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Abstract We prove explicit upper and lower bounds for the L1-moment spectra for
the Brownian motion exit time from extrinsic metric balls of submanifolds Pm in
ambient Riemannian spaces Nn. We assume that P and N both have controlled
radial curvatures (mean curvature and sectional curvature, respectively) as viewed
from a pole in N. The bounds for the exit moment spectra are given in terms of the
corresponding spectra for geodesic metric balls in suitably warped product model
spaces. The bounds are sharp in the sense that equalities are obtained in characteris-
tic cases. As a corollary we also obtain new intrinsic comparison results for the exit
time spectra for metric balls in the ambient manifolds Nn themselves.
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1 Introduction

We consider a complete Riemannian manifold (Mn, g) and the induced Brownian
motion Xt defined on M. The Lp-moments of the exit time of Xt from smooth
precompact domains D in the manifold are given by the following integrals (see
[7, 10, 13, 14, 23]):

Ap, k(D) =
(∫

D
(uk(x))p dV

)1/p

, (1.1)

where the functions uk are defined inductively as the sequence of solutions to the
following hierarchy of boundary value problems

�u1 + 1 = 0 on D

u1|∂ D = 0 , (1.2)

and for k � 2,

�uk + k uk−1 = 0 on D

uk|∂ D = 0 . (1.3)

Here � denotes the Laplace-Beltrami operator on (Mn, g) . The first solution
u1(x) is the mean time of first exit from D for the Brownian motion starting at the
point x in D, see [7, 15].

The quantity A1,1(D) is known as the torsional rigidity of D. This name stems from
the fact that if D ⊆ �2, then A1,1(D) represents the torque required per unit angle of
twist and per unit beam length when twisting an elastic beam of uniform cross section
D, see [1] and [28]. The torsional rigidity plays a role in the exit moment spectrum
similar to the role played by the first positive Dirichlet eigenvalue in the Dirichlet
spectrum. See also [3, 4] and [2, 32].

Perhaps the most relevant example and token of interest in these problems is given
by the St. Venant torsion problem. It is a precise analog of the Rayleigh conjecture
about the fundamental tone of a membrane. In 1856 Saint-Venant conjectured that
among all cross sections with a given area, the circular disk has maximum torsional
rigidity. The first proof of this conjecture was given by G. Polya in 1948, see [29]
and [28].

In view of the isoperimetric inequality for domains in�2 and in view of the domain
monotonicity of A1,1(D) it thence follows, that among all cross sections with a given
circumference, the circular disk has maximum torsional rigidity. In other words, in
�2 the boundary-relative torsional rigidity is maximized by the circular disks.
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Since we shall similarly only be concerned with p = 1, and since our results for the
higher moments in the exit time moment spectrum are also in this sense isoperimetric
type inequalities we define:

Definition 1.1 The isoperimetric exit moment spectrum of D is defined by
{Â1(D), Â2(D), · · · }, where

Âk(D) = A1,k(D)

Vol(∂ D)
= 1

Vol(∂ D)

∫
D

uk(x) dV . (1.4)

If we formally define u0(x) = 1 for all x ∈ D, then all the solutions uk—including
u1(x)—are uniformly generated by induction from Eq. 1.3. With this natural exten-
sion of the uk sequence we thence have from Definition 1.1:

Â0(D) = 1
Vol(∂ D)

∫
D

u0(x) dV = Vol(D)

Vol(∂ D)
, (1.5)

which is precisely the isoperimetric quotient for D.
We will henceforth refer to the list {Â0(D), Â1(D), Â2(D), · · · } as the extended

isoperimetric exit moment spectrum of D.
Here we restrict our study to be concerned with the exit moment spectra of a

specific kind of domains, the so-called extrinsic R-balls DR defined in submanifolds
Pm which are properly immersed into ambient Riemannian manifolds Nn with
controlled sectional curvatures.

Suppose p is a pole in N, see [30]. An extrinsic p-centered R-ball DR of the sub-
manifold P is then, roughly speaking, the intersection between the submanifold and
the ambient metric R-ball centered at p in the ambient space N.

The isoperimetric relations satisfied by these extrinsic balls have been studied and
applied in a number of contexts, see e.g. [11, 18, 19, 21, 22, 27]. In these works we use
R-balls and R-spheres in tailor made rotationally symmetric (warped product) model
spaces Mm

w as comparison objects.
The simplest settings considered are given by the minimal submanifolds Pm in real

space forms �n(b) of constant sectional curvature b � 0. In these specific cases we
have the following isoperimetric inequalities, see [5, 15, 16, 18, 27]:

Vol(DR)

Vol(∂ DR)
� Vol

(
Bb,m

R

)
Vol

(
Sb,m−1

R

) , (1.6)

where Bb,m
R and Sb,m−1

R = ∂ Bb,m
R denote, respectively, the geodesic R-ball and the

geodesic R-sphere in the real space form�n(b).
With the notation introduced above we may state this result as follows:

Â0(DR) � Â0
(
Bb,m

R

)
. (1.7)

In passing we note that when equality is attained in Eq. 1.7 for some fixed radius
R, and when the ambient space Nn is the hyperbolic space �n(b), b < 0, then the
minimal submanifold itself is a totally geodesic hyperbolic subspace�m(b) of�n(b),
see [27]. Thus, in analogy with the St. Venant torsion problem—and in analogy with
the classical isoperimetric problem itself—we also obtain strong rigidity conclusions
from equalities in these isoperimetric estimates.
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1.1 A First Glimpse of the Main Results

In the present paper we extend the inequalities 1.7 and prove isoperimetric inequal-
ities of this type for every element Âk(DR), k � 0, in the extended isoperimetric exit
moment spectrum for extrinsic metric balls.

Before stating this extension for minimal submanifolds in constant curvature am-
bient spaces below we note, that this is but a shadow of our main results, Theorem 4.1
and Theorem 4.2 in Section 4, where we prove both upper and lower bounds for
the isoperimetric exit moment spectrum under more relaxed curvature conditions.
The main condition for the lower bounds is a lower bound on the sectional curvatures
of the ambient space and the upper bounds for the spectrum stem similarly from an
upper bound on the ambient sectional curvatures. Moreover, in our general results
the submanifolds are not assumed beforehand to be minimal.

Theorem 1.2 Let Pm be a minimal submanifold properly immersed in the real space
form �n(b) with constant sectional curvature b � 0. Let DR be an extrinsic R-ball in
Pm, with center at a point p ∈ P. Then we have for the extended isoperimetric exit
moment spectrum of DR, i.e. for all k � 0:

Âk(DR) � Âk
(
Bb,m

R

)
, (1.8)

where Bb,m
R is the geodesic ball of radius R in�m(b).

When the ambient space is hyperbolic space �n(b), b < 0, then equality in Eq. 1.8
for some radius R and for some value of k � 0 implies that DR—and in fact all of
Pm—is totally geodesic in �n(b), so that equality is attained for all k and for every
smaller p-centered extrinsic ball in Pm.

In order to illustrate our use of the upper and lower bounds on the ambient space
sectional curvatures in the more general setting alluded to above—and since we
believe that the following result is also in itself of independent interest—we extract
here a purely intrinsic consequence from the proofs of Theorems 4.1 and 4.2. The
notion of radial sectional curvatures and the geometric analytic notions associated
with the model spaces are defined precisely in Section 2 below.

Theorem 1.3 Let BN
R be a geodesic ball of a complete Riemannian manifold Nn

with a pole p and suppose that the p-radial sectional curvatures of Nn are bounded
from below (respectively from above) by the pw-radial sectional curvatures of a
w-warped model space Mn

w. Then the extended isoperimetric exit moment spectrum
of BN

R satisf ies for all k � 0 the following respective inequalities:

Âk
(
BN

R

)
� (�)Âk

(
Bw

R

)
, (1.9)

where Bw
R is the geodesic ball in the model space Mn

w.
Equality in Eq. 1.9 for some k � 0 implies that BN

R is isometric to the warped
product model ball Bw

R and hence again that equality is attained for all k � 0 and for
every smaller p-centered extrinsic ball in Pm.

The proofs of these results, Theorems 1.2 and 1.3 are given in Section 5 at the end
of this paper.
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2 Preliminaries and Comparison Setting

We first consider a few conditions and concepts that will be instrumental for
establishing our results.

2.1 Extrinsic Metric Balls

We consider a properly immersed m-dimensional submanifold Pm in a complete
Riemannian manifold Nn. Let p denote a point in P and assume that p is a pole
of the ambient manifold N. We denote the distance function from p in Nn by
r(x) = distN(p, x) for all x ∈ N. Since p is a pole there is—by definition—a unique
geodesic from x to p which realizes the distance r(x). We also denote by r the
restriction r|P : P −→ �+ ∪ {0}. This restriction is then called the extrinsic distance
function from p in Pm. The corresponding extrinsic metric balls of (sufficiently large)
radius R and center p are denoted by DR(p) ⊆ P and defined as any connected
component which contains p of the set:

DR(p) = BR(p) ∩ P = {x ∈ P | r(x) < R} ,

where BR(p) denotes the geodesic R-ball around the pole p in Nn. The extrinsic
ball DR(p) is a connected domain in Pm, with boundary ∂ DR(p). Since Pm is
assumed to be unbounded and properly immersed into N, we have for every R that
BR(p) ∩ P �= P.

2.2 The Curvature Bounds

We now present the curvature restrictions which constitute the geometric framework
of our investigations.

Definition 2.1 Let p be a point in a Riemannian manifold M and let x ∈ M − {p}.
The sectional curvature KM(σx) of the two-plane σx ∈ Tx M is then called a p-radial
sectional curvature of M at x if σx contains the tangent vector to a minimal geodesic
from p to x. We denote these curvatures by Kp,M(σx).

In order to control the mean curvatures HP(x) of Pm at distance r from p in Nn

we introduce the following definition:

Definition 2.2 The p-radial mean curvature function for P in N is defined in terms of
the inner product of HP with the N-gradient of the distance function r(x) as follows:

C(x) = −〈∇r(x), HP(x)〉 for all x ∈ P .

In the following definition, we are going to generalize the notion of radial mean
convexity condition introduced in [11, 22].

Definition 2.3 (see [22]) We say that the submanifold P satisfies a radial mean
convexity condition from below controlled by a smooth radial function h1(r)
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(respectively, from above controlled by a smooth radial function h2(r)) from the point
p ∈ P such that

C(x) � h1(r(x)) for all x ∈ P (h1(r) bounds from below)

C(x) � h2(r(x)) for all x ∈ P (h2(r) bounds from above)
(2.1)

The radial bounding functions h1(r) and h2(r) are related to the global extrinsic
geometry of the submanifold. For example, it is obvious that minimal submanifolds
satisfy a radial mean convexity condition from above and from below, with bounding
functions h2 = 0 and h1 = 0. On the other hand, it can be proved, see the works
[6, 22, 26, 31], that when the submanifold is a convex hypersurface, then the constant
function h1(r) = 0 is a radial bounding function from below.

The final notion needed to describe our comparison setting is the idea of radial
tangency. If we denote by ∇r and ∇ Pr the gradients of r in N and P respectively,
then we have the following basic relation:

∇r = ∇ Pr + (∇r)⊥ , (2.2)

where (∇r)⊥(q) is perpendicular to Tq P for all q ∈ P.
When the submanifold P is totally geodesic, then ∇r = ∇ Pr in all points, and,

hence, ‖∇ Pr‖ = 1. On the other hand, and given the starting point p ∈ P, from which
we are measuring the distance r, we know that ∇r(p) = ∇ Pr(p), so ‖∇ Pr(p)‖ = 1.
Therefore, the difference 1 − ‖∇ Pr‖ quantifies the radial detour of the submanifold
with respect the ambient manifold as seen from the pole p. To control this detour
locally, we apply the following

Definition 2.4 We say that the submanifold P satisfies a radial tangency condition at
p ∈ P when we have a smooth positive function g(r) so that

T (x) = ‖∇ Pr(x)‖ � g(r(x)) > 0 for all x ∈ P . (2.3)

Remark 2.5 Of course, we always have

T (x) = ‖∇ Pr(x)‖ � 1 for all x ∈ P . (2.4)

Remark 2.6 We observe, that the assumption ‖∇ Pr(x)‖ > 0 implies that the properly
immersed extrinsic ball DR in P can have only trivial topology. It follows directly
from Theorem 3.1 in [24], since r(x) is a smooth function on P − {p} without critical
points, that DR is diffeomorphic to the standard unit ball in Rm.

2.3 Model Spaces

As mentioned previously, the model spaces Mm
w serve first and foremost as compari-

son controller objects for the radial sectional curvatures of Nn.

Definition 2.7 (See [8, 9]) A w−model Mm
w is a smooth warped product with base

B1 = [ 0, R[ ⊂ � (where 0 < R � ∞ ), fiber Fm−1 = Sm−1
1 (i.e. the unit (m − 1)—

sphere with standard metric), and warping function w : [ 0, R[ → �+ ∪ {0} with
w(0) = 0, w′(0) = 1, and w(r) > 0 for all r > 0 . The point pw = π−1(0), where π
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denotes the projection onto B1, is called the center point of the model space. If
R = ∞, then pw is a pole of Mm

w .

Remark 2.8 The simply connected space forms �m(b) of constant curvature b can
be constructed as w−models with any given point as center point using the warping
functions

w(r) = Qb (r) =

⎧⎪⎪⎨
⎪⎪⎩

1√
b

sin(
√

b r) if b > 0

r if b = 0
1√−b

sinh(
√−b r) if b < 0 .

(2.5)

Note that for b > 0 the function Qb (r) admits a smooth extension to r = π/
√

b . For
b � 0 any center point is a pole.

In the papers [8, 9, 20, 21, 25], we have a complete description of these model
spaces and their key properties. In particular the sectional curvatures Kpw,Mw

in the
radial directions from the center point pw are determined by the radial function

Kpw,Mw
(σx) = Kw(r) = −w′′(r)

w(r)
, (2.6)

and the mean curvature of the distance sphere of radius r from the center point is

ηw(r) = w′(r)
w(r)

= d
dr

ln(w(r)) . (2.7)

2.4 The Isoperimetric Comparison Spaces

Given the bounding functions g(r), h(r) (when in the following no specific index is
given, then h represents any one of the bounding functions h1(r) or h2(r)), and the
ambient curvature controller function w(r) described is Sections 2.2 and 2.3, as in
[11, 22] we construct new model spaces C m

w,g,h . For completeness, we recall their
construction:

Definition 2.9 Given a smooth positive function g(r(x)) > 0 satisfying g(0) = 1 and
g(r(x)) � 1 for all x ∈ P, a stretching function s is defined as follows

s(r) =
∫ r

0

1
g(t)

dt . (2.8)

It has a well-defined inverse r(s) for s ∈ [ 0, s(R) ] with derivative r′(s) = g(r(s)). In
particular r′(0) = g(0) = 1.

Definition 2.10 [22] The isoperimetric comparison space C m
w,g,h is defined as the

W−model space Mm
W which has base interval B = [ 0, s(R) ] and warping function

W(s) defined by

W(s) = �
1

m−1 (r(s)) , (2.9)
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where the auxiliary function �(r) satisfies the following differential equation:

d
dr

{�(r)w(r)g(r)} = �(r)w(r)g(r)
(

m
g2(r)

(ηw(r) − h(r))
)

= m
�(r)
g(r)

(
w′(r) − h(r)w(r)

)
, (2.10)

and the following boundary condition:

d
dr |r=0

(
�

1
m−1 (r)

) = 1 . (2.11)

In spite of its relatively complicated construction, C m
w,g,h is indeed a model space

Mm
W with a well defined pole pW at s = 0: W(s) � 0 for all s and W(s) is only 0 at

s = 0, where also, because of the explicit construction in Definition 2.10 and because
of Eq. 2.11: W ′(0) = 1.

Note that, when g(r) = 1 for all r and h(r) = 0 for all r, then the stretching func-
tion s(r) = r and W(s(r)) = w(r) for all r. In this case Cm

w,g,h simply reduces to the w

warped model space Mm
w .

The spaces Mm
W = Cm

w,g,h will be applied as those spaces, where our bounds on the
exit moment spectrum are attained.

2.5 Balance Conditions

In the paper [11] we considered and applied a balance condition on the general model
spaces Mm

W , that we shall also need in the sequel:

Definition 2.11 The model space Mm
W = Cm

w,g,h is w−balanced (respectively strictly
w−balanced) if the following holds for all s ∈ [0, s(R)]:

qW(s) (ηw(r(s)) − h(r(s))) � (>) g(r(s))/m . (2.12)

Here qW(s) is the isoperimetric quotient function

qW(s) = Vol(BW
s )

Vol(SW
s )

=
∫ s

0 Wm−1(t) dt

Wm−1(s)

=
∫ r(s)

0
�(u)

g(u)
du

�(r(s))
. (2.13)

Remark 2.12 In particular the w-balance condition for Mm
W = Cm

w,g,h implies that

ηw(r) − h(r) > 0 (2.14)

wherever g(r) > 0.

Remark 2.13 The above definition of a (strict) w−balance condition for Mm
W is

clearly an extension of the balance condition (from below) as defined in [21,
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Definition 2.12]. The condition in that paper is obtained precisely when g(r) = 1
and h(r) = 0 for all r ∈ [0, R] so that r(s) = s, W(s) = w(r), and

qw(r)ηw(r) � 1/m . (2.15)

This particular condition is of instrumental importance for the respective proofs
of Theorem 1.2 and Theorem 4.2. For these settings it is easy to verify that every
warping function w(r) which gives a negatively curved model space Mm

w satisfies
the strict version of Eq. 2.15 for all r—using Eq. 2.13 for the functions qw(r), see
also [21, Observation 3.12 and Examples 3.13]. In particular, the hyperbolic constant
curvature spaces Mm

w = �m(b), b < 0, all satisfy:

qw(r)ηw(r) > 1/m . (2.16)

2.6 Comparison Constellations

We now present the precise settings where our main results take place, introducing
the notion of comparison constellations as they were previously defined in [11]. For
that purpose we shall bound the previously introduced notions of radial curvature
and tangency by the corresponding quantities attained in the special model spaces,
the isoperimetric comparison spaces defined above.

Definition 2.14 Let Nn denote a complete Riemannian manifold with a pole p and
distance function r = r(x) = distN(p, x). Let Pm denote an unbounded complete
and properly immersed submanifold in Nn. Suppose p ∈ Pm and suppose that the
following conditions are satisfied for all x ∈ Pm with r(x) ∈ [0, R]:

1. The p-radial sectional curvatures of N are bounded from below by the pw-radial
sectional curvatures of the w−model space Mm

w :

K(σx) � −w′′(r(x))

w(r(x))
.

2. The p-radial mean curvature of P is bounded from below by a smooth radial
function h1(r):

C(x) � h1(r(x)) .

3. The submanifold P satisfies a radial tangency condition at p ∈ P, with smooth
positive radial function g(r) such that

T (x) = ‖∇ Pr(x)‖ � g(r(x)) > 0 for all x ∈ P . (2.17)

Let Cm
w,g,h1

denote the W-model with the specific warping function W : π(Cm
w,g,h1

) →
�+ constructed in Definition 2.10, (Section 2.4), via w, g, and h = h1. Then the triple
{Nn, Pm, Cm

w,g,h1
} is called an isoperimetric comparison constellation bounded from

below on the interval [ 0, R] .
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A constellation bounded from above is given by the following dual setting defining
the special W-model spaces Cm

w,1,h2
with the uniform choice g = 1:

Definition 2.15 Let Nn denote a Riemannian manifold with a pole p and distance
function r = r(x) = distN(p, x). Let Pm denote an unbounded complete and prop-
erly immersed submanifold in Nn. Suppose the following conditions are satisfied for
all x ∈ Pm with r(x) ∈ [0, R]:
1. The p-radial sectional curvatures of N are bounded from above by the pw-radial

sectional curvatures of the w−model space Mm
w :

K(σx) � −w′′(r(x))

w(r(x))
.

2. The p-radial mean curvature of P is bounded from above by a smooth radial
function h2(r):

C(x) � h2(r(x)) .

Let Cm
w,1,h2

denote the W-model with the specific warping function W :
π(Cm

w,1,h2
) → �+ constructed in Definition 2.10 via w, g = 1, and h = h2. Then the

triple {Nn, Pm, Cm
w,1,h2

} is called an isoperimetric comparison constellation bounded
from above on the interval [0, R].

2.7 Laplacian Comparison

We begin this section recalling the following Laplacian comparison Theorem for
manifolds with a pole (see [8, 12, 15–17, 20–22] for more details and previous
applications).

Theorem 2.16 Let Nn be a manifold with a pole p, let Mm
w denote a w−model space

with center pw. Let us consider a smooth function f : �+ → � and the restricted
distance function from the pole r : P → �.

Then we have the following dual Laplacian inequalities for the modif ied distance
functions

f ◦ r : P → �; f ◦ r(x) := f (r(x)) ∀x ∈ P

(i) Suppose that every p-radial sectional curvature at x ∈ N − {p} is bounded by the
pw-radial sectional curvatures in Mm

w as follows:

K(σ (x)) = Kp,N(σx) � −w′′(r)
w(r)

. (2.18)

Then we have for every smooth function f (r) with f ′(r) � 0 for all r, (respec-
tively f ′(r) � 0 for all r):

�P( f ◦ r) � (�)
(

f ′′(r) − f ′(r)ηw(r)
) ‖∇ Pr‖2

+ mf ′(r)
(
ηw(r) + 〈∇Nr, HP 〉 )

, (2.19)

where HP denotes the mean curvature vector of P in N.
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(ii) Suppose that every p-radial sectional curvature at x ∈ N − {p} is bounded by the
pw-radial sectional curvatures in Mm

w as follows:

K(σ (x)) = Kp,N(σx) � −w′′(r)
w(r)

. (2.20)

Then we have for every smooth function f (r) with f ′(r) � 0 for all r, (respec-
tively f ′(r) � 0 for all r):

�P( f ◦ r) � (�)
(

f ′′(r) − f ′(r)ηw(r)
) ‖∇ Pr‖2

+ mf ′(r)
(
ηw(r) + 〈∇Nr, HP 〉 )

, (2.21)

where HP denotes the mean curvature vector of P in N.

3 Exit Moment Spectra of R-balls in Model Spaces

We have the following result concerning the exit moment spectrum of a geodesic
R-ball Bw

R ⊆ Mm
w :

Proposition 3.1 Let ũk be the solution of the boundary value problems 1.3, def ined
on the geodesic R-ball Bw

R in a warped model space Mm
w .

Then

ũ1(r) =
∫ R

r

∫ t
0 wm−1(s) ds

wm−1(t)
dt , (3.1)

and

ũ′
k(r) = −k

∫ r
0 wm−1(s)ũk−1(s) ds

wm−1(r)
. (3.2)

Therefore,

Âk
(
Bw

R

) = − 1
k + 1

ũ′
k+1(R) . (3.3)

Proof A straightforward computation gives

�ũk =
(
ũ′

kw
m−1

)′

wm−1 = −kũk−1, (3.4)

which gives Eqs. 3.1 and 3.2. So, if

ũk(r) = k
∫ R

r

∫ t
0 wm−1(s)ũk−1(s) ds

wm−1(t)
dt,

the boundary condition ũk(R) = 0 is satisfied and as a consequence of the Maximum
Principle for elliptic operators, the functions ũk are the only solutions to the boundary
value problems defined on Bw

R and given by Eq. 1.3.



148 A. Hurtado et al.

Therefore, applying the Divergence Theorem, we obtain

Âk
(
Bw

R

) · Vol
(
Sw

R

) =
∫

Bw
R

ũk dV = − 1
k + 1

∫
Bw

R

�ũk+1 dV

= − 1
k + 1

∫
Sw

R

〈∇ũk+1, ∇r〉 dA = − 1
k + 1

ũ′
k+1(R) · Vol

(
Sw

R

)
,

(3.5)

where Sw
R is the geodesic R-sphere in Mm

w , and the claim is proved. ��

3.1 A Key Lemma

Let us consider now an isoperimetric comparison model space Mm
W and let ũW

k be the
radial functions given by Eq. 3.2, which are the solutions of the problems 1.3 defined
on the geodesic ball BW

s(R). We define the functions fk : [0, R] → � as fk = ũW
k ◦ s,

where s is the stretching function given by Eq. 2.8.
Then we have the following lemma, which will be of instrumental importance for

the proofs of the main results below:

Lemma 3.2 Let Mm
W be an isoperimetric comparison model space that is w-balanced

in the sense of Def inition 2.11 with h = h1 or h = h2. Then for all k � 1,

f ′′
k (r) − f ′

k(r)ηw(r) � 0 .

If k � 2 or if Mm
W is strictly balanced, then the inequality is in fact a strict inequality:

f ′′
k (r) − f ′

k(r)ηw(r) > 0 .

Proof By Eq. 2.8,

f ′′
k (r) = ũW ′′

k (s(r))(s′(r))2 + ũW ′
k (s(r))s′′(r)

= 1
g2(r)

(ũW ′′
k (s(r)) − ũW ′

k (s(r))g′(r)) . (3.6)

Since the functions ũW
k are the solution of the problems 1.3 on BW

s(R), using Eq. 3.4,

ũW ′′
k (s(r)) = −k ũW

k−1(s(r)) − (m − 1)
W ′(s(r))
W(s(r))

ũW ′
k (s(r)).

Taking into account the explicit construction of Mm
W , i.e. Eqs. 2.9 and 2.10, a straight-

forward computation shows that

(m − 1)
W ′(s(r))
W(s(r))

= m
g(r)

(ηw(r) − h(r)) − g(r)ηw(r) − g′(r),

and consequently,

ũW ′′
k (s(r)) = −k ũW

k−1(s(r)) − m
g(r)

(ηw(r) − h(r)) ũW ′
k (s(r))

+ (ηw(r)g(r) + g′(r)) ũW ′
k (s(r)).
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Replacing the expression of ũW"
k (s(r)) in Eq. 3.6 we obtain that

g2(r) f ′′
k (r) = −kfk−1(r) + (g2(r)ηw(r) − m(ηw(r) − h(r))) f ′

k(r),

and

g2(r)( f ′′
k (r) − f ′

k(r)ηw(r)) = −kfk−1(r) − m(ηw(r) − h(r)) f ′
k(r). (3.7)

Since f ′
k(r) = ũW ′

k (s(r))/g(r) < 0, the functions fk are strictly decreasing in ] 0, R ] for
all k � 1 and consequently by Eq. 3.2

f ′
k(r) = −k

∫ s(r)
0 Wm−1(s)ũk−1(s) ds

Wm−1(s(r))g(r)
= −k

∫ r
0

�(t)
g(t) fk−1(t) dt

�(r)g(r)
(3.8)

� (<) −kfk−1(r)

∫ r
0

�(t)
g(t) dt

�(r)g(r)
= −kfk−1(r)qW(s(r))/g(r), (3.9)

where the last equality is obtained using Eq. 2.13. Note that we can assume that
ũ0 ≡ 1 and therefore f0 ≡ 1 too, so that only in the case k = 1 can we have equality
in Eq. 3.9.

Finally, combining the above inequality with Eq. 3.7 we get:

g3(r)( f ′′
k (r) − f ′

k(r)ηw(r)) � (>) kfk−1(r) (−g(r) + m qW(s(r))(ηw(r) − h(r))) � (>) 0

by the balance condition 2.12—respectively the strict balance condition—and the fact
that g and fk−1 are positive functions. ��

4 Lower and Upper Bounds for the Isoperimetric Exit Moments

We are now ready to prove the first of our main results.

Theorem 4.1 Let {Nn, Pm, Cm
w,g,h1

} denote a comparison constellation bounded from
below in the sense of Def inition 2.14. Assume that Mm

W = Cm
w,g,h1

is w-balanced in the
sense of Def inition 2.11. Let DR be an extrinsic R-ball in Pm, with center at a point
p ∈ P which also serves as a pole in N. According to Remark 2.6, our assumption
g(r(x)) > 0 implies trivial topology of the extrinsic ball DR. For all k � 0, i.e. for the
extended exit moment spectrum, we also have:

Âk(DR) � Âk
(
BW

s(R)

)
, (4.1)

where BW
s(R) is the geodesic s(R)-ball in Cm

w,g,h1
.

Proof Consider the functions fk = ũW
k ◦ s of Lemma 3.2. Let r denote the smooth

distance to the pole p on M. We define vk : DR → � by vk(q) = fk(r(q)).
Using Theorem 2.16, Lemma 3.2, Eq. 3.7 and the fact that f ′

k(r) � 0, we have that

�Pvk = �P( fk ◦ r) � ( f ′′
k (r) − f ′

k(r)ηw(r))‖∇ Pr‖2 + m f ′
k(r)(ηw(r) − h1(r)) (4.2)

� ( f ′′
k (r) − f ′

k(r)ηw(r)) · g2(r) + m f ′
k(r)(ηw(r) − h1(r)) (4.3)

= −kfk−1(r) = −k vk−1, on DR.
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Now, we are going to prove inductively that if we denote by uk the solutions of the
hierarchy of boundary value problems on DR given by Eq. 1.3, then vk � uk on DR.

For k = 1, since f0 is assumed to be identically 1, inequality 4.2 gives us that

�Pv1 � −1 = �Pu1,

so �P(v1 − u1) � 0 on DR and (v1 − u1) = 0 on ∂ DR. Applying the Maximum
Principle we conclude that v1 � u1 on DR.

Suppose now that vk � uk on DR, then as a consequence of inequality 4.2 we get

�Pvk+1 � −(k + 1) vk � −(k + 1) uk = �Puk+1,

and (vk+1 − uk+1) = 0 on ∂ DR, so applying again the Maximum Principle we have
vk+1 � uk+1.

Summarizing we have so far: vk � uk and �Pvk � �Puk on DR for all k � 1.
Taking these inequalities into account and applying Divergence theorem we
then get

Âk(DR) · Vol(∂ DR) =
∫

DR

ukd V = − 1
k + 1

∫
DR

�Puk+1d V

� − 1
k + 1

∫
DR

�Pvk+1d V = − 1
k + 1

∫
∂ DR

〈
∇ Pvk+1,

∇ Pr
‖∇ Pr‖

〉
d A

= − 1
k + 1

f ′
k+1(R)

∫
∂ DR

‖∇ Pr‖d A.

Since f ′
k+1(R) = ũW ′

k+1(s(R))/g(R) � 0 and ‖∇ Pr‖ � g(r), we conclude that

Âk(DR) � − 1
k + 1

ũW ′
k+1(s(R))

g(R)
g(R) = Âk

(
BW

s(R)

)
,

by Eq. 3.3. And this proves the claim in Eq. 4.1. ��

Theorem 4.2 Let {Nn, Pm, Cm
w,1,h2

} denote a comparison constellation bounded from
above. Assume that Mm

W = Cm
w,1,h2

is w-balanced in the sense of Def inition 2.11. Let
DR be a smooth precompact extrinsic R-ball in Pm with center at a point p ∈ P which
also serves as a pole in N. Then, for all k � 0, i.e. for the extended isoperimetric exit
moment spectrum we have:

Âk(DR) � Âk
(
BW

R

)
, (4.4)

where BW
R is the geodesic ball in Cm

w,1,h2
.

If Mm
W is strictly balanced then equality in Eq. 4.4 for some f ixed radius R and

some f ixed k � 0 implies that DR is a geodesic cone in N and that the equality is in
fact attained for all k � 0 and for every smaller p-centered extrinsic ball in Pm.

Proof The proof of this theorem follows closely the lines of the proof of Theorem 4.1.
Since there are, however, some crucial and obvious differences we take this space to
point them out explicitly. In the present case we have s(r) = r because g(r) ≡ 1 (see
Eq. 2.8). Therefore fk+1 = ũW

k+1 so that vk+1 = ũW
k+1 ◦ r. Thence vk+1 is the solution of

the boundary value problems 1.3 on BW
R transplanted to DR.
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The new geometric setting given by the comparison constellation bounded from
above gives us now:

�Pvk = �P( fk ◦ r) � ( f ′′
k (r) − f ′

k(r)ηw(r))‖∇ Pr‖2 + m f ′
k(r)(ηw(r) − h2(r)) (4.5)

� ( f ′′
k (r) − f ′

k(r)ηw(r)) + m f ′
k(r)(ηw(r) − h2(r)) (4.6)

= −kfk−1(r) = −k vk−1, on DR .

Again we prove inductively that if uk denotes the family of solutions of the hierarchy
of boundary value problems on DR given by Eq. 1.3, then vk � uk on DR.

For k = 1, since f0 is still assumed to be identically 1, inequalities 4.6 and 4.5 give
us that

�Pv1 � −1 = �Pu1,

so �P(v1 − u1) � 0 on DR and (v1 − u1) = 0 on ∂ DR. Applying the Maximum
Principle we conclude that v1 � u1 on DR.

Suppose now that vk � uk on DR, then again as a consequence of inequalities 4.5
and 4.6 we get

�Pvk+1 � −(k + 1) vk � −(k + 1) uk = �Puk+1,

and (vk+1 − uk+1) = 0 on ∂ DR, so applying again the Maximum Principle we have
vk+1 � uk+1.

We have: vk � uk and �Pvk � �Puk on DR for all k � 1. The Divergence theorem
gives the claim in Eq. 4.4:

Âk(DR) · Vol(∂ DR) =
∫

DR

ukd V = − 1
k + 1

∫
DR

�Puk+1d V

� − 1
k + 1

∫
DR

�Pvk+1d V (4.7)

= − 1
k + 1

f ′
k+1(R)

∫
∂ DR

‖∇ Pr‖d A

� Âk(BW
R ) · Vol(∂ DR) . (4.8)

Suppose that Mm
W is strictly balanced and that we have equality in Eq. 4.4. Then we

must have equalities in Eqs. 4.8, 4.7, and 4.6 as well. In particular the last mentioned
equality gives ‖∇ Pr‖ ≡ 1 because we have from Eq. 3.2 that ( f ′′

k (r) − f ′
k(r)ηw(r)) > 0.

Therefore ∇ Pr = ∇Nr and DR is a geodesic cone swept out by the radial geodesics
from p. ��

5 Intrinsic and Constant Curvature Results

In this short section we finally show how to obtain the results stated in the introduc-
tion from Theorems 4.1 and 4.2.

Proof of Theorem 1.2 This theorem follows immediately from Theorem 4.2 once we
show that the comparison space Mm

W is strictly w-balanced. But we have g = 1 and
h2 = 0 so that Mm

W is Mm
w = �m(b), b < 0, which is strictly w-balanced according to
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Remark 2.13. The equality case gives even more significant rigidity: Since DR is here
a minimal geodesic cone, then by analytic continuation DR and in fact all of Pm is
totally geodesic in the hyperbolic space�n(b), see [15]. ��

Proof of Theorem 1.3 We consider the intrinsic versions of (the proofs of) Theorem
4.1 and Theorem 4.2 assuming that Pm = Nn. In this case, the extrinsic distance to
the pole p becomes the intrinsic distance in N, so, the extrinsic domains DR become
the geodesic balls BN

R of the ambient manifold N and for all x ∈ P we have:

∇ Pr(x) = ∇r(x),

HP(x) = 0.

As a consequence, ‖∇ Pr‖ ≡ 1, so g(r(x)) = 1 and C(x) = h1(r(x)) = h2(r(x)) = 0. The
stretching function becomes the identity s(r) = r, W(s(r)) = w(r), and the isoperimet-
ric comparison spaces Cm

w,g,h1
and Cm

w,1,h2
reduce to the same auxiliary model space

Mm
w . Since ‖∇r‖ ≡ 1, we do not need to control the sign of ( f ′′

k (r) − f ′
k(r)ηw(r)) in

Eqs. 2.19 and 2.21. For this reason it is not necessary to assume any w-balance
conditions in these cases. The theorem and the two-sided bounds in Eq. 1.9 then
follow directly from the inequalities in Theorem 4.1 and Theorem 4.2. If equality is
satisfied, then BN

R has all its radial curvatures equal to the radial curvatures of Mm
w ,

hence they are isometric, see [21]. ��
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