x)) dx.

0eDi(Qo)
Denote by Ny an integer such that

1
N0%1+10g21¥

Then a geometric observation shows that

> Xenen(@') < No.

veZ

Consequently, for any dyadic cube R € D, we have

log, £(R)
S A LQf(y)dy 5 ﬁ(Z“)( 3 f f(y)dy)

geD: QcR : v=—00 QeD: QCR, £(Q)=2"

log, ¢(R)
c f3 S dy( > ﬁ(2”))

IA

V=—00

< CNoj(t(c2R)) / fdy.
3

@ Springer



Orlicz-Morrey Spaces and Fractional Operators 529

Once we verify this fact, it has been essentially shown in [17] (see also Lemma 3.8
below) that there exist a collection of dyadic cubes { Ok, ;} C D:(Qp) and a collection
of disjoint measurable sets { £y} U { £ ;} such that

Ey C Qo, Er, jC Ok, jy 100l <2|Eol, 1Ok jl <2|Ekjl, Qo= EOUUEk,j
k, j

and that
ClQolJ1 = p(c2Q0))mo, (wgmso, ()| Eol

+ > e Ok, )ymo, (wmsg, (I Ex.jl.
k. j

Noticing, by use of the doubling condition of v/,
pE(c2Qk. )mo, (wgmsg, ,(f)

pU(co Ok, )

CyL i . e
= CY (U(Qk, Pmg, ;(wg) V(€0 Or )

m(,'() Qk.,’(f)ﬂ
where ¢y = max(c,, 3), and then
p(c2 Ok, Mg, (wgmsg, (NI Ek j| < C/E My [wgl(x) M,y f(x) dx,
we have
C
Jl < — / Mw[wg](x)M,;/w f(x) dx.
[Qol Jg,

It follows from generalized Holder’s inequality 2.5 that
Ji = ClIMy [wgllls, o, Mpy fllo, 0o

< 1, we have (see Definition 2.5)

Recalling that [lw|/g ¢,

My [wgllls, g, < llgl zo.v

and, hence, we obtain

J1 = Cligl gow I M5y fllo, 0,- (2.14)

Thus, the estimate for J; is now valid.
Let us turn to the estimate of J,. It follows for any O € Q that

5 e 0)
pU(Q) < C/ PEs)
¢(LGBQ)) te,0) SP(S)

where we have used the fact that ¢ (¢) is nondecreasing and the doubling condition of
¢ when ¢, > 3. As a consequence

pUNM3o(f) = |l fllpmro

U2 Q) p(s)

B = Cll flaemo,wg) Y /K

0eDy(0y) VD) s¢(s)
LG ¥ (£(Q0)
¢ " ds<C . Y (EQ0)
< Cll fllmremg,(wg) /t:(leo) 50 s < C|| fll promo, (wg) o0,

@ Springer



530 Y. Sawano et al.

Here, we have invoked the condition 2.10 and the doubling condition of ¥ and 7. It
follows immediately from the definition of the mean Luxemburg norm that

lxoolle. 0, = @~ (1).

These imply that

Jo < Cn(e(Qo) M fll o ¥ (€(Qo))m g, (wg)
and that

¥ (E(QoNmo, (wg) = mo, (Mylwgxo,)
< Co'(DIMywellls, o,
< CO'DIgl 7. g

where in the second inequality we have used generalized Hoélder’s inequality 2.5.
Thus, we obtain

o < Cn(e(Qo) ™" lIgl oy Il Fll agro- (2.15)
It follows from Egs. 2.14 and 2.15 that

Cn(e(QoDIIg - Ty fllo. 0y =< N8l zo.s (MECQNI My fllw, 0y + Il fll p10)
< gl zow (IMppy fllzos + 11 flladre) -

By taking the supremum over all dyadic cubes Qg € D in the left side, (1) of the
theorem is now verified.

Finally, (2) of the theorem holds from the following two facts. First, for any Q € Q
we have, recalling that ¢y = max(cy, 3),

PUDNY (L(cQ)) AL Q))

A ¢ C
PUQNm3o(f) < p((coQ)) ¥ (L(coQ))

mCoQ(f)

AUONY Q) 1 ,
=T @) 10l /Q My [0 dx
SOV (EcoQ))

< CliMzy fllgos

pL(coQNPE(Q)

Second, by use of the facts that ¥ (¢), ¢ (¢) and p(¢) are nondecreasing and ¢ and ¢
satisfy the doubling condition and use of the condition 2.11 we have

Z ﬁ(Z(Q))llf(f(CoQ))<C Z f " p@Y(s)

o iy, AE0NeE) =€ | 2 ) spee ©
c Y Qo)
h ¢(€(Qo))
These imply
Ty = Co(Qo) ™ 18l oy | My fllcos- (2.16)
The desired inequality then follows from Eqgs. 2.14 and 2.16. O
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Following [12], we wish to find Orlicz-Morrey spaces which are embeded
into L®V.

Claim 2.13 Let ¢ € G; and let ® and ¥ be_Young functions. Assume that MY is
locally bounded in the norm determined by ®. Then

181l zo.v < Cliglcw.v.

Proof Fix a cube R. By generalized Holder’s inequality 2.5 and the definition of the
Orlicz-Morrey norm, we have, for any Q € Q,

Y (EO)mowgxr) < Cligh o lwxrlg, o-
This yields
My lwgxrl(x) < Cligllzo.v M* [wyr](x).

Then, using the assumption M" is locally bounded in the norm determined by ®, we
have

My [wgxrllle, r < C”g”L"W’”M\p[wXR]”é,R = Cliglzvvllwllg, z-

This means the statement of the lemma (see Definition 2.5). ]

2.3 The Local Boundedness Property

In this part, motivated by Claim 2.13, we investigate the local boundedness property
of the Orlicz maximal operators. Recall that ® is a normalized Young function when
® is a Young function and ®(1) = 1. In general, for a Young function & it should be
remarked that

OD(t) > d(O1) if0<H <1,
OD(t) <O ifl <6 < o0.

Indeed, since ® is convex and ®(0) =0,for0 <0 < 1,
PO =D((1—-0)0+61) <(1—-0)P0)+6D() =0D(t)
and, for 1 < 0 < oo,
0D (1) = 0P[O '0r) <00~ D(O1) = D(01).

The following lemma is the localized version of so-called the “Wiener—Stein equiva-
lence” and is essentially found in [12, Lemma 4.1].

Lemma 2.14 Suppose that V is a normalized Young function and that f is a nonneg-
ative locally integrable function. Then, for any cube Q and any numbert > | f|lw, o,

/ w(52) v < lfve 0 MV prol = ol
{xeQ: f(x)>t} !

2
< c/ xp( ﬂy)) dy. (217
(x€Q: f(0)>1/2) t
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In particular, if ¥ € A, then
c! w (*) dy < [{xe O: M*[fxolx) > t}|
{xeQ: f(x)>1}

10 o,

<C 7 (
{xeQ: f()>1/2) t

Proof First, we notice that the maximal operator MY is subadditive and that for all
cubes R ||xrllw. g = ¥~'(1) = 1. Using these observations and the standard idea of
writing f as f = fi + f,, where fi(x) = f(x) if f(x) > t/2 and f;(x) = 0 otherwise,
we have

M¥[fxol() < MY[ fixol(x) +1t/2.
This implies
[xe Q: M¥[fxolx) >t} C{xe Q: M¥[fixolx) >1/2}.

It follows from the well-known Wiener covering lemma that there exists the set of
disjoint cubes {Q;} such that

Q;C Q. t/2<|fillv.o, {xeQ: M*[fixolx)>1t/2} c|J30;
J

2 fi(x)

1
We now see that —— / v <
10l Jo, t
the mean Luxemberg norm we would have /2 > || fi|ly, o,, which is a contradiction.

2
This implies that | Q| < / \P( fi()
9]

) dx > 1;if it were not, then by the definition of

t

Let D(Q) be the collect/ion of all dyadic subcubes of Q, that is, all those cubes
obtained by dividing Q into 2" congruent cubes of half its length, dividing each
of those into 2" congruent cubes, and so on. By convention, Q itself belongs to
D(Q). Since, t > | fllw, 0, by use of standard argument of the Calderén-Zygmund
decomposition, there exists a disjoint collection of maximal (with inclusion) dyadic
cubes {Q;} € D(Q) such that

) dx and that the right inequality of Eq. 2.17.

t<Iflv.o, {xeQ: M'Ifxol) >1t}>(]0;
j

Let O j € D(Q) be the unique dyadic cube containing Q; with side-length twice that
of Q;. In general, one knows that || fllo, 0 < 8"|l flle,so for any cube Q and any § > 1.
Thus, we have

I fllw. o, = 2" flly, o,
and by the maximality of Q;

I fllw. o, =271 flly, 5, = 2"t
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It follows from the definition of the mean Luxemberg norm and the fact that W () is
a nondecreasing function that

1 fx 1 (f(x))
Z 700 dx > —— dx.
= 19,1 Q,\Il(”f”w,Q,) t= 10l /er\Il e )

This yields that |Q;| > / v <M) dx and that the left inequality of Eq. 2.17,
Q)

21t
by observing further that U Q;D{xe Q: f(x) > t}, which holds by the Lebesgue

j
differential theorem. O

Remark 2.15 Following the proof of Lemma 2.14, we see that

2l f(0l

; )dxforallt>0.

{xe O: MY[fxolx) >1t}| <C \I/(
oN{l fI>1/2}

Lemma 2.16 Let W be a normalized Young function. Suppose that normalized Young
functions ®, & and ©, fulfill, for some positive constants Cy and C,,

t
O,(City—1< / 7 <§) @' (5)ds < ®o(Cat) forall t > 1.
1

Then, for any Q € Q,

C ' fle, 0 < IMY[fxolls, 0 < Cll flle,, o

In particular, the boundedness of M does not depend on the values of ®(t) and ¥ (¢),
t less than one (see also Claim 5.1).

Proof First, we verify

IM*[ fxolllo, o = Cll fllas, o-

By Remark 2.15 for all ¢ > 0 we have

xeQ: M‘I'[fx 1x) >t <C v 2/ dx.
Q
on{l fI>1/2} t

It follows from this inequality that

/QGD(M“’[fo](x)) dx=/0 xe Q: MY[fxol(x) > )&/ () dt

§|Q|+C/OO</ q,(ﬂf(x)')dx)(b’(t)dt
1 on(l f1>1/2) t
2| f(0)]
=|Q|+C/ (/ w(z'f(x”)cb’(t)dz) dx
on(lf1>1/2y \J1 !

<10 +C/Q<I>2(2C2|f(x)|)dx~
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1l
A

For any 1 > 0, replacing | f(x)| by , we have

Mw[fo]oc)) 0 <2C2|f(x)|)
|Q|/< d<1+C|Q| P\ )

This yields, by the definition of the mean Luxemburg norm, for some C > 1

M\IJ
/ ( fXQ](x)> dx < 1,
10| Cl flles, 0
which proves the desired inequality.

Next, we verify the converse. Without loss of generality, we may assume that
MY fxollle. o = 1. This means that

—/ O (M*[fxolx) dx < 1.
101 Jo

We now claim that then || f|ly, o < 1. If it were not, then we must have the above
integral mean is bigger than one, which contradicts to our normalization above, by
virtue of the fact that for almost every x € Q || fllw, o < M‘I’[fXQ](x).

We wish to prove || flle,, 0 < C. Lemma 2.14 yields that, by noticing || fllv, o <1,

0] = f(g@(M“’[fo]m) dx

=f0 e 0 MYLfxol() > )] (r) dr

3/w</ \D(lf(x)|> dx)tb’(t)dt
I ON(I fI>1} 2"t

[l
=/ / \IJ('f(nx”)cD/(t)dz dx
oniifi=13 \J1 2"t
and further that

el g f(x)|)
v »'(nd
o= /Qﬂ{\f|>2"} </1 ( 2"t O

Z/ P127"CI fD dx — 1O N{I fI > 2"}
on(l f1>2"

> /Q®1(27”C1|f(X)|)dx — (®1(C) + DIQI.

This yields, for some C > 0,

IQI/ (mx)l) vl

and, hence, || fllo,, 0 < C. The proof is now complete. O
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Proposition 2.17 Let ® and ¥ be normalized Young functions. Then the following
are equivalent.

(1)  The maximal operator MY is locally bounded in the norm determined by ®;
(2) The functions ® and ¥ satisfy

! t
/ 7 (;) @'(s) ds < ®(Ct) for some C > 0 and forall t > 1;
1
(3) The functions ® and ¥ satisfy

t
/ ® (E) V'(s)ds < ®(Ct) for some C > 0 and forall t > 1.
1 S

In [6, 7] Kita established similar results for W (s) = t on L®.

Proof We have already proved that (2) implies (1). First, we verify (1) implies (2).
Suppose that (1), namely, assume that there exists a constant C > 1 such that

MY[ X
[ oA
10l Goll flle, 0
We now claim that then || flly, 0 < Coll fllo, - If it were not, then we would have
the above integral mean is bigger than one, which contradicts to our normalization

above, by virtue of the fact that for almost every x € Q || fllv, 0 < M¥[ fxol(x). Thus,
we have by Lemma 2.16

M‘”[fm](x))
o220 ) g
|Q|2~/Q <C0||f||<1>.Q *
=/ l{xe Q: M*[fxol@) > Coll fllo, o - s}| @'(s) ds
| f(0)] ) ,
dx @' (s) d
‘/‘/Qﬁ(f>colf||q>gb <2nc0||f||<l>Q x ®(s) ds

|1/ 2" Coll fllo, 0)
> / / ] (%) ®'(s) ds dx.
0N{I f1>27Coll fllo, 0} /1 2'Coll fllo, 0 - 5

If we set f(x) = xr(x) with R € Q contained in Q and let t = (2"Cy| f| o, Q)“, then

we have
! O]
1\ d'(s)ds < —
J ( ) T

I 0l
O2"Cot) = d = —,
(27Con <||f||¢,g> IR

Observing that

we obtain the desired inequality.
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Next, we verify (3) implies (2). Carrying out integration by parts, we have

Lot t ! ! t ds
/ v <7> D' (s)ds = [\IJ <7> d>(s)] + t/ v’ (7> () —
1 S N 1 1 s s
D) — W) + /[ P (é) W' (s) ds
1

(1) + P(Cr) < P(Ch).

IA

. t . . L
Here, we have used changed variables - +— s. The converse, (2) implies (3), is similar,
s

1 2 2t
sormar [ v () vwa
(2) - o(1) J, s

1 A2t
57/ W(—)d)(s)ds
®(2) — (1) J, s

®Q2Cr)

once we notice that

v(n)

< - -
= 22) - o(1)
OCH), t > 1.

IA

Claim 2.18

(1) Let ® be anormalized Young function and W (¢) = ¢7, 1 < p < oco. Suppose that
s17P®'(s), s > 1,is nondecreasing. Then the following are equivalent.

(a) The maximal operator MY is locally bounded in the norm determined
by &;
(b) There exists some constant C > 0 such that

t CI),
ﬂ’/ ) ds < d(Co) for all £ > 1:
1 sP
(c) There exists some constant K > 1 such that
o) < ! ®(K¢) forall t > 1
— oralls> 1.
~ 2K»r

(3) The normalized Young functions ¢ and W satisfy
Lot
/ (o (—) W' (s)ds < ®(Ct) for some C > 0 and for all £ > 1
1 N

provided that there exist some constant K > 1 and some positive summable
sequence {a;} such that, for all j € N and for all ¢ > 1,

W(KTYO(Kt) < ajd(1).
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Proof We first prove (1). We have already proved the equivalence of (a) and (b).
We verify (b) implies (c). By the assumption, s' =7 ®'(s) is nondecreasing, we have for
n>1

nt qD/(S) , ut 1
O (Cut) = (u)? o ds = phte'(n) —ds > pPo(t)log ,
t s t 8
where we have used the fact that 20 < @'(¢) which holds from the convexity. It

follows by letting n big enough so that C™7log > 2 and then by setting K = Cp
that

2KP® (1) < ©(K1).

This is the desired inequality. We verify the converse. It follows for an appropriate
N > 1 that

) Kt g (s) N oK
/ Z/ i1 Z(K = lt)p

K—ZK”’(D(K ity < K—@(r)ZZ I < iop(sz’z)

j=0

This proves the desired inequality.
Next we prove (2). It follows for an appropriate N > 1 that

Kit! Kit!
/ ()‘ll(s)ds<2/ ()lll(s)ds<2d>(t>/ W'(s) ds
Ki

< Zcp (K]> (KM <@ | W(K) + Za, < ®(C1).

Jj=1

This is the desired inequality. O
As a special case we can recover the classical result on the V,-condition.

Corollary 2.19 Let ® € V,. Then

IM[ fxollle, 0 = I flle, 0.

where M is the Hardy-Littlewood maximal operator. Moreover, the converse is also
true.

Proof We need only notice that ®’(s) is a nondecreasing function. O

2.4 Some Additional Lemmas

Using Lemma 2.16, we show that the condition which gives the boundedness of the
Orlicz maximal operators on Orlicz-Morrey spaces.
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Proposition 2.20 Let ¢ € G;. Suppose that normalized Young functions ¥, ®, &, and
@, satisfy the same condition posed in Lemma 2.16. Then

I fllore < IMY fllgos < CUl fllgors + 1 fllve) - (2.18)

Proof Since, for any cube Q € Q and any point x € Q, MY f(x) > M‘I‘[fXQ](x), we
see that the left inequality of Eq. 2.18 by Lemma 2.16. Thus, we verify the right
inequality.

It follows from the subadditivity of MY that

MY fligoo < sup PLONIM*[ frsolle, o + sup PLONIM*[ fxcorlle, o

Using Lemma 2.16, the fact that ¢(¢) is nondecreasing and that, for any § > 1,
I flle.0 < 8"l fllo.s0, we have

sup dLONIM*[ frsolle, o < 3" sup dLONIMY[ fxollle, 0 < Cll fll poxe.

We notice that

Sug M[ fxcorl(x) <3" 125 MY[ fxzor] (). (2.19)
xe x

This holds from the fact that, for fixed x € Q, if R € Q satisfies R > x and RN
(30)° # ¢, then 3 R must contain Q. It follows from Eq. 2.19 that

IM¥[fxaorlle.o = C inf M*[fXaor100)-

Since ¢ (¢) is nondecreasing,

sup ¢ (£(Q)) inf M¥[ fxaoel(x) < || fllcvs
0eQ xeQ
and we obtain the right inequality of Eq. 2.18. O

Corollary 2.21 If ® € V, then
IMflizo.s 2|l fllzos,
where M is the Hardy-Littlewood maximal operator.
Proof Notice that when W (f) = ¢
I fllgwe =1 fllpmne < Cll fllgos. (2.20)
This inequality, Claim 2.18 and Proposition 2.20 yield the corollary. O
Lemma 2.22 Let ¢ € G, 0 < a < 1 and let ® be a Young function. Set

v =90 W) = dE.
Then

Mgy fllzwv < CIMF| oo
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Proof Fix x € R". Then for any cube Q > x we see that
PN mo(I f) < pL(O)' " Mf(x)
and that
QN " mo(| f1) = p(L(Q) "D L(QNmo(| fI) < CoHU(Q) I Mfl| oo
These imply
P Q) "mo(If) < Cmin ($(L(O)' ™ MF(x), (D) “IIMF|l o)
< Csupmin (""" Mf(x), ™| Mflize.)

t>0
= CIMf| s Mf(x)°,

where in the last inequality we have used 0 < a < 1. This yields, for every cube

QeQ,
My fllw, 0 < CIIMfllﬁwll(Mf)"ll\p 0-

It follows from the definition of the mean Luxemburg norm that

. Mf(X)) }
= inf A>0:—/d>( dx <1t =|IMfI% »-
{ 101 Jo "\ 4 oo
Thus, we have

PO 1My« fllw, 0 < CUMSI S, ($LONIMSllo 0)" < CIMFllzow.

Taking the supremum over all cubes O € Q in the left side, we have the desired
inequality. O

2.5 Proof of Theorems 2.8-2.10

Combining the previous results, we can prove the theorems.

First, noticing that M; = M (the Hardy-Littlewood maximal operator), Theorem
2.8 follows from (2) of Lemma 2.12 and Corollary 2.21. Similarly, Theorem 2.9
follows from Claim 2.13. Next, Theorem 2.10 holds from the following.

We notice that the condition 2.7 yields

/oo PG) ds _waorallt>0
¢ SH(S) n(®)

Thus, it follows from (1) of Lemma 2.12 that

Ig - Tp fllcvn < Cligh zow (1Mzpy Flizwn + 1l Fllags) -

Also, the condition 2.7 implies

LTGRO}
vo = Saw
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Thus, it follows from Lemma 2.22 that

Mz Fllgon < CliMypy fllgvn < CIM S| oo

Because @ € V,, by Corollary 2.21 we have

IMfllzoe < Cll fllzoe.

Noticing also Eq. 2.20, we obtain the desired inequality

g Ty fllgvn < Cliglgo. |l fllcoe

and complete the proof of Theorem 2.10.

3 Morrey Spaces with Small Parameters

In this section, focusing on Morrey spaces with small parameters we establish some
norm inequalities for the generalized fractional integral operators. The accurate
description of Orlicz-Morrey spaces works well in this problem.

Let¢ € Gy and 0 < p < oo. Set

1 1/p
| fll pmeo := sup ¢ (£(Q)) <*/ If(x)lde)
QeQ 0| 0]

and define the (generalized) Morrey spaces M ¢(R") = MP ¢ by this quasi norm
| - lagr6. We write the Orlicz—-Morrey space £>¢ as Mgl ¢ i e N in the case

when ® (1) = 1(log(2 + 1))/. When j = 1 we simply write ML00¢L).¢ for AfL00el)". o
We now state our second results.

Theorem 3.1 Let p € Gy, ¢ € Gy and 0 < p < 1. Assume that the condition 2.6;
o)

/oo PE) ds < C——= forallt > 0.
¢ SH(S) @)

Then
g Ty fllmes < Cliglatesll fllagre.
Theorem 3.2 With the same condition posed in Theorem 3.1, we have
18- Ty fllpre = Cliglarsll fll prooesrs.

Theorem 3.3 Let p € Gy, ¢,V € G and 0 < p <r < 1. Assume that

@+/°° PO) 4o VO
o0 )i sh() P

forallt > 0. (3.1)

Then
g Ty fll pgrorrr < Cligllagnv Il fllagro.

In Section 4 we will encounter some examples.
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3.1 Some Lemmas
To prove the theorems we need the following basic lemmas.

Lemma34 Let¢p € Giand0 < p < 1. Then
IMfll e =l fllare.
Proof Since,0 < p < 1, (Mf)? is an A,-weight, that is, for any Q € Q, we have
mo((Mf)P) < C;gg Mf(x)?
(c.f. [3, Chapter II]). This implies
IMfllare = C sup ¢(€(Q)) inf Mf(x).

0c0 xeQ

We can easily obtain the reverse inequality of this one;
1

1/p
¢ (L(Q)) inf Mf(x) = ¢(£(Q)) ( / inf Mf(x)” d)’)
xeQ Q] Jo=xe0

1 1/p
< ¢((Q)) <|Q|/QMf(y)pdy)

< IMfllames.

Consequently we have

| Mfll pmre = sup ¢(£(Q)) inf Mf(x).
0eQ xeQ

Because the right-hand side dominates || f|| o¢1.4, we consider the converse.
First, we notice that by the geometric observation

Sug M[ fxaorlx) <3" r125 M[ fxzorlx). (32)

This follows from the fact that, for a fixed point x € Q, if R € Q satisfies R 5 x and
RN (B0O)° # ¢, then 3R engulfs Q. It follows from Eq. 3.2 and the subadditivity of
M that

dU(QD)) :25 Mf(x) < ¢((Q)) ,325 M[ fx30l(x) +3"¢(£(Q)) ;gg M[ fxzoy]().
Since ¢ (¢) is nondecreasing we have

¢(€(Q))xigg M[ fxcorl() =< I fllrre.

For any ¢ > 0 one knows that (c.f. Remark 2.15)

flix e Q: Mlfraol) > 1)] < 3" /Qlf(y)ldy-
3
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Taking t = 12"m30(| f]), we see that there exists a point xo € Q so that Mf(xy) < t.
This yields

¢(€(Q))xig(g M fx30l(x) = 12"¢ (LB ONm3o (| fI) < 12%]| fll pmre-

These complete the proof. O

Lemma 3.5 Let ¢ € Gy and j € N. Then

”M]f”./\/llv‘f’ ~ ||f||ML(lugL)j,¢a

where M/ denotes the j-fold composition of the Hardy—Littlewood maximal operator
M. In particular,

1Ml 2 1| Fllageassre

Proof We have fort > 1
t
t . .
1+ f —{s(log(2 + 5)) "1} ds ~ t(log(2 + 1))’.
1S

Thus, applying Proposition 2.20 with W(f) =1, ®(¢) = t(log(2 + 1))/~ and &) =
®,(f) = t(log(2 + 1))/, we obtain (see also Eq. 2.20)

”Mf”ML(logL)]’]v ~ f”ML(IogL)].dJ'
This yields the lemma by an inductive argument. O

Lemma 3.6 Let¢p € G and0 < p <r < oo. Then

||M¢1*P/"f||Mr,¢F/r =< C”Mf”/\/i’””

Proof Let x € R”" be a fixed point. For every cube Q > x we see that

PN " mo( f) < $ L)' P/"Mf(x)

and that

PO mo( f) = @E(QN'"" inf MF(y)

1 1/p
< pU(Q) PP (L(Q)) <|Q|/QMf()’)p d)’>

< ¢U(Q)PIIIMF| prs.
These imply

PEON' P "mo(IfI) < min ($(0)' P Mf(x), p(Q) /| Mfllprs)
< supmin (' P MF() , P I MFl o)

>0

= IMFI O M.
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This yields
Mg f(X)" < ||Mf||Mp oMf(x)P

and

1/r
¢(£(Q))p/’(|Q|/ Mo f(x)" dx)

p\ PI"
< Ml (¢(€(Q))<|Q|/ Mf(X)”dX> ) < IMfllaro.

Taking the supremum over all cubes Q € Q in the left side, we have the desired
inequality. O

3.2 Principal Lemma Revisited

The same as before the proof of the previous results relies upon the following
principal lemma.

Lemma 3.7 Letp € Go, ¢, ¥,n € Grand0 < p < 1.

(1) Assume that the condition 2.10;

/OO PG4 warallt>0
t

sp(s)

Then

g Ty fllmen < Cliglmey (IMary fllaaen + 1 fllagre) -
(2) Assume that the condition 2.11;

/“Mds wforalll>0
t

sp®)es) T 9®
Then

lg- T, fllaes < Clighar s Mz fll pmes.

Proof Except for some sufficient modifications, the proof of the lemma follows the
argument in [19]. Retaining the same notation as the proof of Lemma 2.12, we recall
that

T, f(x) < C Y p(Q)mso(fHxo).

QeD

Noticing Eq. 2.12, for any Q, € D we wish to estimate

(/Qa (8T, f(x))” dx)l/p. (3.3)

In the same manner as the proof of Lemma 2.12, we set

{Q(Qo) ={0eD: QC O,
Dy(Qp) :={0Q e€D: Q2 Qo}.
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Let us define as before, fori =1, 2,

Fx:= Y p@)mo(fHxo)
0€D;(Qo)

1/p
( /Q () F(x))” dx) .

The casei =1 We need the following lemma, the proof of which is straightforward
and is omitted (see [13, 19]).

and we shall estimate

Lemma 3.8 For a nonnegative function h in L>(Qy) we let yy := mg,(h) and c :=

2+t Fork=1,2,... let
Dk = U Q

0eD;(Qo): mg(h)>yock

Considering the maximal cubes with respect to inclusion, we can write
D= O,
J
where the cubes { Qi j} C Di(Qo) are nonoverlapping. By virtue of the maximality of
Qy, jone has
yock <mg, ;(h) < 2”yock.
Let
Ey:= 0o\ Di, Eij:= 0\ Dis1.
Then {Eo} U {Ey, j} is a disjoint family of sets which decomposes Qo and satisfies
[Qol <2[Eol, [Qk, jl <2|Ekjl. (34)
Also, we set
Dy := {0 € D1(Qy) : mg(h) < yoc}
Dij={0eDi(Qy): OC Ok j nck <mglh) <y}
Then

Di(Qo) =Dy U U Dy, ;. (3.5)
k. j

Let us return to the proof. We need only verify that
[ se0r Fir dx < Cllll, [ My g0r d (36)
o Qo
Inserting the definition of F;, we have

/g(x)pF](x)de: > ﬁ(E(Q))’WSQ(f)/8(x)"F1(x)p“dx.
& 0eDi(Qo) Q
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Letting & = g”, we shall apply Lemma 3.8 to estimate this quantity. Retaining the
same notation as Lemma 3.8 and noticing Eq. 3.5, we have

/ g Fi(x)Pdx= Y ﬁ(E(Q))lmQ(f)/Qg(X)”Fl(x)”‘ldx

Qo 0eDy

+ Y se@msoth [ g0 Ficor
k.j QeDy e
We first evaluate
> Ae@mots) [ g Fitor ! dx. (3.7)
QeDy Q

Noticing p — 1 < 0 and the definition of F;, we see that
Fi ()P~ < (5(Q )ymig, ()" forallx € Oy ;.

It follows from this inequality and the definition of Dy ; that Eq. 3.7 is bounded by

(@ Doy D) ™! Y peco [ oy

QEDkV j

By virtue of the support condition we have

log, £( Ok, j)
PRIt Agf(y)dy > /3(2“)( > /3Qf(y)dy)

QeDy V=—00 €Dy, j:L(Q)=2"

log, £(Qk, j)
sC/w fody| Y se)

V=—00

< ChE(e2 0. ) /3 |y
This implies

Eq.3.7 < C(p(t(c2 Ok, )Imig, ()" v 10k .

If we invoke relations 3.4; | Ok, j| < 2| Ex, ;| and

nock < mo, (87) < 1181 W Qi NP,

which follows from the definition of the Morrey norm, then

Eq.3.7 < Cp(t(coQk. )’ me,0, ()P 181N ov ¥ (E(Qk )P 1 Ex |
< CIIgIIﬁAP.W/IE Mgy f(O)P dx.
k. j
Similarly, we have

Z ﬁ(i(Q))mag(f)/Qg(x)pFl ()P 'dx < C||g||f\,1p,w/]; My ()P dx.

Q€D
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Summing up all factors, we obtain Eq. 3.6, by noticing {Eo} U {Ey, ;} is a disjoint
family of sets which decomposes Q.

The casei =2 An estimate cruder than the case i = 1 suffices. By a property of the
dyadic cubes we have

F)= ) p@)ymso(f)forallx e Q.
0eD1(Qo)

For all O € D,(Qy), recalling that ¢y = max(cy, 3), it follows from the definition of
Morrey norm that

. PEUDIV (E( Q)
AUQ)YmMso(f) < C e d) inf My £(6)
ﬁ(ﬁQ))l/f(ﬂ%Q))( f )””
C M d
= 5(0(cr0)) 0] J, Mo " dx
POV (E(coQ))

C|M; 2 ’
= CliM;y fllm "5 (tco0)p (£(0))

Since ¥ (1), ¢(t) and p(¢) are nondecreasing and v and ¢ satisfy the doubling
condition, we have

AUV (L D))
F(x) < ClMppy fllame Y =
e P D) UL(Q)
RAOVOW
C\|\M; »
< CUMpy Fllpaes /;2 O

v= 1+log2 £(Qo)

R OLAO)
ClIM; e
< ClIiM;py flinm “’/M(QO) 5©)

¥ (£(Qo))
P (L(Q0))’

where in the last inequality we have used the condition 2.11 and the doubling
condition of ¢ and ¢. This pointwise estimate gives

1/p
( /Q (8(x) Fr(x))? dx)
VP (6(Qo))

< CliM;py fllrre (/ ¢ (£(Q0))

< ClIMzsy fllpmeo lIglhaes 1Qol'? (€(Q0) ™.

< CliM; sy fllmes

g(x)? dx)

0

Thus, we have

1/p
(/Q (8(x) Fy(x))? dx) < Cl\M;zsy fllprs I8llatew 1Qol"? $(€(Qo)) ™" (3.8)
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It follows from Egs. 3.3, 3.6 and 3.8 that
1 1/p
Cop(£(Qo)) (@ / (8T, f(x)” dx)
b
[ Qol

< 2lIgllme s 1My fllprs

1/p
< llgllame.v <¢(€(Qo))( /Q My ()P dx) + 1My f||MP-¢>

By taking the supremum over all dyadic cubes Qp € D in the left side, (2) of
Lemma 3.7 is verified.
Lemma 3.7 (1) holds by the same argument using

5(£(0))
B < [ flage Y, 220
QeD1(Qo) ¢(Z(3 Q))

> p(s) ¥ (£(Q0)

C 1 d. C Lo —————,

< Cll fllm “’/MQ@ o) @ = Ml G

where we have used the condition 2.10. This implies (with the same argument as
above)

1/p
( . (g(x)Fz(x))pdx> < Cllgllames | Fllane 1QolY? ne(Qo))~". (3.9)

The desired inequality then follows from Egs. 3.3, 3.6 and 3.9. The proof of Lemma
3.7 is now complete. O

3.3 Proof of Theorems 3.1-3.3

Combining the previous lemmas, we can prove Theorems 3.1-3.3.

Theorem 3.1 follows from (2) of Lemmas 3.4 and 3.7. Similarly, Theorem 3.2 is
a consequence of (2) of Lemmas 3.5 and 3.7. By the same argument as the proof of
Theorem 2.10, Theorem 3.3 can be obtained from Lemmas 3.4 and 3.6 and (1) of
Lemma 3.7.

4 Some Examples

In this section we see some examples. In the following lemma, we introduce a
sufficient condition for which ¢ (t) = ¥ (p(¢)) fulfills the condition 2.6.

Lemma 4.1 Let p € Gy. If a nonnegative, nondecreasing and dif ferentiable function

¥ (¢) satisfies

Cy := inf A0
=0 (1)
then ¢ (t) = ¥ (p(?)) fulfills the condition 2.6. More precisely, then,

> 1, (4.1)

/‘w L:v) ds < (Co—1)~! '550 forallt > 0.
¢ SY(p(s) Vv (p(0)
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Proof 1t follows that

/“ IO _1),1/“’ (ﬁ(sW(ﬁ(s))_l) ORI
10 R . v (p(s)) sY(p(s))
=(CO_1),./°°_<w<ﬁ<s>)—53<sw’<ﬁ(s» @) s
. ¥ (5(5))2
- c—rl/oo—( Ps) ),d Gy PO
C=D7 | \geen) “= "D Sem
P

where we have used p'(s) =

Example 4.2 From Lemma 4.1 we see that 5(1)?, b > 1, satisfies the condition 2.6.
Letting, for b > 1,

P

() = Tog(e/1)’ 0<t<l,
* log(er), 1<t< oo,

we see also that ¥ (p(¢)) satisfies the condition 2.6.

Examples 4.3

(1) Letl < p<ooandé > 1.Set
tP

PO =1, V@)= m.

Then, checking the condition posed in (3) of Proposition 2.17, we see that M¥
is locally bounded in the norm determined by ®.
(2) Letl<g<p<ooands$ € R. Set

&) = tP[log2 +1)]°, W) =4,

Then MY is locally bounded in the norm determined by ®. Indeed, checking
the condition posed in (2) of Proposition 2.17, we have

t t
/ 7] (g) D' (s) ds ~ ﬂ/ P79 log(2 + $)1° ds < Ct’[log(2 + 1)]°.
1 1

Claim 4.4 Let | < p < oo and § > 0. Then, the complementary function of ®(f) =
»

tP[log(2 + £)]?~ 13 is approximately ¥ (f) = ———.
[log(2 + 1] pp y W() log + 07

Proof Let us assume that ¢ >> 1. The derivatives of ® and ¥ are given by

p'—1

/ ~ tP—1 (p=1)3 ! N
/(1) ~ "' [log(2 + )] . YO [log(2 + )]
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Therefore, it follows that

(@ o W)(1) ~ (tp/*l [log(2 + t)]"s)p_l [log (2 + 7' [log2 + 17%)] "~

~ t[log(2 + )]~ P~ V?[log(2 + £)]P~1?

=1
By symmetry the same can be said for W’ o ®'. Thus, we have
(P o)) ~t, (Vod)1) ~rt.
Since the functions @’ and W’ are doubling, it follows that

@) 'RV, W)HO~D0.

Now that
_ t _ t
o) ~ / W) ods, T~ / ()~ (s)ds,
0 0
we see that
() ~ o), D@ ~ V().
The proof is now complete. O

Recall the space MP-V/% which is introduced in Section 1. The following claim
shows the accurate description of Orlicz-Morrey spaces (see Eq. 1.4 in Section 1).

Claim4.5 LetO<a < 1,1l < p<g <1/aand§ > 1. Set
V() =", W) = tP[log(2 4+ 1] P18,
Then

I fllaeie < W Fll ggore < Cll fllgos < Cll fllpave.

Proof We need only verify that

||f||/\~/[[kl/o( <C|fllzwv.
Using generalized Holder’s inequality 2.5, we have for any Q € Q

Q1"
10l

/Qlf(x)lpdx < CIOF I fllw. ol LF1P 1. .
This implies

Ml 1P x01() < [l fllcvr MPTIFIP" 201 ().
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Since, M? is locally bounded in the norm determined by ®(¢) = t*', which holds from
Claim 4.4 and Examples 4.3, we obtain

/;Ma[|f|pXQ](x)p, dx < Cllfllf;/\u‘w [Q [ f(0)]”dx < oo.
This is our desired inequality. O

In view of the significant example in [17], we remark that the space M7 /% is the
proper subset of the space M? 1/,
Theorem 2.9 (2), Claim 2.13, Examples 4.2, 4.3 and Claim 4.4 yield the following.

Examples 4.6
(1) LetpeGy, 1l <p<oo,b>1ands§ > 1.Set

o) =5, W) =t"log2 +0]P.
“w (qb(t)Jr 0] ><oo
oy \ e Ty

g - Tpf||Mﬂ~¢ < Cligllzesll fllmee.

Assume that

Then

(2) Let0 <o < l,l<p§p0< 1/aand8> 1. Set
Y =", W) = P[log(2 + 1)]P 8.

Assume that

sup v < 00
=1 W)

Then

I8 - Lo fllmpro < ClIglgwv Il fll mpro.

This example sharpens the Olsen inequality 1.5, which is introduced in Sec-
tion 1.
(3) LetpeGyp1l<p<gq<oo,b>1ands > 0.Set

() =p0", @) =Pllog2+ 0.
“w ( @ (1) +ﬁ(t)><oo
o\ o1y

lg- T, fllces < Clighpmaill fllgos.

Assume that

Then

4) LetO<a<l,l<p<py<l/a,1<p<qg=<Il/aands > 0.Set
d =", () = tP[log2 + D.
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Then

I8« Lo fllcew < Cligl vl fll oo

We remark that
g Lo fllzoe = 118 - Lo fllatrro.

Thus, this example also sharpens the Olsen inequality 1.5.

We dare restate Theorems 3.1-3.3 in terms of the fractional integral operator I,,.
Examples 4.7 Let0 < a < 1.
(1) LetO<p<1=<pg<1/a. Then

g - Lo fllamrro < Cliglatrvell fll pgroro-
(2) Letp=1< po<1/a.Then

Ig - Lo fllagrr < Clighaguve | Fll v

(B) Let 0<p<r<1,0<p<po<l/a, 0<r=<qy 0<r=<ry, 1/ro=1/q0+
1/po —a and p/po = r/ro. Then

I8+ Lo fllmero < Cligliasaoll fll pgroo -
Examples 4.7 give us that

I8« Lo fllpmrro < Cliglar el fllproostng, 0 < p <1< po < 1.

This example sharpens Eq. 1.6, which is introduced in Section 1.

5 Some Additional Results
Finally, we state and verify some additional results.

Claim 5.1 Let ¢ € G, and let ®; and @, be Young functions. If, for all t > 1 ®(¢) =
®, (1), then

LP¢ — p0d

with norm equivalence.

Proof By symmetry, we wish only verify that
L0 C L%
Let f € £L%9. We first prove, for any Q € O,

I flle,, 0 = Cll flloy, 0
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Without loss of generality, we may assume that || f|lo, o = 1. Then we have

/ <I>z(|f(x)|)dX=/ Qz(lf(x)l)der/ (| f0)]) dx
0 oniifi<1 oniifI=1)

< &,(1)/ 0 +/ (| f()]) .
on{l fI=1}

Since, ®,(f) = ®,(¢), t > 1, we have

/ D2 (| f(0)]) dx :/ (| f)D dx < / Q1 (|f(0))dx < |0,
oniifi=1) onilf1>1) 0

where in the last inequality we have used the fact that || f|lo, o = 1. These imply

Ry PRI P

10l Jo I+ ®a(1)
and || flle, 0 < 14 ®2(1). Therefore, we have by the definition of the Orlicz-Morrey
norm || fll g0 < (I 4+ @o(D) || fll goro0. o

The following theorem covers the outrange of Theorem 3.3.

Theorem 5.2 Let p€ Gy, ¢, v e€G and 0<p<r<oo Suppose that the
condition 3.1;

@+/w PO) 4y < VD poraie o0,

§ =
¢ (1) 5 (s) PP
(1) LetO<p<r<g<oo, p#1landr > 1. Then
18- Tp fll pgrorrr < CllglAav | fll pmaxcino
2) LetO<p<r<gq<ooand p=1. Then

18- Tp fll pprorr < Cliglagav Il fll prooerro.

Proof The special case of Lemma 2.12 gives us that, for 1 <r < g < oo,

Ig - Tp Fll pgrorrr < Cliglaav (1Mzry Fll pgrgrrr + 1l Fllagro) -
o(t
Noticing that % < C¢(t)'"P/", we have by Lemma 3.6
I M5y Fll pgrorr < WMgi-ir fll pgrorir < CIMfll o
Thus, we obtain
18- Tp fll prorrr < ClIglaav UMl pre + 1 Fllagre) -
Lemmas 3.4 and 3.5 and Eq. 2.20 yield the theorem. O

Letting g(x) = 1 and ¥ (¥) = 1 in Theorem 5.2 and using Lemma 4.1, we have the
following corollary, which extends the classical theorem due to Adams in [1].

@ Springer



Orlicz-Morrey Spaces and Fractional Operators 553

Corollary 5.3 Suppose that  satisfy Eq. 4.1. Let p € Gy and set ¢ (t) = ¥ (p(2)).
(1) LetO< p<r<ooandp # 1. Assume that

sup ty (£)P/"1 < C.

>0

Then
0Ty fllygeorr < Cll fllamsi .
2) Letl <r < oo. Assume that

supty () < C.

t>0

Then

1T, fll pgrotrr < CI fll praozrs.

Using the same method developed in the last part of the proof of Lemma 2.22, we
can directly reprove Corollary 2.11 without the assumption ¥ € V,.

Theorem 5.4 Let p € Gy, p € Gi, P € Vo and 0 < a < 1. Set
) =¢®° W)= dr'.

Suppose that the condition

o) < p(s)
%-i-/[ 50) ds < 6f0rallt>0

Then

1T, fllgen < Cll fllgoo.

Proof Fix x € R”. We may assume that f is nonnegative and 7, f(x) is finite. Then
we see that there exists R > 0 such that

p(x—yb T, fx)
EE gy = 2
Ax Y|<R} (y) |x—y|" y 2

Retaining the same notation as the proof of Lemma 2.12, we have by Eq. 2.13 that

T,fx) < / p(Ix — yI)
= ———d
2 j;oo {277 R<|x—y|<2/R} g lx — y|" Y

0 A .
pRIR)
(o : d
- f;oo @R Jx—yi=2imy fody
< CMiw Y pRIR) = M) [ 29 s Gt Mpw.

j=—00
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We have also that

T, f(x) - / p(x —yl)
= 7d
2 ; (271 R<[x—y|<2/R) T =y
 A(2'R)
<C - d
- ; 2R Jijx-yi<2iRy fdy

—cy P2'R) ¢(2'R) F(y) dy

OQR) QIR Jijx-yizairy
— P(2/R)
< Clfllees ), So7Ry

=

* p(s)
< Cll fligo.e /C]Rm

k]

where we have used the fact that ¢ (s) is a nondecreasing and doubling function. By
the condition for any ¢ > 0 we have

p(t) < Copt)'~*, f Ps) ds < Cp(t)™
¢ SP(s)
and by the doubling condition of ¢
A(e:R) < CH(R)'™, / PO 4 < CpR).
c R S¢ (S)

Thus, we obtain
T, f(x) < Cmin (¢(R)'“Mf(x), ¢(R)“IMf| o)

< Csupmin (t'“Mf(x), | Mfllzes)

>0
= CIMfl 5 Mf(x)“.

Once we have verified this inequality, the remainder of the proof is the same as the
last part of the proof of Lemma 2.22, by noticing Corollary 2.18. O

Theorem 5.4 and Example 4.2 yield the following.
Example 5.5 Let p € Gy, ® € V, and b > 1. Set
o0 =p0", 1O =p0"" WO =)
Then

1T, fllge.n < Cll fllgoo.
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Example 5.6 Lets > 1 and b > 1. Set

p(f) = min (t, 1+ |logt|)5’1) ,
¢(0) = min (1, (1 + [logt])*)”
n() = min (1, (1 + [logt)®)" ™"

and set
() = exp(t/?) — 1, W(r) = exp(t/?CV) — 1.
Then
1T, fllgwn < Cll fligoe.

t
We remark that 5(r) ~ min (z, (1+ llogz[)?) and sup % -
t>1

We see that this example is valid only after deleting the assumption ¥ € V,, since
t(log(2 + 1)**=D ¢ V,.

Proposition 5.7 Let ® and WV be normalized Young functions. Then the following are
equivalent.

(1)  The Orlicz maximal operator MY is L®-bounded;
(2) The functions ® and ¥ satisfy

! t
/ v (;) @'(s) ds < ®(Cr) for some C > 0 and for all t > 0;
0
(3) The functions ® and ¥ satisfy

t
/ ) (g) W' (s)ds < ®(Ct) for some C > 0 and for all t > 0.
0

Proof The proof is obtained by an argument similar to Proposition 2.17. O
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