
Potential Anal (2012) 36:67–115
DOI 10.1007/s11118-011-9221-5

Heat Kernel Asymptotics for the Measurable
Riemannian Structure on the Sierpinski Gasket

Naotaka Kajino

Received: 15 December 2010 / Accepted: 25 January 2011 / Published online: 17 February 2011
© Springer Science+Business Media B.V. 2011

Abstract For the measurable Riemannian structure on the Sierpinski gasket intro-
duced by Kigami, various short time asymptotics of the associated heat kernel are
established, including Varadhan’s asymptotic relation, some sharp one-dimensional
asymptotics at vertices, and a non-integer-dimensional on-diagonal behavior at
almost every point. Moreover, it is also proved that the asymptotic order of the
eigenvalues of the corresponding Laplacian is given by the Hausdorff and box-
counting dimensions of the space.
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1 Introduction

Recently there have been attempts to develop a theory of “manifold-like” analysis
and geometry on fractals. As a prototype of such a theory, based on Kusuoka’s
construction in [29] of “weak gradients” for Dirichlet forms on fractals, Kigami
[22, 25] has introduced a measure-theoretic “Riemannian structure” on the Sierpinski
gasket (Fig. 1). He has further proved in [25] that the associated heat kernel satisfies
the two-sided Gaussian bound in terms of the natural geodesic metric, unlike typical
fractal diffusions treated e.g. in [2, 3, 5, 12, 27] for whose transition densities (heat
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Fig. 1 Sierpinski gasket

kernels) the two-sided sub-Gaussian bounds hold. The purpose of this paper is to
analyze this “Riemannian structure” on the Sierpinski gasket more in detail. We are
particularly interested in short time asymptotic behaviors of the heat kernel, and our
results include “manifold-like” ones as well as “fractal-like” ones.

Let us describe briefly our framework of the “Riemannian structure” on the
Sierpinski gasket. Let K be the Sierpinski gasket constructed from an equilateral tri-
angle in R

2 with vertices q1, q2, q3, and set V0 := {q1, q2, q3}. As studied in [1, 23, 34],
a standard Dirichlet form (E,F) is defined on K, where the domain F is in fact a
dense subalgebra of C(K). By choosing h1, h2 ∈ F so that 2E(hi, h j) = δij and they
are harmonic on K \ V0, we have a “harmonic map” � : K → R

2 given by �(x) :=
(h1(x), h2(x)). � is injective by [22, Theorem 3.6] and hence a homeomorphism from
K onto its image KH := �(K), which is called the harmonic Sierpinski gasket (Fig. 2).
Moreover, � admits an associated E-energy measure μ on K, called the Kusuoka
measure on the Sierpinski gasket after [29].

By [29, Section 1] and [22, Sections 3 and 4] (see Proposition 2.15 and
Theorem 2.16 below), we can associate with the Dirichlet space (K, μ, E,F) a
“one-dimensional tangent bundle with a Riemannian metric (Riemannian structure)”
on K inherited from R

2 through the embedding �, where μ plays the role of
the “Riemannian volume measure”. The heat kernel pμ(t, x, y) of this Dirichlet
space, which is the jointly continuous integral kernel of the associated Markovian
semigroup on L2(K, μ), is the main subject of our study.

Note that the “Riemannian structure” on K is different in several respects from
usual Riemannian structures on manifolds; the notion of the “tangent space Tx K at
x”, which is a one-dimensional subspace of R

2, makes sense only for μ-a.e. x ∈ K,
and Tx K depends discontinuously on x ∈ K. (In fact, the set of points where the
tangent space cannot be defined is dense in K; see [22, Theorem B.5-(1)].) Therefore
the associated heat kernel pμ(t, x, y) is expected to behave differently from those on
Riemannian manifolds, and this is the case for the asymptotics of pμ(t, x, x) as t ↓ 0,
as described in Theorem 1.3 below.

Now we outline the main results of this paper. Following [25, Theorem 5.1], we
define the harmonic geodesic metric ρH on K by

ρH(x, y) := inf{�(� ◦ γ ) | γ : [0, 1] → K, γ is continuous, γ (0) = x, γ (1) = y}
(1.1)
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Fig. 2 Harmonic Sierpinski
gasket

for x, y ∈ K, where �(� ◦ γ ) is the length of � ◦ γ : [0, 1] → R
2 with respect to the

Euclidean metric. Then ρH is a metric on K compatible with the original topology
of K, and the first main result of this paper is the following characterization of the
metric ρH.

Theorem 1.1 For any x, y ∈ K,

ρH(x, y) = sup{u(x)− u(y) | u ∈ F , |˜∇u| ≤ 1 μ-a.e.}, (1.2)

where ˜∇u denotes the “gradient vector field” of u; see Theorem 2.17 below.

It is not difficult to prove the equality analogous to Eq. 1.2 for Riemannian
manifolds, whereas in the present case Eq. 1.2 is not straightforward and its proof,
which is given in Section 4, is an important step of this paper. By virtue of Theorem
1.1, the general results of Sturm [35, 36] and Ramírez [32] apply to the present case
to yield the following off-diagonal Gaussian behaviors of pμ(t, x, y) in terms of ρH.
For (r, x) ∈ (0,∞)× K we set Br(x, ρH) := {y ∈ K | ρH(x, y) < r}.

Corollary 1.2

(1) There exist cL, cU ∈ (0,∞) such that for any (t, x, y) ∈ (0,∞)× K × K,

cL
exp

(− ρH(x,y)2

cLt

)

μ
(

B√t(x, ρH)
) ≤ pμ(t, x, y) ≤ cU

(

1+ ρH(x,y)2

t

)
log5 15

2 exp
(− ρH(x,y)2

2t

)

√

μ
(

B√t(x, ρH)
)

μ
(

B√t(y, ρH)
)

. (1.3)

(2) For any x, y ∈ K,

lim
t↓0

2t log pμ(t, x, y) = −ρH(x, y)2. (1.4)

For the heat kernels on Riemannian manifolds, the asymptotic behavior of exactly
the same form as Eq. 1.4, called Varadhan’s asymptotic relation, is well-known
and has been obtained by Varadhan [38] (see also Norris [31]). Also the two-
sided Gaussian heat kernel bound like Eq. 1.3 is known to hold for Riemannian
manifolds which are either compact or complete with non-negative Ricci curvature;
see [8, 15, 30, 33, 35, 36] and references therein.
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We remark that Kigami [25, Theorem 6.3] has already obtained a two-sided
Gaussian bound for pμ(t, x, y) similar to Eq. 1.3 where the upper bound involves
exp

(− ρH(x,y)2

Ct

)

with some constant C ∈ (2,∞) instead of exp
(− ρH(x,y)2

2t

)

. Here we can
conclude a better Gaussian upper bound as in Eq. 1.3 by virtue of Theorem 1.1 and
Sturm’s results [35, 36].

Note that Corollary 1.2 is in sharp contrast with the behaviors of the transition
density p(t, x, y) of the Brownian motion on the Sierpinski gasket K; p(t, x, y) is
nothing but the heat kernel associated with the Dirichlet space (K, ν, E,F) where
ν is the log2 3-dimensional Hausdorff measure on K with respect to the Euclidean
metric, and by [5, Theorem 1.5] we have the following sub-Gaussian bound

c1.1

td f /dw
exp

⎛

⎝−
( |x− y|dw

c1.1t

)
1

dw−1

⎞

⎠ ≤ p(t, x, y) ≤ c1.2

td f /dw
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)
1
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⎠ ,

where d f := log2 3 and dw := log2 5> 2. Furthermore by [28, Theorem 1.2-a)], for any

distinct x, y ∈ K, the limit limt↓0 t
1

dw−1 log p(t, x, y) does not exist.
Corollary 1.2 concerns the off-diagonal Gaussian behaviors of pμ(t, x, y). On the

other hand, for its on-diagonal behaviors we will establish the following statements,
which include both “manifold-like” and “fractal-like” asymptotics.

Theorem 1.3

(1) For any x ∈ V0 (recall V0 = {q1, q2, q3}), it holds that

pμ(t, x, x) = 1√
2π t

(

2+ O
(

tlog5/3 3)) as t ↓ 0. (1.5)

(2) There exists a constant dloc
S ∈ (1, 2 log25/3 5] (note 2 log25/3 5 = 1.5181 . . .) such

that

lim
t↓0

2 log pμ(t, x, x)

− log t
= dloc

S μ-a.e. x ∈ K. (1.6)

(3) dimH(K, ρH) = dimB(K, ρH) ∈ [dloc
S , 2 log25/3 5], where dimH and dimB denote

Hausdorf f and box-counting dimensions, respectively. Moreover, set dS :=
dimH(K, ρH), let {λμ

n }n∈N be the eigenvalues of the Laplacian associated
with (K, μ, E,F) and let Nμ(s) := #{n ∈ N | λμ

n ≤ s} and Zμ(t) :=∑

n∈N
e−tλμ

n
(=

∫

K pμ(t, x, x)dμ(x)
)

for s, t ∈ (0,∞). Then there exist c1.3, c1.4 ∈ (0,∞) such that
for any s ∈ [1,∞) and any t ∈ (0, 1],

c1.3sdS/2 ≤ Nμ(s) ≤ c1.4sdS/2 and c1.3t−dS/2 ≤ Zμ(t) ≤ c1.4t−dS/2. (1.7)

Equation 1.5 is “manifold-like” and reflects our intuition on the picture of KH
(Fig. 2) that, near �(x), KH looks very much like its “tangent line at �(x)”. In fact, for
each x ∈ V∗ (i.e. a vertex x of any level), we prove a more detailed one-dimensional
asymptotic behavior of pμ(t, x, y) when t ∈ (0,∞) is small and y ∈ K is close to x, as
well as the existence of the limit limr↓0 μ(Br(x, ρH))/r ∈ (0,∞). On the other hand,
according to Eqs. 1.6 and 1.7, pμ exhibits non-integer-dimensional behaviors at μ-a.e.
point in the short time limit, thereby reflecting the fractal nature of the space.

Lastly let us give a few remarks on the framework. One may expect that the
main results of this paper can be generalized to the case of other self-similar fractals
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Fig. 3 From the left, three-dimensional (level-2) Sierpinski gasket, two-dimensional level-3
Sierpinski gasket, pentagasket and snowflake

like ones in Fig. 3, but such generalizations are not straightforward and the actual
situation is quite subtle, as suggested by the following facts.

First, our proof of Theorem 1.1 utilizes a complete knowledge about the structure
of geodesics due to [25, Section 5] (see Proposition 3.15 below), where the two-
dimensionality of the space has played an essential role. Therefore some additional
task should be necessary to verify Theorem 1.1 even in the (probably simplest) case
of the d-dimensional (level-2) Sierpinski gasket with d ≥ 3, although most of our
main results will be valid also for them. Secondary, in another simple case, the case
of the two-dimensional level-l Sierpinski gasket with l ≥ 3 (see Fig. 3), we can show
that the “Riemannian volume measure” is not volume doubling with respect to the
harmonic geodesic metric, based on the denseness of vertices from which the space
spreads away in three directions. Hence by [24, Theorem 3.2.3], even the on-diagonal
upper bound pμ(t, x, x) ≤ cU/μ

(

B√t(x, ρH)
)

is false there, whereas Theorem 1.1 and
part of Theorem 1.3 are still expected to be true. Finally, for most other typical frac-
tals, such as pentagasket and snowflake in Fig. 3, non-constant harmonic functions
can be constant on non-empty open subsets and, as a consequence, harmonic maps
into finite dimensional spaces and their associated energy measures cannot be used to
introduce a “Riemannian structure”. Thus it is already a highly non-trivial problem
how we should introduce “Riemannian structures” on such fractals.

In view of these observations, it seems reasonable for this present moment to
content ourselves with the case of the two-dimensional Sierpinski gasket only. We
leave possible extensions of our main results to other fractals for future studies.

The organization of this article is as follows. In Section 2, we collect basic facts
concerning the standard Dirichlet form and the measurable Riemannian structure on
the Sierpinski gasket. In Section 3 we briefly recall the results of [25] on the volume
doubling property of the Kusuoka measure and basics on the harmonic geodesic met-
ric, with slight improvements. Based on these preparations, we give the proofs of our
main results in the subsequent sections; Theorem 1.1 and consequently Corollary 1.2
are proved in Section 4, and (1), (2) and (3) of Theorem 1.3 together with some more
detailed results are treated respectively in Sections 5, 6 and 7.

Notation In this paper, we adopt the following notations and conventions.

(1) N = {1, 2, 3, . . . }, i.e. 0 ∈ N.
(2) The cardinality (the number of all the elements) of a set A is denoted by #A.
(3) We set sup∅ := 0 and inf ∅ := ∞. We write a ∨ b := max{a, b}, a ∧ b :=

min{a, b}, a+ := a ∨ 0 and a− := −(a ∧ 0) for a, b ∈ [−∞,∞]. We use the same
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notations also for functions. All functions treated in this paper are assumed to
be [−∞,∞]-valued.

(4) Let N ∈ N. The Euclidean inner product and norm on R
N are denoted by 〈·, ·〉

and | · | respectively. For γ : [a, b ] → R
N continuous, where a, b ∈ R, a ≤ b ,

let �(γ ) be its length with respect to | · |. We set L(RN) := {T | T : RN →
R

N, T is linear}, and for T ∈ L(RN) let det T be its determinant, and T∗ its
adjoint and ‖T‖ its Hilbert-Schmidt norm with respect to 〈·, ·〉.

(5) Let E be a topological space. The Borel σ -field of E is denoted by B(E).
We set C(E) := { f | f : E → R, f is continuous} and ‖ f‖∞ := supx∈E | f (x)|,
f ∈ C(E).

(6) Let (E, ρ) be a metric space. We set Br(x, ρ) := {y ∈ E | ρ(x, y) < r} for (r, x) ∈
(0,∞)× E and diam(A, ρ) := supx,y∈A ρ(x, y) for A ⊂ E. Also for f : E → R

we set Lipρ f := supx,y∈E, x=y | f (x)− f (y)|/ρ(x, y).

2 Measurable Riemannian Structure on the Sierpinski Gasket

In this section, we briefly recall basic facts concerning the measurable Riemannian
structure on the Sierpinski gasket, including the definitions of the standard Dirichlet
form (resistance form) and the harmonic Sierpinski gasket, which is the geometric
realization of the measurable Riemannian structure. We follow mainly [25] for the
presentation of this section, but we sometimes refer to also [17, 22, 23, 26, 29] for
related facts. See [37] for possible generalizations to other finitely ramified fractals.

Definition 2.1 (Sierpinski gasket) Let V0 = {q1, q2, q3} ⊂ R
2 be the set of the three

vertices of an equilateral triangle, set S := {1, 2, 3}, and for i ∈ S define Fi : R2 → R
2

by Fi(x) := (x+ qi)/2. The Sierpinski gasket (Fig. 1) is defined as the self-similar
set associated with {Fi}i∈S, i.e. the unique non-empty compact subset K of R

2

that satisfies K =⋃

i∈S Fi(K). We also define Vm for m ∈ N inductively by Vm :=
⋃

i∈S Fi(Vm−1) and set V∗ :=⋃

m∈N
Vm.

Note that Vm−1 ⊂ Vm for any m ∈ N. K is always regarded as equipped with the
relative topology inherited from R

2, and V∗ is dense in K in this topology. Hereafter
we always regard Fi for each i ∈ S as a continuous map from K to itself.

Definition 2.2

(1) Let W0 := {∅}, where ∅ is an element called the empty word, let Wm := Sm =
{w1 . . . wm | wi ∈ S for i ∈ {1, . . . , m}} for m ∈ N and W∗ :=⋃

m∈N∪{0} Wm. For
w ∈ W∗, the unique m ∈ N ∪ {0} with w ∈ Wm is denoted by |w| and called the
length of w. Also for i ∈ S and n ∈ N ∪ {0} we write in := i . . . i ∈ Wn.

(2) We set � := SN = {ω1ω2ω3 . . . | ωi ∈ S for i ∈ N}, and define the shift map σ :
� → � by σ(ω1ω2ω3 . . . ) := ω2ω3ω4 . . . . Also for i ∈ S we define σi : � → � by
σi(ω1ω2ω3 . . . ) := iω1ω2ω3 . . . and set i∞ := iii . . . ∈ �. For ω = ω1ω2ω3 . . . ∈ �

and m ∈ N ∪ {0}, we write [ω]m := ω1 . . . ωm ∈ Wm.
(3) For w = w1 . . . wm ∈ W∗, we set Fw := Fw1 ◦ · · · ◦ Fwm (F∅ := idK), Kw :=

Fw(K), σw := σw1 ◦ · · · ◦ σwm (σ∅ := id�) and �w := σw(�).
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Associated with the triple (K, S, {Fi}i∈S) is a natural projection π : � → K given
by the following proposition, which is used to describe the topological structure of K.

Proposition 2.3 There exists a unique continuous surjective map π : � → K such that
Fi ◦ π = π ◦ σi for any i ∈ S, and it satisf ies {π(ω)} =⋂

m∈N
K[ω]m for any ω ∈ �.

Moreover, #π−1(x) = 1 for x ∈ K \ V∗, π−1(qi) = {i∞} for i ∈ S, and for m ∈ N and
each x ∈ Vm \ Vm−1 there exist w ∈ Wm−1 and i, j ∈ S with i = j such that π−1(x) =
{wij∞, w ji∞}.

Recall the following basic fact ([23, Proposition 1.3.5-(2)]) which we will use below
without further notice: if w, v ∈ W∗ and �w ∩�v = ∅ then Kw ∩ Kv = Fw(V0) ∩
Fv(V0).

As studied in [1, 23, 34], a standard Dirichlet form (or resistance form, strictly
speaking) (E,F) is defined on the Sierpinski gasket K as follows.

Definition 2.4 Let m ∈ N ∪ {0}. We define a non-negative definite symmetric bilin-
ear form Em : RVm ×R

Vm → R on Vm by

Em(u, v) := 1
4
· 1

2

(

5
3

)m
∑

x,y∈Vm, x
m∼y

(u(x)− u(y))(v(x)− v(y)), (2.1)

where, for x, y ∈ Vm, we write x
m∼ y if and only if x, y ∈ Fw(V0) for some w ∈ Wm

and x = y.

The usual definition of Em does not contain the factor 1/4 so that each edge in
the graph (Vm,

m∼) has resistance (3/5)m. Here it has been added for simplicity of the
subsequent arguments; see Definition 2.11. It is easily shown that, for any function u :
K → R, {Em(u|Vm , u|Vm)}m∈N∪{0} is non-decreasing and hence has the limit in [0,∞].
Then we have the following theorem; see [23, Chapter 2] and [26, Part 1] for the
definition and basic properties of resistance forms.

Theorem 2.5 Def ine F ⊂ C(K) by F := {u ∈ C(K) | limm→∞ Em(u|Vm , u|Vm) < ∞}
and E : F ×F → R by E(u, v) := limm→∞ Em(u|Vm , v|Vm)(∈ R) for u, v ∈ F . Then
(E,F) is a resistance form on K whose resistance metric RE = RE (x, y) : K × K →
[0,∞) is compatible with the original topology of K. Moreover, for any u, v ∈ F ,

u ◦ Fi ∈ F for any i ∈ S and E(u, v) = 5
3

∑

i∈S

E(u ◦ Fi, v ◦ Fi). (2.2)

(E,F) is called the standard resistance form on the Sierpinski gasket. Further-
more [26, Corollary 6.4, Theorems 9.4, 9.9 and 10.4], Eq. 2.2, E(1, 1) = 0 and [24,
Theorem A.4] imply the following theorem. See [13, Section 1.1] for the notions of
regular Dirichlet forms and their strong locality, and see [13, Section 2.1] and [26,
Definition 9.8] for the definition of their associated capacity.

Theorem 2.6 Let ν be a f inite Borel measure on K with full support, i.e. such
that ν(U) > 0 for any non-empty open subset U of K. Then (E,F) is a strong
local regular Dirichlet form on L2(K, ν) whose associated capacity Capν satisf ies
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infx∈K Capν({x}) > 0. Moreover, its associated Markovian semigroup {Tν
t }t∈(0,∞) on

L2(K, ν) admits a unique continuous integral kernel pν , i.e. a continuous function
pν = pν(t, x, y) : (0,∞)× K × K → (0,∞) such that for each f ∈ L2(K, ν) and t ∈
(0,∞),

Tν
t f =

∫

K
pν(t, ·, y) f (y)dν(y) ν-a.e. (2.3)

In the situation of Theorem 2.6, ν is called the reference measure of the Dirichlet
space (K, ν, E,F), and pν is called the heat kernel associated with (K, ν, E,F); see
[26, Theorem 10.4] for basic properties of pν .

Since we have a regular Dirichlet form (E,F) with state space K, by [13, pp. 110–
111] we can define E-energy measures as in the following definition.

Definition 2.7 The E-energy measure of u ∈ F is defined as the unique Borel mea-
sure μ〈u〉 on K such that

∫

K
f dμ〈u〉 = 2E(uf, u)− E

(

u2, f
)

for any f ∈ F . (2.4)

We also define λ〈u〉 to be the unique positive Borel measure on � that satisfies
λ〈u〉(�w) = 2(5/3)|w|E(u ◦ Fw, u ◦ Fw) for any w ∈ W∗, which exists by Eq. 2.2 and
the Kolmogorov extension theorem. For u, v ∈ F we set μ〈u,v〉 := (μ〈u+v〉 − μ〈u−v〉)/4
and λ〈u,v〉 := (λ〈u+v〉 − λ〈u−v〉)/4, so that they are finite Borel signed measures on K
and on � respectively and are symmetric and bilinear in (u, v) ∈ F ×F .

Let u ∈ F . According to [6, Proof of Theorem I.7.1.1], the strong locality of (E,F)

implies that the image measure μ〈u〉 ◦ u−1 on (R,B(R)) is absolutely continuous with
respect to the Lebesgue measure on R. In particular, μ〈u〉({x}) = 0 for any x ∈ K.
We also easily see the following proposition by using Eqs. 2.2 and 2.4. Note that
π(A) ∈ B(K) for A ∈ B(�) by Proposition 2.3.

Proposition 2.8 λ〈u,v〉 = μ〈u,v〉 ◦ π and λ〈u,v〉 ◦ π−1 = μ〈u,v〉 for any u, v ∈ F .

The definition of the measurable Riemannian structure on the Sierpinski gasket
involves certain harmonic functions. In the present setting, harmonic functions are
formulated as follows.

Definition 2.9

(1) We define FU := {u ∈ F | u|K\U = 0} for each open subset U of K.
(2) Let F be a closed subset of K. Then h ∈ F is called F-harmonic if and only if

E(h, h) = inf
u∈F , u|F=h|F

E(u, u) or equivalently, E(h, u) = 0, ∀u ∈ FK\F .

(2.5)

We set HF := {h ∈ F | h is F-harmonic}, which is a linear subspace of F , and
Hm := HVm , m ∈ N ∪ {0}. Note that for u ∈ F , u ∈ Hm if and only if E(u, u) =
Em(u|Vm , u|Vm), which holds if and only if u ◦ Fw ∈ H0 for any w ∈ Wm by
Eq. 2.2.
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The following proposition easily follows from [26, Lemma 8.2].

Proposition 2.10 Let F be a non-empty closed subset of K.

(1) Let u ∈ F . Then there exists a unique h ∈ HF such that h|F = u|F.
(2) Let h ∈ HF. Then minF h ≤ h(x) ≤ maxF h for any x ∈ K.

Now we define a “harmonic embedding” � of K into R
2, through which we will

regard K as a kind of “Riemannian submanifold in R
2” to obtain its measurable

Riemannian structure. We also introduce a measure μ which is the E-energy measure
of the “embedding” � and will play the role of the “Riemannian volume measure”.
Recall V0 = {q1, q2, q3}, and see [23, Section 3.2] and Proposition 2.12 below for basic
properties of V0-harmonic functions.

Definition 2.11

(0) Let i ∈ S, and let j, k ∈ S be such that j ≡ i+ 1 mod 3 and k ≡ i+ 2 mod 3. We
define hi

1, hi
2 ∈ F to be the V0-harmonic functions satisfying hi

1(qi) = hi
2(qi) =

0, hi
1(q j) = hi

1(qk) = 1 and −hi
2(q j) = hi

2(qk) = 1/
√

3, so that 2E(hi
1, hi

1) =
2E(hi

2, hi
2) = 1 (recall the factor 1/4 in Eq. 2.1), E(hi

1, hi
2) = 0, hi

1 ◦ Fi = (3/5)hi
1

and hi
2 ◦ Fi = (1/5)hi

2.
(1) We set h1 := h1

1 and h2 := h1
2, and define � : K → R

2 and KH by

�(x) := (h1(x), h2(x)), x ∈ K and KH := �(K). (2.6)

KH is called the harmonic Sierpinski gasket (Fig. 2). We also set q̂i := �(qi) for
i ∈ S, so that {q̂1, q̂2, q̂3} = �(V0) is the set of vertices of an equilateral triangle.

(2) We define finite Borel measures μ on K and λ on � by respectively

μ := μ〈h1〉 + μ〈h2〉 and λ := λ〈h1〉 + λ〈h2〉, (2.7)

so that λ = μ ◦ π and λ ◦ π−1 = μ by Proposition 2.8. We call μ the Kusuoka
measure on the Sierpinski gasket.

Notation In what follows hi
1, hi

2, h1, h2 always denote the V0-harmonic functions
given in Definition 2.11. We often regard {hi

1, hi
2} as forming an orthonormal basis

of (H0/R1, 2E). Moreover, we set

‖u‖E :=
√

2E(u, u), u ∈ F and SH0 := {h ∈ H0 | ‖h‖E = 1}. (2.8)

The following proposition provides an alternative geometric definition of KH,
and essentially as its corollary we also see the injectivity of � (Theorem 2.13),
Proposition 2.14 below and that μ〈h〉 has full support for any h ∈ SH0 .

Proposition 2.12 ([22, Section 3]) For i ∈ S, def ine Ti ∈ L(R2) and Hi : R2 → R
2 by

Ti
(

a
(

q̂ j + q̂k − 2q̂i
)+ b

(

q̂k − q̂ j
)) := 3

5
a
(

q̂ j + q̂k − 2q̂i
)+ 1

5
b
(

q̂k − q̂ j
)

, a, b ∈ R,
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where {i, j, k} = S, and Hi(x) = q̂i + Ti(x− q̂i), x ∈ R
2. Also for w = w1 . . . wm ∈

W∗ let Tw := Tw1 · · ·Twm (T∅ := idR2 ), which we regard as its matrix representation
through the standard basis of R

2. Then we have the following statements:

(i) T1 =
(

3/5 0
0 1/5

)

, T2 =
(

3/10 −√3/10
−√3/10 1/2

)

, T3 =
(

3/10
√

3/10√
3/10 1/2

)

.

(ii) For each w ∈ W∗, T∗w := (Tw)∗ is equal to the matrix representation of the linear
map F∗w : H0/R1 → H0/R1, F∗wh := h ◦ Fw by the basis {h1, h2} of H0/R1.

(iii) Hi ◦� = � ◦ Fi and hence Hi ◦ (� ◦ π) = (� ◦ π) ◦ σi for any i ∈ S. In particu-
lar, KH =⋃

i∈S Hi(KH), i.e. KH is the self-similar set associated with {Hi}i∈S.

Theorem 2.13 ([22, Theorem 3.6]) The map � : K → KH is a homeomorphism.

Proposition 2.14 μ(Kw) = λ(�w) = (5/3)|w|‖Tw‖2 for any w ∈ W∗. Moreover, it
holds that λ ◦ σ−1 = λ.

Kusuoka [29, Example 1] has proved that λ is ergodic with respect to the shift
map σ , i.e. λ(A)λ(� \ A) = 0 for any A ∈ B(�) with σ−1(A) = A, and that it is
singular with respect to the Bernoulli measure on � with weight (1/3, 1/3, 1/3). The
ergodicity of λ plays an essential role in Section 6, where we provide an alternative
simple proof of it.

Now we introduce the measurable Riemannian structure on K, which is formu-
lated as a matrix-valued Borel measurable map Z on K, as follows.

Proposition 2.15 ([29, Section 1], [22, Proposition B.2]) Def ine �Z ∈ B(�) and
KZ ∈ B(K) by

�Z :=
{

ω ∈ �

∣

∣

∣

∣

Z�(ω) := lim
m→∞

T[ω]m T∗[ω]m
‖T[ω]m‖2 exists in L(R2)

}

, KZ := π(�Z ). (2.9)

Then Z�(ω) is an orthogonal projection of rank 1 for any ω ∈ �Z , λ(� \�Z ) =
μ(K \ KZ ) = 0, π−1(V∗) ⊂ �Z and Z�(ω) = Z�(τ) for ω, τ ∈ π−1(x), x ∈ V∗ \ V0.
Hence (by Proposition 2.3) setting Zx := Z (x) := Z�(ω), ω ∈ π−1(x) for x ∈ KZ

and Zx := Z (x) := (

1 0
0 0

)

for x ∈ K \ KZ gives a well-def ined Borel measurable map
Z : K → L(R2).

Theorem 2.16 ([22, Section 4]) Set C1(K) := {v ◦� | v ∈ C1(R2)}. Then for each u ∈
C1(K), ∇u := (∇v) ◦� is independent of a particular choice of v ∈ C1(R2) satisfying
u = v ◦�. Moreover, C1(K) ⊂ F , C1(K)/R1 is dense in (F/R1, E), and for any u, v ∈
C1(K),

dμ〈u,v〉 = 〈Z∇u, Z∇v〉dμ and E(u, v) = 1
2

∫

K
〈Z∇u, Z∇v〉dμ. (2.10)

In view of Theorem 2.16, especially Eq. 2.10, we may regard Z as defining a “one-
dimensional tangent space of K at x together with a metric” for μ-a.e. x ∈ K in a
measurable way, with μ considered as the associated “Riemannian volume measure”
and Z∇u as the “gradient vector f ield” of u ∈ C1(K). Then the Dirichlet space
associated with this “Riemannian structure” is (K, μ, E,F). The main subject of the
present paper is detailed asymptotic analysis of this Dirichlet space, especially its
associated heat kernel pμ.
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As a matter of fact, any u ∈ F admits a natural “gradient vector f ield” ˜∇u, thereby
Eq. 2.10 extended to functions in F , as in the following theorem whose essential part
is due to Hino [17, Theorem 5.4].

Theorem 2.17 Let h ∈ SH0 . Then for any u ∈ F we have the following statements:

(1) For μ-a.e. x ∈ K, there exists ˜∇u(x) ∈ Im Zx such that for any ω ∈ π−1(x),

sup
y∈K[ω]m

∣

∣

∣u(y)− u(x)− 〈˜∇u(x),�(y)−�(x)〉
∣

∣

∣ = o(‖T[ω]m‖) as m →∞.

(2.11)

Such ˜∇u(x) ∈ Im Zx as in Eq. 2.11 is unique for each x ∈ KZ , and dμ〈u〉 =
|˜∇u|2dμ.

(2) For μ〈h〉-a.e. x ∈ K, there exists du
dh (x) ∈ R such that for any ω ∈ π−1(x),

sup
y∈K[ω]m

∣

∣

∣

∣

u(y)− u(x)− du
dh

(x)(h(y)− h(x))

∣

∣

∣

∣

= o(‖h ◦ F[ω]m‖E ) as m →∞.

(2.12)

Such du
dh (x) ∈ R as in Eq. 2.12 is unique for each x ∈ K, and dμ〈u〉 =

( du
dh

)2
dμ〈h〉.

We need the following definition and lemma for the proof of Theorem 2.17. Recall
that the map Z : K → L(R2) satisfies Z 2 = Z ∗ = Z , det Z = 0 and tr Z = 1.

Definition 2.18 Let Z i, j := 〈ei, Z e j〉 for i, j ∈ {1, 2}, where e1 := (1, 0) and e2 :=
(0, 1). We define ζ = (ζ 1, ζ 2) : K → R

2 by

ζ :=
(√

Z 1,1, Z 1,2/
√

Z 1,1
)

if Z 1,1 = 0, otherwise ζ := (0, 1), (2.13)

so that Z i, j = ζ iζ j for i, j ∈ {1, 2}, |ζ | = 1 and ζ(x) ∈ Im Zx for any x ∈ K. Also for
each x ∈ K, we write ζx = (ζ 1

x , ζ 2
x ) for ζ(x) = (ζ 1(x), ζ 2(x)) and define hx, h⊥x by

hx := ζ 1
x (h1 − h1(x)1)+ ζ 2

x (h2 − h2(x)1) ,

h⊥x := −ζ 2
x (h1 − h1(x)1)+ ζ 1

x (h2 − h2(x)1) ,
(2.14)

so that hx, h⊥x ∈ SH0 , E(hx, h⊥x ) = 0 and hx(x) = h⊥x (x) = 0.

Lemma 2.19 Let x ∈ KZ and ω ∈ π−1(x). Then

lim
m→∞

‖hx ◦ F[ω]m‖E
‖T[ω]m‖

= 1 and lim
m→∞

‖h⊥x ◦ F[ω]m‖E
‖T[ω]m‖

= 0. (2.15)

Proof This is immediate from a direct calculation using Proposition 2.12-(ii), Eqs. 2.9
and 2.14. ��
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Proof of Theorem 2.17 By [17, Theorem 5.6], μ〈v〉 is absolutely continuous with
respect to both μ and μ〈h〉 for any v ∈ F . Moreover, by [23, Theorem 3.2.5] and a
direct calculation we have

‖h ◦ Fw‖E ≤ max
Kw

h−min
Kw

h ≤ 2√
3
‖h ◦ Fw‖E for any w ∈ W∗. (2.16)

Therefore an application of [17, Theorem 5.4] to h and u yields (2). Thanks to
Eqs. 2.14, 2.15 and 2.16, (1) follows by applying (2) to h = h1 and setting ˜∇u(x) :=
du
dh1

(x)ζ 1
x ζx; note that μ and μ〈h1〉 are mutually absolutely continuous and that (ζ 1)2 =

|Z e1|2 = dμ〈h1〉/dμ μ-a.e. ��

Remark 2.20 The “gradient vector f ield” ˜∇u in Theorem 2.17-(1) coincides with
the “weak gradient” Y(· ; u) def ined by Kusuoka [29, Lemma 5.1] (see also [25,
Definition 4.11]). Indeed, noting that we can naturally define ∇u on K \ Vm for
m ∈ N and u ∈ Hm in the same way as in Theorem 2.16, from Eqs. 2.15 and 2.16
we can easily verify ˜∇u(x) = Zx∇u(x) for x ∈ KZ if u ∈ C1(K) and for x ∈ KZ \ Vm

if m ∈ N and u ∈ Hm. Let u ∈ F , and for each m ∈ N let um ∈ Hm be such that
um|Vm = u|Vm . Then by Theorem 2.17-(1) and [23, Lemma 3.2.17],

∫

K
|˜∇u− Z∇um|2dμ =

∫

K
|˜∇(u− um)|2dμ = ‖u− um‖2

E
m→∞−−−→ 0,

whereas Y(· ; u) is defined as the L2(K, μ)-limit of {Z∇um}m∈N in [29]. Thus ˜∇u =
Y(· ; u) μ-a.e.

3 Geometry Under the Measurable Riemannian Structure

This section is devoted to preparing preliminary facts required for the subsequent
arguments. First we introduce basic notions and results concerning the description
of geometry of K, following [24]. Then we treat the volume doubling property of
energy measures, construction of geodesic metrics and weak Poincaré inequality. For
the Dirichlet space (K, μ, E,F), which corresponds to the measurable Riemannian
structure on K, essential parts of the results of this section are already established in
Kigami [25]. Here we slightly improve his results, and prove the same results also for
the Dirichlet space (K, μ〈h〉, E,F), h ∈ SH0 . The extensions to (K, μ〈h〉, E,F) are of
independent interest and will play central roles in Sections 4 and 5.

Definition 3.1

(1) Let w, v ∈ W∗, w = w1 . . . wm, v = v1 . . . vn. We define wv ∈ W∗ by wv :=
w1 . . . wmv1 . . . vn (w∅ := w, ∅v := v). We also define w1 . . . wk for k ≥ 3 and
w1, . . . , wk ∈ W∗ inductively by w1 . . . wk := (w1 . . . wk−1)wk. We write w ≤ v

if and only if w = vτ for some τ ∈ W∗. Note that �w ∩�v = ∅ if and only if
neither w ≤ v nor v ≤ w.

(2) Let � be a finite subset of W∗. We call � a partition of � if and only if �w ∩�v =
∅ for any w, v ∈ � with w = v and � =⋃

w∈� �w.
(3) Let �1 and �2 be two partitions of �. Then we say that �1 is a ref inement of

�2, and write �1 ≤ �2, if and only if for each w1 ∈ �1 there exists w2 ∈ �2 such
that w1 ≤ w2.
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Suppose �1 ≤ �2. Then we have a natural surjection �1 → �2 by which w1 ∈
�1 is mapped to the unique w2 ∈ �2 such that w1 ≤ w2. In particular, #�1 ≥
#�2.

Definition 3.2

(1) A family S = {�s}s∈(0,1] of partitions of � is called a scale on � if and only if S
satisfies the following three properties:

(S1) �1 = W0 (= {∅}). �s1 ≤ �s2 for any s1, s2 ∈ (0, 1] with s1 ≤ s2.
(S2) min{|w| | w ∈ �s} → ∞ as s ↓ 0.
(Sr) For each s ∈ (0, 1) there exists ε ∈ (0, 1− s] such that �s′ = �s for any

s′ ∈ (s, s+ ε).

(2) A function l : W∗ → (0, 1] is called a gauge function on W∗ if and only if l(wi) ≤
l(w) for any (w, i) ∈ W∗ × S and limm→∞ max{l(w) | w ∈ Wm} = 0.

There is a natural one-to-one correspondence between scales on � and gauge
functions on W∗, as in the following proposition. See [24, Section 1.1] for a proof.

Proposition 3.3

(1) Let l be a gauge function on W∗. For each s ∈ (0, 1], def ine

�s(l) := {w | w = w1 . . . wm ∈ W∗, l(w1 . . . wm−1) > s ≥ l(w)} (3.1)

where l(w1 . . . wm−1) := 2 when w = ∅. Then the collection S(l) := {�s(l)}s∈(0,1] is
a scale on �. We call S(l) the scale induced by the gauge function l.

(2) Let S = {�s}s∈(0,1] be a scale on �. Then there exists a unique gauge function lS
on W∗ such that S = S(lS). We call lS the gauge function of the scale S.

Definition 3.4 Let S = {�s}s∈(0,1] be a scale on �. For s ∈ (0, 1] and x ∈ K, we define

Ks(x,S) :=
⋃

w∈�s, x∈Kw

Kw, Us(x,S) :=
⋃

w∈�s, Kw∩Ks(x,S) =∅
Kw. (3.2)

Clearly, Ks(x,S) and Us(x,S) are decreasing as s decreases and {Ks(x,S)}s∈(0,1]
and {Us(x,S)}s∈(0,1] are fundamental systems of neighborhoods of x in K.

Proposition 2.3 easily yields the following lemma.

Lemma 3.5 Let S = {�s}s∈(0,1] be a scale on � and let s ∈ (0, 1], x ∈ K and w ∈ �s.
Then #{v ∈ �s | Kv ∩ Ks(x,S) = ∅} ≤ 6 and #{v ∈ �s | Kw ∩ Kv = ∅} ≤ 4.

Definition 3.6 Let S = {�s}s∈(0,1] be a scale on �.

(1) A function ϕ : W∗ → [0,∞) is called gentle with respect to S if and only if there
exists cgen ∈ (0,∞) such that ϕ(w) ≤ cgenϕ(v) whenever w, v ∈ �s for some s ∈
(0, 1] and Kw ∩ Kv = ∅. We say that a finite Borel measure ν on K is gentle with
respect to S if and only if the function W∗ � w �→ ν(Kw) is gentle with respect
to S.
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(2) A metric ρ on K is called adapted to S if and only if there exist β1, β2 ∈ (0,∞)

such that

Bβ1s(x, ρ) ⊂ Us(x,S) ⊂ Bβ2s(x, ρ), (s, x) ∈ (0, 1] × K. (3.3)

Lemma 3.7 Let S = {�s}s∈(0,1] be a scale on � with gauge function l and let ρ be a
metric on K adapted to S. Then ρ is compatible with the original topology of K, and
diam(Kw, ρ) ≤ β2l(w) for any w ∈ W∗, where β2 ∈ (0,∞) is as in Eq. 3.3.

Proof The first assertion is clear. Let w ∈ W∗, x, y ∈ Kw and s := l(w). Then w ≤ v

for a unique v ∈ �s, and Kw ⊂ Kv ⊂ Us(x,S) ⊂ Bβ2s(x, ρ) by Eq. 3.3. Thus ρ(x, y) <

β2s = β2l(w). ��

Now we discuss the volume doubling property of μ and μ〈h〉, h ∈ SH0 . First
we state their volume doubling property in terms of certain scales, to which the
corresponding geodesic metrics are shown to be adapted later in this section.

Definition 3.8

(1) We define SH = {�H
s }s∈(0,1] to be the scale on � induced by the gauge function

lH : W∗ → (0, 1], lH(w) := ‖Tw‖ ∧ 1 = √

(3/5)|w|μ(Kw) ∧ 1.
(2) Let h ∈ SH0 . We define Sh = {�h

s }s∈(0,1] to be the scale on � induced by the
gauge function lh : W∗ → (0, 1], lh(w) := ‖h ◦ Fw‖E =

√

(3/5)|w|μ〈h〉(Kw).

Lemma 3.9 (cf. [25, Lemma 3.5 and Proof of Theorem 3.2]) Let h ∈ SH0 .

(1) For any (w, i) ∈ W∗ × S,

1
15

μ(Kw) ≤ μ(Kwi) ≤ 3
5
μ(Kw),

1
5
‖Tw‖ ≤ ‖Twi‖ ≤ 3

5
‖Tw‖, (3.4)

1
15

μ〈h〉(Kw) ≤ μ〈h〉(Kwi) ≤ 3
5
μ〈h〉(Kw),

1
5

lh(w) ≤ lh(wi) ≤ 3
5

lh(w). (3.5)

(2) If w, v ∈ W∗ satisf ies |w| = |v| and Kw ∩ Kv = ∅ then

μ〈h〉(Kw) ≤ 9μ〈h〉(Kv), lh(w) ≤ 3lh(v) and lH(w) ≤ 3lH(v). (3.6)

Proof

(1) By considering ‖h ◦ Fw‖−1
E h ◦ Fw and ∅ instead of h and w respectively, a direct

calculation easily yields Eq. 3.5, from which Eq. 3.4 is immediate.
(2) This is proved in essentially the same way as [25, Proof of Lemma 3.5]. ��

Proposition 3.10 (cf. [25, Theorem 6.2])

(1) There exists cG ∈ (0,∞) such that for any g, h ∈ SH0 , μ〈g〉 is gentle with respect
to both SH and Sh with constant cgen = cG, i.e. μ〈g〉(Kw) ≤ cGμ〈g〉(Kv) whenever
either w, v ∈ �H

s or w, v ∈ �h
s for some s ∈ (0, 1] and Kw ∩ Kv = ∅.
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(2) Let κ := log5 15 and κ̂ := log5/3 15. Then there exists cv ∈ (0,∞) such that for any
g, h ∈ SH0 , x ∈ K and s, t ∈ (0, 1] with s ≤ t,

μ
(

Ut
(

x,SH))

μ
(

Us
(

x,SH)) ≤ cv

(

t
s

)κ

,
μ〈h〉

(

Ut
(

x,Sh
))

μ〈h〉
(

Us
(

x,Sh
)) ≤ cv

(

t
s

)κ

, (3.7)

μ〈g〉
(

Ut
(

x,SH))

μ〈g〉
(

Us
(

x,SH)) ≤ cv

(

t
s

)κ̂

,
μ〈g〉

(

Ut
(

x,Sh
))

μ〈g〉
(

Us
(

x,Sh
)) ≤ cv

(

t
s

)κ̂

. (3.8)

Proof

(1) This is proved in exactly the same way as [25, Proof of Theorem 6.2]. Here [25,
Proof of Theorem 1.4.3] together with Eqs. 3.4, 3.5 and 3.6 easily shows that the
constant cG ∈ (0,∞) can be chosen independently of g, h.

(2) We essentially follow [24, Proof of Theorem 1.3.5], but slightly more detailed
arguments are required to deduce the explicit constants κ and κ̂ . Let g ∈ SH0 ,
x ∈ K and ω ∈ π−1(x). For each s ∈ (0, 1), let n(s) be the unique n ∈ N ∪ {0}
satisfying [ω]n ∈ �H

s , so that s/5 ≤ ∥

∥T[ω]n(s)

∥

∥ ≤ s by Eq. 3.4. Then (1) and
Lemma 3.5 easily imply that for any s ∈ (0, 1),

1 ≤ μ
(

Us
(

x,SH))

μ
(

K[ω]n(s)

) ≤ 6c2
G and 1 ≤ μ〈g〉

(

Us
(

x,SH))

μ〈g〉
(

K[ω]n(s)

) ≤ 6c2
G. (3.9)

Let s, t ∈ (0, 1), s ≤ t. Then n(s) ≥ n(t), and Eq. 3.4 yields

1
5

(

1
5

)n(s)−n(t)

≤
∥

∥T[ω]n(s)

∥

∥

5
∥

∥T[ω]n(t)

∥

∥

≤ s
t
≤ 5

∥

∥T[ω]n(s)

∥

∥

∥

∥T[ω]n(t)

∥

∥

≤ 5
(

3
5

)n(s)−n(t)

. (3.10)

Now from Eqs. 3.9 and 3.10 we conclude that

6c2
G

μ
(

Us
(

x,SH))

μ
(

Ut
(

x,SH)) ≥
μ
(

K[ω]n(s)

)

μ
(

K[ω]n(t)

) ≥
(

t
5s

)log5(5/3) s2

25t2 =
3

125

(

s
t

)κ

and, using also Eq. 3.5, that

6c2
G

μ〈g〉
(

Us
(

x,SH))

μ〈g〉
(

Ut
(

x,SH)) ≥
μ〈g〉

(

K[ω]n(s)

)

μ〈g〉
(

K[ω]n(t)

) ≥
(

1
15

)n(s)−n(t)

≥ 5−κ̂

(

s
t

)κ̂

,

proving the assertions for SH; the case with t = 1 follows since U4/5(x,SH) = K.
In view of Eq. 3.5, exactly the same proof applies to the assertions for Sh as well.

��

Remark 3.11 The powers κ in Eq. 3.7 and κ̂ in Eq. 3.8 are best possible. Indeed,

for n ∈ N, since T∗1n =
(

(3/5)n 0
0 (1/5)n

)

, T∗1n32n =
( −1/2 −√3/2√

3/2 −1/2

)(

0 (
√

3/5)2n+1

−(
√

3/5)2n+1 −2(1/5)2n+1

)

, we

easily see 5n ≤ tn/sn and hence μ(Usn(xn,S
H))/μ(Utn(xn,S

H)) ≤ 10cG(sn/tn)κ by
Eq. 3.9, where xn := π(1n32∞), sn := ‖T1n32n‖ and tn := ‖T1n‖. Similar calculations
work with Sh and μ〈h〉 for each h ∈ SH0 . For the first part of Eq. 3.8 it suffices to
choose g := h2, x := q1, s := ‖T12n‖ and t := ‖T1n‖ to let n →∞, and similarly for
the latter of Eq. 3.8 for each h ∈ SH0 .
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Next we define the corresponding geodesic metrics on K and state their basic
properties.

Definition 3.12 Let h ∈ SH0 . We define the harmonic geodesic metric ρH on K and
the h-geodesic metric ρh on K by respectively

ρH(x, y) := inf{�H(γ ) | γ : [0, 1] → K, γ is continuous, γ (0) = x, γ (1) = y},
ρh(x, y) := inf{�h(γ ) | γ : [0, 1] → K, γ is continuous, γ (0) = x, γ (1) = y}

for x, y ∈ K, where we set �H(γ ) := �(� ◦ γ ) and �h(γ ) := �(h ◦ γ ) for a continuous
map γ : [a, b ] → K, a, b ∈ R, a ≤ b .

Definition 3.13

(1) Let m ∈ N ∪ {0} and let x, y ∈ Vm satisfy x
m∼ y, where

m∼ is as in Definition 2.4.
Let w(x, y) be the unique w ∈ Wm such that x, y ∈ Fw(V0), and let xy (⊂
Kw(x,y)) denote the line segment from x to y which is also regarded as the map
[0, 1] � t �→ x+ t(y− x). Note that xy ⊂ KZ by [25, Theorem 5.4].

(2) Let m ∈ N ∪ {0}. A sequence � = {xk}N
k=0 ⊂ Vm, where N ∈ N, is called an m-

walk if and only if xk−1
m∼ xk for k ∈ {1, . . . , N} and w(xk−1, xk) = w(xk, xk+1)

for k ∈ {1, . . . , N − 1}. For such � we define continuous maps � : [0, N] → K
and ̂� : [0, �H(�)] → K by

�(t) := xk−1 + (t − k+ 1)(xk − xk−1), t ∈ [k− 1, k], k ∈ {1, . . . , N},
and ̂� := � ◦ ϕ−1

� , where ϕ� is the homeomorphism ϕ� : [0, N] → [0, �H(�)],
ϕ�(t) := �H(�|[0,t]); note that �H(�) <∞ and ̂�([0, �H(�)]) ⊂ KZ by [25,
Theorem 5.4].

(3) Let γ : [a, b ] → K be continuous, a, b ∈ R, a < b . γ is called a harmonic m-
geodesic, where m ∈ N ∪ {0}, if and only if γ (t) = ̂�

(

�H(�) t−a
b−a

)

, t ∈ [a, b ] for
some m-walk �. γ is called a harmonic geodesic if and only if there exist
n ∈ N ∪ {0} and sequences {am}m≥n, {b m}m≥n ⊂ [a, b ] with limm→∞ am = a and
limm→∞ b m = b such that am+1 ≤ am < b m ≤ b m+1 and γ |[am,b m] is a harmonic
m-geodesic for each m ≥ n.

Proposition 3.14 ([25, Theorem 5.4]) If m ∈ N ∪ {0} and � is an m-walk, then � ◦̂�
is C1, and (� ◦̂�)′(t) ∈ Im Z

̂�(t) and |(� ◦̂�)′(t)| = 1 for any t ∈ [0, �H(�)].

For the harmonic geodesic metric ρH we have the following proposition due to
Kigami [25]; it is not explicitly stated in [25, Theorem 5.1], but is actually shown in
the proof there, that we can take harmonic geodesics as shortest paths for the length
�H(·). This fact plays a crucial role in the proof of Proposition 4.10 below.

Proposition 3.15 ([25, Theorems 5.1 and 5.11])

(1) ρH is a metric on K satisfying

B√2s/50(x, ρH) ⊂ Us(x,SH) ⊂ B10s(x, ρH), (s, x) ∈ (0, 1] × K. (3.11)
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(2) For each x, y ∈ K with x = y, there exists a harmonic geodesic γxy : [0, 1] →
K such that γxy(0) = x, γxy(1) = y and ρH(x, y) = �H(γxy), and in particular
ρH(γxy(s), γxy(t)) = �H(γxy|[s,t]) = (t − s)ρH(x, y) for any s, t ∈ [0, 1] with s ≤ t.
Moreover, if m ∈ N ∪ {0} and x, y ∈ Vm then we can take a harmonic m-geodesic
as γxy.

In fact, similar assertions are valid also for ρh, as follows.

Proposition 3.16 Let h ∈ SH0 .

(1) ρh is a metric on K satisfying

Bs/25(x, ρh) ⊂ Us(x,Sh) ⊂ B7s(x, ρh), (s, x) ∈ (0, 1] × K. (3.12)

(2) For each x, y ∈ K with x = y, there exists a harmonic geodesic γ h
xy : [0, 1] → K

such that γ h
xy(0) = x, γ h

xy(1) = y and ρh(x, y) = �h(γ
h
xy). In particular, if we def ine

ϕh
xy : [0, 1] → [0, 1] to be the inverse of [0, 1] � t �→ �h(γ

h
xy|[0,t])/ρh(x, y), then

ρh(γ
h
xy ◦ ϕh

xy(s), γ
h
xy ◦ ϕh

xy(t)) = �h(γ
h
xy ◦ ϕh

xy|[s,t]) = (t − s)ρh(x, y) for any s, t ∈
[0, 1] with s ≤ t. Moreover, if m ∈ N ∪ {0} and x, y ∈ Vm then we can take a
harmonic m-geodesic as γ h

xy.

Remark 3.17 If γ : [0, 1] → K is a harmonic geodesic and h ∈ SH0 , then by [25,
Theorem 5.4] (see also Eq. 3.15 below), the set {t ∈ (0, 1) | (h ◦ γ )′(t) = 0} is discrete
and hence [0, 1] � t �→ �h(γ |[0,t]) is strictly increasing. Therefore ϕh

xy as above does
exist as a homeomorphism.

We need the following lemma for the proof of Proposition 3.16.

Lemma 3.18 (cf. [25, Lemma 5.6]) Set OscA f := supA f − infA f for f ∈ C(K) and
A ⊂ K, A = ∅. Let h ∈ SH0 , w ∈ W∗ and x, y ∈ Fw(V0), x = y. Then

�h(xy) = inf{�h(γ ) | γ : [0, 1] → Kw, γ is continuous, γ (0) = x, γ (1) = y}, (3.13)

1
5

Osc
Kw

h ≤ �h(xy) ≤ 2 Osc
Kw

h and
lh(w)

5
≤ �h(xy) ≤ 4√

3
lh(w). (3.14)

Proof It is easy to see that we may assume w = ∅ without loss of generality by
considering ‖h ◦ Fw‖−1

E h ◦ Fw, ∅, F−1
w (x) and F−1

w (y) instead of h, w, x and y. Then by
the symmetry of K and (E,F) we may further assume that x = q2 and y = q3.

Let I := [−1/
√

3, 1/
√

3]. By [25, Theorem 5.4], �(q2q3) = {(ϕ(t), t) | t ∈ I} for
some ϕ ∈ C1(I) and it possesses the following properties: ϕ(−t) = ϕ(t) for t ∈ I,
ϕ′ is strictly increasing, ϕ′(±1/

√
3) = ±1/

√
3, and KH ⊂ {(s, t) ∈ R

2 | s ≤ ϕ(t)}, i.e.
h1 ≤ ϕ ◦ h2. We set γ23(t) := �−1(ϕ(t), t), t ∈ I. Choose a, b , c ∈ R so that h = ah1 +
bh2 + c1. Then h ◦ γ23(t) = aϕ(t)+ bt + c for t ∈ I and (h ◦ γ23)

′ = aϕ′ + b . Since
a2 + b 2 = ‖h‖2

E = 1 = 0 it follows that

either (h ◦ γ23)
′(t) = 0 for any t ∈ I or (h ◦ γ23)

′(t0) = 0 for a unique t0 ∈ I,

(3.15)

from which and h1 ≤ ϕ ◦ h2 we can easily verify Eq. 3.13 and �h(q2q3) ≤ 2 OscK h.
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To complete the proof of Eq. 3.14, let q23 := F2(q3) = F3(q2), so that 5h(q23) =
h(q1)+ 2h(q2)+ 2h(q3) by h ∈ H0 and [23, Example 3.2.6]. Since either of h(q2) and
h(q3) is equal to either maxV0 h or minV0 h, we see that

5�h(q2q3) ≥ 5|h(q2)− h(q23)| + 5|h(q23)− h(q3)|
= |h(q1)+ 2h(q3)− 3h(q2)| + |h(q1)+ 2h(q2)− 3h(q3)| ≥ Osc

V0

h = Osc
K

h,

proving the former assertion of Eq. 3.14 which and Eq. 2.16 yield the latter. ��

Proof of Proposition 3.16 This is proved in exactly the same way as [25, Proofs of
Theorems 5.1 and 5.11] by using Lemma 3.18 instead of [25, Lemma 5.6]. ��

By virtue of Propositions 3.10, 3.15 and 3.16, now we arrive at the following
theorem, which improves and generalizes [25, Theorem 6.2] and will be used to
deduce the remainder estimates in Theorem 5.8 below.

Theorem 3.19 Let κ := log5 15 and κ̂ := log5/3 15, as in Proposition 3.10-(2). Then
there exists cV ∈ (0,∞) such that for any g, h ∈ SH0 , x, y ∈ K and r, R ∈ (0,∞) with
r ≤ R,

μ(BR(x, ρH))

μ(Br(y, ρH))
≤ cV

(

R+ ρH(x, y)

r

)κ

,
μ〈h〉(BR(x, ρh))

μ〈h〉(Br(y, ρh))
≤ cV

(

R+ ρh(x, y)

r

)κ

,

(3.16)

μ〈g〉(BR(x, ρH))

μ〈g〉(Br(y, ρH))
≤ cV

(

R+ ρH(x, y)

r

)κ̂

,
μ〈g〉(BR(x, ρh))

μ〈g〉(Br(y, ρh))
≤ cV

(

R+ ρh(x, y)

r

)κ̂

.

(3.17)

Proof Since BR(x, ρ) ⊂ BR+ρ(x,y)(y, ρ) for ρ = ρH, ρh, it suffice to prove the asser-
tions when x = y. Equations 3.7, 3.8, 3.11 and 3.12 easily yield Eqs. 3.16 and 3.17 for
R ≤ √2/50, and then the case of R ≥ √2/50 is easily proved by using Eqs. 3.4, 3.5,
3.11 and 3.12. ��

Finally we prove the weak Poincaré inequality for (K, μ, E,F) and (K, μ〈h〉, E,F),
h ∈ SH0 .

Proposition 3.20 Let cG ∈ (0,∞) be as in Proposition 3.10-(1) and cP := 34106c4
G. Let

h ∈ SH0 and let (ν, ρ) denote any one of (μ, ρH) and (μ〈h〉, ρh). Then

∫

Br(x,ρ)

∣

∣u− uν,ρ
r,x

∣

∣

2
dν ≤ cPr2μ〈u〉

(

B250
√

2r(x, ρ)
)

, u ∈ F (3.18)

for any (r, x) ∈ (0,∞)× K, where uν,ρ
r,x := ν(Br(x, ρ))−1

∫

Br(x,ρ)
udν.
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Proof Let u ∈ F . Recall that RE denotes the resistance metric on K associated with
(E,F). Since diam(K, RE ) ≤ 6 which easily follows by using [23, Lemma 3.3.5], for
any w ∈ W∗ and any y, z ∈ Kw we have

|u(y)− u(z)|2 ≤ RE
(

F−1
w (y), F−1

w (z)
)

E(u ◦ Fw, u ◦ Fw) ≤ 3
(3

5

)|w|
μ〈u〉(Kw). (3.19)

Also for s ∈ (0, 1) and w, v ∈ �H
s with Kw ∩ Kv = ∅, Eq. 3.4 and Proposition 3.10-(1)

yield

s2

25

(5
3

)|w| ≤ μ(Kw) ≤ cGμ(Kv) ≤ cG

(5
3

)|v|
s2, thus

(3
5

)|v| ≤ 25cG

(3
5

)|w|
. (3.20)

Let (r, x) ∈ (0,∞)× K. Suppose r <
√

2/50 and take w ∈ �H
25
√

2r
such that x ∈ Kw.

Then by considering U25
√

2r(x,SH), from Eqs. 3.11, 3.19 and 3.20 we easily see that

|u(y)− u(z)| ≤ 60
√

3cG

√

(3
5

)|w|
μ〈u〉

(

B250
√

2r(x, ρH)
)

, y, z ∈ Br(x, ρH). (3.21)

Now since μ(Br(x, ρH)) ≤ μ
(

U25
√

2r(x,SH)
) ≤ 6c2

Gμ(Kw) by Eqs. 3.11 and 3.9, and
(3/5)|w|μ(Kw) = ‖Tw‖2 ≤ 1250r2 by w ∈ �H

25
√

2r
, Eq. 3.18 for (μ, ρH) immediately

follows by integrating Eq. 3.21 in z under μ|Br(x,ρH) and then in y after taking the
square. The case of r ≥ √2/50 can be verified in a similar way by using Eq. 3.19 with
w = ∅ since B250

√
2r(x, ρH) = K by Eq. 3.11, and exactly the same proof applies to

the case of (μ〈h〉, ρh) as well by virtue of Eq. 3.5, Proposition 3.10-(1) and Eq. 3.12.
��

Notation In the rest of this paper, we will use the constants κ = log5 15, κ̂ = log5/3 15,
cG and cV appearing in Proposition 3.10 and Theorem 3.19 without further notice. In
particular, for g, h ∈ SH0 , μ〈g〉 is gentle with respect to both SH and Sh with cgen = cG.
Also in what follows, for a, b ∈ [0,∞) we write a � b if and only if a ≤ cb for some
constant c ∈ (0,∞) determined solely by κ, κ̂, cG, cV, and write a  b if and only if
both a � b and b � a hold.

4 Off-diagonal Gaussian Heat Kernel Behavior

The main purpose of this section is further analysis of the geodesic metrics ρH and
ρh, h ∈ SH0 , and as a consequence we will get the two-sided Gaussian bound and
Varadhan’s asymptotic relation for the heat kernels pμ and pμ〈h〉 .

Let us start this section with the following standard definition.

Definition 4.1 Let ν be a finite Borel measure on K with full support. We define

ρν(x, y) = sup{u(x)− u(y) | u ∈ F , μ〈u〉 ≤ ν}, x, y ∈ K. (4.1)

Clearly, ρν(x, y) = ρν(y, x) ∈ [0,∞), ρν(x, x) = 0 and ρν(x, y) ≤ ρν(x, z)+ ρν(z, y)

for any x, y, z ∈ K; in fact, ρν(x, y)2 ≤ ν(K)RE (x, y)/2. ρν is called the intrinsic metric
of the Dirichlet space (K, ν, E,F) or simply the ν-intrinsic metric on K.
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The notion of the intrinsic metric of a strong local Dirichlet space appears in many
places such as [18, 32, 35, 36]. The results there suggest that the intrinsic metric is the
most “natural” metric for a given strong local Dirichlet space; for example, according
to Ramírez [32] and Hino and Ramírez [18], Varadhan’s asymptotic relation like
Eq. 1.4 is true for a large class of strong local Dirichlet spaces as long as the metric in
the right-hand side is replaced by the intrinsic metric.

Then a problem arises as to how the intrinsic metric is characterized for concrete
examples. For the canonical Dirichlet space associated with a smooth Riemannian
manifold M, it is not difficult to see that the intrinsic metric is equal to the geodesic
metric on M; see [31] and references therein for related results on Riemannian
manifolds. The same assertion is in fact true also for our Dirichlet spaces (K, μ, E,F)

and (K, μ〈h〉, E,F), h ∈ SH0 , which is the main theorem of this section:

Theorem 4.2

(1) ρH = ρμ. Moreover, ρH(x, ·) ∈ F and μ〈ρH(x,·)〉 = μ for any x ∈ K.
(2) Let h ∈ SH0 . Then ρh = ρμ〈h〉 . Moreover, ρh(x, ·) ∈ F and μ〈ρh(x,·)〉 = μ〈h〉 for any

x ∈ K.

Then based on Theorem 3.19 and Proposition 3.20, the general results of Sturm
[35, 36] and Ramírez [32] imply the following Gaussian bounds and Varadhan’s
asymptotic relation.

Corollary 4.3 Let h ∈ SH0 and let (ν, ρ) denote any one of (μ, ρH) and (μ〈h〉, ρh). Let
n ∈ N. Then for any (t, x, y) ∈ (0,∞)× K × K,

cL
exp

(− ρ(x,y)2

cLt

)

ν
(

B√t(x, ρ)
) ≤ pν(t, x, y) ≤ cU

(

1+ ρ(x,y)2

t

)κ/2 exp
(− ρ(x,y)2

2t

)

√

ν
(

B√t(x, ρ)
)

ν
(

B√t(y, ρ)
)

, (4.2)

∣

∣∂n
t pν(t, x, y)

∣

∣ ≤ cU(n)

(

1+ ρ(x,y)2

t

)κ/2+n exp
(− ρ(x,y)2

2t

)

tn
√

ν
(

B√t(x, ρ)
)

ν
(

B√t(y, ρ)
)

, (4.3)

where cL, cU ∈ (0,∞) are determined solely by κ, cG, cV and cU(n) ∈ (0,∞) by
n, κ, cG, cV.

Proof Note that ∂n
t pν exists and is continuous on (0,∞)× K × K by [8, Proof of

Theorem 2.1.4]. On the basis of ρ = ρν , Eqs. 3.16 and 3.18, [36, Corollary 4.10] yields
the lower bound in Eq. 4.2, and [36, Theorem 2.6] and [35, Corollary 2.7] imply the
other assertions. ��

Corollary 4.4 Let h ∈ SH0 and let (ν, ρ) denote any one of (μ, ρH) and (μ〈h〉, ρh). Then

lim
t↓0

2t log pν(t, x, y) = −ρ(x, y)2, x, y ∈ K. (4.4)

Proof Equations 4.2 and 3.16 yield lim supt↓0 2t log pν(t, x, y) ≤ −ρ(x, y)2. We can
also easily show lim inft↓0 2t log pν(t, x, y) ≥ −ρ(x, y)2 in exactly the same way as [32,
Proof of Theorem 4.1] by using ρ = ρν and the lower bound in Eq. 4.2, since [32,
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Theorem 1.1] (or [18, Theorem 1.1]) applies to the present situation by the strong
locality of (E,F) and [13, Theorem 3.2.2]. ��

The rest of this section is devoted to the proof of Theorem 4.2. Unlike the case
of Riemannian manifolds, this result is not straightforward and requires a long
complicated proof, mainly due to the geometric singularity of the space. The proof
relies heavily on Theorem 2.17, Propositions 3.15 and 3.16 and the ideas in [20].

Lemma 4.5

(1) If u ∈ C(K) and LipρH u ≤ 1 then u ∈ F and μ〈u〉 ≤ μ. Moreover, ρH(x, ·) ∈ F
and μ〈ρH(x,·)〉 = μ for any x ∈ K.

(2) Let h ∈ SH0 . If u ∈ C(K) and Lipρh
u ≤ 1 then u ∈ F and μ〈u〉 ≤ μ〈h〉. Moreover,

ρh(x, ·) ∈ F and μ〈ρh(x,·)〉 = μ〈h〉 for any x ∈ K.

Proof

(1) We fix x ∈ K throughout this proof. Let u ∈ C(K) satisfy LipρH u ≤ 1.
Since |u(y)− u(z)| ≤ ρH(y, z) ≤ �H(yz) ≤ (4

√
6/3)‖Tw‖ for w ∈ W∗ and y, z ∈

Fw(V0) with y = z by Eq. 3.14, from Eq. 2.1 we see that for m ∈ N ∪ {0},

Em(u|Vm , u|Vm) ≤ 1
8

(5
3

)m ∑

w∈Wm

∑

y,z∈Fw(V0), y=z

32
3
‖Tw‖2 =

∑

w∈Wm

8μ(Kw) = 16,

i.e. u ∈ F and E(u, u) ≤ 16. Recalling Theorem 2.17, let y ∈ KZ \ V∗, y = x and
suppose that ˜∇u(y) ∈ Im Z y as in Eq. 2.11 exists. We show that |˜∇u(y)| ≤ 1,
from which μ〈u〉 ≤ μ follows since dμ〈u〉 = |˜∇u|2dμ. Let ω ∈ π−1(y), and set

Ry(z) := u(z)− u(y)− 〈˜∇u(y),�(z)−�(y)〉, z ∈ K. (4.5)

By Proposition 3.15, there exists a harmonic geodesic γ : [0, 1] → K such that
γ (0) = x, γ (1) = y and ρH(γ (s), γ (t)) = |s− t|ρH(x, y) for any s, t ∈ [0, 1].
Let m ∈ N satisfy x ∈ K[ω]m . Set a := sup{t ∈ [0, 1] | γ (t) ∈ K[ω]m}, so that a ∈
(0, 1), γ (a) ∈ F[ω]m(V0) and γ ([a, 1]) ⊂ K[ω]m . Choose i ∈ S so that γ (a) =
F[ω]m(qi), and let n := min{k ∈ N | k > m, ωk = i} − 1, w := [ω]n and j := ωn+1.
Then n ≥ m, i = j, γ (a) = Fwi(qi) and y ∈ Kw j \ V∗. Further set b := inf{t ∈
[a, 1] | γ (t) ∈ Kwi}, so that b ∈ (a, 1), γ (b) ∈ Fwi(V0) and γ ([a, b ]) ⊂ Kwi. Now
by [25, Lemma 5.6], these facts together with ρH(γ (a), γ (b)) = �H(γ |[a,b ])
imply that �H(γ |[a,b ]) = �H(ẑazb ), where za := γ (a), zb := γ (b) and ẑazb :
[a, b ] → K denotes the harmonic (n+ 1)-geodesic determined by the (n+ 1)-
walk {za, zb }. Therefore if we define γ0 : [0, b ] → K by γ0|[0,a] := γ |[0,a] and
γ0|[a,b ] := ẑazb , then it is continuous, γ0|(0,b ] is C1 with |γ ′0(t)| = ρH(x, y) for
t ∈ (0, b ], and �H(γ0) = �H(γ |[0,b ]) = ρH(x, zb ) = ρH(x, γ0(b)). Hence

ρH(γ0(s), γ0(t)) = �H(γ0|[s,t]) = (t − s)ρH(x, y) for s, t ∈ [0, b ], s ≤ t. (4.6)
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Since (hy ◦ ẑazb )′(t) = 0 for at most one t ∈ [a, b ] by Eq. 3.15, we can take c, d ∈
[a, b ] so that d− c ≥ (b − a)/2 and hy ◦ ẑazb |[c,d] is strictly monotone. Then let-
ting zc := ẑazb (c) = γ0(c) and zd := ẑazb (d) = γ0(d) and using Eqs. 3.14, 4.6 and
3.4, we have �h⊥y (ẑazb ) ≤ (4/

√
3)lh⊥y (wi) ≤ 3lh⊥y (w), �hy(ẑazb |[c,d]) = |hy(zc)−

hy(zd)|,

ρH(zc, zd) = �H(ẑazb |[c,d]) ≤ �hy(ẑazb |[c,d])+ �h⊥y (ẑazb )

≤ |hy(zc)− hy(zd)| + 3lh⊥y (w), (4.7)

ρH(zc, zd) = (d− c)ρH(x, y) ≥ b − a
2

ρH(x, y) = �H(zazb )

2
≥ ‖Twi‖

10
√

2
≥ ‖Tw‖

100
.

(4.8)

Now let cu,y ∈ R be such that ˜∇u(y) = cu,yζy. Then since 〈˜∇u(y),�(·)−
�(y)〉 = cu,yhy by Eqs. 2.14, 4.7 and 4.5 yield

|cu,y|ρH(zc, zd) ≤ |cu,y(hy(zc)− hy(zd))| + 3|cu,y|lh⊥y (w)

≤
∣

∣

∣

〈

˜∇u(y),�(zc)−�(zd)
〉+ Ry(zc)− Ry(zd)

∣

∣

∣+ 2 sup
Kw

|Ry|

+3|cu,y|lh⊥y (w)

= |u(zc)− u(zd)| + 2 sup
Kw

|Ry| + 3|cu,y|lh⊥y (w)

≤ ρH(zc, zd)+ 2 sup
Kw

|Ry| + 3|cu,y|lh⊥y (w). (4.9)

Recalling w = [ω]n and n ≥ m, we divide Eq. 4.9 by ρH(zc, zd) and use Eq. 4.8
to get

|cu,y| ≤ 1+ 100 · 2 supz∈K[ω]n |Ry| + 3|cu,y|‖h⊥y ◦ F[ω]n‖E
‖T[ω]n‖

m→∞, n→∞−−−−−−−→ 1

by virtue of Eq. 2.11 and Lemma 2.19, proving |˜∇u(y)| ≤ 1. Finally, noting that
LipρH ρx

H ≤ 1, where ρx
H := ρH(x, ·), we let u := ρx

H in the above argument and
use Eq. 4.6 to obtain

ρH(zc, zd) = ρx
H(zd)− ρx

H(zc) =
〈

˜∇ρx
H(y),�(zd)−�(zd)

〉+ Ry(zc)− Ry(zc)

= cρx
H,y(hy(zd)− hy(zc))+ Ry(zc)− Ry(zc)

≤ |cρx
H,y|ρH(zc, zd)+ 2 sup

K[ω]n
|Ry|,

from which we conclude that 1 ≤ |cρx
H,y| = |˜∇ρx

H(y)| (≤ 1) by using Eqs. 4.8
and 2.11 to let m →∞, n →∞. Thus 1 = |˜∇ρx

H|2 = dμ〈ρx
H〉/dμ μ-a.e., that is,

μ〈ρx
H〉 = μ.

(2) This is proved in exactly the same way as above by using Theorem 2.17-(2),
Eq. 3.5, Proposition 3.16 and Lemma 3.18. ��
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Lemma 4.6 ρH ≤ ρμ ≤ 9ρH, and ρh ≤ ρμ〈h〉 ≤ 6ρh for any h ∈ SH0 .

Proof Let x, y ∈ K. Since ρH(x, ·) ∈ F and μ〈ρH(x,·)〉 = μ by Lemma 4.5-(1), we have
ρH(x, y) = ρH(x, y)− ρH(x, x) ≤ ρμ(x, y). Next for the proof of ρμ ≤ 9ρH let u ∈ F
satisfy μ〈u〉 ≤ μ. It suffices to show that |u(x)− u(y)| ≤ 9ρH(x, y) when x, y ∈ Vm for
some m ∈ N and x = y since u ∈ C(K) and V∗ is dense in K. For any w ∈ W∗, from
μ〈u〉(Kw) ≤ μ(Kw) we easily see ‖u ◦ Fw‖E ≤ ‖Tw‖ and therefore

‖Tw‖ ≥ ‖u ◦ Fw‖E ≥
√

2E0(u ◦ Fw|V0 , u ◦ Fw|V0) ≥
√

3
2

Osc
Fw(V0)

u. (4.10)

By Proposition 3.15, there exists an m-walk {xk}N
k=0 ⊂ Vm such that x0 = x, xN = y

and ρH(x, y) =∑N
k=1 �H(xk−1xk). Then Eqs. 3.14 and 4.10 yield (recall Definition

3.13-(1))

N
∑

k=1

�H(xk−1xk) ≥
N
∑

k=1

‖Tw(xk−1,xk)‖
5
√

2
≥

N
∑

k=1

|u(xk−1)− u(xk)|
9

≥ |u(x)− u(y)|
9

and hence |u(x)− u(y)| ≤ 9ρH(x, y). Exactly the same argument using Lemma 4.5-
(2), Proposition 3.16 and Eq. 3.14 shows the other assertion, completing the proof.

��

We need the following two lemmas for the next proposition (Proposition 4.9).
The first lemma is elementary and easily follows from [26, Theorems 10.3 and 10.4],
whereas the latter plays a central role in the proof of Proposition 4.9.

Lemma 4.7 Let ν be a f inite Borel measure on K with full support, let U be a non-
empty open subset of K and set ν|U := ν|B(U) and EU := E |FU×FU . Then (EU ,FU )

is a strong local regular Dirichlet form on L2(U, ν|U ) whose associated Markovian
semigroup admits a unique continuous integral kernel pU

ν = pU
ν (t, x, y) : (0,∞)×

U ×U → [0,∞), and pU
ν is extended to a continuous function on (0,∞)× K × K by

setting pU
ν := 0 on (0,∞)× (K × K \U ×U). pU

ν is called the heat kernel associated
with (U, ν|U , EU ,FU ).

Lemma 4.8 lim supt↓0 2t log pμ〈h〉(t, x, y) ≤ −ρμ〈h〉(x, y)2 for any x, y ∈ K, h ∈ SH0 .

Proof Let h ∈ SH0 . By Lemma 4.6 and Eq. 3.12, ρμ〈h〉 is a metric on K adapted to Sh.
Then (μ〈h〉, ρμ〈h〉) has the volume doubling property similar to Eq. 3.16. Moreover, for
(ν, ρ) = (μ〈h〉, ρμ〈h〉), the proof of Proposition 3.20 still works and hence Eq. 3.18 holds
with the constants 34106 and 250

√
2 suitably replaced. Now the assertion follows from

[36, Theorem 2.6] and [35, Corollary 2.7]. ��

Proposition 4.9 Let h ∈ SH0 , i ∈ S, b ∈ (h(qi),∞) and set a := h(qi). Suppose that
the connected component U of h−1((−∞, b)) with qi ∈ U satisf ies U ∩ V0 = {qi}. Let
p[a,b) = p[a,b)(t, x, y) : (0,∞)× [a, b ] × [a, b ] → [0,∞) be the heat kernel for 1

2
d2

dx2
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on [a, b ]with Neumann (ref lecting) boundary condition at a and Dirichlet (absorbing)
boundary condition at b . Then

μ〈h〉 ◦ (h|U )−1 = 2E(h, hi
1)1[a,b ]dx (dx is the Lebesgue measure on R), (4.11)

pU
μ〈h〉(t, qi, x) = (2E(h, hi

1))
−1 p[a,b)(t, a, h(x)), (t, x) ∈ (0,∞)×U, (4.12)

ρh(qi, x) = ρμ〈h〉(qi, x) = h(x)− a, x ∈ U . (4.13)

Proof Let hb := h1U + b1K\U . We show hb ∈ H{qi}∪(K\U). Note that, by [13, Prob-
lem 1.4.1] and the locality of (E,F), given open subsets U1, U2 of K with U1 ∩U2 =
∅ we can verify FU1∪U2 = FU1 ⊕FU2 and E(u1, u2) = 0 for ui ∈ FUi , i = 1, 2. Set
̂U := h−1((−∞, b)) \U . Since U, ̂U are open in K and (b1 − h)+ ∈ FU∪̂U , (b1 −
h)+1U ∈ FU and hb = b1 − (b1 − h)+1U ∈ F . By ∂U ⊂ U \ (U ∪ ̂U) ⊂ h−1(b), h =
b on ∂U , hb − h = (b1 − h)1K\U ∈ FK\U and therefore E(hb , u) = E(hb − h, u) =
E((b1 − h)1K\U , u) = 0 for u ∈ FU\{qi}, proving the claim.

Proposition 2.10-(2) yields a ≤ hb ≤ b . Moreover, we have h−1
b (a) = {qi}. Indeed,

choose n ∈ N so that Kin−1 ⊂ U . Then hb ◦ Fin−1 = h ◦ Fin−1 ∈ H0 \R1 by h ∈ H0 \R1
and hence hb > a on Kin \ {qi} by the strong maximum principle [23, Theorem 3.2.14].
Set c := minFin (V0)\{qi} hb and g := hb 1K\Kin + (hb ∨ c)1Kin . Then g ∈ HKin∪(K\U),
and Proposition 2.10-(2) implies that hb (x) = g(x) ≥ c > a for x ∈ K \ Kin . Thus
h−1

b (a) = {qi}.
By [11, Proposition 2.9] (see also [20, Corollary 2.11]), μ〈hb 〉 ◦ h−1

b = δ1[a,b ]dx
for some δ ∈ (0,∞), and μ〈hb 〉(K \U) = μ〈hb 〉(h

−1
b (b)) = 0. Since μ〈h〉|U = μ〈hb 〉|U

by [13, Corollary 3.2.1] (or by Theorem 2.17) and μ〈hb 〉(K \U) = 0, we have
μ〈h〉 ◦ (h|U )−1 = μ〈hb 〉 ◦ (hb |U )−1 = μ〈hb 〉 ◦ h−1

b = δ1[a,b ]dx. Take ah, b h ∈ R such that
h = ahhi

1 + b hhi
2 + a1. Let n ∈ N satisfy Kin−1 ⊂ U . Then 2E(h, hi

1) = ah > 0 since
h > a on Kin \ {qi}, and the argument in the previous paragraph together with
Proposition 2.10-(2) also yields

(h|U )−1
([

a, a+
(

3
5

)n

ah −
(

1
5

)n |b h|√
3

))

⊂ Kin ⊂ (h|U )−1
([

a, a+
(

3
5

)n

ah +
(

1
5

)n |b h|√
3

])

. (4.14)

Taking the values of μ〈h〉 on each side of Eq. 4.14 yields |a2
h + 9−nb 2

h − δah| ≤
3−nδ|b h|/

√
3, and letting n →∞ results in δah = a2

h. Thus δ = ah = 2E(h, hi
1), prov-

ing Eq. 4.11.
We could give a probabilistic proof of Eq. 4.12 based on [20, Theorem 3.6],

as in [20, Proof of Theorem 4.1], but we provide an alternative analytic proof
here. For n ∈ N let ϕn(x) := ( 2

b−a

)1/2 cos
( 2n−1

2 π x−a
b−a

)

and λn := π2

8

( 2n−1
b−a

)2, so that

− 1
2ϕ′′n = λnϕn, ϕ′n(a) = ϕn(b) = 0 and therefore

∫ b
a p[a,b)(t, ·, y)ϕn(y)dy = e−λntϕn for

t ∈ (0,∞). Then {ϕn}n∈N is a complete orthonormal system of L2([a, b ], dx). On
the other hand, let �h,U be the non-positive self-adjoint operator of the Dirichlet
space (U, μ〈h〉|U , EU ,FU ) with domain D[�h,U ]. Then ϕn(hb ) ∈ D[�h,U ] and
�h,U [ϕn(hb )] = 1

2ϕ′′n(hb ) = −λnϕn(hb ) by [20, Theorem 2.12-(2)] and hence
∫

U
pU

μ〈h〉(t, ·, y)ϕn(hb )dμ〈h〉(y) = e−λntϕn(hb ), t ∈ (0,∞). (4.15)
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Let f ∈ L2([a, b ], dx) and an :=
∫ b

a fϕndx, n ∈ N. Then f =∑

n∈N
anϕn in

L2([a, b ], dx) and hence f (hb )1U ∈ L2(U, μ〈h〉|U ) and f (hb )1U =∑

n∈N
anϕn(hb ) in

L2(U, μ〈h〉|U ) by Eq. 4.11. Therefore for (t, x) ∈ (0,∞)× K, Eq. 4.15 yields

∫

U
pU

μ〈h〉(t, y, x) f (hb (y))dμ〈h〉(y) =
∑

n∈N

ane−λntϕn(hb (x))

=
∫ b

a
p[a,b)(t, y, hb (x)) f (y)dy. (4.16)

Now Eq. 4.12 follows by letting s ∈ (a, b), f := (s− a)−11[a,s] in Eq. 4.16 and s ↓ a
since h−1

b (a) = {qi} and μ〈h〉
(

h−1
b ([a, s])) = 2E(h, hi

1)(s− a). Finally, since pU
μ〈h〉 ≤ pμ〈h〉

by [24, (C.2)], we see from Lemmas 4.6 and 4.8 and a direct calculation using [21,
Proposition 2.8.10] that for x ∈ U ,

(h(x)− a)2 = − lim
t↓0

2t log p[a,b)(t, a, h(x)) = − lim
t↓0

2t log pU
μ〈h〉(t, qi, x)

≥ − lim sup
t↓0

2t log pμ〈h〉(t, qi, x) ≥ ρμ〈h〉(qi, x)2 ≥ ρh(qi, x)2 ≥ (h(x)− a)2,

proving Eq. 4.13 for x ∈ U , and hence also for x ∈ U . ��

Proposition 4.10

(1) {u ∈ F | μ〈u〉 ≤ μ} = {u ∈ C(K) | LipρH u ≤ 1}.
(2) Let h ∈ SH0 . Then {u ∈ F | μ〈u〉 ≤ μ〈h〉} = {u ∈ C(K) | Lipρh

u ≤ 1}.

Proof

(1) Let u ∈ F satisfy μ〈u〉 ≤ μ, let l ∈ N and x, y ∈ Vl , x = y. It suffices to
show |u(x)− u(y)| ≤ ρH(x, y), since V∗ is dense in K and we already have
Lemma 4.5. We follow [7, Proof of Proposition 1.11]. Note that LipρH u ≤ 9 <

∞ by Lemma 4.6. By Proposition 3.15, we can choose a harmonic l-geodesic
γ : [0, 1] → K arising from an l-walk � = {zk}N

k=0 so that γ (0) = x, γ (1) = y
and ρH(γ (s), γ (t)) = |s− t|ρH(x, y) for any s, t ∈ [0, 1]. Set ψ := u ◦ γ . Then
we have |ψ(s)− ψ(t)| ≤ (LipρH u)|s− t|ρH(x, y) for s, t ∈ [0, 1] and hence ψ

is absolutely continuous. In particular, ψ ′(t) exists for dt-a.e. t ∈ [0, 1], ψ ′ ∈
L1([0, 1], dt) and ψ(t) = ∫ t

0 ψ ′(s)ds, t ∈ [0, 1]. Thus it suffices to prove that
|ψ ′(t)| ≤ ρH(x, y) for dt-a.e. t ∈ [0, 1].
Let t ∈ [0, 1] and suppose ψ ′(t) exists. We may assume that γ (t) ∈ V∗ since
γ−1(V∗) is countable. Let z := γ (t) and ω ∈ π−1(z). Choose k ∈ {1, . . . , N}
and i, j ∈ S so that z ∈ zk−1zk, zk−1 = Fw(qi) and zk = Fw(q j), where w :=
w(zk−1, zk). For m ≥ |w| we set

um := u ◦ F[ω]m
‖T[ω]m‖

, hm := hz ◦ F[ω]m
‖T[ω]m‖

, h⊥m :=
h⊥z ◦ F[ω]m
‖T[ω]m‖

. (4.17)

Then ‖um‖E ≤ 1 by μ〈u〉 ≤ μ, and Lemma 2.19 yields 1 ≥ ‖hm‖E → 1 and
‖h⊥m‖E → 0 as m →∞ since z ∈ zk−1zk ⊂ KZ . Choosing subsequences {umn}n∈N
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and {hmn}n∈N, we have umn → v weakly in (F/R1, E) and ‖hmn − g‖E → 0 as
n →∞ for some v ∈ F and g ∈ SH0 with v(z) = g(z) = 0. We further define

vn := umn − umn(z)1, gn := hmn − hmn(z)1, g⊥n := h⊥mn
− h⊥mn

(z)1. (4.18)

We have limn→∞ ‖gn − g‖∞ = 0 and vn(p) = vn(p)− vn(z)→ v(p)− v(z) =
v(p) as n →∞ for any p ∈ K since F/R1 � f �→ f − f (z)1 ∈ C(K) is a well-
defined bounded linear operator (F/R1, E) → (C(K), ‖ · ‖∞) by Theorem 2.5.
We claim that μ〈v〉 ≤ μ〈g〉. Let τ ∈ W∗. Since F∗τ : f �→ f ◦ Fτ is a bounded
linear operator on (F/R1, E) by Eq. 2.2, we have ‖gn ◦ Fτ − g ◦ Fτ‖E ∨ ‖g⊥n ◦
Fτ‖E → 0 and vn ◦ Fτ → v ◦ Fτ weakly in (F/R1, E) as n →∞. By μ〈u〉 ≤ μ =
μ〈hz〉 + μ〈h⊥z 〉 we see that ‖vn ◦ Fτ‖2

E ≤ ‖gn ◦ Fτ‖2
E + ‖g⊥n ◦ Fτ‖2

E , and letting n →
∞ results in ‖v ◦ Fτ‖E ≤ lim infn→∞ ‖vn ◦ Fτ‖E ≤ ‖g ◦ Fτ‖E , i.e. μ〈v〉(Kτ ) ≤
μ〈g〉(Kτ ). Thus the claim follows.
Note that either g ∈ Rhi

2 +R1 or g ∈ Rh j
2 +R1. Suppose g ∈ Rhi

2 +R1; the
proof for the other case is similar. Take ζg = (ζ 1

g , ζ 2
g ) ∈ R

2 so that g− ζ 1
g hi

1 −
ζ 2

g hi
2 ∈ R1. Then ζ 1

g = 0, and since hi
1 ◦ FiM = (3/5)Mhi

1 and hi
2 ◦ FiM = (1/5)Mhi

2
we can choose M ∈ N so that εg(qi) < minp∈V0\{qi} εg ◦ FiM(p) =: b , where ε :=
ζ 1

g /|ζ 1
g |. Let U be the connected component of (εg)−1((−∞, b)) with qi ∈ U ,

and choose q ∈ qiq j ∩U \ {qi}. The definition of b implies U ⊂ KiM and hence
Proposition 4.9 together with μ〈v〉 ≤ μ〈g〉 shows that

|v(qi)− v(q)| ≤ ρμ〈g〉(qi, q) = |g(qi)− g(q)| = 0. (4.19)

Now noting that γ is injective and that F[ω]mn
(qi), F[ω]mn

(q) ∈ zk−1zk, we set
sn := γ−1

(

F[ω]mn
(qi)

)

and tn := γ−1
(

F[ω]mn
(q)

)

for n ∈ N. Then limn→∞ sn =
limn→∞ tn = γ−1(z) = t, and Lemma 3.7 and Eq. 3.11 imply

(|sn − t| ∨ |tn − t|)ρH(x, y) = ρH(γ (sn), z) ∨ ρH(γ (tn), z) ≤ 10
∥

∥T[ω]mn

∥

∥.

(4.20)

Let a := g(qi)− g(q). By limn→∞(gn(qi)− gn(q)) = a = 0 and Eq. 4.20, for
sufficiently large n ∈ N we have |gn(qi)− gn(q)| ≥ |a|/2 and

|sn − tn| = ρH(γ (sn), γ (tn))
ρH(x, y)

≥
∥

∥T[ω]mn

∥

∥|gn(qi)− gn(q)|
ρH(x, y)

≥ |a|
20

(|sn − t| ∨ |tn − t|),

(4.21)

from which limn→∞ ψ(sn)−ψ(tn)

sn−tn
= ψ ′(t) easily follows. Then the first inequality in

Eqs. 4.21 and 4.19 together imply

|ψ ′(t)|
ρH(x, y)

= lim
n→∞

|ψ(sn)− ψ(tn)|
|sn − tn|ρH(x, y)

≤ lim
n→∞

∣

∣

∣

∣

vn(qi)− vn(q)

gn(qi)− gn(q)

∣

∣

∣

∣

=
∣

∣

∣

∣

v(qi)− v(q)

g(qi)− g(q)

∣

∣

∣

∣

≤ 1,

proving |u(x)− u(y)| = |ψ(0)− ψ(1)| ≤ ρH(x, y) and LipρH u ≤ 1.
(2) Let l ∈ N and x, y ∈ Vl , x = y and set γ := γ h

xy ◦ ϕh
xy, where γ h

xy and ϕh
xy are

as in Proposition 3.16 with γ h
xy a harmonic l-geodesic. Then exactly the same

proof as that of (1) still works with um := ‖h ◦ F[ω]m‖−1
E u ◦ F[ω]m and hm :=

‖h ◦ F[ω]m‖−1
E h ◦ F[ω]m . ��
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Proof Let h ∈ SH0 . By Lemmas 4.5 and 4.6, it only remains to show that ρμ ≤ ρH
and ρμ〈h〉 ≤ ρh, which are immediate from Proposition 4.10. ��

5 One-dimensional Asymptotics at Vertices

In this section, we prove sharp “one-dimensional” asymptotic behaviors of
μ(Br(x, ρH)) and pμ(t, x, y) for x ∈ V∗, which reflect our observation that, near
�(x), the harmonic Sierpinski gasket KH (Fig. 2) looks very much like its “tangent
line at �(x)”. We treat the results for μ(Br(x, ρH)) and pμ(t, x, y) respectively in
Sections 5.1 and 5.2. Then Section 5.3 presents an application of the result for pμ to
moments of displacement of the corresponding diffusion.

The following definition is fundamental for the arguments in this section.

Definition 5.1 For each x ∈ V∗, we define ξx, cx, rx ∈ (0,∞) and Kx ⊂ K as follows:

(i) If x = qi ∈ V0, i ∈ S, then we set ξqi := 1/2, cqi := 1, rqi := 1 and Kqi := Ki.
(ii) If x ∈ V∗ \ V0, let w ∈ W∗ and i, j ∈ S, i = j be such that π−1(x) = {wij∞, w ji∞}

(recall Proposition 2.3) and ai
x, bi

x, a j
x, b j

x ∈ R such that hx ◦ Fwi = ai
xh j

1 + bi
xh j

2

and hx ◦ Fw j = a j
xhi

1 + b j
xhi

2 (recall hx(x) = 0). Noting that a j
x = −ai

x by the
hamonicity of hx at x (see [23, (3.2.1)]) and that ai

x = 0 by Lemma 2.19 and
infn∈N(5/3)n‖Twijn‖ > 0, we define

ξx :=
(

5
3

)|w|+1

|ai
x|, cx := μ〈h⊥x 〉

(

Kwi ∪ Kw j
)

|ai
x|κ̂

,

rx := 4
3

(

3
5

)Nx

|ai
x|, Kx := KwijNx ∪ Kw jiNx ,

(5.1)

where Nx := 1+min{n ∈ N ∪ {0} | (√3/6)3n|ai
x| ≥ |bi

x| ∨ |b j
x|}.

Remark 5.2 We can write down ξx, cx, rx explicitly in terms of Tw in the situation of
Def inition 5.1-(ii), since hx and h⊥x are given by Eq. 2.14 and

ζx = εi|Twiζq j|−1Twiζq j = ε j|Tw jζqi |−1Tw jζqi (5.2)

for some εi, ε j ∈ {−1, 1} by Proposition 3.14.

5.1 Measures of Geodesic Balls

The following is the main theorem of this subsection.

Theorem 5.3 Let x ∈ V∗ and s ∈ (0, rx]. Then

lim
r↓0

μ(Br(x, ρH))

r
= μ〈hx〉(Bs(x, ρhx))

s
= 2ξx. (5.3)

The rest of this subsection is devoted to the proof of Theorem 5.3. We need the
following proposition and lemmas, which will play essential roles also in Sections 5.2
and 5.3 below.
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Proposition 5.4 (cf. Proposition 4.9) Let x ∈ V∗ \ V0, and let U x be the connected
component of h−1

x ((−rx, rx)) containing x. Let w ∈ W∗, i, j ∈ S, ai
x, a j

x ∈ R and Nx ∈ N

be as in Def inition 5.1, and without loss of generality assume a j
x > 0.

(1) hx < 0 on KwijNx−1 \ {x} and hx > 0 on Kw jiNx−1 \ {x}. Moreover, Kx ⊂ U x ⊂
KwijNx−1 ∪ Kw jiNx−1 .

(2) For b ∈ (0,∞) let pb = pb (t, y, z) : (0,∞)× [−b , b ] × [−b , b ] → [0,∞) de-
note the heat kernel for 1

2
d2

dy2 on [−b , b ] with Dirichlet (absorbing) boundary
condition at −b and b. Then

μ〈hx〉 ◦ (hx|U x)−1 = ξx1[−rx,rx]dy (dy is the Lebesgue measure on R), (5.4)

pU x

μ〈hx〉(t, x, y) = ξ−1
x prx(t, 0, hx(y)), (t, y) ∈ (0,∞)×U x, (5.5)

ρhx(x, y) = |hx(y)|, y ∈ U x. (5.6)

(3) Br(x, ρhx) = U x ∩ h−1
x ((−r, r)) and μ〈hx〉(Br(x, ρhx)) = 2ξxr for any r ∈ (0, rx].

(4) B2rx,n/3(x, ρhx) ⊂ Kwijn ∪ Kw jin ⊂ B5rx,n/6(x, ρhx) for n ∈ N, n ≥ Nx, where rx,n :=
4
3

( 3
5

)n|ai
x|.

Proof

(1) In view of the definition of Nx, a direct calculation together with the strong
maximum principle [23, Theorem 3.2.14] easily shows the assertions.

(2) Equations 5.4 and 5.6 follow by applying Proposition 4.9 with h = ‖hx ◦
Fv‖−1

E hx ◦ Fv , b = rx/‖hx ◦ Fv‖, a = 0 and U = F−1
v (U x ∩ Kv), where v :=

w jiNx−1, and similarly on KwijNx−1 . Also the same proof as that of Eq. 4.12 shows
that for any f ∈ L2([−rx, rx], dy) and any (t, y) ∈ (0,∞)×U x,

∫

U x
pU x

μ〈hx〉(t, z, y) f (hx(z))dμ〈h〉(z) =
∫ rx

−rx

prx(t, z, hx(y)) f (z)dz, (5.7)

from which Eq. 5.5 easily follows by virtue of h−1
x (0) ∩U x = {x} and Eq. 5.4.

(3) This is immediate from Eqs. 5.4, 5.6 and the fact that |hx| = rx on ∂U x.
(4) Similarly to Eq. 4.14, using the definition of Nx and Proposition 2.10-(2) we

have

(hx|U x)−1
((

−2
3

rx,n,
2
3

rx,n

))

⊂ Kwijn ∪ Kw jin ⊂ (hx|U x)−1
((

−5
6

rx,n,
5
6

rx,n

))

for n ≥ Nx, which and the first assertion of (3) immediately yield (4). ��

Lemma 5.5 1
225 cxrκ̂ ≤ μ〈h⊥x 〉(Br(x, ρhx)) ≤ 225cxrκ̂ for x ∈ V∗ and any r ∈ (0, rx].

Proof Suppose x ∈ V∗ \ V0. Let w ∈ W∗, i, j ∈ S, ai
x, a j

x ∈ R and Nx ∈ N be as in
Definition 5.1 and set a := |ai

x| = |a j
x|. Since ‖h⊥x ◦ Fwijn‖E ∨ ‖h⊥x ◦ Fw jin‖E = o((3/5)n)

as n →∞ by Lemma 2.19, h⊥x ◦ Fwi ∈ Rh j
2, h⊥x ◦ Fw j ∈ Rhi

2 and hence
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μ〈h⊥x 〉(Kx
n) = (1/15)naκ̂cx for n ∈ N ∪ {0}, where Kx

n := Kwijn ∪ Kw jin . For n ≥ Nx,
Kx

n ⊂ Brx,n(x, ρhx) ⊂ Kx
n−1 by Proposition 5.4-(1), (4) and hence 15−1(rx,n)

κ̂cx ≤
μ〈h⊥x 〉(Brx,n(x, ρhx)) ≤ 15(rx,n)

κ̂cx. Now for each r ∈ (0, rx], rx,n+1 < r ≤ rx,n for
a unique n ≥ Nx, and then μ〈h⊥x 〉(Br(x, ρhx)) ≤ 15((5/3)rx,n+1)

κ̂cx ≤ 152cxrκ̂ and
μ〈h⊥x 〉(Br(x, ρhx)) ≥ 15−1((3/5)rx,n)

κ̂cx ≥ 15−2cxrκ̂ .
The assertion for x ∈ V0 is proved in the same way by using Proposition 4.9. ��

Lemma 5.6 Let x ∈ V∗ \ V0, and let w ∈ W∗, i, j ∈ S and ai
x ∈ R be as in

Def inition 5.1. Then for any y ∈ K,

lim
n→∞

(

5
3

)n

ρH
(

x, Fwijn(y)
) = |ai

x|h j
1(y). (5.8)

Proof Let y ∈ K. ρh j
1
(q j, y) = h j

1(y) by Eq. 4.13, and by Proposition 3.16 we
can choose a harmonic geodesic γy : [0, 1] → K so that γy(0) = q j, γy(1) = y and
�h j

1
(γy) = ρh j

1
(q j, y) = h j

1(y). Since hx(x) = 0, Fwijn ◦ γy(0) = Fwijn(q j) = x, and h⊥x ◦
Fwi = ci

xh j
2 for some ci

x ∈ R by the proof of Lemma 5.5,

|ai
x|h j

1(y)− |b
i
xh j

2(y)|
3n

≤
(

5
3

)n

|hx ◦ Fwijn(y)| ≤
(

5
3

)n

ρH
(

x, Fwijn(y)
)

≤
(

5
3

)n

�H(Fwijn ◦γy)≤
(

5
3

)n
(

�hx

(

Fwijn ◦γy
)+�h⊥x (Fwijn ◦ γy)

)

= �
((

ai
xh j

1 + 3−nb i
xh j

2

)

◦ γy

)

+ |c
i
x|

3n
�
(

h j
2 ◦ γy

)

≤ |ai
x|�h j

1
(γy)+ |b

i
x|+|ci

x|
3n

�h j
2
(γy)=|ai

x|h j
1(y)+ |b

i
x|+|ci

x|
3n

�h j
2
(γy),

(5.9)

where bi
x ∈ R is as in Definition 5.1. Now letting n →∞ in Eq. 5.9 yields Eq. 5.8. ��

Remark 5.7 In Eq. 5.9, the author does not have any idea how to estimate �h j
2
(γy)

uniformly in y. This is why no remainder estimate is given for the limits in Eqs. 5.3
and 5.8, and in Eq. 5.42 below, neither.

Proof of Theorem 5.3 μ〈hx〉(Bs(x, ρhx)) = 2ξxs follows from Propositions 4.9 and 5.4.
Let r ∈ (0, rx]. Since Br(x, ρH) ⊂ Br(x, ρhx) by ρhx ≤ ρH, μ = μ〈hx〉 + μ〈h⊥x 〉 and
Lemma 5.5 imply

μ(Br(x, ρH)) ≤ μ〈hx〉(Br(x, ρhx))+ μ〈h⊥x 〉(Br(x, ρhx)) ≤ 2ξxr + 225cxrκ̂ . (5.10)

In the rest of this proof we suppose x ∈ V∗ \ V0; the case of x ∈ V0 is proved sim-
ilarly and more easily. Let w ∈ W∗, i, j ∈ S and ai

x, bi
x, a j

x, b j
x ∈ R be as in Definition
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5.1. Let r ∈ (0, |ai
x|] and n ∈ N. Since μ〈u〉|Kv

:= μ〈u〉|B(Kv) = (5/3)|v|μ〈u◦Fv〉 ◦ F−1
v for

u ∈ F and v ∈ W∗,
(

5
3

)n

μ
(

B(3/5)nr(x, ρH)
) ≥

(

5
3

)n ∫

Kwijn∪Kw jin

1[0,(3/5)nr)(ρH(x, y))dμ〈hx〉(y)

=
(

5
3

)2n+|w|+1
∑

(k,l)

∫

Kwkln

1[0,r)

((

5
3

)n

ρH(x, y)

)

d
(

μ〈hx◦Fwkln 〉 ◦ F−1
wkln

)

(y)

=
(

5
3

)|w|+1
∑

(k,l)

∫

K
1[0,r)

((

5
3

)n

ρH (x, Fwkln(y))

)

dμ〈ak
xhl

1+3−nb k
xhl

2〉(y)

≥ ξx|ai
x|
∑

(k,l)

(∫

K
1[0,r)

((

5
3

)n

ρH (x, Fwkln(y))

)

dμ〈hl
1〉(y)− 2|b k

x|
3n|ak

x|
)

, (5.11)

where (k, l) runs over {(i, j), ( j, i)} and we used μ〈hl
1,h

l
2〉(A)2 ≤ μ〈hl

1〉(A)μ〈hl
2〉(A) ≤ 1,

A ∈ B(K). Then by using Lemma 5.6 and Fatou’s lemma to let n →∞ in Eq. 5.11,
together with Eqs. 4.11 and 5.10, we get limn→∞

(( 3
5

)n
r
)−1

μ
(

B(3/5)nr(x, ρH)
) = 2ξx,

from which limr↓0 r−1μ(Br(x, ρH)) = 2ξx immediately follows since (0,∞) � r �→
μ(Br(x, ρH)) is non-decreasing. ��

5.2 Heat Kernel

The main result of this subsection is a short time asymptotic behavior of pμ(t, x, y)

for x ∈ V∗ and is stated in the following theorem, whose proof makes full use of
Propositions 4.9 and 5.4 and Lemma 5.5. Recall Definition 5.1 and that ρhx(x, y) =
|hx(y)| for x ∈ V∗ and y ∈ Kx by Eqs. 4.13 and 5.6.

Theorem 5.8 Let δ ∈ (0, 1] and x ∈ V∗. Then there exists cR ∈ (0,∞) determined
solely by κ, κ̂, cG, cV such that for any (t, y) ∈ (0, r2

x] × Kx,

∣

∣

∣

∣

∣

pμ(t, x, y)− exp
(− hx(y)2

2t

)

ξx
√

2π t

∣

∣

∣

∣

∣

≤
⎛

⎝

cx

ξx
t

κ̂−1
2 + δκ+1

⎛

⎝δ ∧
( cx

ξx

) 2
κ+1 |hx(y)| 2(κ+κ̂)

κ+1

t

⎞

⎠

+ δ
15
4 κ+ κ̂

2+2 exp
(

−r2
x

6t

)

⎞

⎠

cR

δ
15
4 κ+ κ̂

2+2

exp
(− hx(y)2

2(1+δ)t

)

ξx
√

2π t
.

(5.12)

In particular, there exists tx ∈ (0, r2
x] determined solely by rx,

cx
ξx

, κ̂ such that

∣

∣

∣

∣

∣

pμ(t, x, y)− exp
(− hx(y)2

2t

)

ξx
√

2π t

∣

∣

∣

∣

∣

≤ cx,δ
R

(

t
κ̂−1

2 + δκ |hx(y)| 2(κ̂−1)

κ+1

)exp
(− hx(y)2

2(1+δ)t

)

ξx
√

2π t
(5.13)

for any (t, y) ∈ (0, tx] × Kx, where cx,δ
R := 5cR

(

cx
ξx
∨ ( cx

ξx

) 2
κ+1

)

(2/δ)
15
4 κ+ κ̂

2+2.
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By virtue of Propositions 4.9 and 5.4 and Lemma 5.5, Theorem 5.8 follows from
the following general remainder estimate.

Theorem 5.9 Let h, h⊥ ∈ SH0 satisfy E(h, h⊥) = 0, and let δ ∈ (0, 1]. Then there exists
CR ∈ (0,∞) determined solely by κ, κ̂, cG, cV such that

|pμ(t, x, y)− pμ〈h〉(t, x, y)|

≤
(

1
t

∫ t

0

μ〈h⊥〉
(

B√s(x, ρh)
)

μ〈h〉
(

B√s(x, ρh)
) ds+ δκ+1

t

∫ δt

0

μ〈h⊥〉
(

B√s(y, ρH)
)

μ
(

B√s(y, ρH)
) ds

+ δ
9
4 κ+2 μ〈h⊥〉

(

B√δt(y, ρH)
)

μ
(

B√δt(y, ρH)
)

)

CR

δ
15
4 κ+ κ̂

2+2

exp
(− ρh(x,y)2

2(1+δ)t

)

μ〈h〉
(

B√t(x, ρh)
) (5.14)

for any (t, x, y) ∈ (0,∞)× K × K.

The proof of Theorem 5.9 is given later. First we prove Theorem 5.8 based on
Theorem 5.9. For this purpose we need the following lemma.

Lemma 5.10 μ〈h〉(Br(x, ρh)) � μ(Br(x, ρH)) for h ∈ SH0 and any (r, x) ∈ (0,∞)× K.

Proof Let h ∈ SH0 and (s, x) ∈ (0, 1)× K. Let w ∈ �h
s satisfy Kw ∩ Ks(x,Sh) = ∅.

Then Kw ∩ Kv = ∅ for some v ∈ �h
s with x ∈ Kv , and τ ≤ v for some τ ∈ �H

s
with x ∈ Kτ by lh ≤ lH. Moreover ‖h ◦ Fv‖E ≤ s ≤ 5‖Tτ‖ by Eq. 3.4, which and
|v| ≤ |τ | easily yield μ〈h〉(Kv) ≤ 25μ(Kτ ). Therefore using Proposition 3.10-(1) we
see that μ〈h〉(Kw) � μ〈h〉(Kv) � μ(Kτ ) ≤ μ(Us(x,SH)), which and Lemma 3.5 imply
μ〈h〉(Us(x,Sh)) � μ(Us(x,SH)). Using this fact together with Eqs. 3.16, 3.12 and 3.11,
we conclude that

μ〈h〉(B10s(x, ρh)) � μ〈h〉(Bs/25(x, ρh)) ≤ μ〈h〉(Us(x,Sh))

� μ(Us(x,SH)) ≤ μ(B10s(x, ρH)).

The case of r ≥ 10 is clear since B10(x, ρH) = B10(x, ρh) = K by Eqs. 3.11 and 3.12.
��

Proof of Theorem 5.8 under Theorem 5.9 Let δ ∈ (0, 1], x ∈ V∗ and y ∈ Kx. For r ∈
(0, rx], Br(y, ρH) ⊂ Br(y, ρhx) by ρhx ≤ ρH, and then by Lemma 5.10, Theorem 3.19,
Proposition 5.4 (Proposition 4.9 when x ∈ V0) and Lemma 5.5 we have

μ〈h⊥x 〉(Br(y, ρH))

μ(Br(y, ρH))
�

μ〈h⊥x 〉(Br(y, ρhx))

μ〈hx〉(Br(y, ρhx))
�

(

1+ |hx(y)|
r

)κ+κ̂ μ〈h⊥x 〉(Br(x, ρhx))

μ〈hx〉(Br(x, ρhx))

�
(

1+ |hx(y)|κ+κ̂

rκ+κ̂

)

225cx

2ξx
rκ̂−1 � cx

ξx

(

rκ̂−1 + |hx(y)|κ+κ̂

rκ+1

)

.

(5.15)
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Let t ∈ (0, r2
x]. Since μ〈h⊥x 〉 ≤ μ and κ + 1 > 2, Eq. 5.15 yields

∫ δt

0

μ〈h⊥x 〉
(

B√s(y, ρH)
)

μ
(

B√s(y, ρH)
) ds

� cx

ξx

∫ δt

0
s

κ̂−1
2 ds+

∫ δt

0
1 ∧ cx|hx(y)|κ+κ̂

ξxs
κ+1

2

ds

≤

⎧

⎪

⎨

⎪

⎩

cx

ξx
(δt)

κ̂+1
2 + Dx(y)+

∫ ∞

Dx(y)

( Dx(y)

s

) κ+1
2

ds if Dx(y) ≤ δt

cx

ξx
(δt)

κ̂+1
2 + δt if Dx(y) ≥ δt

≤ cx

ξx
(δt)

κ̂+1
2 + 4t

(

δ ∧ Dx(y)

t

)

, where Dx(y) :=
(cx

ξx

) 2
κ+1 |hx(y)| 2(κ+κ̂)

κ+1 .

(5.16)

Similarly, by using Eq. 5.15 and 1 ∧ s
κ+1

2 ≤ 1 ∧ s, s ∈ [0,∞), we see that

μ〈h⊥x 〉
(

B√δt(y, ρH)
)

μ
(

B√δt(y, ρH)
) � cx

ξx
(δt)

κ̂−1
2 + δ−1

(

δ ∧ Dx(y)

t

)

. (5.17)

Again by Proposition 5.4-(3) (Proposition 4.9 when x ∈ V0) and Lemma 5.5, we
also have

∫ t

0

μ〈h⊥x 〉
(

B√s(x, ρhx)
)

μ
(

B√s(x, ρhx)
) ds ≤ 225cx

2ξx

∫ t

0
s

κ̂−1
2 ds = 225

κ̂ + 1
cx

ξx
t

κ̂+1
2 . (5.18)

On the other hand, let U x be the connected component of h−1
x ((−rx, rx)) contain-

ing x and set ψx(y, t) := 1− ∫

U x pU x

μ〈hx〉(t, y, z)dμ〈hx〉(z). Then Eqs. 4.16, 5.7 and a direct
calculation using [21, Exercise 2.8.11] yield

0 ≤ ψx(y, t) = 1−
∫ rx

−rx

prx(t, hx(y), z)dz ≤ 2 exp
(

− (rx − |hx(y)|)2

2t

)

. (5.19)

By [16, Theorem 5.1] (or [14, Theorem 10.4]), Eqs. 5.19, 3.16, 4.2 and |hx(y)| ≤ 5rx/6,

0 ≤ pμ〈hx〉(t, x, y)− pU x

μ〈hx〉(t, x, y)

≤ ψx
(

x, t
2

)

sup
s∈[ t

2 ,t]
sup

w∈∂U x
pμ〈hx〉(s, w, y)+ ψx

(

y, t
2

)

sup
s∈[ t

2 ,t]
sup

z∈∂U x
pμ〈hx〉(s, x, z)

�
(

1+ 8r2
x

t

)3κ/4
(

exp
(− r2

x
t − r2

x
72t

)

μ〈hx〉
(

B√t/2(y, ρhx)
) + exp

(− r2
x

36t − r2
x

2t

)

μ〈hx〉
(

B√t/2(x, ρhx)
)

)

�
(

1+ 8r2
x

t

)5κ/4

exp
(

−13r2
x

72t

)

exp
(− hx(y)2

2t

)

μ〈hx〉
(

B√t(x, ρhx)
)

� exp
(

−r2
x

6t

)

exp
(− hx(y)2

2t

)

2ξx
√

t
. (5.20)
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Also a direct calculation using [21, Proposition 2.8.10], t ≤ r2
x and |hx(y)| ≤ 5rx/6

yields

0 ≤ exp
(− hx(y)2

2t

)

ξx
√

2π t
− pU x

μ〈hx〉(t, x, y) = exp
(− hx(y)2

2t

)

ξx
√

2π t
− ξ−1

x prx(t, 0, hx(y))

≤ 3 exp
(

−2rx(rx − |hx(y)|)
t

)

exp
(− hx(y)2

2t

)

ξx
√

2π t
≤ 3 exp

(

−r2
x

3t

)

exp
(− hx(y)2

2t

)

ξx
√

2π t
. (5.21)

Now Eq. 5.12 is immediate from the inequality Eq. 5.14 with h = hx and h⊥ = h⊥x
and the estimates Eqs. 5.16, 5.17, 5.18, 5.20 and 5.21. Equation 5.13 follows by using
2se−s/(1+δ/2) ≤ 5δ−1e−s/(1+δ), s := hx(y)2/2t to estimate the second term in Eq. 5.12,
completing the proof of Theorem 5.8. ��

The rest of this subsection is devoted to the proof of Theorem 5.9. We need
to prepare several lemmas. The following lemma is immediate from Eq. 3.16 and
Corollary 4.3; note that we have (1+ x)αe−x/β ≤ (e−1αβ)αe1/β for α, β ∈ (0,∞) and
x ∈ [−1,∞).

Lemma 5.11 Let h ∈ SH0 . For δ ∈ (0,∞) and (t, x, y) ∈ (0,∞)× K × K, def ine

�H,δ(t, x, y) := exp
(− ρH(x,y)2

2(1+δ)t

)

μ
(

B√t(x, ρH)
) , �h,δ(t, x, y) := exp

(− ρh(x,y)2

2(1+δ)t

)

μ〈h〉
(

B√t(x, ρh)
) . (5.22)

Then for each n ∈ N ∪ {0} there exists chk(n) ∈ (0,∞) determined solely by n, κ, cG, cV

such that for any δ ∈ (0, 1] and any (t, x, y) ∈ (0,∞)× K × K,

∣

∣∂n
t pμ(t, x, y)

∣

∣ ≤ chk(n)

δ
3
4 κ+ntn

�H,δ(t, x, y), (5.23)

∣

∣∂n
t pμ〈h〉(t, x, y)

∣

∣ ≤ chk(n)

δ
3
4 κ+ntn

�h,δ(t, x, y). (5.24)

Lemma 5.12 Let ε, δ ∈ (0,∞), ε < δ and set θ(ε, δ) := (εδ + 2ε + 1)/(δ − ε). Let h ∈
SH0 , s, t ∈ (0,∞) and x, y, z ∈ K. Then

�H,ε(s, x, z)�h,δ(t, y, z) ≤ cV

( s+ t
t

)κ/2
�H,θ(ε,δ)(s, x, z)�h,δ(s+ t, y, x), (5.25)

�h,ε(s, x, z)�h,δ(t, y, z) ≤ cV

( s+ t
t

)κ/2
�h,θ(ε,δ)(s, x, z)�h,δ(s+ t, y, x). (5.26)

Proof Since (1+ ε)−1 = (1+ θ(ε, δ))−1 + (1+ δ)−1 and a2/s+ b 2/t ≥ (a+ b)2/(s+
t) for a, b ∈ [0,∞), a direct calculation using Eq. 3.16 and ρh ≤ ρH easily shows
the assertion. ��

Lemma 5.13 Let g, h ∈ SH0 and θ ∈ [1,∞). Then for any (t, x) ∈ (0,∞)× K,
∫

K
�θ(t, x, y)dν(y) � θκ/2,

∫

K
�θ(t, x, y)dμ〈g〉(y) � θ κ̂/2 μ〈g〉

(

B√t(x, ρ)
)

ν
(

B√t(x, ρ)
) , (5.27)

where (ν, ρ,�θ) denotes any one of (μ, ρH, �H,θ ) and (μ〈h〉, ρh, �h,θ ).
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Proof Let (t, x) ∈ (0,∞)× K and s := (1+ θ)t. By Eq. 3.16 we see that

∫

K
�θ(t, x, y)dν(y)

=
∫

B√s(x,ρ)

�θ (t, x, y)dν(y)+
∑

n∈N

∫

B2n√s(x,ρ)\B2n−1√s(x,ρ)

�θ (t, x, y)dν(y)

≤ ν
(

B√t(x, ρ)
)−1

(

ν
(

B√s(x, ρ)
)+

∑

n∈N

e−4n/8ν
(

B2n
√

s(x, ρ) \ B2n−1
√

s(x, ρ)
)

)

≤ ν
(

B√t(x, ρ)
)−1

ν
(

B√s(x, ρ)
)

cV

(

1+
∑

n∈N

2κne−4n/8
)

� θκ/2.

The latter assertion is proved in the same way by using Eqs. 3.16 and 3.17. ��

Next we introduce several probabilistic notions required for the proof of The-
orem 5.9, which utilizes a time change argument on the diffusion. See [13, Part
II and Section A.2] for details concerning diffusions associated with symmetric
Dirichlet forms and their time changes by positive continuous additive functionals.
Below K∂ := K ∪ {∂} denotes the one-point compactification of K and a function
f : K → [−∞,∞] on K is always extended to K∂ by setting f (∂) := 0 when needed.
Let X = (

�,M, {Xt}t∈[0,∞], {Px}x∈K∂

)

be a μ-symmetric diffusion on K with life time
ζ X and minimum completed admissible filtration F∗ := {Ft}t∈[0,∞] whose Dirichlet
form on L2(K, μ) is (E,F); such X does exist by virtue of [13, Theorem 7.2.2]. Then
Px[Xt ∈ dy] = pμ(t, x, y)dμ(y) for any (t, x) ∈ (0,∞)× K by [26, Theorem 10.4], and
Px[ζ X = ∞] = 1 for x ∈ K since

∫

K pμ(t, x, y)dμ(y) = 1, t ∈ (0,∞). Expectation (i.e.
integral on �) under the measure Px is denoted by Ex[(·)].

Take any h, h⊥ ∈ SH0 satisfying E(h, h⊥) = 0, so that μ = μ〈h〉 + μ〈h⊥〉; we fix them
in the rest of this subsection. Also fix a Borel measurable version of dμ〈h〉/dμ

satisfying 0 < (dμ〈h〉/dμ)(y) ≤ 1 for any y ∈ K; such a version exists since μ〈h〉 ≤ μ

and μ is absolutely continuous with respect to μ〈h〉 by [17, Theorem 5.6]. We define

At :=
∫ t

0

dμ〈h〉
dμ

(Xs)ds, t ∈ [0,∞], (5.28)

so that A = {At}t∈[0,∞) is the positive continuous additive functional of X with Revuz
measure μ〈h〉. For t ∈ [0,∞] we further define

τt := inf{s ∈ [0,∞) | As > t}, Yt := Xτt Gt := Fτt ; (5.29)

here τt is an F∗-stopping time and hence Fτt is defined as a sub-σ -field of F∞. [13,
Theorems A.2.12 and 6.2.1] imply that Y := (

�,M, {Yt}t∈[0,∞], {Px}x∈K∂

)

is a μ〈h〉-
symmetric diffusion on K with life time A∞ and admissible filtration G∗ := {Gt}t∈[0,∞]
whose Dirichlet form on L2(K, μ〈h〉) is (E,F). Px[Yt ∈ dy] = pμ〈h〉(t, x, y)dμ〈h〉(y) for
any (t, x) ∈ (0,∞)× K by [26, Theorem 10.4] and hence Px[A∞ = ∞] = 1, x ∈ K.
For each t ∈ [0,∞), clearly At ≤ t ≤ τt, and At is a G∗-stopping time since {At >

s} = {τs < t} ∈ Fτs = Gs, s ∈ [0,∞). On {ζ X = ∞}, A(·) is strictly increasing and hence
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τAt = t and YAt = Xt for any t ∈ [0,∞). For x ∈ K, since Px[A∞ = ∞] = 1, a direct
calculation shows that

τt =
∫ t

0

(dμ〈h〉
dμ

(Ys)
)−1

ds <∞ for any t ∈ [0,∞), Px-a.s. (5.30)

Lemma 5.14 For any δ ∈ (0, 1], s, t ∈ (0,∞) and x, y ∈ K,

Ex[(t − At)�h,δ(s, y, Xt)]
�h,δ(s+ t, y, x)

�
( s+t

s

)κ/2

δ2κ+κ̂/2

∫ t

0

μ〈h⊥〉
(

B√u(x, ρH)
)

μ
(

B√u(x, ρH)
) du, (5.31)

Ex[(τt − t)�h,δ(s, y, Yt)]
�h,δ(s+ t, y, x)

�
( s+t

s

)κ/2

δ2κ+κ̂/2

∫ t

0

μ〈h⊥〉
(

B√u(x, ρh)
)

μ〈h〉
(

B√u(x, ρh)
) du. (5.32)

Proof Let δ ∈ (0, 1], s, t ∈ (0,∞) and x, y ∈ K. By Eq. 5.28 and the Markov property
of X,

Ex[(t − At)�h,δ(s, y, Xt)]

=
∫ t

0
Ex

[(

1 − dμ〈h〉
dμ

)

(Xu)�h,δ(s, y, Xt)
]

du

=
∫ t

0

∫

K

∫

K
pμ(u, x, z)pμ(t − u, z, w)

(

1 − dμ〈h〉
dμ

)

(z)�h,δ(s, y, w)dμ(w)dμ(z)du

=
∫ t

0

∫

K

∫

K
pμ(u, x, z)pμ(t − u, z, w)�h,δ(s, y, w)dμ(w)dμ〈h⊥〉(z)du, (5.33)

where we used μ = μ〈h〉 + μ〈h⊥〉 in the last equality. Then Eqs. 5.23 and 5.25 yield

(δ/2)3κ/2 pμ(u, x, z)pμ(t − u, z, w)�h,δ(s, y, w)

� �H,δ/2(u, x, z)�H,δ/2(t − u, z, w)�h,δ(s, y, w)

�
( s+ t − u

s

)κ/2
�H,δ/2(u, x, z)�H,θ(δ/2,δ)(t − u, z, w)�h,δ(s+ t − u, y, z)

�
( s+ t

s

)κ/2
�H,θ(δ/2,δ)(u, x, z)�H,θ(δ/2,δ)(t − u, z, w)�h,δ(s+ t, y, x). (5.34)

Since 2/δ ≤ θ(δ/2, δ) ≤ 5/δ, from Eqs. 5.33 and 5.34 we get Eq. 5.31 by using Eq. 5.27
to integrate Eq. 5.34 first by dμ(w) and then by dμ〈h⊥〉(z). The same argument using
Eqs. 5.24, 5.26 and 5.27 easily shows Eq. 5.32 as well since similarly to Eq. 5.33
we have

Ex[(τt − t)�h,δ(s, y, Yt)]

=
∫ t

0

∫

K

∫

K
pμ〈h〉(u, x, z)pμ〈h〉(t − u, z, w)�h,δ(s, y, w)dμ〈h〉(w)dμ〈h⊥〉(z)du

(5.35)

by virtue of Eq. 5.30, the Markov property of Y and 1/(dμ〈h〉/dμ) = dμ/dμ〈h〉 μ〈h〉-
a.e. ��
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Lemma 5.15 Let s, t, a ∈ (0,∞), s < a < t. Then for any x, y ∈ K,

pμ〈h〉(t, x, y) = Ey[pμ〈h〉(t − As, Xs, x)], (5.36)

pμ(t, x, y) = Ex[1{τs≥a} pμ(t − a, Xa, y)+ 1{τs<a} pμ(t − τs, Ys, y)]. (5.37)

Proof Let x, y ∈ K. Since As ≤ s < t and As is a G∗-stopping time, the strong Markov
property of Y together with [21, Corollary 2.6.18] implies that for any r ∈ (0,∞),

∫

Br(x,ρh)

pμ〈h〉(t, y, z)dμ〈h〉(z) = Py[Yt ∈ Br(x, ρh)] (5.38)

=
∫

�

PYAs(ω)(ω)[Yt−As(ω) ∈ Br(x, ρh)]dPy(ω)

= Ey

[∫

Br(x,ρh)

pμ〈h〉(t − As, Xs, z)dμ〈h〉(z)

]

.

Then noting that 0 < t − s ≤ t − As ≤ t, we obtain Eq. 5.36 by dividing Eq. 5.38 by
μ(Br(x, ρh)) and using the joint continuity of pμ〈h〉 to let r ↓ 0. Similarly we can also
show Eq. 5.37 based on the Markov property of X at time a and the strong Markov
property of X at the F∗-stopping time τs together with [21, Corollary 2.6.18]. ��

Proof of Theorem 5.9 Let δ ∈ (0, 1] and set ε := δ/4, so that (1+ ε)2 ≤ 1+ δ. Let
(t, x, y) ∈ (0,∞)× K × K . From Eqs. 5.36, 5.24, 3.16 and 5.31 we see that

∣

∣

∣

∣

pμ〈h〉(t, x, y)−
∫

K
pμ(εt, y, z)pμ〈h〉((1− ε)t, z, x)dμ(z)

∣

∣

∣

∣

= ∣

∣Ey[pμ〈h〉(t − Aεt, Xεt, x)− pμ〈h〉((1− ε)t, Xεt, x)]∣∣
≤ Ey[(εt − Aεt) supu∈[(1−ε)t,t] |∂u pμ〈h〉(u, x, Xεt)|]
� ε−

3
4 κ−1Ey[(εt − Aεt) supu∈[(1−ε)t,t] u−1�h,ε(u, x, Xεt)]

� ε−
3
4 κ−1t−1Ey[(εt − Aεt)�h,ε(t, x, Xεt)]

� �h,ε((1+ ε)t, x, y)

ε
11
4 κ+ κ̂

2+1t

∫ εt

0

μ〈h⊥〉
(

B√u(y, ρH)
)

μ
(

B√u(y, ρH)
) du

� �h,δ(t, x, y)

δ
11
4 κ+ κ̂

2+1t

∫ δt

0

μ〈h⊥〉
(

B√u(y, ρH)
)

μ
(

B√u(y, ρH)
) du. (5.39)

Furthermore let s := (1− ε)t and a := (1− ε/2)t. Since �H,δ(t, x, y) � �h,δ(t, x, y)

and μ〈g〉(Br(x, ρH)) ≤ μ〈g〉(Br(x, ρh)) by ρh ≤ ρH and Lemma 5.10, by using Eq. 5.37,
{τs ≥ a} = {Aa ≤ s}, Eqs. 5.23, 3.16, Lemmas 5.14 and 5.10 we obtain

∣

∣

∣

∣

pμ(t, x, y)−
∫

K
pμ(εt, y, z)pμ〈h〉((1− ε)t, z, x)dμ〈h〉(z)

∣

∣

∣

∣

= ∣

∣Ex[1{τs≥a} pμ(t − a, Xa, y)+ 1{τs<a} pμ(t − τs, Ys, y)− pμ(t − s, Ys, y)]∣∣
≤ Ex[1{τs≥a} pμ(t − a, y, Xa)] + Ex[1{τs≥a} pμ(t − s, y, Ys)]
+ Ex[1{τs<a}|pμ(t − τs, y, Ys)− pμ(t − s, y, Ys)|]
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≤ Ex[1{a−Aa≥a−s} pμ(t − a, y, Xa)] + Ex[1{τs−s≥a−s} pμ(t − s, y, Ys)]
+Ex[1{τs<a}(τs − s) supu∈[t−a,t−s] |∂u pμ(u, y, Ys)|]

� ε−3κ/4(a− s)−1Ex[(a− Aa)�H,ε(t − a, y, Xa)+ (τs − s)�H,ε(t − s, y, Ys)]
+ε−

3
4 κ−1Ex[(τs − s) supu∈[t−a,t−s] u−1�H,ε(u, y, Ys)]

� ε−
3
4 κ−1t−1Ex[(a− Aa)�h,ε(t − a, y, Xa)+ (τs − s)�h,ε(t − s, y, Ys)]

+ε−
3
4 κ−2t−1Ex[(τs − s)�h,ε(t − s, y, Ys)]

� �h,ε(t, y, x)

ε
13
4 κ+ κ̂

2+2t

∫ t

0

μ〈h⊥〉
(

B√u(x, ρh)
)

μ〈h〉
(

B√u(x, ρh)
) du

� �h,δ(t, x, y)

δ
15
4 κ+ κ̂

2+2t

∫ t

0

μ〈h⊥〉
(

B√u(x, ρh)
)

μ〈h〉
(

B√u(x, ρh)
) du. (5.40)

On the other hand, Eqs. 5.23, 5.24, 5.25, 5.27, 3.16 and 1/δ ≤ θ(ε, δ) ≤ 4/δ together
imply that

0 ≤
∫

K
pμ(εt, y, z)pμ〈h〉((1− ε)t, z, x)dμ〈h⊥〉(z)

� (2/δ)3κ/2
∫

K
�H,ε(εt, y, z)�h,δ((1− ε)t, x, z)dμ〈h⊥〉

� δ−3κ/2(1− ε)−κ/2
∫

K
�H,θ(ε,δ)(εt, y, z)�h,δ(t, x, y)dμ〈h⊥〉(z)

� θ(ε, δ)κ̂/2�h,δ(t, x, y)

δ3κ/2 · μ〈h⊥〉
(

B√εt(y, ρH)
)

μ
(

B√εt(y, ρH)
)

� �h,δ(t, x, y)

δ
3
2 κ+ κ̂

2

· μ〈h⊥〉
(

B√δt(y, ρH)
)

μ
(

B√δt(y, ρH)
) . (5.41)

Now Theorem 5.9 is immediate from Eqs. 5.39, 5.40, 5.41 and μ = μ〈h〉 + μ〈h⊥〉. ��

5.3 Moments of Displacement of the Diffusion

The purpose of this subsection is to present an application of Theorem 5.8 to
asymptotics of moments of displacement of the corresponding diffusion. The main
result is the following.

Theorem 5.16 Let x ∈ V∗ and α ∈ (−1,∞). Then

lim
t↓0

1
tα/2

∫

K
ρH(x, y)α pμ(t, x, y)dμ(y) =

∫

R

|y|α e−y2/2

√
2π

dy. (5.42)

Note that, if X = (

�,M, {Xt}t∈[0,∞], {Px}x∈K∂

)

is a μ-symmetric diffusion on K
whose Dirichlet form on L2(K, μ) is (E,F), as in the previous subsection, then

∫

K
ρH(x, y)α pμ(t, x, y)dμ(y) = Ex[ρH(x, Xt)

α], (t, x) ∈ (0,∞)× K. (5.43)
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Equation 5.42 says that, in the short time limit, the moment Ex[ρH(x, Xt)
α] of

displacement of X at x ∈ V∗ is asymptotically equal to that of one-dimensional
Brownian motion.

Proof of Theorem 5.16 Since Eq. 5.42 for α = 0 is trivial, we assume α = 0. The
following proof is based on the same idea as the proof of Theorem 5.3. It suffices
to prove that

lim
n→∞

(

(

3
5

)2n

t

)−α/2

Ix,α

(

(

3
5

)2n

t

)

=
∫

R

|y|α e−y2/2

√
2π

dy (5.44)

for any t ∈ (0, 1), where Ix,α(t) := ∫

K ρH(x, y)α pμ

(

t, x, y
)

dμ(y), t ∈ (0,∞); indeed,
since r/cx.1 ≤ μ(Br(x, ρH)) ≤ cx.2r for any r ∈ (0, 1] for some cx.1, cx.2 ∈ (0,∞) by
Eq. 5.3, using Eq. 3.16 we have for any t ∈ (0, 1), similarly to the proof of
Lemma 5.13,

∫

K
ρH(x, y)α�H,1(t, x, y)dμ(y)

=
∑

n∈Z

∫

B2n√t(x,ρH)\B2n−1√t(x,ρH)

ρH(x, y)α�H,1(t, x, y)dμ(y)

≤
∑

n∈Z

2|α|tα/22αne−4n−2 μ
(

B2n
√

t(x, ρH)
)

μ
(

B√t(x, ρH)
) ≤ Cx,αtα/2, (5.45)

where Cx,α := 2|α|
∑

n∈N∪{0}
(

cx.1cx.22−(1+α)n + cV2(κ+α)ne−4n−2)

. Then by Eq. 5.23,

∣

∣

∣

∣

dIx,α

dt
(t)

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

K
ρH(x, y)α∂t pμ(t, x, y)dμ(y)

∣

∣

∣

∣

≤ chk(1)Cx,αtα/2−1 (5.46)

for t ∈ (0, 1), from which and Eq. 5.44 we can easily verify Eq. 5.42.
For the proof of Eq. 5.44, suppose x ∈ V∗ \ V0; the case of x ∈ V0 is proved

in the same way. Let w ∈ W∗, i, j ∈ S, ai
x, bi

x, a j
x, b j

x ∈ R and Nx ∈ N be as in
Definition 5.1, and let ci

x, c j
x ∈ R be such that h⊥x ◦ Fwi = ci

xh j
2 and h⊥x ◦ Fw j = c j

xhi
2

(see the proof of Lemma 5.5). Let t ∈ (0, 1) and set gl
n(y) := (5/3)nρH

(

x, Fwkln(y)
)

for (k, l) ∈ {(i, j), ( j, i)}, n ∈ N and y ∈ K. Recalling μ〈u〉|Kv
= (5/3)|v|μ〈u◦Fv〉 ◦ F−1

v ,
u ∈ F , v ∈ W∗, similarly to Eq. 5.11 we have

(

5
3

)nα ∫

Kwijn∪Kw jin

ρH(x, y)α pμ

(

(

3
5

)2n

t, x, y

)

dμ(y)

=
(

5
3

)|w|+1
∑

(k,l)∈{(i, j),( j,i)}

∫

K
gl

n(y)α
(

3
5

)n

pμ

(

(

3
5

)2n

t, x, Fwkln(y)

)

· d
(

|ai
x|2μ〈hl

1〉 + 2 · 3−nak
xb k

xμ〈hl
1,h

l
2〉 + 9−n (|b k

x|2 + |ck
x|2

)

μ〈hl
2〉
)

(y).

(5.47)
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Let (k, l) ∈ {(i, j), ( j, i)} and y ∈ K. Equation 5.13 immediately implies that

lim
n→∞

(

3
5

)n

pμ

(

(

3
5

)2n

t, x, Fwkln(y)

)

= exp
(−|ai

xhl
1(y)|2
2t

)

ξx
√

2π t
. (5.48)

Moreover for n ∈ N with n ≥ Nx, [23, Theorem 3.2.5 and Example 3.2.6] easily yield
gl

n(y) ≥ (5/3)n|hx ◦ Fwkln(y)| ≥ |ai
x|hl

1(y)/2 and therefore by Eq. 5.23,

gl
n(y)α

(

3
5

)n

pμ

(

(

3
5

)2n

t, x, Fwkln(y)

)

� cx.1gl
n(y)α

exp
(− gl

n(y)2

4t

)

√
t

≤
{

cx.1α
α/2t(α−1)/2 if α ∈ (0,∞),

cx.12−α|ai
x|αt−1/2hl

1(y)α if α ∈ (−1, 0).

(5.49)

Here
∫

K hl
1(y)αdμ(y) =∑

n∈N

∫

(hl
1)
−1((2−n,21−n]) hl

1(y)αdμ(y) <∞ if α ∈ (−1, 0), since

μ〈hl
1〉 ◦ (hl

1)
−1 = 1[0,1]dy by Eq. 4.11 and μ〈hl

2〉
(

(hl
1)
−1([0, 2−n])) ≤ 225 · 2−κ̂n for n ∈ N

by Eq. 4.13 and Lemma 5.5. Thus by virtue of dominated convergence based on
Eq. 5.49, from Eqs. 5.47, 5.48, 5.8 and μ〈hl

1〉 ◦ (hl
1)
−1 = 1[0,1]dy we conclude that

lim
n→∞

(

5
3

)nα ∫

Kwijn∪Kw jin

ρH(x, y)α pμ

(

(

3
5

)2n

t, x, y

)

dμ(y)

= tα/2
∫ |ai

x|/
√

t

−|ai
x|/
√

t
|y|α e−y2/2

√
2π

dy; (5.50)

note that (
∫

K f dμ〈u,v〉)2 ≤ ∫

K f dμ〈u〉
∫

K f dμ〈v〉 for u, v ∈ F and a bounded Borel
measurable function f : K → [0,∞).

On the other hand, let n ∈ N, n ≥ Nx and define ρ
x,n
H (y) := (5/3)nρH(x, y) for

y ∈ K. Then Proposition 5.4-(4) yields ρ
x,n
H (y) ≥ (5/3)nρhx(x, y) ≥ 8|ai

x|/9 for y ∈
K \ (Kwijn ∪ Kw jin), and therefore by Eq. 5.23 with δ = 1/2 and Eq. 5.27,

(

5
3

)nα ∫

K\(Kwijn∪Kw jin )

ρH(x, y)α pμ

(

(

3
5

)2n

t, x, y

)

dμ(y)

�
∫

K\(Kwijn∪Kw jin )

ρ
x,n
H (y)α exp

(

−ρ
x,n
H (y)2

12t

)

�H,1

(

(

3
5

)2n

t, x, y

)

dμ(y)

�
(

(50|α|)α/2 ∨ (|ai
x|/2)α

)

exp
(

−|a
i
x|2

16t

)

. (5.51)

Now Eq. 5.44 easily follows by substituting t by (3/5)2Nt (N ∈ N) in Eqs. 5.50 and 5.51
and using them to let n →∞ first and then N →∞. Thus the proof of Theorem 5.16
is complete. ��
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6 On-diagonal Asymptotics at Almost Every Point

So far we have established Gaussian off-diagonal behaviors of the heat kernels
as well as several one-dimensional asymptotics at each x ∈ V∗. In this and next
sections, we will verify that pμ(t, x, x) and pμ〈h〉(t, x, x) for h ∈ SH0 exhibit non-
integer-dimensional asymptotic behaviors as t ↓ 0 for μ-a.e. x ∈ K.

The following is the main theorem of this section. Note that, for each h ∈ SH0 , the
term “μ-a.e.” is a synonym for “μ〈h〉-a.e.” since μ and μ〈h〉 are mutually absolutely
continuous by [17, Theorem 5.6]. Note also that 2 log25/3 5 = 1.5181 . . . < 2.

Theorem 6.1 There exists dloc
S ∈ (1, 2 log25/3 5] such that for each h ∈ SH0 ,

lim
t↓0

2 log pμ(t, x, x)

− log t
= lim

t↓0

2 log pμ〈h〉(t, x, x)

− log t
= dloc

S μ-a.e. x ∈ K. (6.1)

Remark 6.2

(1) We have a concrete expression for dloc
S ; see Eqs. 6.10 and 6.12.

(2) In Theorem 7.2 below we will show that dloc
S ≤ dimH(K, ρH), where dimH

denotes Hausdorff dimension. Unfortunately, the author has no idea whether
dloc

S = dimH(K, ρH) or not.

The limit limt↓0 log pν(t, x, x)/(− log t), if exists, is often called the local spectral
dimension at x for the Dirichlet space (K, ν, E,F). Equation 6.1 says that the local
spectral dimensions at x for (K, μ, E,F) and (K, μ〈h〉, E,F) exist and are equal to a
non-integer constant dloc

S for μ-a.e. x ∈ K.
One of the keys to Theorem 6.1 is the ergodicity of the Kusuoka measure μ (to

be precise, of the measure λ = μ ◦ π) which has been obtained in [29, Example 1].
Unfortunately, however, the proof of this fact in [29] is indirect and complicated.
We provide an alternative simple proof of it at the end of this section based on the
self-similarity Eq. 2.2 of (E,F).

Now we proceed to the proof of Theorem 6.1. We start with an easy lemma.

Lemma 6.3 For any ω ∈ � and any x ∈ R
2 \ {0},

log

√
3

5
≤ lim inf

m→∞
log ‖T[ω]m‖

m
≤ lim sup

m→∞
log ‖T[ω]m‖

m
≤ log

3
5
, (6.2)

log
1
5
≤ lim inf

m→∞
log

∣

∣T∗[ω]m x
∣

∣

m
≤ lim sup

m→∞
log

∣

∣T∗[ω]m x
∣

∣

m
≤ log

3
5
. (6.3)

Proof Since ‖A‖2 ≥ 2| det A| for any A ∈ L(R2), Proposition 2.12-(i) and Eq. 3.4
imply that

√
2
(
√

3/5
)|w| = √

2| det Tw| ≤ ‖Tw‖ ≤ (3/5)|w|‖T∅‖ =
√

2(3/5)|w| (6.4)

for any w ∈ W∗, which immediately yields Eq. 6.2. Similarly Eq. 6.3 follows by
applying Eq. 3.5 to h := |x|−1(x1h1 + x2h2), where x = (x1, x2). ��
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The following two propositions completely characterize when the local spectral
dimensions at π(ω) exist for a given ω ∈ �, in terms of the asymptotic behavior as
m →∞ of the logarithms of the norms ‖T[ω]m‖ and

∣

∣T∗[ω]m x
∣

∣, x ∈ R
2 \ {0}.

Proposition 6.4 Let ω ∈ �. Then it holds that

lim inf
t↓0

2 log pμ(t, π(ω), π(ω))

− log t
= 2+ log 5

3

lim supm→∞
1
m log ‖T[ω]m‖

≥ 1,

lim sup
t↓0

2 log pμ(t, π(ω), π(ω))

− log t
= 2+ log 5

3

lim infm→∞ 1
m log ‖T[ω]m‖

≤ 2 log25/3 5.

(6.5)

In particular, the limit limt↓0 2 log pμ(t, π(ω), π(ω))/(− log t) exists if and only if so
does limm→∞ 1

m log ‖T[ω]m‖, and if either of these two limits exists then

lim
t↓0

2 log pμ(t, π(ω), π(ω))

− log t
= 2+ log 5

3

limm→∞ 1
m log ‖T[ω]m‖

∈ [1, 2 log25/3 5]. (6.6)

Proof Let (s, x) ∈ (0, 1] × K and let w ∈ �H
s satisfy x ∈ Kw. Then μ(Us(x,SH))  

μ(Kw) by Eq. 3.9, and therefore Eqs. 3.11 and 3.16 easily imply that

μ(Bs(x, ρH))  μ(Us(x,SH))  μ(Kw). (6.7)

Let ω ∈ �, and for each t ∈ (0, 1) let m(t) be the unique m ∈ N satisfying
[ω]m ∈ �H√

t
. Then for t ∈ (0, 1), pμ(t, π(ω), π(ω))  μ

(

K[ω]m(t)

)−1 by Eqs. 4.2 and 6.7,

and Eq. 3.4 yields
∥

∥T[ω]m(t)

∥

∥ ≤ √t ≤ 5
∥

∥T[ω]m(t)

∥

∥. Moreover, m : (0, 1)→ N is a non-
decreasing surjection since N � m �→ lH([ω]m) is strictly decreasing by Eq. 3.4. It
follows from these facts that

lim sup
t↓0

2 log pμ(t, π(ω), π(ω))

− log t
= lim sup

m→∞
− log μ(K[ω]m)

− log ‖T[ω]m‖
= lim sup

m→∞

(

2+ m log 5
3

log ‖T[ω]m‖
)

and similarly for lim inf, which together with Eq. 6.2 immediately shows the assertion.
��

Proposition 6.5 Let h ∈ SH0 and take ζh = (ζ 1
h , ζ 2

h ) ∈ R
2 so that h− ζ 1

h h1 − ζ 2
h h2 ∈

R1. Let ω ∈ �. Then it holds that

lim inf
t↓0

2 log pμ〈h〉(t, π(ω), π(ω))

− log t
= 2+ log 5

3

lim supm→∞
1
m log

∣

∣T∗[ω]mζh
∣

∣

≥ 1,

lim sup
t↓0

2 log pμ〈h〉(t, π(ω), π(ω))

− log t
= 2+ log 5

3

lim infm→∞ 1
m log

∣

∣T∗[ω]mζh
∣

∣

≤ κ.

(6.8)

In particular, the limit limt↓0 2 log pμ〈h〉(t, π(ω), π(ω))/(− log t) exists if and only if so
does limm→∞ 1

m log
∣

∣T∗[ω]mζh
∣

∣, and if either of these two limits exists then

lim
t↓0

2 log pμ〈h〉(t, π(ω), π(ω))

− log t
= 2+ log 5

3

limm→∞ 1
m log

∣

∣T∗[ω]mζh
∣

∣

∈ [1, κ]. (6.9)
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Proof The proof goes in exactly the same way as that of Proposition 6.4 by using
Eqs. 3.5, 3.12 and 6.3 instead of Eqs. 3.4, 3.11 and 6.2 respectively. ��

Proposition 6.6 Let ν be a Borel probability measure on � which satisf ies ν ◦ σ−1 = ν

and is ergodic with respect to the shift map σ : � → �. Def ine

η(ν, {Ti}i∈S) := inf
m∈N

1
m

∑

w∈Wm

ν(�w) log ‖Tw‖. (6.10)

Then η(ν, {Ti}i∈S) = lim
m→∞

1
m

∑

w∈Wm
ν(�w) log ‖Tw‖ ∈

[

log
√

3
5 , log 3

5

]

and

lim
t↓0

2 log pμ(t, π(ω), π(ω))

− log t
= 2+ log 5

3

η(ν, {Ti}i∈S)
ν-a.e. ω ∈ �. (6.11)

Moreover, η(ν, {Ti}i∈S) = log 3
5 if and only if ν({1∞, 2∞, 3∞}) = 1.

Proof Apart from the final assertion, this is immediate from Eq. 6.4, Proposition 6.4
and Kingman’s subadditive ergodic theorem [9, Theorem 10.7.1], and the same
results are valid with η(ν, {Ti}i∈S) unchanged if the norm ‖ · ‖ is replaced by the oper-
ator norm ‖ · ‖op given by ‖A‖op := supx∈R2, |x|≤1 |Ax|, A ∈ L(R2); note that ‖AB‖ ≤
‖A‖‖B‖ and ‖AB‖op ≤ ‖A‖op‖B‖op for A, B ∈ L(R2). If ν({1∞, 2∞, 3∞}) = 1
then clearly η(ν, {Ti}i∈S) = log 3

5 . Conversely suppose η(ν, {Ti}i∈S) = log 3
5 . Let m ∈

N. Since ‖Ti‖op = 3/5, i ∈ S, we have 1
m log ‖Tw‖op ≤ log 3

5 for w ∈ Wm and
hence 1

m

∑

w∈Wm
ν(�w) log ‖Tw‖op ≤ log 3

5 , where actually the equality holds by
η(ν, {Ti}i∈S) = log 3

5 and Eq. 6.10 for the norm ‖ · ‖op. Therefore for each w ∈ Wm,
ν(�w)

( 1
m log ‖Tw‖op − log 3

5

) = 0, i.e. either ν(�w) = 0 or ‖Tw‖op = (3/5)m, but the
latter holds if and only if w = im for some i ∈ S since ‖T jk‖op < (3/5)2 for j, k ∈ S
with j = k. Thus ν

(⋃

i∈S �im
) = 1, and letting m →∞ yields ν({1∞, 2∞, 3∞}) = 1.

��

Proof of Theorem 6.1 Since λ ◦ σ−1 = λ by Proposition 2.14, λ is ergodic with respect
to σ by [29, Example 1] (see also Theorem 6.8 below), λ({1∞, 2∞, 3∞}) = 0 and μ ◦
π = λ, Proposition 6.6 applies to λ/2 to imply that

lim
t↓0

2 log pμ(t, x, x)

− log t
= 2+ log 5

3

η(λ/2, {Ti}i∈S)
=: dloc

S μ-a.e. x ∈ K (6.12)

and that η(λ/2, {Ti}i∈S) ∈
[

log
√

3
5 , log 3

5

)

. Thus dloc
S ∈ (1, 2 log25/3 5].

Let h ∈ SH0 and set KZ ,h := {x ∈ KZ | Zxζh = 0}, where ζh ∈ R
2 is as in Proposi-

tion 6.5. Then μ(K \ KZ ,h) = 0 since dμ〈h〉 = |Zζh|2dμ by Eq. 2.10 and μ and μ〈h〉
are mutually absolutely continuous. Now for x ∈ KZ ,h and ω ∈ π−1(x), we easily
see limm→∞

∣

∣T∗[ω]mζh
∣

∣/‖T[ω]m‖ = |Zxζh| and hence limt↓0 2 log pμ〈h〉(t, x, x)/(− log t) =
dloc

S if and only if limt↓0 2 log pμ(t, x, x)/(− log t) = dloc
S by Propositions 6.4 and 6.5,

proving Eq. 6.1 by virtue of Eq. 6.12 and μ(K \ KZ ,h) = 0. ��
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Remark 6.7

(1) We can estimate dloc
S numerically by using Eq. 6.10; numerical computations of

the right-hand side of Eq. 6.10 with ν = λ/2 tell us that dloc
S ≥ 1.27695 . . . for

m = 14, dloc
S ≥ 1.27790 . . . for m = 15 and dloc

S ≥ 1.27874 . . . for m = 16.
(2) Barlow and Kumagai [4, Corollary 3.6] have proved the ν̂-a.e. existence of

the (constant) local spectral dimension dloc
S (μ̂, ν̂) and have explicitly calculated

it for the heat kernels pμ̂(t, x, y) on post-critically finite self-similar sets and
Sierpinski carpets, when both the reference measure μ̂ of the Dirichlet space
and another measure ν̂ are self-similar measures. In their case, the self-similarity
of μ̂ has made the explicit calculation of dloc

S (μ̂, ν̂) possible and we easily see
how it varies depending on the weight of ν̂, whereas it seems very difficult to
estimate η(ν, {Ti}i∈S) and see its dependence on ν in the situation of Proposition
6.6 above, even when ν is a Bernoulli measure on �.

At the end of this section, we give a new simple proof of the ergodicity of the
measure λ = μ ◦ π .

Theorem 6.8 ([29]) The measure λ is ergodic with respect to the shift map σ : � → �.

Proof Let A ∈ B(�) satisfy σ−1(A) = A. Set EA(u, v) := λ〈u,v〉(A)/2 for u, v ∈ F , so
that EA : F ×F → R is a non-negative definite symmetric bilinear form satisfying
EA(u, u) ≤ E(u, u), u ∈ F . We claim that there exists cA ∈ [0, 1] such that

EA(u, v) = cAE(u, v), u, v ∈ F . (6.13)

Note that λ〈u,v〉 ◦ σi = (5/3)λ〈u◦Fi,v◦Fi〉 for u, v ∈ F and i ∈ S. Since A = σ−1(A) =
⋃

i∈S σi(A) we see that for any u, v ∈ F ,

EA(u, v) = 1
2

∑

i∈S

λ〈u,v〉(σi(A)) = 5
3

∑

i∈S

1
2
λ〈u◦Fi,v◦Fi〉(A) = 5

3

∑

i∈S

EA(u ◦ Fi, v ◦ Fi).

(6.14)

By EA(1, 1) = 0 we can regard EA as a non-negative definite symmetric bilin-
ear form on H0/R1, and let QA be its matrix representation through the basis
{h1, h2} of H0/R1. Then Eq. 6.14 together with Proposition 2.12-(ii) yields QA =
(5/3)

∑

i∈S Ti QAT∗i , based on which a direct calculation using Proposition 2.12-(i)
easily shows that QA = cA

(

1 0
0 1

)

for some cA ∈ [0, 1]. Thus Eq. 6.13 holds for any
u, v ∈ H0, hence for any u, v ∈⋃

m∈N
Hm by Eqs. 6.14 and 2.2, and then also for any

u, v ∈ F since
⋃

m∈N
Hm/R1 is dense in (F/R1, E) and EA(u, u) ≤ E(u, u), u ∈ F .

Let u, f ∈ F . By [13, Lemma 3.2.5] and the strong locality of (E,F),

d
(

μ〈uf,u〉 − 1
2
μ〈u2, f 〉

)

= udμ〈 f,u〉 + f dμ〈u〉 − udμ〈u, f 〉 = f dμ〈u〉. (6.15)

By Proposition 2.8, Eqs. 6.13 and 2.4, the value of Eq. 6.15 on π(A) results in
∫

π(A)

f dμ〈u〉 = λ〈uf,u〉(A)− 1
2
λ〈u2, f 〉(A) = 2EA(uf, u)− EA(u2, f ) = cA

∫

K
f dμ〈u〉,
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which implies that 1π(A) · μ〈u〉 = cAμ〈u〉 since F is dense in (C(K), ‖ · ‖∞). In partic-
ular, we have 0 = cAμ〈u〉(K \ π(A)) = cAλ〈u〉(� \ A). Now suppose λ(A) > 0. Then
cA > 0 by Eq. 6.13 and hence λ〈u〉(� \ A) = 0 for any u ∈ F . Thus λ(� \ A) = 0. ��

7 Eigenvalues of the Laplacian

In this last section, we show that the Hausdorff and box-counting dimensions of
(K, ρH) naturally arise as the asymptotic order of the eigenvalues of the Laplacian
associated with (K, μ, E,F) and that those dimensions are not integers, as in
Theorem 1.3-(3).

Let us first recall the following standard notations and definitions. See e.g. [10,
Section 2.1] and references therein for details of Hausdorff measure, Hausdorff
dimension and box-counting dimension; note that the definitions there apply to any
metric space although they are stated only for subsets of the Euclidean spaces.

Notation Let (E, ρ) be a metric space and let A ⊂ E be non-empty.

(1) For α ∈ (0,∞), the α-dimensional Hausdorff measure and the Hausdorff di-
mension of A with respect to ρ are denoted by Hα(A, ρ) and dimH(A, ρ),
respectively.

(2) The lower and upper box-counting dimensions of A with respect to ρ are
denoted by dimB(A, ρ) and dimB(A, ρ), respectively. If they are equal, their
common value, called the box-counting dimension of A with respect to ρ, is
denoted by dimB(A, ρ).

Note that 0 ≤ dimH(A, ρ) ≤ dimB(A, ρ) ≤ dimB(A, ρ) ≤ ∞ by [10, (2.14)].

Definition 7.1 Let ν be a finite Borel measure on K with full support. Noting that the
non-positive self-adjoint operator �ν of (K, ν, E,F) (the generator of {Tν

t }t∈(0,∞))
has discrete spectrum and that tr Tν

t <∞ for t ∈ (0,∞) by [8, Theorem 2.1.4], let
{λν

n}n∈N be the non-decreasing enumeration of all the eigenvalues of −�ν , where
each eigenvalue is repeated according to its multiplicity. The eigenvalue counting
function Nν and the partition function Zν of the Dirichlet space (K, ν, E,F) are
defined respectively by

Nν(s) := #{n ∈ N | λν
n ≤ s}, s ∈ R, (7.1)

Zν(t) :=
∑

n∈N

e−tλν
n =

∫

[0,∞)

e−tsdNν(s) =
∫

K
pν(t, x, x)dν(x), t ∈ (0,∞). (7.2)

In the situation of Definition 7.1, Nν(0) = 1 by λν
1 = 0 < λν

2 , and Nν(s) <∞ for
any s ∈ [0,∞) since limn→∞ λν

n = ∞. Moreover, Zν is (0,∞)-valued and continuous.
We now state the main theorem of this section. Recall the constant dloc

S ∈
(1, 2 log25/3 5] given in Theorem 6.1.

Theorem 7.2 Set dS := dimH(K, ρH). Then HdS(K, ρH) ∈ (0,∞), and for any h ∈ SH0,

dS = dimB(K, ρH) = dimB(K, ρh) ∈ [dloc
S , 2 log25/3 5]. (7.3)
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Moreover, there exist c7.1, c7.2 ∈ (0,∞) such that for any h ∈ SH0 , any s ∈ [1,∞) and
any t ∈ (0, 1],

c7.1sdS/2 ≤ Nμ(s) ≤ c7.2sdS/2, c7.1sdS/2 ≤ Nμ〈h〉(s) ≤ c7.2sdS/2, (7.4)

c7.1t−dS/2 ≤ Zμ(t) ≤ c7.2t−dS/2, c7.1t−dS/2 ≤ Zμ〈h〉(t) ≤ c7.2t−dS/2. (7.5)

Remark 7.3 The author has no idea whether dS = dimH(K, ρh) for h ∈ SH0 . Also the
estimate dS ≤ 2 log25/3 5 is by no means best possible.

The limits lims→∞ 2 log Nν(s)/ log s and limt↓0 2 log Zν(t)/(− log t), if exist, are
usually called the (global) spectral dimension of the Dirichlet space (K, ν, E,F).
Theorem 7.2 in particular implies that the spectral dimensions of (K, μ, E,F) and
(K, μ〈h〉, E,F), where h ∈ SH0 , exist and are equal to dimH(K, ρH), dimB(K, ρH) and
dimB(K, ρh).

The rest of this section is devoted to the proof of Theorem 7.2, for which the
following proposition is fundamental.

Proposition 7.4 There exist c7.3, c7.4 ∈ (0,∞) such that for any h ∈ SH0 , any s ∈
[1,∞) and any t ∈ (0, 1],

c7.3#�H
s−1/2 ≤ Nμ(s) ≤ c7.4#�H

s−1/2 , c7.3#�h
s−1/2 ≤ Nμ〈h〉(s) ≤ c7.4#�h

s−1/2 , (7.6)

c7.3#�H√
t ≤ Zμ(t) ≤ c7.4#�H√

t, c7.3#�h√
t ≤ Zμ〈h〉(t) ≤ c7.4#�h√

t. (7.7)

Proof Equation 7.6 follows from [19, Theorem 4.3 and Proposition 4.4], Eq. 3.4, 3.5
and Nμ(0) = Nμ〈h〉(0) = 1. Then noting that #�H

3s/5 ≤ 3#�H
s and #�h

3s/5 ≤ 3#�h
s for

s ∈ (0, 1) by Eqs. 3.4, 3.5 and [19, Proposition 2.7], we can easily verify Eq. 7.7 from
Eq. 7.6; note also that Zν(t) =

∫∞
0 e−sNν(s/t)ds for ν ∈ {μ,μ〈h〉} and t ∈ (0,∞). ��

Lemma 7.5 Let h ∈ SH0 . Then #�h
st ≤ #�h

t #�H
s ≤ 39#�h

st for any s, t ∈ (0, 1]. In par-
ticular, #�h

s ≤ #�H
s ≤ 39#�h

s for any s ∈ (0, 1].

Proof Since �H
1 = �h

1 = {∅}, the latter assertion follows by setting t = 1 in the
former, which in turn is trivial for s = 1. Let s, t ∈ (0, 1], s < 1 and take ζh =
(ζ 1

h , ζ 2
h ) ∈ R

2 such that h− ζ 1
h h1 − ζ 2

h h2 ∈ R1. Then for each (v,w) ∈ �h
t ×�H

s ,
lh(vw) = |T∗wT∗v ζh| ≤ ‖Tw‖|T∗v ζh| = lH(w)lh(v) ≤ st and hence vw ≤ τ(v,w) for a
unique τ(v,w) ∈ �h

st. Thus we have a mapping τ : �h
t ×�H

s → �h
st, which is surjec-

tive; indeed, if u ∈ �h
st, then u1∞ ∈ �v for some v ∈ �h

t and σ |v|(u1∞) ∈ �w for some
w ∈ �H

s , so that u1∞ ∈ �u ∩�τ(v,w) and u = τ(v, w). Therefore #�h
st ≤ #�h

t #�H
s .

Let ι : S → S denote the bijection i �→ i+ 1 mod 3, so that ι naturally defines
a bijection W∗ → W∗ given by w1 . . . wm �→ ι(w1) . . . ι(wm), which we also write as

ι. Let R :=
( −1/2 −√3/2√

3/2 −1/2

)

. Then for w ∈ W∗, clearly Tι(w) = RTw R−1 and ‖Tι(w)‖ =
‖RTw R−1‖ = ‖Tw‖, and therefore w ∈ �H

s if and only if ι(w) ∈ �H
s . Thus, with

w1 ∈ S denoting the first component of w ∈ W∗ \ {∅},

�H
s =

⋃

w∈�H
s , w1=1

{w, ι(w), ι2(w)} (disjoint union). (7.8)
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Let (v, w) ∈ �h
t ×�H

s . Since
∣

∣

∑2
k=0 Rk AR−kx

∣

∣ = (3/2)
√‖A‖2 + 2 det A|x| for

A ∈ L(R2) and x ∈ R
2 by a direct calculation, we obtain

2
∑

k=0

lh
(

vιk(w)
) =

2
∑

k=0

∣

∣T∗
ιk(w)

T∗v ζh
∣

∣ ≥
∣

∣

∣

∣

2
∑

k=0

RkT∗w R−kT∗v ζh

∣

∣

∣

∣

>
3
2
‖Tw‖|T∗v ζh| > 3st

50

by det Tw = (3/25)|w| > 0, Eqs. 3.4 and 3.5. Thus lh(vιk(w)) > st/50 for at least one
k ∈ {0, 1, 2}, and it follows from Eq. 7.8 that 3#�t,s ≥ #�h

t #�H
s , where we set �t,s :=

{(v,w) ∈ �h
t ×�H

s | lh(vw) > st/50}. Each (v, w) ∈ �t,s admits u(v,w) ∈ �h
st/50 such

that u(v, w) ≤ vw, and then the mapping �t,s � (v,w) �→ u(v,w) ∈ �h
st/50 is clearly

injective. Therefore, noting also that #�h
3r/5 ≤ 3#�h

r for r ∈ (0, 1] by Eq. 3.5 and [19,
Proposition 2.7], we get #�h

t #�H
s ≤ 3#�t,s ≤ 3#�h

st/50 ≤ 39#�h
st. ��

Proposition 7.6 There exists dB ∈ [1, 2 log25/3 5] such that for any h ∈ SH0 ,

3−10s−dB ≤ #�h
s ≤ #�H

s ≤ 319s−dB , s ∈ (0, 1]. (7.9)

Proof Let s ∈ (0, 1). Noting Eq. 3.4 and that ‖A‖2 ≥ 2| det A| for A ∈ L(R2), we
have s ∧ (3/5)|w|−1 ≥ ‖Tw‖ ≥ (s/5) ∨ (3/25)|w|/2 and (5/3)|w| ≥ s−2 log25/3

5
3 for w ∈ �H

s .
Therefore

2s#�H
s ≥ 2 =

∑

w∈�H
s

(

5
3

)|w|
‖Tw‖2 ≥ s−2 log25/3

5
3

s2

25
#�H

s = s2 log25/3 5

25
#�H

s . (7.10)

Let h ∈ SH0 . Then since 3−9#�h
s #�h

t ≤ #�h
st ≤ 39#�h

s #�h
t for any s, t ∈ (0, 1] by

Lemma 7.5, a standard argument for subadditive and superadditive sequences
together with Eq. 7.10 immediately shows the assertion; recall that #�h

3s/5 ≤ 3#�h
s

for s ∈ (0, 1] by Eq. 3.5 and [19, Proposition 2.7] and that #�h
s ≤ #�H

s ≤ 39#�h
s for

s ∈ (0, 1] by Lemma 7.5. ��

Lemma 7.7 Let � be a f inite subset of W∗ satisfying K =⋃

w∈� Kw. Then there exists
a subset �0 of � which is a partition of �.

Proof K =⋃

w∈� Kw and K = V0 imply � =⋃

w∈� �w, and then an induction on #�

easily shows the lemma. ��

Lemma 7.8 Let α, δ, M ∈ (0,∞), and let Hα
δ (·, ρH) be the α-dimensional pre-

Hausdorf f measure on (K, ρH) as def ined in [10, (2.7)] and [23, Definition 1.5.1].
If δ ∈ (0,

√
2/50) and Hα

δ (K, ρH) < M, then there exists a partition � of � such that
∑

w∈� ‖Tw‖α < 4(25
√

2)α M and maxw∈� ‖Tw‖ ≤ 25
√

2δ.

Proof By Hα
δ (K, ρH) < M we can choose a sequence {An}n∈N of non-empty subsets

of K with Ln := diam(An, ρH) ≤ δ so that K =⋃

n∈N
An and

∑

n∈N
Lα

n < M. Take
ε ∈ (0, (δ/3)α] such that 3αε +∑

n∈N
Lα

n < M. For n ∈ N, we set Dn := Ln if Ln > 0
and Dn := 3(2−nε)1/α if Ln = 0, so that Dn ≤ δ and

∑

n∈N
Dα

n < M. We also set Bn :=
⋃

x∈An
Bεn(x, ρH), where εn := (2−nε)1/α if Ln = 0 and otherwise εn ∈ (0, 1] is chosen
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so that Ln + 3εn <
√

2/50 and �H
25
√

2Ln
= �H

25
√

2(Ln+3εn)
; recall (Sr) in Definition 3.2-

(1). Then diam(Bn, ρH) ≤ Ln + 2εn and

An ⊂ Bn ⊂ BLn+3εn (xn, ρH) ⊂ U25
√

2(Ln+3εn)

(

xn,S
H) = U25

√
2Dn

(

xn,S
H) (7.11)

by Eq. 3.11, where we have chosen xn ∈ Bn \ V∗. By Lemma 3.5, U25
√

2Dn
(xn,S

H) =
⋃mn

i=1 Kwn,i for some mn ∈ {1, 2, 3, 4} and {wn,i}mn
i=1 ⊂ �H

25
√

2Dn
, so that Bn ⊂

⋃mn
i=1 Kwn,i by Eq. 7.11, ‖Twn,i‖ ≤ 25

√
2Dn ≤ 25

√
2δ and

∑

n∈N

∑mn
i=1 ‖Twn,i‖α ≤

∑

n∈N
4(25

√
2Dn)

α < 4(25
√

2)α M. Since K is compact, K =⋃N
k=1 Bnk for some

N ∈ N and {nk}N
k=1 ⊂ N. Now we apply Lemma 7.7 to {wnk,i | k ∈ {1, . . . , N}, i ∈

{1, . . . , mnk}} to have a partition � of � with the desired properties. ��

Proof of Theorem 7.2 Let h ∈ SH0 . Lemma 3.5, Eqs. 3.11, 3.12, Proposition 7.6 and
[19, Proposition 2.24] together imply that

dS = dimH(K, ρH) ≤ dimB(K, ρH) = dimB(K, ρh) = dB ∈ [1, 2 log25/3 5]. (7.12)

We follow [10, Proof of Theorem 3.1] in this paragraph. Let α ∈ (0,∞). We
suppose Hα

1/36(K, ρH) ≤ 1
4 6−2α and deduce dB < α, from which we conclude that

dS = dB by letting α ↓ dS, that HdS
1/36(K, ρH) > 1

4 6−2dS and that Eqs. 7.4 and 7.5 hold
by virtue of Propositions 7.4 and 7.6. By Lemma 7.8, there exists a partition �

of � such that
∑

w∈� ‖Tw‖α < 1. Then ∅ ∈ �. Choose β ∈ (0, α) so that r�(β) :=
∑

w∈� ‖Tw‖β < 1. Let s ∈ (0, 1]. We define W∗(�) := {∅} ∪⋃

m∈N
�m and

��
s :=

{

w | w = w1 . . . wm ∈ W∗(�), lH
(

w1 . . . wm−1) > s ≥ lH(w)
}

(7.13)

with the convention lH(w1 . . . wm−1) := 2 for w = ∅, where we naturally regard w =
w1 . . . wm ∈ W∗(�) as an element of W∗ in the way of Definition 3.1-(1); note that
this natural identification W∗(�)→ W∗ is injective since � is a partition of �. Then
as a subset of W∗, ��

s is easily seen to be a partition of � with ��
s ≤ �H

s . Since ��
s ⊂

{w ∈ W∗(�) | b�s < ‖Tw‖} by Eq. 3.4, where b� := 5−maxw∈� |w|, we have

#�H
s ≤ #��

s ≤ #{w ∈ W∗(�) | b�s < ‖Tw‖} ≤
∑

m∈N∪{0}

∑

w∈�m

‖Tw‖βb−β

� s−β

≤
∑

m∈N∪{0}

∑

w1,...,wm∈�

‖Tw1‖β · · · ‖Twm‖βb−β

� s−β

=
∑

m∈N∪{0}
r�(β)mb−β

� s−β = (

1− r�(β)
)−1

b−β

� s−β,

which and Eq. 7.9 yield dB ≤ β < α.
Next we show HdS(K, ρH) < ∞. Let s ∈ (

0, 1]. Then diam(Kw, ρH) ≤ 10lH(w) ≤
10s for w ∈ �H

s by Lemma 3.7 and Eq. 3.11 and hence

HdS
10s(K, ρH) ≤

∑

w∈�H
s

diam(Kw, ρH)dS ≤ (10s)dS #�H
s ≤ (10s)dS 319s−dB = 31910dS

by Eq. 7.9 and dS = dB. Letting s ↓ 0, we obtain HdS(K, ρH) ≤ 31910dS <∞.
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Finally, we prove dloc
S ≤ dS. By Jensen’s inequality and Eq. 7.2,

1
2

∫

K

2 log pμ(t, x, x)

− log t
dμ(x) ≤ 2

− log t
log

(

1
2

∫

K
pμ(t, x, x)dμ(x)

)

= 2 log(Zμ(t)/2)

− log t

for t ∈ (0, 1), and letting t ↓ 0 results in dloc
S ≤ dS by Eq. 6.1, Fatou’s lemma and

Eq. 7.5; note that t �→ pμ(t, x, x) is (0,∞)-valued and non-increasing for each x ∈ K
by [8, Theorem 2.1.4]. ��

Remark 7.9 A simple direct argument shows the following lower bound

dS = dimH(K, ρH) = dimB(K, ρH) ≥ 1+ 2 log25/3
6
5 = 1.17198 . . . (7.14)

although it is weaker than the numerical estimate dS ≥ dloc
S ≥ 1.27874 . . . implied by

Theorem 7.2 and Remark 6.7. Indeed, since
∑

i∈S Ti = 6
5

(

1 0
0 1

)

by Proposition 2.12-(i),
∑

w∈�( 5
6 )|w|Tw =

(

1 0
0 1

)

for any partition � of �. Therefore for s ∈ (0, 1),

√
2 ≤

∑

w∈�H
s

(

5
6

)|w|
‖Tw‖ ≤

∑

w∈�H
s

‖Tw‖1+2 log25/3
6
5 ≤ s1+2 log25/3

6
5 #�H

s (7.15)

by virtue of the lower bound in Eq. 6.4. Now Eq. 7.14 follows from Eqs. 7.15, 7.9 and
dS = dB.
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