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Abstract We prove that for any semi-Dirichlet form (ε, D(ε)) on a measurable Lusin
space E there exists a Lusin topology with the given σ -algebra as the Borel σ -algebra
so that (ε, D(ε)) becomes quasi-regular. However one has to enlarge E by a zero set.
More generally a corresponding result for arbitrary Lp-resolvents is proven.
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Introduction

Let E be a Lusin topological space (i.e., E is homeomorphic to a Borel subset of
a compact metric space) with Borel σ -algebra B. Let m be a σ -finite measure on
(E,B) and Lp(E,m), p ∈ [1,∞], the corresponding (real) Lp-spaces. Let (ε, D(ε))
be a semi-Dirichlet form on L2(E,m) in the sense of [14]. Modifying the main result
of [2, 14], in [13] an analytic characterization of all semi-Dirichlet forms on L2(E,m)
which are associated with a nice Markov process (more precisely a so-called m-special
standard process) was proved. Such semi-Dirichlet forms are called quasi-regular. An
elaborate theory for such Dirichlet forms has been developed both for its analytic
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and probabilistic components with numerous applications (cf. [14]). In particular,
invariance properties under change of topology, more precisely, the invariance under
quasi-isomorphism of the theory was discovered (cf. [1, 6] and the Appendix in [9])
and exploited subsequently (see, e.g., Chap. VI in [14]).

A fundamental question, however, remained open, namely whether it is enough to
have a measurable structure only, in the following sense: Let (E,B) be merely a Lusin
measurable space (i.e., it is measurably isomorphic with (F,B(F)), where F is some
Lusin topological space equipped with Borel σ -algebra B(F)) and (ε, D(ε)) a semi-
Dirichlet form on L2(E,m) with m a σ -finite measure. Can we find a topology on E
with Borel σ -algebra equal to the given B and making E a Lusin topological space
such that (ε, D(ε)) is quasi-regular with respect to this topology? As a consequence
one could apply all results on quasi-regular Dirichlet forms only depending on
the measurable structure (such as measure representations for potentials, spectral
analysis, Beurling-Deny type representations etc.) for Dirichlet forms on arbitrary
Lusin-measurable state spaces.

This question has been addressed in [7] as a question formulated by G. Moko-
bodzki in 1991. In [7] a necessary and sufficient condition on (ε, D(ε)) and B was
formulated so that the answer to the above question is positive. This condition is,
however, quite close to what is needed in the proof and, therefore, not very useful
in applications (see the example in [7]). The main purpose of this paper is to show
that it is always possible to find a Lusin topology on E making (ε, D(ε)) quasi-
regular, however, one has to enlarge E by a set of m-zero measure (cf. Corollary 3.4
below). Our strategy of proof reveals that such an enlargement is probably necessary
in general, though we cannot formally prove that.

For illustration (and following the kind advice of a very conscientious referee)
we discuss an explicit example on the unit interval equipped with the Euclidean
topology, namely the classical maximal Dirichlet form (i.e., with Neumann boundary
conditions for its generator). It is well known that this Dirichlet form is (quasi-)
regular on [0, 1], but it is not when considered in [0, 1) (cf. [17]). Preserving the Borel
σ -algebra we, however, construct another topology on [0, 1) so that this Dirichlet
form becomes quasi-regular (cf. the example after Corollary 3.4). On the other hand,
equipped with this new topology, [0, 1) turns out to be isomorphic to [0, 1] with the
usual Euclidean topology. Moreover, the latter is proved to be (essentially) necessary
for a topology on [0, 1) to make the classical maximal Dirichlet form quasi-regular
(cf. Proposition 3.5 below).

The organization of this paper is as follows. In Section 2 we first formulate and
prove a corresponding result more generally for Lp-resolvents (cf. Theorem 2.2)
and apply it subsequently to semi-Dirichlet forms in Section 3 (see Theorem 3.3
and Corollary 3.4). Our proof relies heavily on results in [3], in particular the
characterization of resolvents of kernels which are associated to right processes.
Therefore, in Section 1 we recall the most essential notions, and list all relevant
results. In particular, we prove that the above characterization of resolvent kernels
can be generalized to the non-transient case (see Theorem 1.3).

1. Preliminaries on Sub-Markovian Resolvents of Kernels

Below we follow the terminology of [3]. Let U = (Uα)α>0 be a sub-Markovian
resolvent of kernels on a Lusin measurable space (E,B). Recall that the resolvent
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U is called proper provided there exists a strictly positive function f ∈ bpB such that
U f ≤ 1, where U = supα>0 Uα is the initial kernel of U ; pB (resp. bpB denotes the set
of all positive numerical (resp. bounded positive) B-measurable functions on E. If
β > 0 then the family Uβ = (Uβ+α)α>0 is also a sub-Markovian resolvent of kernels
on (E,B), having Uβ as (bounded) initial kernel. Recall also that a function s ∈ pB
is termed U -supermedian if αUαs ≤ s for all α > 0. A U -supermedian function s is
named U -excessive if in addition supα>0 αUαs = s. We denote by E(U) the set of all
B-measurable U -excessive functions on E. If s is U -supermedian then the function
ŝ defined by ŝ(x) = supα>0 αUαs(x), x ∈ E, is U -excessive and the set M = {x ∈ E|

s(x) 6= ŝ(x)} is U -negligible, i.e., Uα(1M) = 0 for one (and, therefore, for all) α > 0.
We denote by DU the set of all non-branch points with respect to U ,

DU =

{
x ∈ E| inf(s, t)(x) = ̂inf(s, t)(x) for all s, t ∈ E(U), 1̂(x) = 1

}
.

If U is proper then, since B is countably generated, we have DU ∈ B and the set
E \ DU is U -negligible. Notice that in this case DU = DUβ

for all β > 0.
Let (E′,B′) be a second Lusin measurable space such that E ⊂ E′, E ∈ B′ and

B = B′
|E. For all α > 0 define the kernel U ′

α on (E′,B′) by

U ′

α f = 1EUα( f |E)+
1

1 + α
1E′\E f f ∈ pB′.

Then the family U ′
= (U ′

α)α>0 is a sub-Markovian resolvent of kernels on (E′,B′),
called the trivial extension of U to E′. If β > 0 then a function s ∈ pB′ will be U ′

β -
excessive if and only if s|E is Uβ -excessive. Particularly we have DU ′

β
= DUβ

∪ (E′
\ E)

and: σ(E(Uβ)) = B if and only if σ(E(U ′

β)) = B′. If U is proper then U ′ is also proper.
Let M ∈ B be such that Uα(1E\M) = 0 on M for one (and, therefore, for all)

α > 0. Then the family of kernels U |M = (Uα|M)α>0 on (M,B|M) is a sub-Markovian
resolvent of kernels, called the restriction of U to M; the kernel Uα|M is defined by
Uα|M(g) = Uα(g)|M where g ∈ pB and g|M = g.

Recall that a σ -finite measure ξ on (E,B) is called U -excessive if ξ ◦ αUα ≤ ξ for all
α > 0. We denote by ExcU the set of all U -excessive measures. Further, let L :

ExcU × E(U) −→ R+ be the energy functional (associated with U), L(ξ, s) = sup{µ

(s)| µ a σ -finite measure, µ ◦ U ≤ ξ}, for all ξ ∈ ExcU and s ∈ E(U). A U-excessive
measure of the form µ ◦ U (where µ is a σ -finite measure) is called potential.

For the rest of this section we suppose that DUβ
= E and σ(E(Uβ)) = B for one

(and, therefore, for all) β > 0.

1.1. The Transient Case

Suppose that U is proper. Notice that if µ ◦ U = ν ◦ U ∈ ExcU then µ = ν. Moreover,
the set ExcU is an H-cone with respect to the usual order relation on the positive σ -
finite measures; see, e.g., [11].

A U -excessive measure ξ is called purely excessive (resp. invariant) if infα ξ ◦

αUα = 0 (resp. ξ ◦ αUα = ξ for all α > 0). Note that if ξ ∈ ExcU then the measure
ξo = infα ξ ◦ αUα is invariant and ξ − ξo is purely excessive. Also, every potential is
purely excessive.

The proof of the following lemma is given in the Appendix.
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LEMMA 1.1. If β > 0 then the following assertions hold.

a) Let ξ ∈ ExcU . Then the measure ξ ′
= ξ − ξ ◦ βUβ is Uβ -excessive. If in addition

ξ is purely excessive then ξ = ξ ′
◦ (I + βU) and for every η ∈ ExcU with ξ − ξ ◦

βUβ ≤ η − η ◦ βUβ we have ξ ≤ η.
b) If ξ ′

∈ ExcUβ and the measure ξ = ξ ′
◦ (I + βU) is σ -finite, then ξ ∈ ExcU . Fur-

thermore, it is purely excessive and ξ ′
= ξ − ξ ◦ βUβ .

We collect now some results on the semisaturation and saturation of E; cf. [3]. The
set E is called semisaturated (resp. saturated) with respect to U provided that every U -
excessive measure dominated by a potential is also a potential (resp. every ξ ∈ ExcU
with L(ξ, 1) < ∞ is a potential). If ξ ∈ ExcU then E is termed ξ -semisaturated if every
U -excessive measure dominated by a potential dominated by ξ is also a potential. The
following assertions hold.

1) If E is saturated with respect to U then E is semisaturated with respect to U .
2) The set E is semisaturated with respect U if and only if there exists a Lusin

topology on E such that B is the σ -algebra of all Borel sets on E and there exists
a right process with state space E, having U as associated resolvent.

3) There exist a second Lusin measurable space (E1,B1) such that E ⊂ E1, E ∈ B1,
B = B1|E, and a proper sub-Markovian resolvent of kernels U1

= (U1
α)α>0 on

(E1,B1) such that DU1 = E1, σ(E(U1)) = B1, U1
α(1E1\E) = 0, E1 is saturated with

respect to U1 and U is the restriction of U1 to E. In particular, U1 is the
resolvent of a right process with state space E1 for a suitable Lusin topology
on E1. More precisely one can take E1 as the set of all extreme points of the
set {ξ ∈ ExcU |L(ξ, 1) ≤ 1}, endowed with the σ -algebra B1 generated by the
functionals s̃, s̃(ξ) = L(ξ, s) for all ξ ∈ E1 and s ∈ E(U). The set E1 is called
the saturation of E.

4) Let (E′,B′) be a Lusin measurable space such that E ⊂ E′, E ∈ B′, B = B′
|E,

and there exists a proper sub-Markovian resolvent of kernels U ′
= (U ′

α)α>0 on
(E′,B′) with DU ′ = E′, σ(E(U ′)) = B′, U ′

α(1E′\E) = 0, E′ is saturated with respect
to U ′ and U is the restriction of U ′ to E. Then the map x 7−→ εx ◦ U ′ is a
measurable isomorphism between (E′,B′) and the measurable space (E1,B1)

defined in 3) above.
5) The set E is semisaturated (resp. ξ -semisaturated, where ξ is a fixed U -excessive

measure) if and only if E1 \ E is a polar (resp. ξ -polar) subset of E1 (with respect
to U1); recall that a set M ∈ B is polar (resp. ξ -polar) with respect to U if R̂M1 = 0
(resp. R̂M1 = 0 ξ -a.e.), where RM1 denotes the reduced function (with respect to
U) of 1 on M, RM1 = inf{s ∈ E(U)| s ≥ 1 on M}.

6) If E is ξ -semisaturated then there exists a proper sub-Markovian resolvent of
kernels U ′

= (U ′
α)α>0 on (E,B) such that the set E is semisaturated with respect

to U ′ and for all f ∈ pB and α > 0 the set [Uα f 6= U ′
α f ] is ξ -polar.

7) Let A∈ B be such that Uα(1E\A) = 0 on Aand U ′ the trivial extension of U |A to
E. Then A is semisaturated with respect to U |A if and only if E is semisaturated
with respect to U ′.

PROPOSITION 1.2. Let β > 0. Then E is semisaturated (resp. saturated) with respect
to U if and only if it is semisaturated (resp. saturated) with respect to Uβ .
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Proof. Suppose that E is semisaturated with respect to U and let ξ ′, µ ◦ Uβ ∈

ExcUβ , ξ ′
≤ µ ◦ Uβ . Clearly we may assume that µ is finite and thus ξ ′ is also a

finite measure. By Lemma 1.1 it follows that the measure ξ = ξ ′
◦ (I + βU) is U -

excessive and ξ ′
= ξ − ξ ◦ βUβ . Since ξ ≤ µ ◦ Uβ(I + βU) = µ ◦ U we deduce by

hypothesis that there exists a σ -finite measure ν on (E,B) such that ξ = ν ◦ U and
thus ξ ′

= ν ◦ U(I − βUβ) = ν ◦ Uβ .

If E is saturated with respect to U and ξ ′
∈ ExcUβ is such that Lβ(ξ ′, 1) < ∞ (Lβ

denotes the energy functional associated with Uβ) then we claim that the measure
ξ = ξ ′

◦ (I + βU) is σ -finite. Indeed, let (µn)n be a sequence of positive measures
on (E,B) such that µn ◦ Uβ ↗ ξ ′. From µn(1) = Lβ(µn ◦ Uβ, 1) ≤ Lβ(ξ ′, 1) it follows
that supn µn(1) < ∞. If fo ∈ bpB is such that U fo ≤ 1 then we get ξ( fo) = ξ ′

◦ (I +

βU)( fo) = supn µn ◦ Uβ(I + βU)( fo) = supn µn(U fo) ≤ supn µn(1) < ∞. Hence the
measure ξ is σ -finite and by Lemma 1.1 we obtain that ξ is U -excessive and ξ ′

=

ξ ◦ (I − βUβ). Since L(ξ, 1) = supn µn(1) < ∞ and E is saturated with respect to U , it
follows that there exists a σ -finite measure µ on (E,B) such that ξ = µ ◦ U and thus
ξ ′

= µ ◦ Uβ .
Assume now that E is semisaturated with respect to Uβ and let ξ, µ ◦ U ∈ ExcU ,

ξ ≤ µ ◦ U. The measure ξ is purely excessive and we may suppose that µ is finite.
Consequently the measure µ′

= µ ◦ (I + βU) is σ -finite. Again by Lemma 1.1 it
follows that the measure ξ ′

= ξ ◦ (I − βUβ) is Uβ -excessive. Since ξ ′
≤ µ ◦ U = µ′

◦

Uβ , by hypothesis there exists a σ -finite measure ν on (E,B) such that ξ ′
= ν ◦ Uβ .As

a consequence we get ξ = ξ ′
◦ (I + βU) = ν ◦ U.

Let us suppose now that E is saturated with respect to Uβ and ξ ∈ ExcU is such that
L(ξ, 1) < ∞. If E1 is the saturation of E with respect to U then ξ is a potential on E1

and thus it is purely excessive. Lemma 1.1 implies that the measure ξ ′
= ξ − ξ ◦ βUβ

belongs to ExcUβ and ξ = ξ ′
◦ (I + βU). We consider a sequence (µn)n of positive

σ -finite measures on (E,B) such that µn ◦ Uβ ↗ ξ ′. Consequently, we have µn ◦

U ↗ ξ and Lβ(ξ ′, 1) = supn µn(1) = L(ξ, 1) < ∞. Therefore, there exists a σ -finite
measure µ on (E,B) such that ξ ′

= µ ◦ Uβ and so ξ = ξ ′
◦ (I + βU) = µ ◦ U. �

1.2. The Non-transient Case

Firstly recall some facts on Ray cones. Assume that the initial kernel U of U is
bounded. A Ray cone associated with U is a convex cone R of bounded U -excessive
functions such that: Uα(R) ⊂ R for all α > 0, U((R−R)+) ⊂ R, σ(R) = B,R is min-
stable, separable in the uniform norm and contains the positive constant functions.

We state here a slightly modified version of Proposition 1.5.1 in [3]: Let β > 0.
Then there exists a Ray cone Rβ associated with Uβ , such that Uα(Rβ) ⊂ Rβ for all
α > 0.

We claim that the above assertion 2) is true without assuming that U is proper.
Namely the following result is a variant of assertion 2), in the case when the initial
kernel U is not necessary a proper one; compare with [19].

THEOREM 1.3. The set E is semisaturated with respect to Uβ if and only if there
exists a Lusin topology on E such that B is the σ -algebra of all Borel sets on E and
there exists a right process with state space E, having U as associated resolvent.
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Proof. It is known that E is semisaturated with respect to Uβ whenever U is the
resolvent of a right process; see [11]. For the converse statement we shall adapt the
proofs of Theorem 1.8.11 and Corollary 1.8.12 in [3].

First assume that E is saturated with respect to Uβ . Let Rβ be a Ray cone associ-
ated with Uβ such that Uα(Rβ) ⊂ Rβ for all α > 0, and Y the (Ray) compactification
of E with respect to Rβ . By Proposition 1.5.8 in [3] there exists a Ray resolvent
Ũ = (Ũα)α>0 on Y such that Ũα( s̃ ) = Ũαs for all s ∈ Rβ and α > 0, where for each
s ∈ Rβ we have denoted by s̃ the unique continuous extension of s to Y. Particularly
Ũα(1Y\E) = 0 on E for all α > 0 and U is the restriction to E of Ũ . Consequently (see,
e.g., [18]) the restriction of Ũ to D = DŨ is the resolvent of a right process X with state
space D, endowed with the Ray topology induced by Rβ (i.e., the trace on D of the
topology on Y). From Theorem 1.8.11 in [3] we have E = {x ∈ D| Ũα(1D\E)(x) = 0}.
In addition E is a Borel subset of Y, Ũα(1D\E) = 0 on E and it is a finely closed set with
respect to Ũβ ; the fine topology is the topology generated by E(Ũβ). As a consequence
we may consider the restriction of X to E and U becomes the resolvent of this right
process, since Ũ |E = U .

If E is only semisaturated with respect to Uβ , then we consider the saturation E1 of
E with respect to Uβ and let U1

= (U1
α)α>0 be the resolvent of kernels on on (E1,B1)

such that DU1 = E1, σ(E(U1
β)) = B1, U1

α(1E1\E) = 0 and U1
|E = U . By the first part

of the proof there exists a right process X with state space E1 (endowed with a Ray
topology), having U1 as associated resolvent. By 5) we deduce that the set E1 \ E is
polar (with respect to U1

β) and, therefore, the restriction of X to E is a right process
with state space E and having U as associated resolvent, completing the proof. �

REMARK. By Proposition 1.2 it follows that the condition of semisaturation with
respect to Uβ in Theorem 1.3 does not depend on β.

Recall that a U -excessive measure ξ is called dissipative (resp. conservative)
provided that ξ = sup{µ ◦ U| ExcU 3 µ ◦ U ≤ ξ} (resp. there is no non-zero potential
U -excessive measure dominated by ξ). The set of all dissipative (resp. conservative)
U -excessive measures is denoted by DissU (resp. ConU ). As in [11] one can show that
DissU and ConU are solid convex subcones of ExcU , DissU ∩ ConU = {0} and every
ξ ∈ ExcU has a unique decomposition of the form ξ = ξd + ξc, where ξd ∈ DissU and
ξc ∈ ConU . Moreover, if f ∈ pB is strictly positive and ξ( f ) < ∞ then ξd = ξ |[U f<∞]

and ξc = ξ |[U f =∞]; See also Proposition A1 in the Appendix.
The next result is an extension of assertion 6) to the non-transient case.

PROPOSITION 1.4. Let ξ ∈ DissU be such that E is ξ -semisaturated with respect to
U (i.e., every U -excessive measure dominated by a potential dominated by ξ is also a
potential). Then there exists a proper sub-Markovian resolvent of kernels U ′

= (U ′
α)α>0

on (E,B) such that E is semisaturated with respect to U ′ and the set [Uα f 6= U ′
α f ] is

ξ -polar with respect to Uβ for all f ∈ pB and α > 0. Moreover there exists a ξ -polar
finely closed set A∈ B such that U(1A) = 0 on E \ A and U ′ may be chosen as the
trivial extension to E of the restriction of U to E \ A.

Proof. Let f ∈ pB be strictly positive such that ξ( f ) < ∞. The set A= [U f = ∞]

is finely closed, U(1A) = 0 on E \ Aand from ξ ∈ DissU we get ξ(A) = 0. Therefore,
the set A is ξ -polar with respect to Uβ . If V is the restriction of U to E \ A then we
deduce that V is a proper sub-Markovian resolvent of kernels on (E \ A,B|E\A) such
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that σ(E(V)) = B|E\A and DV = E \ A. Clearly the measure ξ belongs to ExcV . We
show that E \ A is ξ -semisaturated with respect to V . Indeed, let η, µ ◦ V ∈ ExcV ,
with η ≤ µ ◦ V ≤ ξ , where µ is a σ -finite measure on E \ A. We deduce that η, µ ◦

U ∈ ExcU and η ≤ µ ◦ U ≤ ξ . Since E is ξ -semisaturated with respect to U , there
exists a σ -finite measure ν on E such that η = ν ◦ U. Since the set A is µ-polar and
µ-negligible, it follows that it is also ν-negligible and consequently η = ν|E\A ◦ V. By
6) there exists a proper sub-Markovian resolvent of kernels V ′

= (V′
α)α>0 on (E \

A,B|E\A) such that E \ A is semisaturated with respect to V ′ and Vα f = V′
α f on Eo

for all f ∈ pB|E\A and α > 0, where Eo ∈ B is such that Eo ⊂ E \ A, E \ Eo is ξ -polar
and U(1E\Eo) = 0 on Eo. From 7) we conclude that the trivial extension U ′ of V ′

|Eo to
E satisfies the required conditions. �

2. Right Processes Associated with Lp-resolvents

In the sequel µ will be a σ -finite measure on (E,B).
Let U ′

= (U ′
α)α>0 be a second sub-Markovian resolvent of kernels on (E,B). We

say that U and U ′ are µ-equivalent provided that Uα f = U ′
α f µ-a.e. for all f ∈ pB

and α > 0.

REMARK. There are examples of two sub-Markovian resolvents of kernels on the
same space E, which are ξ -equivalent (where ξ is a σ -finite measure) and such that E
is semisaturated with respect to only one of them. Indeed, let Uo be a sub-Markovian
resolvent on a Lusin measurable space (F,Bo) such that F is not semisaturated with
respect to Uo. We denote by E the saturation of F with respect to Uo (i.e., E = F1) and
let U be the resolvent on E such that U |F = Uo and E \ F is U -negligible. Let further
U ′ be the trivial extension of Uo to E. Then by 7) the set E is not semisaturated with
respect to U ′. Clearly, since Uα(1E\F ) = 0, we deduce that U and U ′ are ξ -equivalent
with respect to every ξ ∈ ExcU .

LEMMA 2.1. Let N be a bounded kernel on (E,B) such that if B ∈ B and µ(B) = 0
then N(1B) = 0 µ-a.e. If Eo ⊂ E, Eo ∈ B, is such that µ(E \ Eo) = 0 then there exists
F ∈ B, F ⊂ Eo, such that µ(E \ F) = 0 and N(1E\F ) = 0 on F.

Proof. Since µ(E \ Eo) = 0 we get by hypothesis that N(1E\Eo) = 0 µ-a.e. Let
(En)n≥1 ⊂ B be the sequence defined inductively by En+1 = En ∩ [N(1E\En) = 0] if
n ≥ 0. We have µ(E \ En) = 0 for all n and let F =

⋂
n En. Then F ⊂ Eo, F ∈ B,

µ(E \ F) = 0 and if x ∈ F then N(1E\En)(x) = 0 for all n. Therefore, N(1E\F )(x) =

N(1⋃
n E\En)(x) = supn N(1E\En)(x) = 0. �

REMARK. A procedure similar to Lemma 2.1 has been considered in [12] and [16].

THEOREM 2.2. Let p ∈ [1,+∞] and (Vα)α>0 be a sub-Markovian strongly continu-
ous resolvent of contractions on Lp(E, µ), where (E,B) is a Lusin measurable space
and µ is a σ -finite measure on (E,B). Then there exist a Lusin topological space E1

with E ⊂ E1, E ∈ B1 (the σ -algebra of all Borel subsets of E1), B = B1|E, and a right
process with state space E1 such that its resolvent of kernels U1

= (U1
α)α>0, regarded

on Lp(E1, µ), coincides with (Vα)α>0 and U1
α(1E1 \E) = 0, where µ is the measure on

(E1,B1) extending µ by zero on E1 \ E.
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Proof. Let ( fk)k ⊂ bpB ∩ Lp(E, µ) be a sequence separating the points of E. For
every α > 0 we consider a kernel Vα on (E,B) such that Vα coincides with Vα as
an operator on Lp(E, µ). By Proposition 1.4.13 in [3] there exists a sub-Markovian
resolvent W = (Wα)α>0 on (E,B) such that Wα f = Vα f µ-a.e. for all f ∈ pB. Let us
consider the set

Eo = {x ∈ E| lim
n
αnWαn fk(x) = fk(x) for all k}.

where (αn)n is a strictly increasing sequence of natural numbers such that (αnWαn fk)n
converges µ-a.e. to fk for all k. We have Eo ∈ B and µ(E \ Eo) = 0. By Lemma 2.1
there exists F ∈ B, F ⊂ Eo, such that µ(E \ F) = 0 and Wα(1E\F ) = 0 on F for all
α > 0. Let β > 0 and Fo be the set of all non-branch points of F with respect to Wβ |F .
Then Fo ∈ B, Wβ |Fo is a sub-Markovian resolvent of kernels on (Fo,B|Fo), E(Wβ |Fo)

is min-stable, contains the positive constant functions and generates B|Fo . Let U =

(Uα)α>0 be the trivial extension of W|Fo to E. Then U is a sub-Markovian resolvent
of kernels on (E,B) such that DUβ

= E, σ(E(Uβ)) = B and (Uα)α>0 coincides with
(Vα)α>0 as a resolvent on Lp(E, µ). We consider now the set E1, i.e. the saturation
of E with respect Uβ (see 3) in Section 1) and the resolvent of kernels U1

= (U1
α)α>0

on (E1,B1) whose restriction to E is U and U1
α(1E1\E) = 0. Since E1 is saturated with

respect to U1
β , we deduce from 1) and Theorem 1.3 that there exists a Lusin topology

on E1 such that B1 is the σ -algebra of all Borel sets on E1 and U1 is the resolvent
of a right process with state space E1. Clearly U1

α = Vα for all α > 0, regarded as an
equality of operators on Lp(E1, µ). �

REMARK 2.3. Under the assumptions of Theorem 2.2 we have proved that there
exists a sub-Markovian resolvent of kernels U = (Uα)α>0 on (E,B) such that for β > 0
we have DUβ

= E, σ(E(Uβ)) = B and Uα = Vα as operators on Lp(E, µ) for all α > 0.
Moreover the following assertions hold.

a) U = (Uα)α>0 is the resolvent of a right process with state space E if and only if E
is semisaturated with respect to Uβ (cf. Theorem 1.3).

b) If µ is Uβ -excessive and E is µ-semisaturated with respect to Uβ (or if µ ∈ DissU
and E is µ-semisaturated with respect to U) then by 6), Proposition 1.4 and
Theorem 1.3 there exist a Lusin topology on E and a right process with state
space E such that its resolvent and U are µ-equivalent.

The following result is a consequence of Proposition 7.5.2 in [3], Theorem 2.2 and
Remark 2.3.

COROLLARY 2.4. Let U = (Uα)α>0 be a sub-Markovian resolvent of kernels on
(E,B) such that for β > 0 we have DUβ

= E and σ(E(Uβ)) = B. If µ ∈ ExcU then
there exists a second sub-Markovian resolvent of kernels U∗

= (U∗
α )α>0 on (E,B) such

that for β > 0 we have DU∗

β
= E, σ(E(U∗

β)) = B and
∫

E f Uαgdµ =
∫

E gU∗
α f dµ for all

f, g ∈ pB and α > 0.

3. Tightness of Capacity and Quasi-regularity

In this section we shall give conditions on an Lp-resolvent to ensure tightness of
the capacity induced by the reduction operator, the existence of quasi-continuous
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versions for the elements being in the domain of the generator and the standardness
property of the associated right process.

Let (Vα)α>0 be a sub-Markovian resolvent on Lp(E, µ) as in Theorem 2.2 and
β > 0. An element u ∈ Lp

+(E, µ) is called a β-potential provided that αVβ+αu ≤ u for
all α > 0. We denote by Pβ the set of all, β-potentials. It is known that (see, e.g.,
Proposition 3.1.10 in [3]) the ordered convex cone Pβ is a cone of potentials in the
sense of G. Mokobodzki, cf. [15] (see also [3]). Particularly if u,u′

∈ Pβ , u ≤ u′, then
there exists Rβ(u − u′) ∈ Pβ , i.e. the réduite of u − u′, defined by Rβ(u − u′) =

∧
{v ∈

Pβ | v ≥ u − u′
} (here

∧
denotes the infimum in Pβ). An element u ∈ Pβ is called

regular if for every sequence (un)n ⊂ Pβ with un ↗ u we have Rβ(u − un) ↘ 0.

REMARK 3.1.

a) If f ∈ Lp(E, µ) then Vβ f is regular. If u ∈ Pβ then Vαu is regular for every α > 0.
b) Let u ∈ Pβ . If there exists a sequence (un)n of regular elements from Pβ with

un ↗ u and Rβ(u − un) ↘ 0 then by Proposition 3.2.3 in [3] it follows that u is
regular. Consequently by a) we deduce that: u is regular if and only if Rβ(u −

nVnu) ↘ 0.
c) Assume that Vβ = (Vβ+α)α>0 is the resolvent of a right process and let u ∈

E(Vβ) ∩ Lp(E, µ), u < ∞. Then u is regular if and only if there exists a con-
tinuous additive functional whose potential equals u µ-a.e.

Let fo ∈ Lp(E, µ) be strictly positive. We consider the following property of the
resolvent (Vα)α>0:

every β − potential dominated by Vβ fo is regular. (∗)

REMARK. Since Vβ fo > 0, it follows from Propositions 2.4.6 and 2.4.7 in [3] that
condition (∗) is equivalent with the following one: every β-potential dominated by a
regular element from Pβ is also regular.

PROPOSITION 3.2. Condition (∗) does not depend on β.

Proof. Let β ′ > β > 0 and assume that condition (∗) holds for β. If (un)n ⊂ Pβ ′ ,
un ↗ u ∈ Pβ ′ , u ≤ Vβ ′ fo, then the element v = u + (β ′

− β)Vβu belongs to Pβ , v ≤

Vβ fo and thus v is regular. Setting vn = un + (β ′
− β)Vβu we get vn ↗ v, vn = un +

(β ′
− β)Vβun + (β ′

− β)Vβ(u − un) ∈ Pβ and since Pβ ⊂ Pβ ′ it follows that Rβ ′(u −

un) = Rβ ′(v − vn) ≤ Rβ(v − vn) ↘ 0.
Assume now that condition (∗) holds for β ′ and let (un)n ⊂ Pβ , un ↗ u ∈ Pβ . Then

the element v = u − (β ′
− β)Vβ ′ u belongs to Pβ ′ . If u ≤ Vβ fo, since by Remark 3.1

Vβ fo is a regular element of Pβ ′ , we deduce that v is regular in Pβ ′ . Let ( fn)n ⊂

Lp(E, µ) be such that Vβ ′ fn ↗ v. Then Rβ ′(v − Vβ ′ fn) ↘ 0 and Vβ fn ↗ u. To show
that u is regular, again by Remark 3.1 it suffices to prove that Rβ(u − Vβ fn) ↘ 0.
Notice that if u′,u′′

∈ Pβ , f = u′
− u′′, then Rβ( f ) ≤ (I + (β ′

− β)Vβ)Rβ ′( f − (β ′
−

β)Vβ ′ f ). We conclude that Rβ(u − Vβ fn) ≤ (I + (β ′
− β)Vβ)Rβ ′(v − Vβ ′ fn) ↘ 0. �

REMARK.

a) Let U be the resolvent of kernels from Remark 2.3, U∗ be a second resolvent
given by Corollary 2.4 and suppose that they are associated with two right
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processes with state space E. Then condition (∗) is equivalent with the fact that
‘the axiom of polarity’ holds for U∗

β , i.e. every semipolar set is µ-polar with
respect to U∗

β (see Theorem 7.2.9 in [3]).
b) Recall (cf. [5], [13]) that a pair (ε, D(ε)) is called a semi-Dirichlet form on

L2(E, µ), provided that: D(ε) is a dense linear subspace of L2(E, µ); ε :

D(ε)×D(ε)−→ R is a bilinear form such that ε(u,u) ≥ 0 for all u ∈ D(ε);
D(ε) is a Hilbert space equipped with the inner product ε̃1(u, v) =

1
2 (ε(u, v)+

ε(v,u))+ (u, v)L2(E,µ); (ε1, D(ε)) satisfies the sector condition, i.e., there exists a
constant K > 0 such that |ε1(u, v)| ≤ Kε1(u,u)1/2ε1(v, v)

1/2 for all u, v ∈ D(ε);
it has the following unit contraction property: for all u ∈ D(ε) we have u+

∧ 1 ∈

D(ε) and ε(u + u+
∧ 1,u − u+

∧ 1) ≥ 0. If in addition ε(u − u+
∧ 1,u + u+

∧

1) ≥ 0, then (ε, D(ε)) is called a Dirichlet form.

Let (Vα)α>0 be the resolvent of a semi-Dirichlet form (ε, D(ε)) on L2(E, µ), i.e.,
Vα(L2(E, µ)) ⊂ D(ε) and εα(Vα f,u) = ( f,u)L2(E,µ) for all α > 0, f ∈ L2(E, µ) and
u ∈ D(ε), where εα = ε + α( , )L2(E,µ). Notice that the unit contraction property of ε
is equivalent with the property of (Vα)α>0 to be sub-Markovian. It was shown in [3]
(Theorem 7.5.19 and Corollary 7.7.8 applied to the (bounded) resolvent (Vβ+α)α>0

associated with the semi-Dirichlet form (εβ, D(ε)) which satisfies the sector con-
dition; where β > 0 is fixed) that condition (∗) holds and derived that a semi-
Dirichlet form associated with a right process is quasi-regular; compare with [8, 13]
and [14].

Assume further that in addition fo ∈ L1(E, µ), fo ≤ 1, λo = fo · µ and m = λo ◦ Vβ .
The next result is a consequence of Section 3.5 and Theorem 3.7.8 in [3] and

Theorem 2.2; see also [4].

THEOREM 3.3. Under the assumptions from Theorem 2.2 suppose that condition
(∗) holds. If (E1,T ) is the Lusin topological space and U1 the resolvent of the right
process with state space E1 given by Theorem 2.2, then the following assertions hold.

a) There exists an increasing sequence (Kn)n of T -compact subsets of E1 such that

inf
n

RE1\Kn
β po = 0 (m + λo)-a.e.

where po = U1
β f̃o ( f̃o ∈ pB1, f̃o|E = fo) and RM

β po denotes the reduced function
(with respect to U1

β) of po on the set M.
b) Every U1

β -excessive function s is T -quasi continuous, that is there exists an increas-
ing sequence (Kn)n of T -compact subsets of E1 such that s|Kn is T -continuous
for all n and infn RE1\Kn

β po = 0 (m + λo)-a.e. Particularly, every element from
Vα(Lp(E, µ)) (the domain of the generator of the resolvent (Vα)α>0) possesses a
T -quasi continuous µ-version.

c) The right process having U1 as associated resolvent is (m + λo)-special standard.

As a consequence of the previous theorem and the main result in [13] and [14] we
obtain:

COROLLARY 3.4. Let (ε, D(ε)) be a semi-Dirichlet form on L2(E, µ), where µ is
a σ -finite measure on the Lusin measurable space (E,B). Then there exists a (larger)
Lusin topological space E1 such that E ⊂ E1, E belongs to B1 (the σ -algebra of all
Borel subsets of E1), B = B1|E, and (ε, D(ε)) regarded as a semi-Dirichlet form on
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L2(E1, µ) is quasi-regular, where µ is the measure on (E1,B1) extending µ by zero on
E1 \ E.

The next example completes the counterexample (b), page 194 in [17]; we thank
the referee for suggesting us to present it related to our results.

EXAMPLE. Let (ε, D(ε)) be the Dirichlet form associated with reflecting Brownian
motion on [0, 1]: D(ε) = H1(0, 1), ε(u, v) =

1
2

∫
E u′v′dm, m being the Lebesgue

measure. It was shown in [17] that the Dirichlet form (ε, D(ε)) is not quasi-regular,
considered on E = [0, 1) endowed with the canonical topology. However, regarded
on the enlarged space E1 = [0, 1] (also endowed with with the canonical topology)
the form (ε, D(ε)) is quasi-regular. We show that we can equip E with a second
topology, preserving the Borel σ -algebra, such that (ε, D(ε)) becomes quasi-regular,
without enlarging E. Indeed, let M = {1} ∪ {1 −

1
n | n ≥ 2} and consider the bijection

ϕ : E1 −→ E defined by

ϕ(x) =


x if x ∈ E \ M,
1
2 if x = 1,

1 −
1

n+1 if x =
1
n ,n ≥ 2.

Let T 1 be the canonical topology on E1 and T = ϕ(T 1), the biggest topology on E
making ϕ a continuous map. Since every element from H1(0, 1) has a T 1-continuous
m-version on E1, it is easy to see that (ε, D(ε)) is a quasi-regular Dirichlet form
regarded on E endowed with the topology T , and notice that every point of E is not
ε-polar.

The next result is a converse of the last statement.

PROPOSITION 3.5. Let T o be a Lusin topology on E = [0, 1) such that the Borel
sets are the canonical ones and assume that the Dirichlet form associated with reflecting
Brownian motion on [0, 1] is quasi-regular, regarded on E equipped with T o and every
point of E is not ε-polar. Then the topological space (E,T o) is compact and every
element from D(ε) has a T o-continuous m-version. Moreover, there exists a bijection
ψ : E −→ E1 (where E1 = [0, 1] and it is endowed with the canonical topology T 1)
which is a topological homeomorphism between (E,T o) and (E1,T 1) and the set {x ∈

E| ψ(x) 6= x} is m-negligible.

Proof. We show firstly that every ε-exceptional subset of (E,T o) is empty.
Indeed, let (Fn)n be a ε-nest (of T o-closed subsets of E) and un = 1 − RE\Fn

β 1. Since
the constant function 1 belongs D(ε), it follows that the sequence (un)n converges to
1 in D(ε). Assume that E \ Fn 6= ∅ for all n. The set E \ Fn being not ε-polar, we get
that m(E \ Fn) > 0 for all n. Lemma 5.1 in [17] leads now to the contradictory fact
that there exists x ∈ [0, 1] such that limy→x 1(y) = 0. Hence there exists n0 such that
Fn0 = E.

The form (ε, D(ε)) being quasi-regular on (E,T o), it follows that (E,T o) is
a compact topological space and every u ∈ D(ε) has a m-version u which is T o-
continuous on E. We shall denote by ũ the T 1-continuous m-version of u ∈ D(ε)
on E1. Let Do be a countable subset of D(ε) such that the family {u| u ∈ Do} (resp.
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{̃u| u ∈ Do}) separates the points of E (resp. of E1) and generates the topology T 0

(resp. T 1). We consider the set

Mo = {x ∈ E| there exists u ∈ Do with u(x) 6= ũ(x)}.

Because u = ũ m-a.e. for all u ∈ D(ε), we find that the set Mo is m-negligible and
consequently E \ Mo (resp. E1 \ Mo) is a dense subset of (E,T o) (resp. of (E1,T 1)).
Therefore, for every x ∈ E there exists a sequence (xn)n ⊂ E \ Mo converging to x
in T o. From u(xn) = ũ(xn) for all n and u ∈ Do, we deduce that the sequence (xn)n
converges in T 1 to some point x̃ ∈ E1 and u(x) = ũ(̃x) for all u ∈ Do. We may define
a mapψ : E −→ E1 byψ(x) = x̃ for all x ∈ E and one can check thatψ is one-to-one,
it is continuous and ψ(x) = x for all x ∈ E \ Mo. �

Appendix

Proof of Lemma 1.1.

a) If α > 0 then we have ξ ′
◦ αUβ+α = ξ ◦ αUβ+α − ξ ◦ βαUβUβ+α = ξ ◦ (α +

β)Uβ+α − ξ ◦ βUβ ≤ ξ − ξ ◦ βUβ = ξ ′. For α < β we have also ξ ′
◦ (I + (β −

α)Uα) = ξ ◦ (I − βUβ + (β − α)Uα − (β − α)βUαUβ) = ξ − ξ ◦ αUα . If ξ is
purely excessive then, letting α −→ 0, we deduce that ξ ′

◦ (I + βU) = ξ . Let
η ∈ ExcU be such that ξ ′

≤ η − η ◦ βUβ . The measure η1 = η − infα η ◦ αUα is
purely excessive and clearly η − η ◦ βUβ = η1 − η1 ◦ βUβ . Therefore, ξ = ξ ′

◦

(I + βU) ≤ (η1 − η1 ◦ βUβ) ◦ (I + βU) = η1 ≤ η.

b) Assume that the measure ξ = ξ ′
◦ (I + βU) is σ -finite and let α > 0. Then ξ ◦

αUα = ξ ′
◦ (I + βU)αUα = ξ ′

◦ αUα + βξ ′
◦ (U − Uα). Therefore, if α > β then

ξ ◦ αUα = ξ ′
◦ (α − β)Uα + βξ ′

◦ U ≤ ξ ′
+ βξ ′

◦ U = ξ . If α ≤ β then ξ ◦ αUα ≤

βξ ′
◦ U ≤ ξ ′

◦ (I + βU) = ξ . Consequently the measure ξ is U -excessive. From
ξ ′

◦ Uα ≤ ξ ′
◦ U we get ξ ◦ αUα ≤ αξ ′

◦ U + βξ ′
◦ (U − Uα). The measure ξ ′

◦ U
being σ -finite we conclude that infα ξ ◦ αUα = 0.

The following proposition is close to the results of R. K. Getoor from [10] and [11].

PROPOSITION A1. If ξ ∈ ExcU then the following assertions are equivalent.

1) The measure ξ is dissipative.
2) If f ∈ pB, f > 0 on E and ξ( f ) < ∞ then U f < ∞ ξ -a.e.
3) There exists F ∈ B such that ξ(E \ F) = 0, U(1E\F ) = 0 on F and U |F is proper.
4) There exists a finely continuous function f ∈ bpB, f > 0 on E such that U f ≤ 1

ξ -a.e.
5) There exists f ∈ bpB such that U f > 0 on E and U f ≤ 1 ξ -a.e.
6) There exists a sequence ( fn)n ⊂ pB such that U fn is bounded ξ -a.e. for all n and

U fn ↗ ∞.

Proof. The equivalence 1) ⇐⇒ 2) follows from (2.11) in [11]. The implications
4) =⇒ 5) =⇒ 6) are clear. We have 3) =⇒ 1) since ExcU = DissU if U is proper.

2) =⇒ 3). Let g ∈ bpB, g > 0 on E be such that ξ(g) < ∞. Then Ug < ∞ ξ -a.e. If
we set An = [Ug ≤ n] then (An)n ⊂ B is an increasing sequence, ξ(E \ ∪n An) = 0 and

U(g1An) ≤ n for all n. The function f = g(1A∞
+

∑
n≥1

1

n2n
1An) is strictly positive and
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U f ≤ 1 on [Ug < ∞], where A∞ = [Ug = ∞]. Taking Eo = [U f ≤ 1] and applying
Lemma 2.1 we obtain the required set F.

3) =⇒ 4). Let g ∈ bpB, g > 0 on E be such that Ug ≤ 1 ξ -a.e. The function f =

U1g is bounded, finely continuous, strictly positive and we have ξ -a.e. U f = UU1g =

Ug − U1g ≤ Ug ≤ 1.
6) =⇒ 5). Let ( fn)n ⊂ pB and (αn)n ⊂ R∗

+
such that U fn ≤ αn ξ -a.e. for all n and

U fn ↗ ∞. Consider the function f =
∑

n
1

αn2n
fn. Clearly f ∈ pB, U f ≤ 1 ξ -a.e. and

U f > 0 on E.
5) =⇒ 3). Let g ∈ pB, g ≤ 1, be such that Ug > 0 and Ug ≤ 1 ξ -a.e., and let

F = [Ug < ∞]. From Ug = Uαg + αUαUg we get that on F we have Uα(1E \F ) =

0 and, therefore, U(1E\F ) = 0. The function f = αUαg · 1F + 1E\F belongs to pB,
f ≤ 1 and U f ≤ αUαUg + U(1E\F ) ≤ Ug < ∞ on F. It remains to show that f >
0. If we assume that f (x) = 0 then x ∈ F and Uαg(x) = 0. Consequently, we get
αUαUg(x) = Ug(x) and thus βUβUg(x) = Ug(x) for all β > 0, Uβg(x) = 0. This leads
to the contradictory equality Ug(x) = 0. �
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