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Abstract For the measurable Riemannian structure on the Sierpinski gasket intro-
duced by Kigami, various short time asymptotics of the associated heat kernel are
established, including Varadhan’s asymptotic relation, some sharp one-dimensional
asymptotics at vertices, and a non-integer-dimensional on-diagonal behavior at
almost every point. Moreover, it is also proved that the asymptotic order of the
eigenvalues of the corresponding Laplacian is given by the Hausdorff and box-
counting dimensions of the space.
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1 Introduction

Recently there have been attempts to develop a theory of “manifold-like” analysis
and geometry on fractals. As a prototype of such a theory, based on Kusuoka’s
construction in [29] of “weak gradients” for Dirichlet forms on fractals, Kigami
[22,25] has introduced a measure-theoretic “Riemannian structure” on the Sierpinski
gasket (Fig. 1). He has further proved in [25] that the associated heat kernel satisfies
the two-sided Gaussian bound in terms of the natural geodesic metric, unlike typical
fractal diffusions treated e.g. in [2, 3, 5, 12, 27] for whose transition densities (heat
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Fig.1 Sierpinski gasket

kernels) the two-sided sub-Gaussian bounds hold. The purpose of this paper is to
analyze this “Riemannian structure” on the Sierpinski gasket more in detail. We are
particularly interested in short time asymptotic behaviors of the heat kernel, and our
results include “manifold-like” ones as well as “fractal-like” ones.

Let us describe briefly our framework of the “Riemannian structure” on the
Sierpinski gasket. Let K be the Sierpinski gasket constructed from an equilateral tri-
angle in R? with vertices q1, g2, g3, and set V := {q1, q2, q3}. As studied in [1, 23, 34],
a standard Dirichlet form (£, F) is defined on K, where the domain F is in fact a
dense subalgebra of C(K). By choosing &, h, € F so that 2E(h;, hj) = §;; and they
are harmonic on K \ Vj, we have a “harmonic map” ® : K — R? given by ®(x) :=
(h1(x), ha(x)). @ is injective by [22, Theorem 3.6] and hence a homeomorphism from
K ontoits image K3 := ®(K), which is called the harmonic Sierpinski gasket (Fig. 2).
Moreover, ® admits an associated £-energy measure p on K, called the Kusuoka
measure on the Sierpinski gasket after [29].

By [29, Section 1] and [22, Sections 3 and 4] (see Proposition 2.15 and
Theorem 2.16 below), we can associate with the Dirichlet space (K, u,&,F) a
“one-dimensional tangent bundle with a Riemannian metric (Riemannian structure)”
on K inherited from R? through the embedding ®, where u plays the role of
the “Riemannian volume measure”. The heat kernel p, (¢, x, y) of this Dirichlet
space, which is the jointly continuous integral kernel of the associated Markovian
semigroup on L?(K, 1), is the main subject of our study.

Note that the “Riemannian structure” on K is different in several respects from
usual Riemannian structures on manifolds; the notion of the “tangent space T K at
x”, which is a one-dimensional subspace of R?, makes sense only for u-a.e. x € K,
and T,K depends discontinuously on x € K. (In fact, the set of points where the
tangent space cannot be defined is dense in K; see [22, Theorem B.5-(1)].) Therefore
the associated heat kernel p,, (¢, x, y) is expected to behave differently from those on
Riemannian manifolds, and this is the case for the asymptotics of p, (¢, x,x) ast | 0,
as described in Theorem 1.3 below.

Now we outline the main results of this paper. Following [25, Theorem 5.1], we
define the harmonic geodesic metric py on K by

or(x, y) :=inf{l(®oy) |y :[0,1] - K, y is continuous, y(0) = x, y(1) = y}
(1.1)
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Fig. 2 Harmonic Sierpinski
gasket

for x, y € K, where £(® o y) is the length of ® o y : [0, 1] — R? with respect to the
Euclidean metric. Then py; is a metric on K compatible with the original topology
of K, and the first main result of this paper is the following characterization of the
metric py.

Theorem 1.1 Forany x,y € K,
pr(x,y) = sup{u(x) —u(y) |u e F, |Vul < 1 n-a.e.}, (1.2)

where NVu denotes the “gradient vector field” of u; see Theorem 2.17 below.

It is not difficult to prove the equality analogous to Eq. 1.2 for Riemannian
manifolds, whereas in the present case Eq. 1.2 is not straightforward and its proof,
which is given in Section 4, is an important step of this paper. By virtue of Theorem
1.1, the general results of Sturm [35, 36] and Ramirez [32] apply to the present case
to yield the following off-diagonal Gaussian behaviors of p,(t, x, y) in terms of py.
For (r, x) € (0, 00) x K weset B,(x, pr) :={y € K| pn(x,y) <r}.

Corollary 1.2
(1) There exist cr, cy € (0, 00) such that for any (t, x, y) € (0, 00) x K x K,

Py pr 6?52 _ pry)?
CLM < pu(t’ X, y) <cy (1 + t ) exp( 2t )
w(B si(x, pr0)) \/M (B i(x, pr)) 1 (B si(y, pr))

(1.3)

(2) Foranyx,ye€ K,
“f%} 2tlog p,(t, x, y) = —py (x, y)*. (1.4)
t

For the heat kernels on Riemannian manifolds, the asymptotic behavior of exactly
the same form as Eq. 1.4, called Varadhan’s asymptotic relation, is well-known
and has been obtained by Varadhan [38] (see also Norris [31]). Also the two-
sided Gaussian heat kernel bound like Eq. 1.3 is known to hold for Riemannian
manifolds which are either compact or complete with non-negative Ricci curvature;
see [8, 15, 30, 33, 35, 36] and references therein.
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We remark that Kigami [25, Theorem 6.3] has already obtained a two-sided
Gaussian bound for p,(t, x, y) similar to Eq. 1.3 where the upper bound involves

exp(—%) with some constant C € (2, co) instead of exp(—%"[’”z). Here we can
conclude a better Gaussian upper bound as in Eq. 1.3 by virtue of Theorem 1.1 and
Sturm’s results [35, 36].

Note that Corollary 1.2 is in sharp contrast with the behaviors of the transition
density p(t, x, y) of the Brownian motion on the Sierpinski gasket K; p(t, x, y) is
nothing but the heat kernel associated with the Dirichlet space (K, v, £, F) where
v is the log, 3-dimensional Hausdorff measure on K with respect to the Euclidean
metric, and by [5, Theorem 1.5] we have the following sub-Gaussian bound

1 1
d, D1 d, D1
CL1 |x — yIT\ ™ Ci2 |x =y \ ™
exp| — | ——— < ptx,y) < exp| — | ——— ,
tdy/dw P ( ciat = p( Y) tdy/dw p ¢t

where d s := log, 3 and d,, := log, 5> 2. Furthermore by [28, Theorem 1.2-a)], for any

distinct x, y € K, the limit lim, o e log p(t, x, y) does not exist.

Corollary 1.2 concerns the off-diagonal Gaussian behaviors of p, (¢, x, y). On the
other hand, for its on-diagonal behaviors we will establish the following statements,
which include both “manifold-like” and “fractal-like” asymptotics.

Theorem 1.3
(1) Forany x € Vy (recall Vy = {q1, q2, q3}), it holds that
1
t,x,x) = 2 + O (o83 ast | 0. 1.5
(2) There exists a constant dg® € (1,210g,5/55] (note 2log,s 35 = 1.5181...) such
that
. 2logpu(t, x, x)
1}&)1 +ogt =d  p-aexeK. (1.6)

(3) dimyg(K, py) = dimg(K, py) € [dls"c, 2logys 3 51, where dimy and dimg denote
Hausdorff and box-counting dimensions, respectively. Moreover, set ds :=
dimy (K, py), let {Mi},en be the eigenvalues of the Laplacian associated
with (K, v, £, F) and let N, (s) :=#{n e N | Ay <s}and Z,(t) =),y e~ (=
fK pu(t, x, x)du(x)) fors,t € (0, 00). Then there exist ¢, 3, ¢1.4 € (0, 00) such that
forany s € [1, 00) and any t € (0, 1],

c135™? < Ny(s) < c1.45%%  and ¢ 5B < Z,(1) < Cpat™ %2, (1.7)

Equation 1.5 is “manifold-like” and reflects our intuition on the picture of Ky
(Fig. 2) that, near ®(x), K, looks very much like its “fangent line at ®(x)”. In fact, for
each x € V, (i.e. a vertex x of any level), we prove a more detailed one-dimensional
asymptotic behavior of p, (¢, x, y) when ¢ € (0, c0) is small and y € K is close to x, as
well as the existence of the limit lim, o u(B(x, pr))/r € (0, c0). On the other hand,
according to Eqgs. 1.6 and 1.7, p,, exhibits non-integer-dimensional behaviors at p-a.e.
point in the short time limit, thereby reflecting the fractal nature of the space.

Lastly let us give a few remarks on the framework. One may expect that the
main results of this paper can be generalized to the case of other self-similar fractals
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Fig. 3 From the left, three-dimensional (level-2) Sierpinski gasket, two-dimensional level-3
Sierpinski gasket, pentagasket and snowflake

like ones in Fig. 3, but such generalizations are not straightforward and the actual
situation is quite subtle, as suggested by the following facts.

First, our proof of Theorem 1.1 utilizes a complete knowledge about the structure
of geodesics due to [25, Section 5] (see Proposition 3.15 below), where the two-
dimensionality of the space has played an essential role. Therefore some additional
task should be necessary to verify Theorem 1.1 even in the (probably simplest) case
of the d-dimensional (level-2) Sierpinski gasket with d > 3, although most of our
main results will be valid also for them. Secondary, in another simple case, the case
of the two-dimensional level-/ Sierpinski gasket with / > 3 (see Fig. 3), we can show
that the “Riemannian volume measure” is not volume doubling with respect to the
harmonic geodesic metric, based on the denseness of vertices from which the space
spreads away in three directions. Hence by [24, Theorem 3.2.3], even the on-diagonal
upper bound p,(t, x,x) < cu/(B s (x, pr)) is false there, whereas Theorem 1.1 and
part of Theorem 1.3 are still expected to be true. Finally, for most other typical frac-
tals, such as pentagasket and snowflake in Fig. 3, non-constant harmonic functions
can be constant on non-empty open subsets and, as a consequence, harmonic maps
into finite dimensional spaces and their associated energy measures cannot be used to
introduce a “Riemannian structure”. Thus it is already a highly non-trivial problem
how we should introduce “Riemannian structures” on such fractals.

In view of these observations, it seems reasonable for this present moment to
content ourselves with the case of the two-dimensional Sierpinski gasket only. We
leave possible extensions of our main results to other fractals for future studies.

The organization of this article is as follows. In Section 2, we collect basic facts
concerning the standard Dirichlet form and the measurable Riemannian structure on
the Sierpinski gasket. In Section 3 we briefly recall the results of [25] on the volume
doubling property of the Kusuoka measure and basics on the harmonic geodesic met-
ric, with slight improvements. Based on these preparations, we give the proofs of our
main results in the subsequent sections; Theorem 1.1 and consequently Corollary 1.2
are proved in Section 4, and (1), (2) and (3) of Theorem 1.3 together with some more
detailed results are treated respectively in Sections 5, 6 and 7.

Notation In this paper, we adopt the following notations and conventions.

(1) N={1,2,3,...},i.e.0¢N.

(2) The cardinality (the number of all the elements) of a set A is denoted by #A.

(3) We set sup¥:=0 and inff) := co. We write aVv b :=max{a, b}, anb =
min{a, b},a” :=avO0anda™ := —(aA0) fora,b € [—o0, co]. We use the same
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notations also for functions. All functions treated in this paper are assumed to
be [—o0, oo]-valued.

(4) Let N e N. The Euclidean inner product and norm on R” are denoted by (-, -)
and | - | respectively. For y : [a,b] — RN continuous, where a,b € R, a < b,
let £(y) be its length with respect to |-|. We set LRY) :={T | T:RN —
RN, Tislinear}, and for T € L(RY) let det T be its determinant, and T* its
adjoint and || 7'|| its Hilbert-Schmidt norm with respect to (-, -).

(5) Let E be a topological space. The Borel o-field of E is denoted by B(E).
We set C(E):={f]| f: E— R, fiscontinuous} and || f|le := sup,cz | f(x)I,
f e C(E).

(6) Let(E, p)be ametricspace. We set B,(x, p) :={y € E | p(x,y) < r}for (r,x) €
(0, 00) x E and diam(A, p) := SUp, yeq P(X, ) for AC E. Alsofor f: E—> R
we set Lipp f = supx,yeE,x;ﬁy |f(.X') - f(}’)|/,0(x, }’)

2 Measurable Riemannian Structure on the Sierpinski Gasket

In this section, we briefly recall basic facts concerning the measurable Riemannian
structure on the Sierpinski gasket, including the definitions of the standard Dirichlet
form (resistance form) and the harmonic Sierpinski gasket, which is the geometric
realization of the measurable Riemannian structure. We follow mainly [25] for the
presentation of this section, but we sometimes refer to also [17, 22, 23, 26, 29] for
related facts. See [37] for possible generalizations to other finitely ramified fractals.

Definition 2.1 (Sierpinski gasket) Let Vo = {q1, g2, 3} C R? be the set of the three
vertices of an equilateral triangle, set S := {1, 2, 3}, and for i € S define F; : R*> — R?
by Fi(x) := (x + q;)/2. The Sierpinski gasket (Fig. 1) is defined as the self-similar
set associated with {F;}es, i.e. the unique non-empty compact subset K of R?
that satisfies K = J;.¢ Fi(K). We also define V,, for m € N inductively by V,, :=
Uies FiVim—1) and set V. := U,y Vi

Note that V,,_; C V), for any m € N. K is always regarded as equipped with the
relative topology inherited from R?, and V, is dense in K in this topology. Hereafter
we always regard F; for each i € S as a continuous map from KX to itself.

Definition 2.2

(1) Let Wy := {4}, where @ is an element called the empty word, let W,, := S§" =
{wi...wy |w; € Sforie{l,...,m}} for me N and W, := U,,.cnuj0) Win- For
w € W,, the unique m € N U {0} with w € W,, is denoted by |w| and called the
length of w. Also fori e Sandn € NU {0} we write i" :=i...i € W,,.

(2) Weset & := SN = {w w3 ... | w; € Sfori e N}, and define the shift map o :
Y > Y byo(wmmw;...) = mwsws. ... Alsofori € Swedefineo; : ¥ — X by
oi(wwws...) =iwwrws... and set i® :=iii... € X. Forw = wjmw;3 ... € &
and m € N U {0}, we write [w],, := w1 ...w, € W,,.

(3) For w=w;...w, € W,, we set F, :=F, o---0F,, (Fy:=idk), K, :=
F,(K),o0y =0y, 000y, (04 :=idy)and T,, := 0,(T).
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Associated with the triple (K, S, { Fj}ics) is a natural projection 7 : ¥ — K given
by the following proposition, which is used to describe the topological structure of K.

Proposition 2.3 There exists a unique continuous surjective map w : ¥ — K such that
Fiom =moo; for any i € S, and it satisfies {mw(w)} =\ eny Ko, for any o € %.
Moreover, #r ' (x) =1 for x € K\ V., 17(q;) = {i®} fori € S, and for m € N and
each x € V,, \ V,_| there exist w € W, and i, j € S with i # j such that 7~ (x) =
{wij>, wji*™}.

Recall the following basic fact ([23, Proposition 1.3.5-(2)]) which we will use below
without further notice: if w,ve W, and X, NX, =@ then K, N K, = F,(Vy) N
FU(VO)'

As studied in [1, 23, 34], a standard Dirichlet form (or resistance form, strictly
speaking) (€, F) is defined on the Sierpinski gasket K as follows.

Definition 2.4 Let m € NU {0}. We define a non-negative definite symmetric bilin-
ear form &, : RY» x RY» — Ron V,, by

1 /5\"
E(tt, v) 1= 7(7> Y @ —u(y)EE - (), @1

1
4 21\3 .
X, Y€V, X~y
where, for x, y € V,,,, we write x < y if and only if x, y € F,,(Vy) for some w € W,
and x # y.

The usual definition of &, does not contain the factor 1/4 so that each edge in

the graph (V,,, <) has resistance (3/5)". Here it has been added for simplicity of the
subsequent arguments; see Definition 2.11. It is easily shown that, for any function u :
K — R, {&€,(ulv,,, ulv,)}menujo) is non-decreasing and hence has the limit in [0, oo].
Then we have the following theorem; see [23, Chapter 2] and [26, Part 1] for the
definition and basic properties of resistance forms.

Theorem 2.5 Define F C C(K) by F :={u € C(K) | limpy—oo En(uly,,, tly,) < oo}
and € : F x F — R by Eu,v) = limyo En(uly,, vly,)(€R) for u,veF. Then
(€, F) is a resistance form on K whose resistance metric Re = Re(x,y) : K x K —
[0, 00) is compatible with the original topology of K. Moreover, for any u,v € F,

uoke Fforanyie S and S(u,v):%Zé’(uoE,voFi). (2.2)

ieS

(€, F) is called the standard resistance form on the Sierpinski gasket. Further-
more [26, Corollary 6.4, Theorems 9.4, 9.9 and 10.4], Eq. 2.2, £(1,1) = 0 and [24,
Theorem A.4] imply the following theorem. See [13, Section 1.1] for the notions of
regular Dirichlet forms and their strong locality, and see [13, Section 2.1] and [26,
Definition 9.8] for the definition of their associated capacity.

Theorem 2.6 Let v be a finite Borel measure on K with full support, i.e. such

that v(U) > 0 for any non-empty open subset U of K. Then (£,F) is a strong
local regular Dirichlet form on L*(K,v) whose associated capacity Cap, satisfies
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74 N. Kajino

infyex Cap, ({x}) > 0. Moreover, its associated Markovian semigroup {1 }c0,00) ON
L?*(K, v) admits a unique continuous integral kernel p,, i.e. a continuous function
Py =pu(t,x,y) : (0,00) x K x K — (0, 00) such that for each f e L*(K,v) and t €
(0, 00),

Ty f= /K P, ) fdv(y)  v-ae. (23)

In the situation of Theorem 2.6, v is called the reference measure of the Dirichlet
space (K, v, &, F), and p, is called the heat kernel associated with (K, v, E, F); see
[26, Theorem 10.4] for basic properties of p,.

Since we have a regular Dirichlet form (£, F) with state space K, by [13, pp. 110-
111] we can define £-energy measures as in the following definition.

Definition 2.7 The £-energy measure of u € F is defined as the unique Borel mea-
sure j(, on K such that

/ fduwy =2Ewfu) — € (W, f) forany fe F. (2.4)
K

We also define 1, to be the unique positive Borel measure on X that satisfies
Ay (Zw) = 2(5/3)"1Ew o Fy,uo F,) for any w € W,, which exists by Eq. 2.2 and
the Kolmogorov extension theorem. For u, v € F we set i) = (Miutv) — Ku—vy)/4
and A v = (Au4v) — Au—v))/4, so that they are finite Borel signed measures on K
and on X respectively and are symmetric and bilinear in (1, v) € F x F.

Letu € F. According to [6, Proof of Theorem 1.7.1.1], the strong locality of (£, F)
implies that the image measure (., o u~! on (R, B(R)) is absolutely continuous with
respect to the Lebesgue measure on R. In particular, pq({x}) =0 for any x € K.
We also easily see the following proposition by using Egs. 2.2 and 2.4. Note that
7(A) € B(K) for A € B(X) by Proposition 2.3.

Proposition 2.8 A,y = [t 0 7 and .y o 7!

= W) forany u,v € F.

The definition of the measurable Riemannian structure on the Sierpinski gasket
involves certain harmonic functions. In the present setting, harmonic functions are
formulated as follows.

Definition 2.9

(1) We define Fy := {u € F | ulx\v = 0} for each open subset U of K.
(2) Let F be aclosed subset of K. Then & € F is called F-harmonic if and only if

Eh, h) = inf  E&u,u) orequivalently, E(h,u)=0, "ue Fr\F-

ueF, u|lp=h|r
(2.5)

We set Hp := {h € F | his F-harmonic}, which is a linear subspace of F, and
Hum :=Hy,,, m € NU{0}. Note that for u € F, u € H,, if and only if E(u, u) =

Em(uly,,, uly,), which holds if and only if uo F,, € Hy for any w € W, by
Eq.2.2.
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The following proposition easily follows from [26, Lemma 8.2].

Proposition 2.10 Let F be a non-empty closed subset of K.

(1) Letu € F. Then there exists a unique h € Hp such that h|r = u|r.
(2) Leth € Hp. Then mingh < h(x) < maxg h forany x € K.

Now we define a “harmonic embedding” ® of K into R?, through which we will
regard K as a kind of “Riemannian submanifold in R?*” to obtain its measurable
Riemannian structure. We also introduce a measure p which is the £-energy measure
of the “embedding” ® and will play the role of the “Riemannian volume measure”.
Recall Vy = {q1, q2, g3}, and see [23, Section 3.2] and Proposition 2.12 below for basic
properties of Vy-harmonic functions.

Definition 2.11

(0) Letie S,andlet j, k € Sbesuchthat j=i+ 1 mod3andk =i+ 2mod 3. We
define A}, b} € F to be the Vj-harmonic functions satisfying /! (q;) = h5(q;) =
0, hi(g)) =hi(qr) =1 and —hh(q)) = Hy(qx) = 1/+/3, so that 2E(hi, ki) =
2E(NH,, hy) = 1 (recall the factor 1/4 in Eq. 2.1), E(K, h5) = 0, k', o F; = (3/5)H;
and ki o F; = (1/5)h,.

(1) Wesethy :=h} and h, := h}, and define ® : K — R? and K3 by

D(x) = hi(x), hr(x)), x€e K and Ky := P(K). (2.6)
Ky is called the harmonic Sierpinski gasket (Fig. 2). We also set g; := ®(q;) for
i € S,sothat {Gy, 42, 43} = ®(V)) is the set of vertices of an equilateral triangle.
(2) We define finite Borel measures x on K and A on X by respectively

W= ) + gy and A= Ay + Ay, 2.7

so that A = pwom and A o 7~! = u by Proposition 2.8. We call u the Kusuoka
measure on the Sierpinski gasket.

Notation In what follows A%, b5, hy, hy always denote the Vj-harmonic functions
given in Definition 2.11. We often regard {h/, h%} as forming an orthonormal basis
of (Hy/R1, 2E). Moreover, we set

lulle :=v2Ew,u), ueF and Sy, :={heHo|lhle=1}. (2.8)

The following proposition provides an alternative geometric definition of Ky,
and essentially as its corollary we also see the injectivity of ® (Theorem 2.13),
Proposition 2.14 below and that p ) has full support for any & € Sy,

Proposition 2.12 ([22, Section 3]) Fori € S, define T; € L(R?) and H; : R*> — R? by

n oA . o . 3 .. R . R
Ti(“(‘]j+‘]k_2%)+b(Qk_Qj)):=ga(Qj+Qk_ZQi)+gb(Qk_qj)’ a,beR,
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76 N. Kajino

where (i, jk} =S, and H;(x) = §; + T;(x — §)), x € R%. Also for w=w;...w, €
W, let Ty =Ty, --- Ty, (Ty:=idg:), which we regard as its matrix representation
through the standard basis of R. Then we have the following statements:

. (350 _{ 3/10 —V3/10 _{ 3/10 V3/10
@) Ti= ( 0 1/5)’ = (—ﬁ/lo 12 ) Iy = (ﬁ/lo 12 )

(ii) Foreachw € W,, T? := (T,)* is equal to the matrix representation of the linear
map F : Ho/R1 — Ho/R1, Fih:= ho F, by the basis {h,, h,} of Hy/R1.

(ili) H;o® = ®o F;and hence Hio (P om) = (P om)oo; foranyi € S. In particu-
lar, Ky = Ujcs Hi(Kw), i.e. Ky is the self-similar set associated with { H;}ics.

Theorem 2.13 ([22, Theorem 3.6]) The map ® : K — Ky is a homeomorphism.

Proposition 2.14 11(K,,) = AM(Z,) = (5/3)" T,|* for any w e W,. Moreover, it
holds that » o o~ = .

Kusuoka [29, Example 1] has proved that A is ergodic with respect to the shift
map o, ie. M(AAZ\ A) =0 for any A € B(Z) with 67!(A) = A, and that it is
singular with respect to the Bernoulli measure on X with weight (1/3, 1/3, 1/3). The
ergodicity of A plays an essential role in Section 6, where we provide an alternative
simple proof of it.

Now we introduce the measurable Riemannian structure on K, which is formu-
lated as a matrix-valued Borel measurable map Z on K, as follows.

Proposition 2.15 ([29, Section 1], [22, Proposition B.2]) Define £, € B(X) and
K, € B(K) by

— o Lo Ty, ._
7= {a) €Y | Zs(w):= J%W exists in L(R )}, K; :=7n(Zz). (29)
Then Zyx(w) is an orthogonal projection of rank 1 for any w € £z, M(X\ Xz) =
wWK\NKz)=0,7""(V,) C 2z and Zs(w) = Zx (1) for o, T € 771 (x), x € V. \ V.
Hence (by Proposition 2.3) setting Z, = Z(x) = Zs(w), w e 1~ (x) for x € Kz
and Z, = Z(x) := (}§) for x € K\ Kz gives a well-defined Borel measurable map
Z : K — L@R?.

Theorem 2.16 ([22, Section 4]) Set C'(K) :={vo ® | v € C'(R?)}. Then for each u €
CY(K), Vu := (Vv) o ® is independent of a particular choice of v € C'(R?) satisfying
u = v o ® Moreover, C'(K) C F, C"(K)/R1 is dense in (F/R1, &), and forany u, v €
C'(K),

1
dug.y ={(ZVu, ZVv)dy and E(u,v) = 5/ (ZVu, ZVv)du. (2.10)
K

In view of Theorem 2.16, especially Eq. 2.10, we may regard Z as defining a “one-
dimensional tangent space of K at x together with a metric” for pu-a.e. x € K in a
measurable way, with x considered as the associated “Riemannian volume measure”
and ZVu as the “gradient vector field” of u € C'(K). Then the Dirichlet space
associated with this “Riemannian structure” is (K, u, £, F). The main subject of the
present paper is detailed asymptotic analysis of this Dirichlet space, especially its
associated heat kernel p,,.
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As a matter of fact, any u € F admits a natural “gradient vector field” Vu, thereby
Eq. 2.10 extended to functions in F, as in the following theorem whose essential part
is due to Hino [17, Theorem 5.4].

Theorem 2.17 Let h € Sy,. Then for any u € F we have the following statements:

(1) For p-a.e. x € K, there exists Vu(x) € Im Z, such that for any w € 7~ (x),

SUp.[u(y) — u(x) = (Vu(x), @(y) — ()| = oI Tiw),, ) as m — oo.
YEK[w)y

(2.11)
Such Vu(x) eImZ, as in Eq. 2.11 is unique for each x € Kz, and du,) =

|Vul?du.
(2) For ppy-a.e. x € K, there exists d” #(x) € R such that for any o € 77" (x),

d
sup (u(y) —u(x) — de(x)(h(y) —hx)| =o(lho Fiu,lle) as m— oo.
yEK[w]m

(2.12)

Such % (x) € R as in Eq. 2.12 is unique for each x € K, and dj(,y = (d”) dipy

We need the following definition and lemma for the proof of Theorem 2.17. Recall
that the map Z : K — L(R?) satisfies Z?2 = Z* = Z,det Z =0andtr Z = 1.

Definition 2.18 Let Z%/ := (e;, Zej) for i, je{1,2}, where e; :=(1,0) and e, :=
(0, 1). We define ¢ = (¢',¢%) : K — R? by

g::(\/zu,zm/\/zm) if Z11 £0, otherwise ¢:=(0,1),  (2.13)

so that Z»/ =¢i¢ifori, je {1,2}, |¢| = 1 and ¢(x) € Im Z, for any x € K. Also for
each x € K, we write ¢, = (¢!, ¢2) for ¢(x) = (¢'(x), ¢*(x)) and define h,, hi by

hy =) (hy — hi()1) + &2 (hy — ha(0)1)

(2.14)
hi = —¢2(h — (1) + ¢! (hy — hy(0)1),
so that &y, bt € Sy, E(hy, h) = 0 and hy(x) = hi(x) = 0.
Lemma2.19 Letx € K7 and w € w~'(x). Then
xo Fi, +o F
m Mo Fonlle _ g It © Fon,lle _ (2.15)
m—0c || Tigy, |l m=oc || Tig, |l

Proof This is immediate from a direct calculation using Proposition 2.12-(ii), Egs. 2.9
and 2.14. O
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Proof of Theorem 2.17 By [17, Theorem 5.6], 1, is absolutely continuous with
respect to both u and pgy for any v € F. Moreover, by [23, Theorem 3.2.5] and a
direct calculation we have

. 2
lhoFyle < nll(axh—rrlynh < ﬁ”ho F,lle foranyw e W,. (2.16)
Therefore an application of [17, Theorem 5.4] to & and u yields (2). Thanks to
Eqgs. 2.14, 2.15 and 2.16, (1) follows by applying (2) to & = h; and setting Vu(x) :=
j—,’l‘l(x)gxl ¢y; note that p and g, are mutually absolutely continuous and that (¢!)? =
|Z€1|2 = d[,l,(}m/d,tl, n-a.e. O

Remark 2.20 The “gradient vector field” Vu in Theorem 2.17-(1) coincides with
the “weak gradient” Y(-;u) defined by Kusuoka [29, Lemma 5.1] (see also [25,
Definition 4.11]). Indeed, noting that we can naturally define Vu on K\ V,, for
m € N and u € H,, in the same way as in Theorem 2.16, from Egs. 2.15 and 2.16
we can easily verify %u(x) = Z,Vu(x)forx e Ky ifue C'(K)andforx e Kz \ V,,
if meN and u € H,,. Let u € F, and for each m € N let u,, € H,, be such that
Um|v, = uly,,. Then by Theorem 2.17-(1) and [23, Lemma 3.2.17],

mM— 00

/ Vu— ZVunPdp = f IV (= wn)Pdp = llu = w3 == 0,
K K

whereas Y (-; u) is defined as the L*(K, w)-limit of {Z Vit }men in [29]. Thus Vu =
Y(;u) pn-ae.

3 Geometry Under the Measurable Riemannian Structure

This section is devoted to preparing preliminary facts required for the subsequent
arguments. First we introduce basic notions and results concerning the description
of geometry of K, following [24]. Then we treat the volume doubling property of
energy measures, construction of geodesic metrics and weak Poincaré inequality. For
the Dirichlet space (K, u, £, F), which corresponds to the measurable Riemannian
structure on K, essential parts of the results of this section are already established in
Kigami [25]. Here we slightly improve his results, and prove the same results also for
the Dirichlet space (K, puuy, £, F), h € Sn,. The extensions to (K, up, £, F) are of
independent interest and will play central roles in Sections 4 and 5.

Definition 3.1

(1) Let w,ve W, w=w...wy,, v="y...v,. We define wv e W, by wv:=
Wy ... Wyt ...V, (Wl :=w, Pv :=v). We also define w'...w* for k >3 and
w', ..., wk e W, inductively by w'... w*:= (w'...wk"Hwk. We write w < v

if and only if w = vt for some t € W,. Note that ¥, N ¥, = ¢ if and only if
neither w < vnorv < w.

(2) Let A be afinite subset of W,.. We call A a partition of £ ifand onlyif £,, N X, =
@ for any w,v € Awithw #vand T = J, ., Zw.

(3) Let A; and A, be two partitions of . Then we say that A, is a refinement of
A,,and write A < A,, if and only if for each w' € A there exists w? € A, such
that w! < w?.
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Suppose A; < A,. Then we have a natural surjection A; — A, by which w! e
Ay is mapped to the unique w? € A, such that w' < w?. In particular, #A, >
#A,.

Definition 3.2

(1) A family 8 = {Ay}sec(0.17 of partitions of X is called a scale on ¥ if and only if 8
satisfies the following three properties:

(S1) Ay =Wy (=1{4}). Ay, < A, forany sy, s; € (0, 1] with s; < s5.
(82) min{|lw| | w € Ag} > o0 ass | 0.
(Sr) For each s € (0, 1) there exists ¢ € (0, 1 —s] such that Ay = A for any
s € (s,s+¢).
(2) A function/: W, — (0, 1]is called a gauge function on W, if and only if /(wi) <
I(w) for any (w, i) € W, x S and lim,,;,—. o max{l(w) | w € W,,,} = 0.

There is a natural one-to-one correspondence between scales on X and gauge
functions on W,, as in the following proposition. See [24, Section 1.1] for a proof.

Proposition 3.3
(1) Letl be a gauge function on W,. For each s € (0, 1], define
A ={w|lw=w...wyu €W, l(wy...wy_1) >s>1(w)} (3.1

where [(w; ... wy,—1) =2 when w = (. Then the collection 8(I) := {As(D)}se(0.17 IS
a scale on . We call 8(I) the scale induced by the gauge function L

(2) Let & = {As}se.1) be a scale on X. Then there exists a unique gauge function lg
on W, such that § = S8(Ig). We call I the gauge function of the scale 8.

Definition 3.4 Let S = {A}sc(0.1) be ascale on X. Fors € (0, 1] and x € K, we define

Kx.8):= |J Ki U8 := U K. (3.2)

weAy, xeK,, weAy, KyNK(x,8)#0

Clearly, K,(x,8) and U,(x, 8) are decreasing as s decreases and {K;(x, 8)}sec(0.1]
and {U;(x, 8)}s¢(0.17 are fundamental systems of neighborhoods of x in K.
Proposition 2.3 easily yields the following lemma.

Lemma 3.5 Let 8 = {As}se0,1) be a scale on ¥ and let s € (0, 1], x € K and w € A,.
Then#{v € A; | K, N Ks(x,8) # 0} <6and#{ve Ay | K, N K, # 0} <4

Definition 3.6 Let & = {A }sc(0.1) be a scale on X.

(1) A function ¢ : W, — [0, co) is called gentle with respect to § if and only if there
€exXists cgen € (0, 00) such that p(w) < ceen@(v) Whenever w, v € Ay for some s €
(0, 17and K,, N K, # #. We say that a finite Borel measure v on K is gentle with
respect to § if and only if the function W, > w — v(K,) is gentle with respect
to 8.
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(2) A metric p on K is called adapted to § if and only if there exist B, B, € (0, 00)
such that

Bpgs(x, p) C Ug(x, 8) C Bp,s(x, p), (s,x) €(0,1] x K. (3.3)

Lemma 3.7 Let § = {Ay}sc0.1] be a scale on T with gauge function | and let p be a
metric on K adapted to 8. Then p is compatible with the original topology of K, and
diam(K,, p) < Bl(w) for any w € W,, where 8, € (0, 00) is as in Eq. 3.3.

Proof The first assertion is clear. Let w € W,, x, y € K, and s := [(w). Then w < v
for aunique v € Ay, and K,, C K, C Us(x, 8) C Bg,s(x, p) by Eq. 3.3. Thus p(x, y) <
Bas = Bol(w). o

Now we discuss the volume doubling property of n and pgpy, i € Sy, First
we state their volume doubling property in terms of certain scales, to which the
corresponding geodesic metrics are shown to be adapted later in this section.

Definition 3.8

(1) We define 8" = {A}5c(0.1) to be the scale on ¥ induced by the gauge function

Iy s W = (0,11, Iy (w) == [Tyl A1 = /(3/5)WIu(Ky) AL
(2) Let h e Sy,. We define Sh = {A?}se«),l] to be the scale on ¥ induced by the

gauge function /, : W, — (0, 11, [y(w) := ||h o Fylle = / B/ (Ky)-

Lemma 3.9 (cf. [25, Lemma 3.5 and Proof of Theorem 3.2]) Let h € Sy,

(1) Forany (w,i) € W, x S,
LK) < w(Ka) < 2K, LTl < 1Tl < 2ITull, (34)
15“ w) = M wl_SM w)s 3 wlil = w1_5 wlls .

1 3 1 . 3
E,u(h)(Kw) = M(h)(Kwi) = gﬂ(h)(Kw)v glh(w) = lh(U)l) = glh(w) (35)

2) Ifw,v e W, satisfies |w| = |v| and K,, N K,, # ( then

wy (Ky) <9ug(Ky),  Ih(w) <3l,(v) and Iy(w) <3lyw).  (3.6)

Proof

(1) By considering ||ho F, ||glh o F,, and ¢ instead of & and w respectively, a direct
calculation easily yields Eq. 3.5, from which Eq. 3.4 is immediate.
(2) Thisis proved in essentially the same way as [25, Proof of Lemma 3.5]. |

Proposition 3.10 (cf. [25, Theorem 6.2])
(1) There exists cg € (0, 00) such that for any g, h € Sy, 11 s gentle with respect

to both 8" and $" with constant Coen = CG, Le. (g (Ky) < cglg (Ky) whenever
either w, v € AZ{ orw,v € Aﬁ‘ for some s € (0, 1] and K,, N K,, # 0.
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(2) Letx :=logs 15 and k :=logs 5 15. Then there exists ¢y € (0, 0o) such that for any
g heSy,xeKands,t € (0,1]withs < t,

HOBTD (1) e (e
e =o() mee() o

Proof

(1) This is proved in exactly the same way as [25, Proof of Theorem 6.2]. Here [25,
Proof of Theorem 1.4.3] together with Egs. 3.4, 3.5 and 3.6 easily shows that the
constant cg € (0, 0o) can be chosen independently of g, /.

(2) We essentially follow [24, Proof of Theorem 1.3.5], but slightly more detailed
arguments are required to deduce the explicit constants « and k. Let g € Sy,
x € K and w € 7~ !(x). For each s € (0, 1), let n(s) be the unique n € N U {0}
satisfying [w], € ATY, so that s/5 < | Ty, | <s by Eq. 3.4. Then (1) and

Lemma 3.5 easily imply that for any s € (0, 1),

H H
L MU 8T) 6cg and 1< g (Us(x 87))

< < < < 6%, (3.9)
(Kol 1@ (Kol ¢
Lets, t € (0,1),s < t. Then n(s) > n(t), and Eq. 3.4 yields
n(s)—n(t) n(s)—n(t)
l <l> S H T[(U]n(.\') ’ < E 5 ” T[w]nt\) H S 5 (E) . (310)
S\5 5” T[wlnm - ” le]nm | 5

Now from Egs. 3.9 and 3.10 we conclude that
o MU ilFasa) (Y023 (o)
(Ui(x,8M)) = w(Kiwy,,) — \5s 2572 125
and, using also Eq. 3.5, that

662 M(g)(Uv(x, SH)) - ,U«(g)(K[a)],,(x;) > <1>”(5)_”(1) > S—I? (S)K7

@ i (U(x. 87)) ™ 19 (Kion,,) ~ \15 t

proving the assertions for S™: the case with ¢ = 1 follows since Uys(x, S =K
In view of Eq. 3.5, exactly the same proof applies to the assertions for 8" as well.
]

Remark 3.11 The powers k in Eq. 3.7 and k in Eq. 3.8 are best possible. Indeed,
: « _ (B/5" 0 w«  _ (—1/2 V32 0 (/3/35)!

for n € N, since T}, = ( 0 (1/5),,), Tz = (ﬁ/z s )(—(«/3/5)2"“ 515y ), we

easily see 5" <t,/s, and hence wu(Us,(xn, 879))/1u(U,, (x4, 87)) < 10cG (s,/1a)* by

Eq. 3.9, where x,, := 7 (1"32%), s, :== || Ti»32:|| and ¢, := || T1»||. Similar calculations
work with 8" and ju( for each h € Sy,. For the first part of Eq. 3.8 it suffices to
choose g :=hy, x :=qy, s := ||Tj=| and ¢ := || T«| to let n — oo, and similarly for

the latter of Eq. 3.8 for each & € Syy,.
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Next we define the corresponding geodesic metrics on K and state their basic
properties.

Definition 3.12 Let & € Sy,. We define the harmonic geodesic metric py on K and
the h-geodesic metric py, on K by respectively

pr(x, ) :=inf{ly(y) | y : [0, 1] — K, y is continuous, y(0) = x, y(1) =y},
pn(x, y) i=inf{€,(y) | y : [0, 1] = K, y is continuous, y(0) = x, y(1) = y}

for x, y € K, where we set £14(y) := £(® o y) and £,(y) := £(h o y) for a continuous
mapy :[a,b]— K,a,b e R,a<b.

Definition 3.13

(1) Letm e NU{0}and let x, y € V,, satisfy x ~ y, where ~ is as in Definition 2.4.
Let w(x, y) be the unique w € W,, such that x,y € F,,(Vy), and let Xy (C
K (x,y)) denote the line segment from x to y which is also regarded as the map
[0,1] > t+ x4+ t(y — x). Note that xy C Kz by [25, Theorem 5.4].

(2) Letm e NU{0}. A sequence I' = {xk},’c\’:0 C V.., where N € N, is called an m-
walk if and only if x;_, " xi for ke {1,..., N} and w(xk—_1, Xk) # wW(Xk, Xikt+1)

for kAe {1,..., N—1}. For such I' we define continuous maps I" : [0, N] - K
and I" : [0, £4(I")] - K by

T =kt + (t—k+ Dk —xk_1), telk—1,kl, kefl,...,N},

and T:=To or', where ¢r is the homeomorphism ¢r : [0, N] — [0, £5(T)],
or(0) == £3(T|.0); note that £4(T) < oo and T([0, £x(T)]) C K, by [25,
Theorem 5.4].

(3) Let y:[a,b] — K be continuous, a,b € R, a < b. y is called a harmonic m-
geodesic, where m € NU {0}, if and only if y(f) = f(ZH(F)é_T“a), t €la,b] for
some m-walk T'. y is called a harmonic geodesic if and only if there exist
n € NU {0} and sequences {am}mzn, {bm}m=n C la, b] with lim,,_, o a,, = a and
limy, 00 b, = b such that a1 < ay < b,y < bpyy and y|a,, .5, i1s @ harmonic
m-geodesic for each m > n.

Proposition 3.14 ([25, Theorem 5.4]) If m € NU {0} and T is an m-walk, then ® o T’
is C', and (® o T)'(¢) € Im Zzg and |(® o T) ()| = 1 for any t € [0, 23 (D)].

For the harmonic geodesic metric p»; we have the following proposition due to
Kigami [25]; it is not explicitly stated in [25, Theorem 5.1], but is actually shown in
the proof there, that we can take harmonic geodesics as shortest paths for the length
£4¢(-). This fact plays a crucial role in the proof of Proposition 4.10 below.

Proposition 3.15 ([25, Theorems 5.1 and 5.11])

(1)  pn is a metric on K satisfying

B j5/50(%: pr) C Us(x, 87) C Bios(x, p), (5, %) € (0,11 x K. (3.11)
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(2) For each x,y € K with x # y, there exists a harmonic geodesic yy, : [0, 1] —
K such that y,(0) = x, y,(1) =y and py(x,y) = £y (yyy), and in particular

PHVy(8)s Vay () = Ly (Viylis.) = (¢ —$)pn(x, y) for any s, t € [0, 1] with s < .
Moreover, if m € NU {0} and x, y € V,, then we can take a harmonic m-geodesic

as Yy
In fact, similar assertions are valid also for pj, as follows.

Proposition 3.16 Let h € Sy,.
(1)  py is a metric on K satisfying
Bsas(x, pn) C Us(x, 8" c Bys(x, pp),  (s,x) € (0,1] x K. (3.12)
(2) For each x,y € K with x # y, there exists a harmonic geodesic y)f‘y :[0,1] - K
oo hoqs _ h ) . .
1011 0,11 10 b the mvese of (0,113 2 ExCobt o o

Pr(yly 0 9l (9), v 0 @l (D) = (vl 0 ¢l lis) = (t = )pn(x, y) for any s.te
[0, 1] with s <t. Moreover, if m e NU{0} and x,y € V,, then we can take a
harmonic m-geodesic as yfy.

Remark 3.17 If y :[0,1] — K is a harmonic geodesic and / € Sy, then by [25,
Theorem 5.4] (see also Eq. 3.15 below), the set {t € (0, 1) | (h o y)'(¢) = 0} is discrete
and hence [0, 1] 3 £ — £,(y|[0,9) 1s strictly increasing. Therefore wi’y as above does
exist as a homeomorphism.

We need the following lemma for the proof of Proposition 3.16.

Lemma 3.18 (cf. [25, Lemma 5.6]) Set Osc4 f :=sup, f —infs f for f € C(K) and
ACK A#W Lethe Sy, we Weandx,y € F,(Vy), x # y. Then

Lp(xy) = inf{ln(y) | y : [0, 1] = Ky, y is continuous, y(0) = x, y(1) =y}, (3.13)

In(w)

Osch < £y(xy) <20sch and
K, K,

| —

<) < %zm). (3.14)

Proof 1t is easy to see that we may assume w = ¢} without loss of generality by
considering ||k o F,llz'h o F,, @, F,'(x) and F,(y) instead of h, w, x and y. Then by
the symmetry of K and (£, F) we may further assume that x = g, and y = ¢s.

Let :=[—1/+/3,1/+/3]. By [25, Theorem 5.4], ®(q2q3) = {(¢(1). 1) | t € I} for
some ¢ € C'(I) and it possesses the following properties: ¢(—f) = ¢(t) for t € I,
¢’ is strictly increasing, ¢'(£1/+/3) = £1/+4/3, and K3, C {(s.1) € R? | s < p(0)}, i.e.
hy < @ ohy. We set yp3(t) := @~ (p(t),1),t € I. Choose a, b, c € R so that h = ah; +
bhy + cl. Then ho yy(t) =ap(t) +bt+c for t € I and (ho yx3) =a¢ +b. Since
a®> +b? = |h||z = 1 # 0t follows that

either (hoyy) (t) #0foranyte I or (hoyy) (ty) =0 foraunique ty € I,
(3.15)

from which and 4 < ¢ o hy we can easily verify Eq. 3.13 and ¢,,(g2q3) < 2 Osck h.
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To complete the proof of Eq. 3.14, let g23 := F2(q3) = F3(q2), so that 5h(gx;) =
h(q1) + 2h(q2) + 2h(q3) by h € Hy and [23, Example 3.2.6]. Since either of /(g;) and
h(g3) is equal to either maxy, /& or miny, i, we see that

561(q2q3) > S|h(q2) — h(g23)| + 51h(q23) — h(g3)]
= |h(q1) + 2h(q3) — 3h(q2)| + |h(q1) + 2h(q2) — 3h(g3)| > Q/SCh = OECh,

proving the former assertion of Eq. 3.14 which and Eq. 2.16 yield the latter. O

Proof of Proposition 3.16 This is proved in exactly the same way as [25, Proofs of
Theorems 5.1 and 5.11] by using Lemma 3.18 instead of [25, Lemma 5.6]. |

By virtue of Propositions 3.10, 3.15 and 3.16, now we arrive at the following
theorem, which improves and generalizes [25, Theorem 6.2] and will be used to
deduce the remainder estimates in Theorem 5.8 below.

Theorem 3.19 Let k :=logs 15 and & :=logs,; 15, as in Proposition 3.10-(2). Then
there exists cy € (0, 00) such that for any g, h € Sy, x,y € K and r, R € (0, 00) with
r<R,

H(BR(X, pr)) _ CV<R + pr(x, y))“ Iy (BRX, o) _ CV(R + pn(x, y) )“
w(By(y, pr)) — r T oy (B (v, pn) T r '
(3.16)

ni (BrOs p10) (R+pH<x, y))f i (BrOS o) _ <R+ph<x, y))k
wig (Br(v. pro) ~ r " B oe) T r '
(3.17)

Proof Since Br(x, p) C Bripx,y) (¥, p) for p = py, py, it suffice to prove the asser-
tions when x = y. Equations 3.7, 3.8, 3.11 and 3.12 easily yield Eqgs. 3.16 and 3.17 for
R < +/2/50, and then the case of R > +/2/50 is easily proved by using Eqs. 3.4, 3.5,
3.11 and 3.12. ]

Finally we prove the weak Poincaré inequality for (K, u, £, F) and (K, pupy, €, F),
he SHO.

Proposition 3.20 Let cg € (0, 00) be as in Proposition 3.10-(1) and cp := 3*10°c(;. Let
h € Sy, and let (v, p) denote any one of (i, py) and (i, pr). Then

/ |u - ﬁzf|2dv < cPrzuw)(stoﬁr(x, ,o)), ueF (3.18)
B, (x,p)

for any (r,x) € (0, 00) x K, where ! := v(B,(x, p))~! fB,(x,p) udv.
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Proof Letu € F. Recall that Rg denotes the resistance metric on K associated with
(€, F). Since diam(K, R¢) < 6 which easily follows by using [23, Lemma 3.3.5], for
any w € W, and any y, z € K,, we have

()~ (P = Re(F;' 00, By @)€ o Fuwo Fuy =3(3) i (K. (319)

Also fors € (0, 1) and w, v € A with K,, N K, # ¥, Eq. 3.4 and Proposition 3.10-(1)
yield

2 /5wl 5\ , 3\l 3y !

g(g) = M(Kw) = CGM(KU) = CG(g) s, thus (g) = 2566(5) . (320)

Let (r, x) € (0, 00) x K.Supposer < \/5/50 and take w € A;—;ﬁr such that x € K,,,.

Then by considering U,s 5, (x, 8™, from Egs. 3.11, 3.19 and 3.20 we easily see that

3\ Il
lu(y) —u(z)| < 60\/§CG\/<§> i) (Basoyzr (X, 1)), ¥,z € Br(x, pr).  (3.21)

Now since (B, (x, pr)) < 1(Uys s, (x, 8M)) < 6¢u(K,) by Egs. 3.11 and 3.9, and
B/ (K, = Twl? < 12501 by w € A;_Stfr’ Eq. 3.18 for (i, py) immediately
follows by integrating Eq. 3.21 in z under u|g,(x . and then in y after taking the
square. The case of 7 > +/2/50 can be verified in a similar way by using Eq. 3.19 with
w = @ since B,sy 3.(x, pr¢) = K by Eq. 3.11, and exactly the same proof applies to
the case of (w ), pr) as well by virtue of Eq. 3.5, Proposition 3.10-(1) and Eq. 3.12.

[}

Notation In the rest of this paper, we will use the constants k = logs 15, & = logs 5 15,
¢ and cy appearing in Proposition 3.10 and Theorem 3.19 without further notice. In
particular, for g, h € Sy, (g is gentle with respect to both 8™ and 8" with Coen = CG-
Also in what follows, for a, b € [0, 00) we write a S b if and only if a < cb for some
constant c € (0, 00) determined solely by «, k, cg, ¢y, and write a < b if and only if
botha < b and b < a hold.

4 Off-diagonal Gaussian Heat Kernel Behavior

The main purpose of this section is further analysis of the geodesic metrics py; and
pn, h € Sy, and as a consequence we will get the two-sided Gaussian bound and
Varadhan’s asymptotic relation for the heat kernels p, and p,,, .

Let us start this section with the following standard definition.

Definition 4.1 Let v be a finite Borel measure on K with full support. We define
pv(x, y) = supfu(x) —u(y) |lu € F, pw =v}, x,yek. (4.1)
Clearly, p,(x, y) = pu(y, x) € [0,00), py(x,x) =0 and p,(x, y) < py(x, 2) + pu(2, y)

forany x, y, z € K;in fact, p,(x, y)> < v(K)Re(x, y)/2. p, is called the intrinsic metric
of the Dirichlet space (K, v, E, F) or simply the v-intrinsic metric on K.
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The notion of the intrinsic metric of a strong local Dirichlet space appears in many
places such as [18, 32, 35, 36]. The results there suggest that the intrinsic metric is the
most “natural” metric for a given strong local Dirichlet space; for example, according
to Ramirez [32] and Hino and Ramirez [18], Varadhan’s asymptotic relation like
Eq. 1.4 s true for a large class of strong local Dirichlet spaces as long as the metric in
the right-hand side is replaced by the intrinsic metric.

Then a problem arises as to how the intrinsic metric is characterized for concrete
examples. For the canonical Dirichlet space associated with a smooth Riemannian
manifold M, it is not difficult to see that the intrinsic metric is equal to the geodesic
metric on M; see [31] and references therein for related results on Riemannian
manifolds. The same assertion is in fact true also for our Dirichlet spaces (K, i, £, F)
and (K, upy, €, F), h € S, which is the main theorem of this section:

Theorem 4.2

(1) pr = pu- Moreover, pr(x,-) € F and [1(py,(x,)y = W for any x € K.
(2) Leth € Sy,. Then pj, = py,,,. Moreover, py(x, ) € F and pp,(x.yy = pny for any
xe K

Then based on Theorem 3.19 and Proposition 3.20, the general results of Sturm
[35, 36] and Ramirez [32] imply the following Gaussian bounds and Varadhan’s
asymptotic relation.

Corollary 4.3 Let h € Sy, and let (v, p) denote any one of (u, px) and (apy, pn)- Let
n € N. Then for any (t,x, y) € (0,00) x K x K,

(x,y)? X, )2 \k/2 x,y)?
CLiexp(—%) < pu(t,x,y) <cu (1 - 'y) ) exp(—p(zzy) ) (4.2)
v (B i(x, p)) \/v (Byi(x, p)) v (B sy, p)

e

o Jo (Bite. ) v (B iy )

where ci, cy € (0,00) are determined solely by «k,cg,cy and cy(n) € (0,00) by
n, K, cG, Cv.

|07 pu(t, x, )| < cun) (4.3)

Proof Note that 9'p, exists and is continuous on (0, c0) x K x K by [8, Proof of
Theorem 2.1.4]. On the basis of p = p,, Egs. 3.16 and 3.18, [36, Corollary 4.10] yields
the lower bound in Eq. 4.2, and [36, Theorem 2.6] and [35, Corollary 2.7] imply the
other assertions. m]

Corollary 4.4 Leth € Sy, and let (v, p) denote any one of (i, px) and (i, pi). Then

lilr(r)l 2tlog pu(t, x, y) = —p(x, y)2,  x,ye K. (4.4)
t

Proof Equations 4.2 and 3.16 yield limsup,, 2tlog p,(t, x, y) < —p(x, y)2. We can
also easily show liminf, o 2¢log p, (t, x, y) > —p(x, y)? in exactly the same way as [32,
Proof of Theorem 4.1] by using p = p, and the lower bound in Eq. 4.2, since [32,
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Theorem 1.1] (or [18, Theorem 1.1]) applies to the present situation by the strong
locality of (£, F) and [13, Theorem 3.2.2]. ]

The rest of this section is devoted to the proof of Theorem 4.2. Unlike the case
of Riemannian manifolds, this result is not straightforward and requires a long
complicated proof, mainly due to the geometric singularity of the space. The proof
relies heavily on Theorem 2.17, Propositions 3.15 and 3.16 and the ideas in [20].

Lemma 4.5

(1) Ifue C(K) and Lip,, u < 1then u € F and pyy < . Moreover, py(x,-) € F
and Lo, (x,y) = i for any x € K.

(2) Leth e Sy, Ifu e C(K) and Lip,, u < lthenu € F and juy < py. Moreover,
pn(x, ) € Fand [,y = iy for any x € K.

Proof

(1) We fix x e K throughout this proof. Let u e C(K) satisfy Lip,, u <1.

Since [u(y) — u(z)| < pr(y. 2) < Ly (32) < 4v6/3)|IT, | forw e W, and y, z €
F,(Vy) with y # z by Eq. 3.14, from Eq. 2.1 we see that for m € N U {0},

Entuly,. uly,) < 8( A 33—2||Tw||2= > 8u(Ky) =16

weW,, y,zeF,(Vy), y#z weW,,

ie.u € Fand S(u u) < 16. Recalling Theorem 2.17,let y € K \ V*, y # xand
suppose that Vu(y) € Im Z, as in Eq. 2.11 exists. We show that Vu(y)| <1,
from which @) < u follows since dp gy = |Vul*dp. Let w € 77! (y), and set

Ry(2) = u(z) — u(y) — (Vu(y), ®(z) — ®(»)), ze€K. (4.5)

By Proposition 3.15, there exists a harmonic geodesic y : [0, 1] — K such that
y(0) =x,y(1) = y and pp (v (s), y () = |s — tlon(x, y) for any s, ¢ € [0, 1].

Let m € N satisfy x & Kj,),,. Set a :=sup{t € [0, 1] | y(t) & K|w), }, SO that a €
0, 1), y(a) € Fiy),, (Vo) and y(la, 1]) C K|y, Choose i€ S so that y(a) =
Fio),,(gi),andletn :==minfk e N | k > m, wx #i} — 1, w := [w], and j := w,4;1.
Then n>m, i # j, y(a) = F,i(q;)) and y € K,,;\ V,. Further set b :=inf{t €
[a, 11| y () ¢ Ky}, sothatb € (a, 1), y(b) € F,;(Vy) and y([a, b]) C K,;. Now
by [25, Lemma 5.6], these facts together with px(y (@), y (b)) = £x (¥ |jab))
imply that £ (¥ la.p)) = €n(2a2p), Where z, :=y(a), zp :=y(b) and Z,2p :
[a, b] — K denotes the harmonic (n + 1)-geodesic determined by the (n + 1)-
walk {z4, zp}. Therefore if we define yy : [0,D0] — K by wli0.q) := ¥lj0.q) and
Yolia.p] := ZaZp, then it is continuous, |7 is C' with lye®] = pr(x, y) for
t€(0,b], and £ (y0) = L1 (¥l0.61) = pr(x, 2p) = pr(x, yo(b)). Hence

P, Yo ) = r(olsn) = (t —$)pr(x,y) fors, te[0,b], s <t (4.6)
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Since (hy o Z,2p)(t) = O for at most one ¢ € [a, b] by Eq. 3.15, we can take ¢, d €
[a,b]sothatd — ¢ > (b —a)/2 and hy o Z,2p |c,q is strictly monotone. Then let-
ting z. := Z42p (¢) = Yo(c) and z4 := 7,25 (d) = yo(d) and using Eqgs. 3.14,4.6 and
3.4, we have €4 (252p) < (4/v3)yt (wi) < 3l (W), Ly, (ZaZp licap) = lhy(ze) —
hy(zd)|7

PH(Zes Za) = €1(ZaZb lic.ap) = Lny(ZaZb lic.a) + €nt (ZaZb)

= |hy(zc) - hy(zd)| + 3lh§ (w), (47)

B b—a  n(@Zazp) N Twill _ IITwl
PH(Ze, 2a) = (d — ) pr(x,y) > PH(X, y) = > > 102 = o0
(4.8)

Now let ¢, , € R be such that %u(y) = c¢u,y¢y. Then since (%u(y), o) —
®(y)) = cu,yhy by Egs. 2.14, 4.7 and 4.5 yield

lcuylor(zes 2a) < |Cu,y(hy(zc) - hy(zd))| + 3|Cu,y|lh}% (w)

< |(Fu), @(z0) = ®(za) + Ry(z) = Ry(z)| +250p |R,|

+3|Cu,y|lhj,- (w)
= |u(ze) — u(zq)| + 2sup |Ry| + 3|Cu,y|lh‘%(w)
K, :
< pH(Z¢, Za) + 2 sup |Ry| + 3|Clt,y|lh§; (w). (49)

w

Recalling w = [w], and n > m, we divide Eq. 4.9 by px(z., z4) and use Eq. 4.8
to get

ZsupZGKlw]n |Ry| + 3|cuy|||h;_ o F[w]n ”5 m— 00, n— 00
I T, I

|cuyl < 14100 1

by virtue of Eq. 2.11 and Lemma 2.19, proving |§u(y)| < 1. Finally, noting that
Lip,, p3, < 1, where p3, := py(x, -), we let u := p3, in the above argument and
use Eq. 4.6 to obtain

P1(zes 2a) = 03(za) — P%(z0) = (Vo3 (1), ®(2a) — ®(z0)) + Ry(z0) — Ry(zc)

= Cp;'_t,y(hy(zd) - hy(zc)) + Ry(zc) - Ry(zc)

< lepy, ylor(ze, za) + 2 sup Ry,

[@ln

from which we conclude that 1 < |cs | = |§p7xi(y)| (<1) by using Egs. 4.8
and 2.11 to let m — 0o, n — co. Thus 1 = [Vp,|> = dju(ps ) /dp p-a.e., that is,

Hipy,) = K-
Thi}st is proved in exactly the same way as above by using Theorem 2.17-(2),
Eq. 3.5, Proposition 3.16 and Lemma 3.18. O
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Lemma 4.6 p3 < p, < 99w, and p, < p,,, < 6p; for any h € Sy,

Proof Letx, y € K. Since py(x, -) € F and iy, r,)) = 1 by Lemma 4.5-(1), we have
pr(x, y) = pr(x, y) — pr(x, x) < p,(x, y). Next for the proof of p, < 9py letu € F
satisfy ey < p. It suffices to show that |u(x) — u(y)| < 9px(x, y) whenx, y € V,, for
some m € N and x # y since u € C(K) and V, is dense in K. For any w € W,, from
My (Ky) < w(Ky) we easily see |luo Fylle < ||Ty| and therefore

ITull = o Fylle = 28 o Fylv,. uo Fyly,) = g O(sc)u (4.10)
w 0

By Proposition 3.15, there exists an m-walk {xk}}cv:o C Vyusuch that xo = x, xy = y

and pp(x, y) = Z,ivzl Ly (Xr_1x). Then Egs. 3.14 and 4.10 yield (recall Definition
3.13-(1))

N N
. T w0 | [2(xp— 1) —uCo] _ulx) —uy)l
14 _
; H Xk lxk)>kZ:1: 52 kX:; = 9

and hence |u(x) — u(y)| < 9pr(x, y). Exactly the same argument using Lemma 4.5-
(2), Proposition 3.16 and Eq. 3.14 shows the other assertion, completing the proof.
]

We need the following two lemmas for the next proposition (Proposition 4.9).
The first lemma is elementary and easily follows from [26, Theorems 10.3 and 10.4],
whereas the latter plays a central role in the proof of Proposition 4.9.

Lemma 4.7 Let v be a finite Borel measure on K with full support, let U be a non-
empty open subset of K and set v|y = v|pw, and EYV = E| 7,5, Then (EY, Fy)
is a strong local regular Dirichlet form on L*(U,v|y) whose associated Markovian
semigroup admits a unique continuous integral kernel pY = pY(t, x, y) : (0, 00) x
U x U — [0, ), and pﬁj is extended to a continuous function on (0, 00) x K x K by
setting p¥ :=00n (0, 00) x (K x K\ U x U). pY is called the heat kernel associated
with (U, v|y, EY, Fu).

Lemma 4.8 limsup, , 2¢log p,,, (¢, x, y) < —pp,, (%, y)? forany x,y € K, h € Sy,.

Proof Let h € Sy,. By Lemma 4.6 and Eq. 3.12, p,,,,, is a metric on K adapted to 8".
Then (wy, puy,) has the volume doubling property similar to Eq. 3.16. Moreover, for
(v, p) = (ny, Ppy,y)» the proof of Proposition 3.20 still works and hence Eq. 3.18 holds
with the constants 3*10° and 250+/2 suitably replaced. Now the assertion follows from
[36, Theorem 2.6] and [35, Corollary 2.7]. O

Proposition 4.9 Let h € Sy, i € S, b € (h(g;), 00) and set a := h(q;). Suppose that
the connected component U of h='((—o0, b)) with q; € U satisfies U N Vy = {q;}. Let

Pla.b) = Plab)(t, X, y) : (0,00) x [a,b] x [a,b] — [0, 00) be the heat kernel for 2dx2
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on [a, b] with Neumann (reflecting) boundary condition at a and Dirichlet (absorbing)
boundary condition at b. Then

My © (hly)~' = 2&(h, h’i)l[a_b]dx (dx is the Lebesgue measure on R),  (4.11)
Pry, ( qi, ) = QER, B~ prap) (t, a, h(x)), (1, x) € (0,00) x U, (4.12)
on(qis X) = Py, (i, X) =h(x) —a, xeU. (4.13)

Proof Let hy := hly + blgy. We show hy, € Hgyuik\v)- Note that, by [13, Prob-
lem 1.4.1] and the locality of (£, F), given open subsets Uy, U, of K with U; N U, =
@ we can verify Fy,uu, = Fu, ® Fu, and Ey,up) =0 for u; € Fy,, i =1,2. Set

U :=h""((—o0, b))\ U. Since U, U are open in K and (b1 — h) e Fuyug, (b1 —

Wty € Fu andhb =bl—(b1—h*ly e F.ByaU c U\ (U UU) C h™'(b), h =
b on dU, hy —h= (b1 —h)lkyu € Fiy and therefore Ehp,u)y=Ehyp —h,u) =
E((b1 — h)lK\U, u) = 0 for u € Fy\(q,), proving the claim.

Proposition 2.10-(2) yields a < h, < b. Moreover, we have ;' (a) = {g;}. Indeed,
choose n € Nso that K-t C U.Thenhy o Fpot = ho Fut € Ho \R1byh € Hy \ R1
and hence i, > aon Kjn \ {g;} by the strong maximum principle [23, Theorem 3.2.14].
Set c¢:=ming, g e and g:=hplxk, + (hy vV o)lg,. Then g e Hg,ux\v),
and Proposition 2.10-(2) implies that A, (x) = g(x) > ¢ > a for x € K\ Ku. Thus
h, @) = {q:}.

By [11, Proposition 2.9] (see also [20, Corollary 2.11]), jp,) o hy' = 81j4dx
for some ¢ € (0, 00), and pp,) (K\U) = /L(hb)(h;l(b)) = 0. Since ppylu = wpylu
by [13, Corollary 3.2.1] (or by Theorem 2.17) and g, (K\ U) =0, we have
Wiy © (h'|U)*1 = W) o (o o)™ = ) © h;l = 81j4,p1dx. Take ay, by € R such that
h = ayh'| + bk +al. Let n € N satisty Kyu- C U. Then 2E(h, b)) = a;, > 0 since
h >a on K;»\{g;}, and the argument in the previous paragraph together with
Proposition 2.10-(2) also yields

o ([na (5) - (5) 7))
C Kn C (hlp)™! ([a,a+ @)n ap + <5> @’;,'D : (4.14)

Taking the values of () on each side of Eq. 4.14 yields |a} +97"b7 — Sap| <
3718|b|/+/3, and letting n — oo results in 8a; = a2. Thus § = a), = 2E(h, h'), prov-
ing Eq. 4.11.

We could give a probabilistic proof of Eq. 4.12 based on [20, Theorem 3.6],
as in [20, Proof of Theorem 4.1], but we provide an alternative analytic proof

here. For n e N let ¢,(x) := (b%a)]/2 cos(2t 'nb =4} and A, := %z(zb":; )2, so that
—Ant

— 10 = Mu@n, @}, (@) = g, (b) = 0 and therefore fa Plap)(@, -, Yo (y)dy = e ', for
t € (0, 00). Then {g,}sen is a complete orthonormal system of L*([a, b], dx). On
the other hand, let A, y be the non-positive self-adjoint operator of the Dirichlet
space (U, umlu, &Y, Fy) with domain D[A,y]l. Then ¢,(hy) € D[Anpy] and
Anulen(hp)] = 3@/ (hp) = —Angn(hy) by [20, Theorem 2.12-(2)] and hence

/U P (& )nhy)dpi () = e ' gu(hy), 1€ (0, 00). (4.15)
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Let fe L%(a,bl,dx) and a,:= [" fe.dx, neN. Then f=3 a,p, in
L*([a, b], dx) and hence f(hy)1ly € L*(U, pyylv) and f(hp)ly = 3, e @n@n(hp) in
L*(U, wuylu) by Eq. 4.11. Therefore for (¢, x) € (0, o0) x K, Eq. 4.15 yields

/U Py, (& v, X) f iy D)y () = Y ane™ g, (hy (1))

neN
b
- / Plasy (& v, hy (1)) FO)dy. (4.16)

Now Eq. 4.12 follows by letting s € (a,b), f:= (s — a)‘ll[a,s] in Eq. 416 and s | a
since k' (a) = {g;} and pyy (hy ' ([a, s1)) = 2E(h, h})(s — a). Finally, since Py, < Pus
by [24, (C.2)], we see from Lemmas 4.6 and 4.8 and a direct calculation using [21,
Proposition 2.8.10] that for x € U,

2 1 1 U .
(h(x) —a)” = lgfg 2t10g prap)(t, a, h(x)) = lgfon 2tlog p,,,, (1, i, X)

> —limsup2log p,, (¢, Gi, X) = puy (G, ¥)* = pr(gi, ¥)* = (h(x) — a)*,
140
proving Eq. 4.13 for x € U, and hence also for x € U. O

Proposition 4.10

(1) {ueFluw =ut={ueCK)|Lip,, u=<1}
(2) Lethe Sy, Thenf{ue F | pu < ) ={u € C(K) | Lip,, u < 1}.

Proof

(1) Let ue F satisty py <u, let [eN and x,ye V), x #y. It suffices to

show |u(x) — u(y)| < pn(x, y), since V, is dense in K and we already have
Lemma 4.5. We follow [7, Proof of Proposition 1.11]. Note that Lip, u <9 <
oo by Lemma 4.6. By Proposition 3.15, we can choose a harmonic /-geodesic
y :[0,1] - K arising from an /-walk I' = {zk},lc\;0 so that y(0) =x, y(1) =y
and pp(y(s), y(®) = |s — t|jpr(x, y) for any s,¢ € [0, 1]. Set ¢ :=u o y. Then
we have [y(s) — ¥ ()] < (Lip,,, w)ls — tlpn(x, y) for 5,7 € [0, 1] and hence
is absolutely continuous. In particular, ¥'(¢) exists for dt-a.e. t € [0,1], ¥ €
LY([0,1],dt) and ¥ (f) = fot ¥'(s)ds, t € [0, 1]. Thus it suffices to prove that
[/ (8)] < pr(x, y) for dt-a.e. t € [0, 1].
Let ¢ € [0, 1] and suppose ¢'(f) exists. We may assume that y () ¢ V. since
y~'(V,) is countable. Let z:=y(¥) and w € 7' (z). Choose k e {l,..., N}
and i, j€ S so that z € Zx_1Zk, 2k—1 = Fu(q;) and zi = F,(q;), where w :=
w(zZr—1, 2x)- For m > |w| we set

__uofly,), __h;o F, L. hyoPFu,

Uy = s m = , = . 417
I Tt I | Tt I " | Tien, I (417)

Then |lunlle <1 by pw <w, and Lemma 2.19 yields 1> ||hy,lle — 1 and
||hﬁ;1||g — O0asm — oosince z € Zx_12x C Kz. Choosing subsequences {i, }nen
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and {A, }nen, We have u,,, — v weakly in (F/R1, ) and |k, — glle — O as
n — oo for some v € F and g € Sy, with v(z) = g(z) = 0. We further define

Up = Up, — Up, (Z)l, 8n = hm,, - hm,x (Z)l, gi = hrt,, - /’l#’” (Z)l (418)

We have lim,_. |81 — glloo =0 and v,(p) = v (p) — vu(2) = v(p) —v(2) =
v(p) as n — oo for any p € K since F/R1 3 f+— f— f(z2)1 € C(K) is a well-
defined bounded linear operator (F/R1, £) — (C(K), || - |l«) by Theorem 2.5.
We claim that gy < (. Let T € W,. Since F7}: f+— fo F; is a bounded
linear operator on (F/R1, £) by Eq. 2.2, we have ||g, o F: —go F.|ls V llg} o
Frllg = 0and v, o F; — vo F; weaklyin (F/R1, ) asn — o00. By gy < =
[iny) + Mty We see that (v, o Fr |2 < [Ign o FellE + llgi o F:||%, and letting n —
oo results in ”v ° Fr “5 < liminf, . « ”Un o FT”S =< ||g° FI”S’ ie. //L(v)(Kr) =<
g (K7). Thus the claim follows.

Note that either g ¢ RA, + R1 or g ¢ Rhj + R1. Suppose g ¢ Rh), + R1; the
proof for the other case is similar. Take ¢, = (¢;, ¢7) € R? so that g — ¢ h) —
¢ohy € R1.Then ¢ # 0,andsince k) o Fiu = (3/5)Mh} and iy o Fyn = (1/5)Mh}
we can choose M € N so that eg(g;) < minpey,\(q, €8 0 Fim(p) =: b, where ¢ :=
¢g/1¢g1. Let U be the connected component of (¢g)~'((—o0, b)) with ¢; € U,
and choose g € q;q; N U \ {q;}. The definition of b implies U C K;» and hence
Proposition 4.9 together with 11,y < 11(4) shows that

[v(qi) — v(@] < puy, (i @) = 18(qi) — 8g(@)| # 0. (4.19)

Now noting that y is injective and that Fy,), (q:), Flo),, (9) € Zk—1Zk, We set
$n =y " (Flol, (@) and t, := y~'(F,, (@) for n € N. Then lim, s, =
lim, oo t, = y~!(z) = t, and Lemma 3.7 and Eq. 3.11 imply

(sn — 11V |tw — 1D o1 (X, ¥) = pr(y ($0), 2) V pr(y (1), 2) < 10| Tiay,,, |-
(4.20)

Let a:= g(q;) — g(q). By lim,(g:x(qi) — 8.(q)) =a # 0 and Eq. 4.20, for
sufficiently large n € N we have |g,(q;) — £.(q)| > |a|/2 and

nls tn Twm n\Y4i) — &n
b = pr(r ).y ) _ [ Tion, [182(a0) = 81(@)] >@(|sn_t|v|tn_t|),

PH (X, y) - PH (X, Y) 20

(4.21)

from which lim,,_, o, L&Y — /(1) easily follows. Then the first inequality in

Sn—1,

Eqgs. 4.21 and 4.19 togethe"r imply
V'Ol _ lim ¥ Sn) = ¥ ()|
im

PH(X,y)  n>o0 IS, — Lyl pp(x, y) T n—oo

v(g:) —v(q)
8 —gq@ |~

Un(qi) - Un(‘]) —
8n(qi) — gn(q)

)

proving [u(x) —u(y)| = | (0) — ¥ (1)| < pn(x, y) and Lip, u < 1.

Let /e N and x,y € Vi, x # y and set y :=y}! o ¢}, where y and ¢, are
as in Proposition 3.16 with y;‘y a harmonic /-geodesic. Then exactly the same
proof as that of (1) still works with w,, = [[ho Fi, llz'uo Fi,, and h, :=
Ao Fa,llg'ho Fy,. o
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Proof Let h € Sy,. By Lemmas 4.5 and 4.6, it only remains to show that p, < py
and p,,, < pn, which are immediate from Proposition 4.10. O

5 One-dimensional Asymptotics at Vertices

In this section, we prove sharp “one-dimensional” asymptotic behaviors of
w(B,(x, px)) and p,(t, x,y) for x € V,, which reflect our observation that, near
®(x), the harmonic Sierpinski gasket Ky, (Fig. 2) looks very much like its “tangent
line at ®(x)”. We treat the results for u(B,(x, px)) and p,(t, x, y) respectively in
Sections 5.1 and 5.2. Then Section 5.3 presents an application of the result for p, to
moments of displacement of the corresponding diffusion.

The following definition is fundamental for the arguments in this section.

Definition 5.1 For each x € V,, we define &,, ¢y, ry € (0, 00) and K* C K as follows:

(i) Ifx=gq;e Vo, ie S thenweseté, :=1/2,¢c4 :=1,ry :=1and K% := K;.

(ii) Ifxe V,\ Vo letwe W, andi, je S,i# jbe such that 7! (x) = {wij>®, wji®}
(recall Proposition 2.3) and d, b, ay, b} € R such that hy o F,; = a’h| + b’ h}
and hy o F,; = ath| + bih} (recall hy(x) = 0). Noting that a} = —a’ by the
hamonicity of A, at x (see [23, (3.2.1)]) and that a’ # 0 by Lemma 2.19 and
infen(5/3)" | Twijr | > 0, we define

- é lw|+1 |ai| o Mty (Kw,- U ij)
X - 3 xls X - |ll;|'? ’
(5.1)
4 3\M
Fy 1= g <§) |(l;|, K* = Kwi/'Nx U Kw/'iNX’

where N, := 1 + min{n € NU {0} | (+/3/6)3"|d.| > |bi|V |bl]}.

Remark 5.2 We can write down &, cy, ry explicitly in terms of T, in the situation of
Definition 5.1-(ii), since h, and h+ are given by Eq. 2.14 and

gx = 8i|Twi§q,-|_l Twifq/- = 5j|ij§q,|_l ijé-q; (52)
for some ¢;, ¢; € {—1, 1} by Proposition 3.14.
5.1 Measures of Geodesic Balls

The following is the main theorem of this subsection.

Theorem 5.3 Letx € V,ands € (0, r,]. Then

. w(Br(x, pr))  iny (Bs(x, pn,))
noo r -

= 2¢,. (5.3)

The rest of this subsection is devoted to the proof of Theorem 5.3. We need the
following proposition and lemmas, which will play essential roles also in Sections 5.2
and 5.3 below.
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Proposition 5.4 (cf. Proposition 4.9) Let x € V. \ Vy, and let U* be the connected
component of h;'((—ry, ry)) containing x. Letw € W, i, j € S, _a;, al e Rand N, e N
be as in Definition 5.1, and without loss of generality assume a}, > 0.

(1) hy <0 on Ky \ {x} and hy >0 on K, v\ {x}. Moreover, K* C U* C
Kwi/’"’r‘ U iji’\’r‘-

(2) For b € (0,00) let pp = pp(t,y,2):(0,00) x [=b,b] x [—b,b] — [0, 00) de-
note the heat kernel for %57 on [—b, b] with Dirichlet (absorbing) boundary
condition at —b and b. Then

Wiy © (hely)™ = &1, ,qdy  (dy is the Lebesgue measure on R), (5.4)
P (6x ) =& pr (1.0, he(y)). (1Y) € (0,00) x UF, (5.5)
pn,(x,y) = [ ()], y e U~ (5.6)

(3)  Bi(x, pn) = U* N A ((—r, 1) and pp,y(Br(x, pn,)) = 2&r for any r € (0, ryl.
4) Bor,;3(x, pn,) C Kyijp U Kyjn C Bsy,6(x, pp,) forn e N, n > Ny, wherer, , ==

3
Proof

(1) In view of the definition of N,, a direct calculation together with the strong
maximum principle [23, Theorem 3.2.14] easily shows the assertions.

(2) Equations 5.4 and 5.6 follow by applying Proposition 4.9 with 4 = ||h, o
Fyllg'hyo Fyy b =r¢/|hyo Fyll, a=0 and U= F,"(U*NK,), where v:=
wji™~!, and similarly on K,;v.-1. Also the same proof as that of Eq. 4.12 shows
that for any f € L*([—ry, 7], dy) and any (¢, y) € (0, c0) x U¥,

r

/U Py 6 20 Fhe@) iy (2) = / etz ) fdz, (57

—7y

from which Eq. 5.5 easily follows by virtue of 2;'(0) N U* = {x} and Eq. 5.4.
(3) Thisis immediate from Eqs. 5.4, 5.6 and the fact that |i,| = r, on AU~ .
(4) Similarly to Eq. 4.14, using the definition of N, and Proposition 2.10-(2) we

have
2 2 5 5
(hx|U<‘)_1 ((_grx.na grx,n)) C Kwij" U iji” - (hx|U")_1 (<_6rx,nv grx,n)>
for n > N,, which and the first assertion of (3) immediately yield (4). ]

Lemma 5.5 Téscxr’? < sy (Br(x, pn,)) < 225c, 1% forx e Vyand anyr € (0, ry].

Proof Suppose x € V,\ V. Let w € W, i,je s, a;,ai €R and N, € N be as in
Definition 5.1 and seta := |a’| = |a}|. Since ||hL o Fuinlle V Ilht o Fyjmlle = 0((3/5)™)
as n—oo by Lemma 219, hloF, €Rh), hioF,jeRh, and hence
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sy (K2) = (1/15)"a ¢, for n € NU{0}, where K} := K,ip UK. For n> Ny,
K* C B,,,(x, pn,) C KX_, by Proposition 5.4-(1),(4) and hence 157'(ry ) c, <
ety (Br,, (X, pn,)) < 15(rx,n)kcx. Now for each re (0,7y], rept1 <r <ry, for
a unique n > Ny, and then gy (B (x, pn,)) < 15((5/3)rens1) cx < 15%cr* and
pinsy (Br(x, pp)) = 1571 ((B/S)remf ey = 15 %t

The assertion for x € V) is proved in the same way by using Proposition 4.9. O

Lemma5.6 Let x€ V. \Vy, and let weW,, i,jeS and a. €R be as in
Definition 5.1. Then for any y € K,

5\" Lo
i (3) o (5 Fuip ) = {00 (5.8)

n—o0o

Proof Let y e K. ph{(qj, y) = h{(y) by Eq. 4.13, and by Proposition 3.16 we
can choose a harmonic geodesic yy : [0, 1] — K so that y,(0) = ¢g;, y,(1) =y and
i (yy) = P y) = h{(y). Since h,(x) = 0, Fyin 0 yy(0) = Fuip(q)) = x, and A o
Foi = c.h] for some ¢’ € R by the proof of Lemma 5.5,

il
b _ (5

o n 5\"
la',|h1 () — TR 5) lhe o Fuip(y)| < <§> 1 (%, Fuip (1))

5\" 5\"
< (§> eH(Fw,-,woyy)s<5) (n, (Fuipoy) + s (Fui 0 7))

= ¢((dn] +37b10)) o) + ';%l'z (row)

|bi]+|c |
3n

|bi]+|ct |

<l1a\ 1€, (ry)+ T

€ () =lah] () + € (),

(5.9)

where b’ € R is as in Definition 5.1. Now letting n — oo in Eq. 5.9 yields Eq. 5.8. O

Remark 5.7 In Eq. 5.9, the author does not have any idea how to estimate Eh;(Vy)

uniformly in y. This is why no remainder estimate is given for the limits in Egs. 5.3
and 5.8, and in Eq. 5.42 below, neither.

Proof of Theorem 5.3 g,y (Bs(x, pp,)) = 2,5 follows from Propositions 4.9 and 5.4.
Let r € (0,r,]. Since B,(x, px) C B,(x, pp,) by pn, < pr, 1= pin,) + pgey and
Lemma 5.5 imply

(B, (X, p10)) < iy (Br(X, pn)) + sy (Br(x, pp,)) < 2E7 +225¢,r*. (5.10)

In the rest of this proof we suppose x € V.. \ Vo; the case of x € Vj is proved sim-
ilarly and more easily. Let w € W, i, j€ Sand @', b’, al, b} € R be as in Definition
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5.1. Let r € (0, |a’|] and n € N. Since wuylk, = wuwlsk,) = (5/3)"" wor,) o F; ! for
ueFandve W,

5\" 5\"
=) w(Bagsyrx, pn) = | / Lio,3/5)m (P (X, )iy ()
3 3 Ko UK

wij wji

5 2n+|w|+1 5 n
= (*) Z/ Tj0.) <<*> pH(xX, y)) d (WinsoFumy © Fopn) ()
3 Ky 3

(k.1

5 [w]+1 5 n
= (g) Z/Kl[o,r) ((g) pr (X, Fypn (Y))> dli<a§h’]+3—nb§h’2>(Y)
(k.l)

5 2|bk|
> Eld| ) 1[0r) < PH(x»kal"()’)) d“<hﬂ>(y)_3n|ak| ., (5.11)

(k.D)

where (k, /) runs over {(i, j), (j,7)} and we used u(hz],hzﬁ(A)z < /L<h11>(A)/L<h17>(A) <1,
A € B(K). Then by using Lemma 5.6 and Fatou’s lemma to let n — oo in Eq. 5.11,

together with Egs. 4.11 and 5.10, we get limn_mo((%)nr)_lu(B@/S)n,(x, o)) = 2&x,
from which lim, o r (B, (x, pr)) = 2&, immediately follows since (0,00) 3 r >

(B (x, py)) is non-decreasing. O

5.2 Heat Kernel

The main result of this subsection is a short time asymptotic behavior of p,(t, x, y)
for x € V, and is stated in the following theorem, whose proof makes full use of
Propositions 4.9 and 5.4 and Lemma 5.5. Recall Definition 5.1 and that p,_(x, y) =
|hy(y)| for x € V, and y € K* by Egs. 4.13 and 5.6.

Theorem 5.8 Let § € (0,1] and x € V.. Then there exists cr € (0, 00) determined
solely by «, &, c, cy such that for any (t, y) € (0,r2] x K%,

2 2(k+R)
(&) a1
4 t

hx(y)z
exp(— 2t ) Cx &=l eyl
pult,x,y) — ————=—>| <=t 4§ B
pih 5 Ec/2mt £x
I (1)?
4 gReria exp(—r’z‘> R eXp(_2(1+5)t).
6t ]| sEe+5+2 £ 2nt
(5.12)
In particular, there exists t, € (0, ri] determined solely by ry, % K such that
hx(y)z _ hx(y)z
exp (= *5) « 0\ Xp( 2(1+5);)
put, x,y) — ——=2L 2| <y (tz +5|h()|~+1)7 5.13
pih 4y EcN/2mt R Y EcN2mt (513)

forany (t, y) € (0, t,] x K*, where ¢’ := SCR(‘§ (E‘)%>(2/8) Fetie,

@ Springer



Heat Kernel Asymptotics for Riemannian Structure on S.G. 97

By virtue of Propositions 4.9 and 5.4 and Lemma 5.5, Theorem 5.8 follows from
the following general remainder estimate.

Theorem 5.9 Let h, h* € Sy, satisfy E(h, ht) =0, and let § € (0, 1]. Then there exists
Cr € (0, 00) determined solely by «, k, cg, cy such that
|p/l.(ta X, Y) - p[l.(;,>(ta X, y)'

- (1 /’ sy (B ys(x, 'Oh))ds+ sett /’5’ sy (B sy, pH))dS
t Jo (B ys(x, pn)) t Jo w(Bys(y. pn)

(x,)?
942 M(hi)(Bm(y, PH))) Cr exp(— ’;’zl’;g)t)

+ 83 15 Id
w(B sy, or)) ) 85652 iy (B si(x. pp)

(5.14)
forany (t,x,y) € (0,00) x K x K.

The proof of Theorem 5.9 is given later. First we prove Theorem 5.8 based on
Theorem 5.9. For this purpose we need the following lemma.

Lemma 5.10 1 (B, (x, pn)) S (B (x, pr)) for h € Sy, and any (r, x) € (0, 00) x K.

Proof Let h € Sy, and (s, x) € (0, 1) x K. Let w € A" satisfy K,, N K,(x, 8") # 0.
Then K, N K, ## for some v e A" with x € K,, and v <v for some 7 € AT
with x € K; by [, <ly. Moreover ||ho F,|l¢ <s <5|T;| by Eq. 3.4, which and
[v| < || easily yield pp)(K,) < 25u(K;). Therefore using Proposition 3.10-(1) we
see that py (Ky) S o (Ky) < u(Ky) < w(Us(x, 8M)), which and Lemma 3.5 imply
wony (Us(x, 8M) < n(Us(x, 8M)). Using this fact together with Egs. 3.16,3.12 and 3.11,
we conclude that

Ly (Bros(X, pn)) < iy (Bsjas(x, pn)) < gy (Us(x, 8M)
< w(Ug(x, 871) < u(Bios(x, pr)).

The case of r > 10 is clear since B o(x, px) = Bio(x, pn) = K by Egs. 3.11 and 3.12.
O

Proof of Theorem 5.8 under Theorem 5.9 Let § € (0,1], x € V,, and y € K*. For r €
0, r¢l, B(y, pr) C B, (y, pn,) by pn, < p, and then by Lemma 5.10, Theorem 3.19,
Proposition 5.4 (Proposition 4.9 when x € V;) and Lemma 5.5 we have

Wity (Br(y, pr)) < Hinty (Br(y, pn,)) < <1 n |hx(y)|>m Hinty (Br(x, pn,))

w(Br(y, o)) T iy (Br (v, pn)) T Wy (Br(x, pp,))
K+K N R K+K

< (1 n [ (p)] )225er,(_1 < ‘;X(,K—l n [ (p)] )

SR e

r

(5.15)
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Let € (0,r7]. Since 1y < pand « + 1 > 2, Eq. 5.15 yields

/at ity (B (v, ,OH))d
s
o (B, pn)

8t 8t K+k
< clf S%ldﬁ_/ 1A Cxlhx (Y ds
0 0

~ é:x ,s;-‘xswz—l
—(St) "4+ D x(y) +/ (M)Tds if D, (y) <6t
< &y Dy (y) s
g(&)ﬂ + 8t it Dy(y) > 6t
(23 x(y) Cx = ’(HIK)
< ?M —|—4t<8/\ t ) where D (y) := (5) I ()] 55

X

(5.16)

1

Similarly, by using Eq. 5.15and 1 AsT <1 As,s € [0, 00), we see that

(B 5y, pr)) 'fx N

Again by Proposition 5.4-(3) (Proposition 4.9 when x € V) and Lemma 5.5, we
also have

‘ B (x, 225¢, [t i 225 ¢y e
f o) (B € ph"))dsf ¢ /sTds— Sr it (5.18)
o wu(Byx, o)) 26 Jo +1&

On the other hand, let U* be the connected component of A Y((—ry, ry)) contain-
ing x and set Y (y, 1) =1 — fU* ( ¥, 2)dpp,y(z). Then Eqs 4.16,5.7 and a direct
calculation using [21, Exercise 2. 8 11] yield

Ix

_ 2
(re — [he(P)]) ) (5.19)

Pr.(t, hy(y), 2)dz < Zexp<— 5

Ofllfx(y»t)zl—/

—ry

By [16, Theorem 5.1] (or [14, Theorem 10.4]), Egs. 5.19, 3.16,4.2 and |h,(y)| < 5r,/6,

0 S Pl/«(hx)(t’ X, y) - P,lj;,x) (L X, )’)
< Yu(x.5) sup sup pu, (sow,y) +¥u(y. §) sup sup py, (8. X, 2)

se[%,t] wedU* se[%,t] zedU~
3ic/4 2 r2 r2 2
- <1 N 8&%) EXP(—* - 7) exp(—35 — 5)
~ t i (B (v, o1))  mingy (B i (X, pn))

<(1+)" (mr) exp(="5")
— X —_—
~ ‘ P72 ) iy (Bitx. pn))

2 _hy?
< exp <—r—x> w. (5.20)
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Also a direct calculation using [21, Proposition 2.8.10], ¢ < ri and |h,(y)| < 5r,/6
yields

e (y)? he(y)?
exp(——5— x EXp\——% -
0= S(\/T:l‘) - pf{wm([’x’ V)= S(\/T:f) — & lprx(h 0, hx(y)
x X

(_er(rx— |hx(y)|)>exp(—"*g)2) . (_rﬁ) exp(—1:02) o
t 21t T 3t) E2mi '

Now Eq. 5.12 is immediate from the inequality Eq. 5.14 with & = h, and h* = h
and the estimates Egs. 5.16, 5.17, 5.18, 5.20 and 5.21. Equation 5.13 follows by using
2se™8/(1+8/2) < 55=1=s/(+0) g .= h (y)?/2t to estimate the second term in Eq. 5.12,
completing the proof of Theorem 5.8. O

The rest of this subsection is devoted to the proof of Theorem 5.9. We need
to prepare several lemmas. The following lemma is immediate from Eq. 3.16 and
Corollary 4.3; note that we have (1 + x)*e™# < (e~ 'ap)*e!/? for a, B € (0, 00) and
x € [—1,00).

Lemma 5.11 Let h € Sy,. For § € (0,00) and (¢, x, y) € (0,00) x K x K, define

2 2
exp(—5435r) exp(— 5iri5r)

_ Wy, (2, x, =
W(Ba )= o)

lIJH,S(ts X, )’) = (522)

Then for each n € N U {0} there exists cpk(n) € (0, 00) determined solely by n, k, cg, cv
such that for any § € (0, 11 and any (t, x, y) € (0,00) x K x K,

chk(n)

|97 pult, x, y)| < per LEICER (5.23)
. Chk (1)
7 Dy, (8, %, y)| < pem (UL ) (5.24)

Lemma 5.12 Lete, 8 € (0,00), ¢ < & and set 0(g,8) :=(e§+2e+1)/(§ —¢). Leth €
Sty 8,1 € (0,00) and x,y, z € K. Then

s+ 1\x/2
W e(s, X, D)Wy 5(t, y, 2) < CV(T) Wi 068 (S X, D s(s+ 1, y,x),  (5.29)

S+ 1\x/2
Wyo (5. %, )Wyt Y, 2) < CV(T) Whoes) (5.6, DWps(s + 1.y, 0). (5.26)

Proof Since (1 +&)" ' =1 +0(,8)"'+(1+8)"" and a®/s + b2/t > (a+b)*/(s +
t) for a, b € [0, 00), a direct calculation using Eq. 3.16 and p, < py easily shows
the assertion. O

Lemma 5.13 Let g, h € Sy, and 0 € [1, 00). Then for any (t, x) € (0, 00) x K,

A B (x,
/ Wy (1, x, y)dv(y) < 62, f Wo (1, x, y)dpng () SGK/ZM
K K V(B ji(x, p))

where (v, p, Wy) denotes any one of (i, pr, Vr.0) and (1, pns Wh,o)-

. (5.27)
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Proof Let (t, x) € (0,00) x K and s := (1 + 0)t. By Eq. 3.16 we see that

/ Wy (£, x, y)dv(y)
K

=  wexnam+ Y [ W e, . Y)dv(y)
B s(x,p)

neN Y Ban s (6. P\ Byn—1 f5(x.p)

<v(Bix,p) " <V(B¢§(x, P) + Y e Bu(Byys(x, p) \ By s, p)))
neN

< v(Bﬁ(x, p))—lu(Bﬁ(x, p))cv(l + szn€—4n/8) < 942,
neN

The latter assertion is proved in the same way by using Eqgs. 3.16 and 3.17. m]

Next we introduce several probabilistic notions required for the proof of The-
orem 5.9, which utilizes a time change argument on the diffusion. See [13, Part
II and Section A.2] for details concerning diffusions associated with symmetric
Dirichlet forms and their time changes by positive continuous additive functionals.
Below K, := K U {3} denotes the one-point compactification of K and a function
f: K— [—00,00] on K is always extended to K by setting f(9) := 0 when needed.
Let X = (Q, M, {X}eo.001» {Pi}rek, ) be a u-symmetric diffusion on K with life time
¢* and minimum completed admissible filtration F, := {F;},c[0.) Whose Dirichlet
form on L%(K, ) is (€, F); such X does exist by virtue of [13, Theorem 7.2.2]. Then
P.[X; € dyl = p,(t, x, y)du(y) for any (¢, x) € (0, 00) x K by [26, Theorem 10.4], and
P,.[¢¥ = 0o] = 1 for x € K since fK pu(t, x, y)du(y) = 1,t € (0, 00). Expectation (i.e.
integral on ) under the measure P, is denoted by E,[(-)].

Take any h, h* € Sy, satisfying E(h, h*) = 0,50 that & = ) + pgpey; we fix them
in the rest of this subsection. Also fix a Borel measurable version of dup/du
satisfying 0 < (dun/dp)(y) < 1 for any y € K; such a version exists since ) <
and p is absolutely continuous with respect to p,y by [17, Theorem 5.6]. We define

Y
du

A = (X)ds, te]0,00], (5.28)
0

so that A = {A;};¢0.00) 1s the positive continuous additive functional of X with Revuz
measure (. For ¢ € [0, oo] we further define

7, ;= inf{s € [0, 00) | Ay > 1}, Y, = X, G =9 (5.29)

here 7; is an J,-stopping time and hence J7, is defined as a sub-o-field of F. [13,
Theorems A.2.12 and 6.2.1] imply that Y := (Q, M, {Y i} ier0.0015 {PX}XEKQ) is a pwpy-
symmetric diffusion on K with life time A, and admissible filtration G, := {SG;}:e(0,00]
whose Dirichlet form on L?*(K, i) is (€, F). Pi[Y, € dyl = py,, @, x, Y)dup (y) for
any (¢, x) € (0, 00) x K by [26, Theorem 10.4] and hence P,[Ax, =o0] =1, x € K.
For each t € [0, 00), clearly A, <t <1, and A, is a §,-stopping time since {A, >
s} ={t, <t} € F, =Gy, 5 €[0,00). On {¢X = 00}, A, is strictly increasing and hence
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74, =tand Y4, = X, for any ¢ € [0, 00). For x € K, since P,[A, = oo] = 1, a direct
calculation shows that

1
T = / (th v, )) ds < oo foranyt € [0, 00), Py-as. (5.30)
0

Lemma 5.14 Forany § € (0,1],s,t € (0,00) and x, y € K,

E(t— A)WsGs,y, X)) _ (55)” / o (Bae, o) |

, 5.31
Wns(s+1,y,X) 52K+"/2 (B ja(x, o)) (:31)
E, —HY, Y, s/ ! L(B u\As
[(z — W s(s, y, Y1) (2 ) 2/ sy (B ya(x ,Oh))du (5.32)
Wps(s+1,y, x) ~ 822 o g (B ga(x, o))

Proof Let$ € (0, 1],s,t € (0,00) and x, y € K. By Eq. 5.28 and the Markov property
of X,

Ex[([ - At)\yh,a(sv Y, Xt)]

:/t [(1—‘157’1)()()%5@ v, X[)]
///pﬂ(u X, 2)p.t—u,z, w)(

= /0 /K/;{Pu(u, X, 2)put —u, 2, w)Wp (s, y, wydp(w)dp gy (z2)du, (5.33)

) @, v WAk Wy du

where we used v = gy + ey in the last equality. Then Egs. 5.23 and 5.25 yield
(8/2% pu(u, x, 2) pyu(t — u, 2, w) Wi (5, y, w)

S W s, X, 2) Wi 50 (t — 1, 2, W)Wy 5(s, ¥, w)

S+t —u\~/2
S (f) Wy 52U, X, 2D)WH,6072,6)( — U, Z, W)Wy s(s +1— 1, y, 7)

S+ 1\x/2
S ( P ) Wi 06s72,8) Uy X, D)W 05/2,6) ( — U, 2, )Wy s(s + 1, y,x). (5.34)

Since 2/8 < 6(8/2,8) < 5/8, from Egs. 5.33 and 5.34 we get Eq. 5.31 by using Eq. 5.27
to integrate Eq. 5.34 first by diu(w) and then by du 1, (z). The same argument using
Eqgs. 5.24, 5.26 and 5.27 easily shows Eq. 5.32 as well since similarly to Eq. 5.33
we have

E [(t, — )Wps(s, y, Y1
t
Z///plt<h>(u,x, D) Pugy & — tt, 2, W)Wy 505, y, w)dppy (w)dp ey (2)du
0 JKJK
(5.35)

by virtue of Eq. 5.30, the Markov property of Y and 1/(duw/dp) = di/dipmy -
a.e. O
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Lemma 5.15 Lets,t,a € (0,00),s <a <t Then forany x,y € K,

Pugy @& X, ) = Ey[py, (t — A, Xg, 0)], (5.36)
pu(t,x,y) = Ex[1iz5qpu(t —a, Xo, ¥) + Ligcqput — 75, Ys, M1 (5.37)

Proof Letx, y € K.Since A; <s < tand Ay is a §,-stopping time, the strong Markov
property of Y together with [21, Corollary 2.6.18] implies that for any r € (0, 00),

/ Dy (63, Dy (2) = PLY, € By(x, pi)] (538)
B, (x,p0n)
= f Py, [ Yi—a,w € By (x, op)]dP,(w)
Q

= Ey |:/ Pu@ (t - Asa Xvs Z)dﬂ(h) (Z)i|
B, (x,pn)

Then noting that 0 <t —s <t — A, <t, we obtain Eq. 5.36 by dividing Eq. 5.38 by
w(B,(x, pp)) and using the joint continuity of p,, toletr | 0. Similarly we can also
show Eq. 5.37 based on the Markov property of X at time a and the strong Markov
property of X at the F,-stopping time t, together with [21, Corollary 2.6.18]. ]

Proof of Theorem 5.9 Let 8 € (0, 1] and set ¢ := §/4, so that (1 +¢)> < 146. Let
(t, x,y) € (0,00) x K x K.From Egs. 5.36,5.24,3.16 and 5.31 we see that

Pron (6.2, ) — /K Poet, y. 2Py (1 = )1, 2. D (2)

= [Eypi (¢~ Aars Xer: ) = puy (1 = 0, X, 0]
= Eyl(et — Aco) sUPyei1—eyr.1 10u Py (1 X, Xeo)]

< gf%K*IEy[(st — Act) SUPe(1—eyg U Whe (1, X, Xer)]
S e TR (et — AW o (8, X, Xoo)]

~

(L + o)t x,y) [ sy (B ja(ys PH))du
gty o m(Buy, pr))

A

“Ijh,s(t, X, y) o /L(hL)(Bﬁ(Y» pH))dL[
steritly Joo w(Ba(y. on))

A

(5.39)

Furthermore lets := (1 — ¢)tand a := (1 — ¢/2)t. Since Wy 5(t, x, y) S Wy 5, x, )
and g (B, (X, pr)) < (g (Br(x, pr)) by pr < p3 and Lemma 5.10, by using Eq. 5.37,
{ty > a} = {A, < s}, Egs. 5.23,3.16, Lemmas 5.14 and 5.10 we obtain

p,u(t’ X, )’) - /;( pu(8t7 Y, Z)pu(h> ((1 - E)L <, x)d/l(h)(Z)

= |Ex[1{rxza}p,u(t —a, Xa; y) + l(rv<a}pu(t — T, YS’ y) - pu(t -9, Ym y)]|
= Ex[l[t\-za]pu(t —ay, X))+ Ex[l[t\-za]pu(t -5, Yol
+ Ex[l(rx<a}|pu(t — T Y, Ys) - pu(l -8, ), Ys)l]
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< Edlo-a,za—5Pu(t — a, y, X))l + Ex[lr—sza-9 Pt — 5, y, Y5)]
L < (T = ) WPy BP0 Y. V)]

S e a -9 EBd(@— AWt —a, y, X) + (5= Wi e(t —5,y, V)]
o P Bl (= 9) WPy 4 Wi U 3, V)]

< e TR (@ — AWt — a, v, Xo) + (Ts — )W (t — s, y, Y9)]
e TR (1 — )Wt — 5, 9, V)]

< Vet y, %) sy (B ga(x, o)) du
™ot 2 Joo oy (B ya(x, on))

- \I’h,s([7 X, y) t /\,(,(hL)(B\/ﬁ(x’ ,Oh))
st Joo (B a(x, o))

On the other hand, Eqgs. 5.23,5.24,5.25,5.27,3.16 and 1/§ < (¢, §) < 4/8 together
imply that

du. (5.40)

0= /Kpu(et, Vs 2) Pugy (1 = &), 7, X)d 1y (2)
< /8y / Wreo(et, v, )W s (1 — )1, x, Dty
K

S8 - 8)7”2/ Wiy 06s,0) (&L, ¥, D)W st X, Y)digy(2)
K

< 0, 82y 5(t, x, y) . ity (B ez (v, pr))
~ 83/ (B =2y, pr))

< Ynst,x,y) sy (B /5 (v, o))
N gk (B (v, o))
Now Theorem 5.9 is immediate from Eqs. 5.39, 5.40, 5.41 and p = wp) + pppty. O

(5.41)

5.3 Moments of Displacement of the Diffusion
The purpose of this subsection is to present an application of Theorem 5.8 to
asymptotics of moments of displacement of the corresponding diffusion. The main

result is the following.

Theorem 5.16 Let x € V, and o € (—1, 00). Then

1 e V12
lim —> “pult d = * dy. 5.42
im 27 | o D pult %, y)dpy) /Rlyl N (5.42)

Note that, if X = (Q, M, {X/}re(0,001» {Px}xek,) is @ u-symmetric diffusion on K
whose Dirichlet form on L?(K, ) is (£, F), as in the previous subsection, then

/K pH X, WPt x, ydu(y) = Exlpr(x, X)%1, (¢, x) € (0,00) x K. (5.43)
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Equation 5.42 says that, in the short time limit, the moment E,[p(x, X;)*] of
displacement of X at x € V, is asymptotically equal to that of one-dimensional
Brownian motion.

Proof of Theorem 5.16 Since Eq. 5.42 for o =0 is trivial, we assume « # 0. The
following proof is based on the same idea as the proof of Theorem 5.3. It suffices

to prove that
—a/2 2, )
3 2n 3 n e y2/2
lim (=) ¢ Lo =) ¢ :/ “ d 5.44
o ((5) ) ((5) ) N (49

for any ¢ € (0, 1), where Iio (1) := [ pre(x, W pu(t. x, y)du(y), t € (0, 00); indeed,
since r/cy; < w(B,(x, pr)) < cxor for any r € (0, 1] for some ¢, 1, ¢y € (0, 00) by
Eq. 5.3, using Eq. 3.16 we have for any f e (0, 1), similarly to the proof of
Lemma 5.13,

/K P (x, Y)Wy 1 (8, x, Y)d(y)

=y / pr(x, )* W1, x, y)dp(y)
neZ Bz/tﬁ(X,PH)\an—lﬁ(x’PH)

< Zz\a\ta/Zzan —4" ZM < Cx atot/Z’ (545)
Z w(B o) ~

where C,, := 2/l D neNUo) (cxacxp2(Fom 4 cv2("+°‘)”e‘4"72). Then by Eq. 5.23,

dlx a
’ 0=

’ / o (s Y0 pu(t, x, A (Y)| < cn(1)Cr ot (5.46)

for t € (0, 1), from which and Eq. 5.44 we can easily verify Eq. 5.42.

For the proof of Eq. 5.44, suppose x € V. \ Vj; the case of x € Vj is proved
in the same way. Let we W,, i,je S, a.,bl, al,blcR and N, eN be as in
Definition 5.1, and let ¢, ¢} € R be such that ht o F,; = cih} and ht o F,; = ch}
(see the proof of Lemma 5.5). Let t € (0, 1) and set g/, (y) := (5/3)" pn (x, Foim (y))
for (k,1) € {G, j), (j,i)}, n € N and y € K. Recalling puy|x, = 5/3)" uor,y o F; L,
u e F,ve W, ssimilarly to Eq. 5.11 we have

5 noe 3 2n
<§> /K ok oH (X, V) Py <<5> L, x, Y> dp(y)
wijt UKy jin
5\ Wit 3\ 2

(k,hel D, (.}
d (1, Prggy +2 - 37"akb A pgy +97 (DA +16A7) 1y ) ).
(5.47)
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Let (k,1) € {(i, ), (j, )} and y € K. Equation 5.13 immediately implies that

il 2

3 n 3 2n exp(_ldxhé(y)l)
lim | - - t,x, Fyim =— 2t 7, 5.48
HOO(S) P ((5> “ (y)> £/2ml (548)

Moreover for n € N with n > N,, [23, Theorem 3.2.5 and Example 3.2.6] easily yield
8Ly = (5/3)"|hy o Fur ()| = la’|h, (y)/2 and therefore by Eq. 5.23,

3 n 3 2n
g[n(y)a (g) P;L ((5> L, x, kal"(y))

_g#,,m-) [Cx’laa/zgalw if & € (0, 00),

exp(— &
<, LA N, )
~ 1g£1()’) \ﬁ — Cx_lz_a|a;|at_l/2hll(y)a ifae (_17 0)

(5.49)

Here [ MiD)*di(y) = Ypen Sty 1(on a1y B di(y) < 00 if @ € (=1,0), since
I nly © (h)~' = 1j9.1,dy by Eq. 4.11 and u(h12>((h[1)‘1([0, 27M)) <225 -2 forn e N
by Eq. 4.13 and Lemma 5.5. Thus by virtue of dominated convergence based on
Eq. 5.49, from Egs. 5.47, 5.48, 5.8 and Knty © (h’l)‘1 = 1j0,13dy we conclude that

5\™ S\
o <7> / orOe V) Py (7) tx,y | du(y)
n—oo \ 3 Kuip UK 5

/2 /w;m V2 )
=1 |y|* dy; (5.50
||/ N2

note that ([ fdmuww)?* < [x fdrw [x fduw for u,v e F and a bounded Borel
measurable function f: K — [0, c0).

On the other hand, let n € N, n > N, and define p3;"(y) := (5/3)" px(x, y) for
y € K. Then Proposition 5.4-(4) yields p3;"(y) > (5/3)" pn, (x, y) > 8|a’|/9 for y €
K\ (K U Kyjn), and therefore by Eq. 5.23 with § = 1/2 and Eq. 5.27,

5\ " 3 2n
o
(5) / pH X, M Py <<5> t,x,y>du(y)
K\(Ku,ijnUij,n)

X,n 2 2n
a Py ) 3
< f Py (») exp (—%) W1 ((5 Lx,y|du(y)
K\(K i UK yjn) !

_ P2
< ((50la)* v (al.1/2)") exp <— "l"élt ) . (5.51)

Now Eq. 5.44 easily follows by substituting ¢ by (3/5)>Vt (N € N) in Egs. 5.50 and 5.51
and using them to let n — oo first and then N — oo. Thus the proof of Theorem 5.16
is complete. O
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6 On-diagonal Asymptotics at Almost Every Point

So far we have established Gaussian off-diagonal behaviors of the heat kernels
as well as several one-dimensional asymptotics at each x € V,. In this and next
sections, we will verify that p, (¢, x,x) and p,, (¢, x,x) for h e Sy, exhibit non-
integer-dimensional asymptotic behaviors as ¢ |, 0 for p-a.e. x € K.

The following is the main theorem of this section. Note that, for each & € Sy, the
term “p-a.e.” is a synonym for “uy-a.e.” since p and p, are mutually absolutely
continuous by [17, Theorem 5.6]. Note also that 21logys 35 = 1.5181... < 2.

Theorem 6.1 There exists d° € (1,210g,s /3 31 such that for each h € Sy,

. 2logpu(t x,x) . 2log pu,, (, x, x)
lim = lim
) —logt tl0 —logt

=d  p-aexeK. (6.1)

Remark 6.2

(1) We have a concrete expression for dy*; see Egs. 6.10 and 6.12.

(2) In Theorem 7.2 below we will show that dlsOC < dimy (K, p), where dimyg
denotes Hausdorff dimension. Unfortunately, the author has no idea whether
di® = dimy (K, py) or not.

The limit lim, o log p, (¢, x, x)/(—log?), if exists, is often called the local spectral
dimension at x for the Dirichlet space (K, v, E, F). Equation 6.1 says that the local
spectral dimensions at x for (K, u, €, F) and (K, upy, €, F) exist and are equal to a
non-integer constant dlsoC for p-a.e. x € K.

One of the keys to Theorem 6.1 is the ergodicity of the Kusuoka measure u (to
be precise, of the measure A = p o 7r) which has been obtained in [29, Example 1].
Unfortunately, however, the proof of this fact in [29] is indirect and complicated.
We provide an alternative simple proof of it at the end of this section based on the
self-similarity Eq. 2.2 of (£, F).

Now we proceed to the proof of Theorem 6.1. We start with an easy lemma.

Lemma 6.3 Forany o € ¥ and any x € R?\ {0},

log £ < liminf M < lim sup M <log -, (6.2)
5 m—s00 m m—00 m 5
1 log|TF . x log|Ty . x 3

log < < liminf it _ iy sup £l log <. (6.3)
5 m—o00 m m— 00 m 5

Proof Since ||A|?> > 2|det A| for any A € L(R?), Proposition 2.12-(i) and Eq. 3.4
imply that

V2(V3/5)" = \2[det T, | < 1T, Il < G/5)™ I Tyl = V23/5™  (6.4)

for any w € W,, which immediately yields Eq. 6.2. Similarly Eq. 6.3 follows by
applying Eq. 3.5 to & := |x|~'(x1h; + x2h,), where x = (x1, X2). u]
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The following two propositions completely characterize when the local spectral
dimensions at 7 (w) exist for a given w € X, in terms of the asymptotic behavior as

m — oo of the logarithms of the norms || T}, || and | T}, x|, x € R*\ {0}.
Proposition 6.4 Let w € X. Then it holds that
2log p.(t, (@), log 3
liminf 2108 P T @), 7(@) _ ) = =
10 —logt lim sup,,_, «, 5. 102 [ Ty,
5 (6.5)
2log p. (¢, 7 (@), log3
lim sup =2 Pulb 7(@), 1@) _ + — % : = 2logys)3 5.
"o —logt liminf,, ., « -~ 1og | T, | »

In particular, the limit lim,02log p,(t, 7 (w), 7 (w))/(—log?) exists if and only if so
does limy,_, o % log || Tjw),, |, and if either of these two limits exists then
210g p,(t, , log 2
m og pu(t, m(w) n(w))=2+ ‘ Ig3
0 —logt im0 5, 10g || Ty, I

€ [1,2log,s/351.  (6.6)

Proof Let (s, x) € (0,1] x K and let w € AT satisfy x € K,,. Then u(Us(x, 8™)) =
w(Ky) by Eq. 3.9, and therefore Eqgs. 3.11 and 3.16 easily imply that

(Bs(x, pr)) = w(Us(x, 87)) < u(K,). (6.7)

Let w € X, and for each te€ (0,1) let m(f) be the unique m € N satisfying
[l € A7E. Then for 1 € (0, 1), p,(t, 7 (), 7(@)) < 1t(Kio,,)” by Eqs. 42 and 6.7,

Vi
and Eq. 3.4 yields | Ty, | < V7 < 5| T, |- Moreover, m : (0,1) — N is a non-
decreasing surjection since N 3> m — Iy ([w],) is strictly decreasing by Eq. 3.4. It

follows from these facts that

lim sup 2 08 Pulb T(@). @) _ —logu(Kiay,) _ suP(Z n mlogg)
t}0 — logt m—oo T log || T[w],,, || s 00 log ” T[w]m ”

and similarly for lim inf, which together with Eq. 6.2 immediately shows the assertion.
o

Proposition 6.5 Let h € Sy, and take ¢, = (g}, ¢7) € R? so that h — ¢ hy — {Phy €
R1. Let w € X. Then it holds that

2lo t,m(w), T log 2
lim inf g Py, (1, T (@), (W) —04 %3 > 1,
140 —logt limsup,, ., +log| Tt &l 68)
210 t, m(w), T(w log 3 .
fim sup g Py (t, T (@), (W) —0 1g 3 . <.
10 —logt liminf,, o0 - log| 77, 2l

In particular, the limit lim, o 21og p,,, (t, (), 7 (w))/(—log ) exists if and only if so
does lim,,,_, o % log| T, Sl and if either of these two limits exists then

5
lim 210g puy (6, 7 (@), T(@)) 24 log 3

t,0 — logt llmmaoo % 10g| Tfkw]m {h|

e[1,«]. (6.9)
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Proof The proof goes in exactly the same way as that of Proposition 6.4 by using
Eqgs. 3.5,3.12 and 6.3 instead of Eqgs. 3.4, 3.11 and 6.2 respectively. O

Proposition 6.6 Let v be a Borel probability measure on X which satisfiesv oo~ = v

and is ergodic with respect to the shift map o : ¥ — X. Define

o1
N0 ATikics) = inf — 5 w(Zy) log [Tyl (6.10)

weW,,

Then n(v, (Tikics) = Tim L3,y v(Su)log Ty € [log ¥, log 3] and

21 7 (o), log §
moeput @ m@) 85 ey (6.11)
140 —logt N, {Ti}ies)
Moreover, n(v, {Ti}ics) = log% if and only if v({1%°,2%°,3%°}) = 1.

Proof Apart from the final assertion, this is immediate from Eq. 6.4, Proposition 6.4
and Kingman’s subadditive ergodic theorem [9, Theorem 10.7.1], and the same
results are valid with 1 (v, {T;};cs) unchanged if the norm || - | is replaced by the oper-
ator norm || - [lop given by | Aflop := sup, g2 y<; |Ax], A € L(R?); note that | AB|| <
IANIBI and [ABlop < | Allopll Bllop for A, B.e L(R?). If v({1%,2%,3%}) =1
then clearly n(v, {T;}ics) = log % Conversely suppose n(v, {T;}ics) = log % Let m e
N. Since ||Tillop =3/5, i€ S, we have %log 17w llop glog% for we W, and
hence %Zwewm v(Zy)log [ Twllop < log%, where actually the equality holds by
N, {Ti}ics) = log% and Eq. 6.10 for the norm || - ||op. Therefore for each w € W,,,
V(Zw) (L log | Twllop — log 2) = 0, ie. either v(E,) =0 or || Ty llop = (3/5)™, but the
latter holds if and only if w =" for some i € S since || Tjllop < (3/5) for j ke S
with j # k. Thus v({J;cg Zin) = 1, and letting m — oo yields v({1%°,2%,3%}) = 1.

O

Proof of Theorem 6.1 Since A o 0! = A by Proposition 2.14, 1 is ergodic with respect
to o by [29, Example 1] (see also Theorem 6.8 below), A({1°°,2%°,3%°}) =0 and u o
7 = A, Proposition 6.6 applies to A/2 to imply that

5
lim 2log p,(t, x,x) log 3

= =: di° -ae.xe K 6.12
110 —logt n(A/2, {Ti}ics) s . (¢12)

and that 7(/2, {Ti}ies) € [log *2, log 3). Thus di¥® € (1, 2log,s 3 5].

Leth € Sy, andset Kz, := {x € Kz | Z,& # 0}, where ¢, € R? is as in Proposi-
tion 6.5. Then (K \ Kz ) = 0 since dupy = | Z ¢p|*du by Eq. 2.10 and u and i)
are mutually absolutely continuous. Now for x € Kz, and w € 7~ !(x), we easily
see limy—oo| T}y, Ch|/ Tiw), | = | Zxn| and hence lim, o 210g py,, (¢, X, x)/(—log 1) =
dlSOC if and only if lim, o 2log p, (¢, x, x)/(—logt) = dlsoc by Propositions 6.4 and 6.5,
proving Eq. 6.1 by virtue of Eq. 6.12 and u(K \ Kz ) = 0. O
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Remark 6.7

(1) We can estimate di° numerically by using Eq. 6.10; numerical computations of
the right-hand side of Eq. 6.10 with v = 1/2 tell us that d¥° > 1.27695... for
m=14,d¢° > 1.27790... for m = 15 and d{* > 1.27874 ... for m = 16.

(2) Barlow and Kumagai [4, Corollary 3.6] have proved the D-a.e. existence of
the (constant) local spectral dimension dlsOc (1, V) and have explicitly calculated
it for the heat kernels p;(t, x, y) on post-critically finite self-similar sets and
Sierpinski carpets, when both the reference measure i of the Dirichlet space
and another measure ¥ are self-similar measures. In their case, the self-similarity
of /i has made the explicit calculation of di¥°(i, §) possible and we easily see
how it varies depending on the weight of U, whereas it seems very difficult to
estimate 1 (v, {T;};cs) and see its dependence on v in the situation of Proposition
6.6 above, even when v is a Bernoulli measure on X.

At the end of this section, we give a new simple proof of the ergodicity of the
measure A = y o 7.

Theorem 6.8 ([29]) The measure X is ergodic with respect to the shift map o : & — .

Proof Let A € B(X) satisfy 0 "' (A) = A. Set E4(u, v) := Ay (A)/2 foru, v € F,s0
that £4 : F x F — R is a non-negative definite symmetric bilinear form satisfying
Ea(u,u) < E,u),u € F. We claim that there exists ¢4 € [0, 1] such that

Ealu,v) =csE€W,v), u,velkF. (6.13)

Note that Ay 0 0i = (5/3)Aor,vory for u,v € F and i € S. Since A =0"1(A) =
Uics 0i(A) we see that for any u, v € F,

1 5 1 5
Ea,v) = 2D i (0i(A) = 3 Shiuokiver) (A) = 3 Y Ealuo Fivo F.
ieS €S €S

(6.14)

By £4(1,1) =0 we can regard £4 as a non-negative definite symmetric bilin-
ear form on Hy/R1, and let Q4 be its matrix representation through the basis
{h1, hy} of Hy/R1. Then Eq. 6.14 together with Proposition 2.12-(ii) yields Q4 =
(5/3) Y ;cs TiQ 4T}, based on which a direct calculation using Proposition 2.12-(i)
easily shows that Q4 = cA((‘) (l’) for some cy4 € [0, 1]. Thus Eq. 6.13 holds for any
u, v € Ho, hence for any u, v € |J,,cy Hm by Eqs. 6.14 and 2.2, and then also for any
u,v € Fsince | ,,cy Hm/R1 is dense in (F/R1, &) and E4(u, u) < E(u, u),u e F.
Letu, f € F. By [13, Lemma 3.2.5] and the strong locality of (£, F),

1
d(Muﬁu) - §M<u2,f>> = udpfu) + fdpw) — udp, ) = fdpw- (6.15)

By Proposition 2.8, Egs. 6.13 and 2.4, the value of Eq. 6.15 on 7 (A) results in

1
[ it = (4) = Shi. () = 28 tuf. ) = Eatwl, = ca [ Fduin,
7(A)
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which implies that 1,4 - Ly = capt since F is dense in (C(K), || - [l). In partic-
ular, we have 0 = copy (K \ w(A)) = caryy(Z \ A). Now suppose A(A) > 0. Then
c4 > 0by Eq. 6.13 and hence A(,,(X \ A) =0foranyu € 7. ThusA(£X\ A) =0. O

7 Eigenvalues of the Laplacian

In this last section, we show that the Hausdorff and box-counting dimensions of
(K, py) naturally arise as the asymptotic order of the eigenvalues of the Laplacian
associated with (K, u, &, F) and that those dimensions are not integers, as in
Theorem 1.3-(3).

Let us first recall the following standard notations and definitions. See e.g. [10,
Section 2.1] and references therein for details of Hausdorff measure, Hausdorff
dimension and box-counting dimension; note that the definitions there apply to any
metric space although they are stated only for subsets of the Euclidean spaces.

Notation Let (E, p) be a metric space and let A C E be non-empty.

(1) For « € (0, 00), the a-dimensional Hausdorff measure and the Hausdorff di-
mension of A with respect to p are denoted by H*(A, p) and dimy(A, p),
respectively.

(2) The lower and upper box-counting dimensions of A with respect to p are
denoted by dimg (A, p) and dimg (A, p), respectively. If they are equal, their
common value, called the box-counting dimension of A with respect to p, is
denoted by dimg (A, p).

Note that 0 < dimp (A, p) < dimg(A, p) < dimg(A, p) < oo by [10, (2.14)].

Definition 7.1 Let v be a finite Borel measure on K with full support. Noting that the
non-positive self-adjoint operator A, of (K, v, &, F) (the generator of {7} }c0.00))
has discrete spectrum and that tr 7} < oo for ¢ € (0, 00) by [8, Theorem 2.1.4], let
{A;}nen be the non-decreasing enumeration of all the eigenvalues of —A,, where
each eigenvalue is repeated according to its multiplicity. The eigenvalue counting
function N, and the partition function Z, of the Dirichlet space (K, v, &, F) are
defined respectively by

Nu(s):=#neN|A <s}, seR, (7.1)
Z,(f) == Zef”x; = / e BdN,(s) = / po(t, x, x)dv(x), te€(0,00). (7.2)
neN [0,00) K

In the situation of Definition 7.1, N, (0) = 1 by A} =0 < A3, and N, (s) < oo for
any s € [0, oo) since lim,,_,« A}, = 00. Moreover, Z, is (0, co)-valued and continuous.

We now state the main theorem of this section. Recall the constant dls°° €
(1, 21log,s 5 5] given in Theorem 6.1.

Theorem 7.2 Set ds := dimy (K, py). Then H (K, py) € (0, 00), and for any h € Sy,

ds = dimp (K, py) = dimp (K, py) € [d¥°, 210g,s)5 5. (7.3)
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Moreover, there exist ¢71, ¢72 € (0, 00) such that for any h € Sy, any s € [1, 0o) and
anyt € (0, 1],

71587 < N, (5) < 705D, 7158 < N, (8) < 70572, (74)

et < 2,(1) < e, et < Zpy @ < Ccrat™ B2, (7.5)

Remark 7.3 The author has no idea whether ds = dimy (K, pp) for h € Sy,. Also the
estimate ds < 2logys 3 5 is by no means best possible.

The limits lim, .o 21logN,(s)/logs and lim,o2logZ,(f)/(—logt), if exist, are
usually called the (global) spectral dimension of the Dirichlet space (K, v, &, F).
Theorem 7.2 in particular implies that the spectral dimensions of (K, u, £, F) and
(K, wpy, £, F), where h € Sy, exist and are equal to dimy (K, pn), dimp (K, py) and
dimg (K., pn).

The rest of this section is devoted to the proof of Theorem 7.2, for which the
following proposition is fundamental.

Proposition 7.4 There exist c73,¢74 € (0,00) such that for any h € Sy, any s €
[1,00) and any t € (0, 1],

cra#AL, SN < crattA L, os#A L <N, () < crattA ., (76)

7 #ATE < Z,(0) < crattA 7] ra#A" < 2y, (1) < cratA (7.7)

Proof Equation 7.6 follows from [19, Theorem 4.3 and Proposition 4.4], Eq. 3.4, 3.5
and N, (0) = N, (0) = 1. Then noting that #AJ s < 3#A7* and #A% 5 < 3#A” for
s € (0, 1) by Egs. 3.4, 3.5 and [19, Proposition 2.7], we can easily verify Eq. 7.7 from
Eq. 7.6; note also that Z,,(¢) = f0°° e*N,(s/t)ds for v € {u, ppy} and ¢ € (0, 00). O

Lemma 7.5 Let h € Sy,. Then #A" < #AI#AT < 3°#A! for any s,t € (0, 1]. In par-
ticular, #A" < #ATt < 3%#A" for any s € (0, 1].

Proof Since ATt = Aﬁ’ = {@}, the latter assertion follows by setting t =1 in the
former, which in turn is trivial for s = 1. Let s,7€ (0,1], s <1 and take ¢, =
(¢}, ¢} € R? such that h—¢lhy — (2h, € R1. Then for each (v, w) € A} x AT,
Lhvw) = TETEenl < 1 Twll Tienl = I (w)lp(v) < st and hence vw < t(v, w) for a
unique 7(v, w) € A". Thus we have a mapping 7 : A" x AY — A" which is surjec-
tive; indeed, if u € A", then u1® € ¥, for some v € A? and o""l(u1%°) € =, for some
w e ASH, so that ul® € ¥, N X0 and u = (v, w). Therefore #A?I < #A?#Azi.
Let ¢ : S — S denote the bijection i +— i+ 1 mod 3, so that ¢ naturally defines
a bijection W, — W, given by w; ... w,, — t(w;)...t(w,), which we also write as

. Let R := (_1/2 _‘/M). Then for w € W,, clearly T, = RT,R™" and || T\l =

V3/2 —1/2
IRT,R™ | =Ty, and therefore w e ASH if and only if ((w) € AZ.“‘. Thus, with
w; € S denoting the first component of w € W, \ {#},
A=) {w.cw).’w)) (disjoint union). (7.8)
weAlt, wi=1
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Let (v,w) € A" x AM. Since |Y;_o RFAR x| = (3/2)y/| AlI> +2det A|x| for

A € L(R?) and x € R? by a direct calculation, we obtain

2

Z Utk(w) Z‘ Lk(ll)) v§h|>

k=0

3st
IIT NT5¢n > -~

RkT* 7kT>k
Z v;h 50

by det T,, = (3/25)*! > 0, Eqs. 3.4 and 3.5. Thus /,(vi*(w)) > st/50 for at least one
k € {0, 1,2}, and it follows from Eq. 7.8 that 3#A,, > #A?#Azi, where we set A, :=
{(v, w) € AP x AT* | [ (vw) > s1/50}. Each (v, w) € Ay admits u(v, w) € Al 5, such
that (v, w) < vw, and then the mapping A,; 3 (v, w) — u(v, w) € Aﬁ/so is clearly
injective. Therefore, noting also that #A3,/5 < 3#A! for r € (0, 1] by Eq. 3.5 and [19,
Proposition 2.7], we get #A/#AJt < 3#A, < 3#AL 5, < 37#AL. o

Proposition 7.6 There exists dg € [1,210g,y5,3 5] such that for any h € Sy,

3710570 < ypAh < AT <3V5B 0 5 (0, 1]. (7.9)

Proof Let s € (0,1). Noting Eq. 3.4 and that | A|? > 2|det A| for A € L(R?), we
have s A (3/5)"171 > || T, || = (s/5) v (3/25)/2 and (5/3)" > =225 5 forw € A,
Therefore

2logys,3 5

5 [w] 2
AT 2= ) (5) Tyl = s~ 2lesn 3 2 pprt = 2 #AM. (710

25 °F 25

weAlt
Let h € Sy,. Then since 37 %#AMA" < #A% < 3%%A"#A} for any 5,1 € (0, 1] by

Lemma 7.5, a standard argument for subadditive and superadditive sequences
together with Eq. 7.10 immediately shows the assertion; recall that #Ags /5 < 3#AN

for s € (0, 1] by Eq. 3.5 and [19, Proposition 2.7] and that #A" < #A7 < 3°%#A" for
s € (0,1] by Lemma 7.5. O

Lemma 7.7 Let A be a finite subset of W, satisfying K = | J
a subset Ny of A which is a partition of X.

K,,. Then there exists

weA

Proof K =J,cp Kwand K # Vyimply ¥ = [ J,,c, 2w, and then an induction on #A
easily shows the lemma. O

Lemma7.8 Let «,8, M € (0,00), and let H§(-, py) be the «-dimensional pre-
Hausdorff measure on (K, py) as defined in [10, (2.7)] and [23, Definition 1.5.1].
If § € (0, V2/50) and HS (K, pr) < M, then there exists a partition A of ¥ such that
Y wea ITull® < 4(25v2)* M and max,,cx || Ty || < 25726,

Proof By H§ (K, px) < M we can choose a sequence {A,},cn of non-empty subsets
of K with L, := diam(A,, px) < 3§ so that K = J,cy An and >, L% < M. Take
e €(0,(8/3)*] such that 3%¢ + >, LY < M. Forne N,weset D,,:=L,if L, >0
and D, :=3(27"¢)!/*if L, = 0,sothat D, <Sand ),y D% < M. We also set B, :=
Uvea, Be, (x, o), where &, := (27"¢)"/* if L, = 0 and otherwise ¢, € (0, 1]is chosen
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H _ AH
so that L, + 3¢g, < ﬁ/SO and A25ﬁL,l - Azsﬂ(Ln+3sn)

(1). Then diam(B,,, py) < L, + 2¢, and

; recall (Sr) in Definition 3.2-

Ay C By C B, ize, Xns p0) C Usssp, 136,y (X0 87) = Uss sap, (%, 87)  (7.11)

by Eq. 3.11, where we have chosen x,, € B, \ V,. By Lemma 3.5, U25«/§D,, (X, SM) =
U™ Kyni for some my, €{1,2,3,4} and {w™}™ C Agfwn’ so that B, C
U% Kyei by Eq. 711, [Tyl <25¢2D, <25v28 and Y, S0 1 Ty | <
D oneN 4(252D,)* < 4(25v/2)*M. Since K is compact, K = U,IC\IZI B, for some
N e N and {nk}f{\’:1 c N. Now we apply Lemma 7.7 to {w™/|ke{l,...,N},ie
{1,...,my,}} to have a partition A of ¥ with the desired properties. O

Proof of Theorem 7.2 Let h € Sy,. Lemma 3.5, Egs. 3.11, 3.12, Proposition 7.6 and
[19, Proposition 2.24] together imply that

ds = dimg (K, py) < dimg(K, pr) = dimg (K, py) = dg € [1, 2logys /3 51 (7.12)

We follow [10, Proof of Theorem 3.1] in this paragraph. Let « € (0, 0c0). We
suppose H‘l"/%(K, PH) < %6‘2"‘ and deduce dg < «, from which we conclude that

ds = dg by letting « | ds, that Hfj%(K, pr) > 16724 and that Eqgs. 7.4 and 7.5 hold
by virtue of Propositions 7.4 and 7.6. By Lemma 7.8, there exists a partition A
of ¥ such that >, _, IT,]|* < 1. Then @ ¢ A. Choose B € (0, «) so that r,(B) :=
Y wen ITullf < 1. Lets € (0, 1]. We define W, (A) := {#} U ,,cy A™ and

rd .= {w lw=w'...w"e W.(A), Iy (w' ...wmfl) >5 > lH(w)} (7.13)

with the convention /3¢ (w' ... w" ") := 2 for w = @, where we naturally regard w =
w!...w™ e W,(A) as an element of W, in the way of Definition 3.1-(1); note that
this natural identification W,(A) — W, is injective since A is a partition of . Then
as a subset of W,, T2 is easily seen to be a partition of ¥ with '* < A7, Since I'A C
{w e W.(A) | bas < || Twl) by Eq. 3.4, where b 5 := 5~ ™ves ¥l we have

#AT < #T) <#{w e Wo(A) | bas < ITul} < D D ITulPbfs™*

meNU{0} weA™

< > > NTalP T lPb s

meNU{0} w!,..., wmeA

= > @bl = (1=ra®) b5

meNU{0}

which and Eq. 79 yielddpg < 8 < «.
Next we show H® (K, py) < oc. Let s € (0, 1]. Then diam(K,,, py) < 10l (w) <
10s for w € A by Lemma 3.7 and Eq. 3.11 and hence

His (K. pr) < Y diam(K,, pr)® < (105)B#AT < (105)%3"57% = 3110

u)eASH

by Eq. 7.9 and ds = dg. Letting s | 0, we obtain H% (K, p3) < 3'210% < oc.
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Finally, we prove di° < ds. By Jensen’s inequality and Eq. 7.2,

1 / 2log p, (6. %, %) | 10g< 1 / ) dum) _ 210g(Z,(0/2)
2 K 2 K —IOgt

<
—logt w) = —logt

for t € (0, 1), and letting ¢ | O results in dlsOC <ds by Eq. 6.1, Fatou’s lemma and

Eq. 7.5; note that t — p, (¢, x, x) is (0, co)-valued and non-increasing for each x € K
by [8, Theorem 2.1.4]. |

Remark 7.9 A simple direct argument shows the following lower bound
ds = dimy (K, py) = dimp (K, py) > 1+ 2logys3 8 =1.17198... (7.14)

although it is weaker than the numerical estimate ds > dlsOC > 1.27874 ... implied by
Theorem 7.2 and Remark 6.7. Indeed, since ), T; = g((‘) 9) by Proposition 2.12-(i),

ZweA(%)‘w‘ T, = (§9) for any partition A of . Therefore for s € (0, 1),

5 |lw|
V< ) (8) IToull < Y Tl 200 5 < s 2loes Sy AT (7.15)

weA?" wEASH

by virtue of the lower bound in Eq. 6.4. Now Eq. 7.14 follows from Egs. 7.15, 7.9 and
ds = dg.
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