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Abstract In this paper we are concerned with a family of elliptic operators repre-
sented as sum of square vector fields: Lε =

∑m
i=1 X 2

i + ε1, in Rn where 1 is the
Laplace operator, m < n, and the limit operator L =

∑m
i=1 X 2

i is hypoelliptic. It is
well known that Lε admits a fundamental solution 0ε . Here we establish some a
priori estimates uniform in ε of it, using a modification of the lifting technique of
Rothschild and Stein. As a consequence we deduce some a priori estimates uniform in
ε, for solutions of the approximated equation Lεu = f . These estimates can be used
in particular while studying regularity of viscosity solutions of nonlinear equations
represented in terms of vector fields.

Mathematics Subject Classifications (2000) 35H10 · 35A08 · 43A80 · 35B45.

Key words hypoelliptic operators · Carnot groups · fundamental solution ·

a priori estimates.

1. Introduction

Let X1, . . . , Xm be smooth real vector fields on an open set � ⊂ Rn satisfying the
Hörmander condition for the hypoellipticity

rank L ie(X1, . . . , Xm)(x) = n, ∀x ∈ �. (1)
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It is well known that the operator

L =

m∑
i=1

X 2
i (2)

is hypoelliptic, and estimates of the its fundamental solution 0 are very well known
(see [10, 18, 20], see also [15]). However, in many applications it is necessary to study
elliptic regularization of this type of operators. For every fixed point x0 there exist
ν ≥ n and there exist vector fields Xm+1, . . . , Xν (for example the complete list of
commutators up to a fixed step s ) such that

X1, . . . , Xm, Xm+1, . . . , Xν (3)

span the tangent space at x for every x ∈ �. Then the operator

Lε =

m∑
i=1

X 2
i + ε2

ν∑
i=m+1

X 2
i (4)

is uniformly elliptic in �. This approximation can be used to study interior regularity
of viscosity solutions of nonlinear problems, when the vector fields (Xi)i=1,...,m depend
on the solution: Xi = Xi(u,∇u).We refer to [2, 6, 22] and [7] for nonlinear differential
equation of this type, arising in complex analysis or mathematics finance. A simple
example could be

L u = ∂2
x u + (∂y + u∂z)

2u = f, u = u0 on ∂�. (5)

This problem cannot be studied directly, but, under very general assumptions on the
open set � and the boundary datum u0, the approximating problem:

Lεu = f, u = u0 on ∂�, (6)

has a C∞ solution uε with gradient bounded uniformly with respect to ε. In order
to prove the existence of a classical solution of (5) it is natural to establish interior
estimates uniform in ε for the C∞ solutions of (6) and then let ε goes to 0. As a
first step in this direction we consider operators with C∞ coefficients, and establish
uniform estimates for the fundamental solutions.

As it is well known, the fundamental solutions of any operator represented as sum
of square of vector fields X1, . . . , Xm, εXm+1, . . . , εXν can be estimated in terms of
the measure of the spheres of the control distance dε (see (16) for the definition).
Precisely the fundamental solution of the operator Lε can be locally estimated in
terms of dε as

|0ε(x, y)| ≤ Cε

d2
ε(x, y)

|Bε(x,dε(x, y))|
,

for every (x, y) in a neighborhood of 0, and for a suitable constant Cε (see [18, 19]).
Here Bε(x, r) denotes the sphere of the metric dε and | | its Lebesgue measure.

The dependence of Cε on the variable ε > 0 is completely unknown, at our
knowledge. However it is known that the control distance dε associated to Lε tends to
the control distance d of L as ε tends to 0. This has been proved in [16]. We also refer
to [1, 12], where the relation between the metric dε and d is investigated. This fact
suggests to look for estimates of the fundamental solution of the operator Lε uniform
in ε. In fact we are able to prove that
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THEOREM 1.1. For every compact set K ⊂ � and for every p ∈ N there exist two
positive constants C,Cp independent of ε such that

|ε j# Xi1 · · · Xip0ε(x, y)| ≤ Cp
d2−p
ε (x, y)

|Bε(x,dε(x, y))|
, i1, . . . , ip ∈ {1, . . . , ν}, (7)

for every x, y ∈ K with x 6= y, where j# denotes the number of indices i ∈ {m +

1, . . . , ν} and Bε(x, r) denotes the ball with center x and radius r of the distance dε .
If p = 0 we mean that no derivative are applied on 0ε .

Besides, for every 0 < a < b∫
a≤dε (x,y)≤b

|ε j# Xi1 Xi20ε(x, y)|dy ≤ C(b − a, ) i1, i2 ∈ {1, . . . , ν}. (8)

�

The main idea of the proof is a new lifting method. These family of instruments
has been first introduced by Rothschild and Stein [19], and subsequently improved
by [5, 10, 11, 14]. Adding suitable variables and vector fields, the operator Lε is lifted
to a new operator L̃ε , sum of squares of a family of stratified and nilpotent vector
fields. We introduce a new point of view, in order to obtain a lifting independent of
the variable ε. In presence of a family of vector fields (Xi, . . . , Xm, εXm+1, . . . , εXν),
larger than the dimension of the space, the classical approach of [18] is to select for
every point x, every r and every ε the correct sub-family defining the ball of center x
and radius r in the metric dε . We use here a simpler method. For example εXm+1

and Xm+1 are linearly dependent, but play different role, since εXm+1, has to be
considered a first derivative, while Xm+1 is the commutator, so that it has a higher
step. In order to eliminate this ambiguity introduce a new vector X̃m+1 depending
on completely new variables. Hence the vector fields εXm+1 + X̃m+1 and Xm+1 are
linearly independent. If the choice of the added vector is more accurate, we can show
that the metric induced by the old vectors is the projection on the initial space of the
lifted metric. The idea of the lifting seem to be completely new, even thought, from
a technical point of view, it is partially inspired to the one introduced in [19]. Let us
give a sketch of the proof in the simplest case of the operator

Lεu = ∂2
1 u + (∂2 + x1∂3)

2u + ε2∂2
3 u on R3. (9)

In this case the vector field ε∂3 acts as a first derivative, while the direction ∂3 can be
obtained as a commutator and acts as a second derivative. Consequently we lift the
operator Lε to a new operator

L̃εu = ∂2
1 u + (∂2 + x1∂3)

2u + (∂4 + ε∂3)
2u on R4. (10)

It is intuitively clear that, for ε small, the lifted vector field ∂4 + ε∂3 identifies a
direction completely different from ∂3. Besides the fundamental solution of this
operator has the same behavior of the fundamental solution of

L̃ u = ∂2
1 u + (∂2 + x1∂3)

2u + ∂2
4 u on R4. (11)

This operator is independent of ε, but its fundamental solution coincides, up to a
change of variables with the fundamental solution of L̃ε . Hence also the estimates



150 Potential Anal (2006) 25: 147–164

of the fundamental solution of this last operator are uniform in ε. In turn this
fundamental solution allows to construct a parametrix of the fundamental solution of
Lε simply via a projection on x4 = 0. The method of parametrix we apply generalizes
the technique already applied by [15, 18, 20], see also [4], and for homogeneous vector
fields, [3].

Theorem 1.1 provides uniform estimates of fundamental solution of an operator,
in terms of its control distance. It allows to deduce from regularity results known in
the elliptic case, similar results, for the sub-elliptic situation. In general this approach
allows to work with smooth solutions of an elliptic problem Lεuε = f in order to
obtain uniform estimates for the limit equation.

Let �0 ⊂ �, and W p,q
ε,X(�0) be the set of functions f ∈ Lq(�0) such that

ε j# Xi1 · · · Xip f ∈ Lq(�0), i1, . . . , ip ∈ {1, . . . ,n},

with natural norm

|| f ||W p,q
ε,X (�0)

=

∑
i1,...,ip∈{1,...,n}

ε j# ||X i1 . . . X ip f ||Lq(�0),

where j# denotes the number of indices i ∈ {m + 1, . . . ,n}. We have:

COROLLARY 1.1. Assume that u ∈ Lq
loc(�) is a solution of

Lεu = f in �,

with f ∈ W p,q
ε,X(�) and let K1 ⊂⊂ K2 ⊂⊂ �. Then there exists a constant C independent

of ε such that

||u||W p+2,q
ε,X (K1)

≤ C|| f ||W p,q
ε,X (K2)

,

for every p ≥ 1.

Analogously, using this result, we can get interior hölder continuous estimates with
optimal exponent, which improve a previous result of Krylov [17], where a slightly
more general operator Lεu = f is considered, and holder continuous estimates are
provided, but the optimal exponent is far from been reached.

2. Preliminaries and Known Results

In this section we recall the properties of an Hörmander type operator already proved
by [9, 19, 20]. Indeed we lift the operator in (4) to a new operator of this type.

Hence we consider now an arbitrary Hörmander type operator

L =

ν∑
i=1

Xi in � ⊂ Rn (12)

where (Xi)i=1,...,ν satisfy the rank condition (1) at every point. We say that a com-
mutator has degree s and denote

deg(X ) = s if X = A d(Xi1 , . . . , Xis),
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with i1, . . . , is ∈ {1, . . . , ν}. Thus, for a fixed point x0 there is a number s such that the
set of all commutators of degree smaller than s span the whole tangent space at every
point in a neighborhood of x0. Then we complete X1, . . . , Xν with the collection

Xν+1, . . . , XN (13)

of all the commutators of degree less of equal to s.
Different equivalent definitions of the control distance have been provided for

example in [18]. The more natural is defined in terms of the vectors X1, . . . , XN alone.
Let C1(r) denote the class of smooth curves φ : [0, 1] → � such that

φ′(t) =

N∑
j=1

u j(t)X j(φ(t)), (14)

where u j are continuous functions such that |u j| ≤ r. The control distance is defined

dc(x, y) = inf {r > 0 : ∃φ ∈ C1(r) : φ(0) = 0, φ(1) = y}. (15)

In (14) the coefficients u j are continuous functions. In order to replace them with
constants, an equivalent definition can given in terms of all the vectors (Xi)i=1,...,N .
Since the family (Xi)i=1,...,N has more that n elements, a basis of the space can be
searched for within the subfamilies with the same cardinality of the space. For each
n-tuple I = (i1, . . . , in), i1, . . . , in ∈ {1, . . . , N} the set C2(r, I) denotes the class of
smooth curves φ : [0, 1] → � such that

φ′(t) =

n∑
j=1

u jXi j(φ(t)) (16)

with constants u j such that |u j| ≤ rdeg(Xi j ). If C2(r) =
⋃

I C2(r, I) a new distance is
defined

d(x, y) = inf {r > 0 : ∃φ ∈ C1(r) : φ(0) = 0, φ(1) = y}. (17)

REMARK 2.1. These two distances are locally equivalent, in the sense that for every
K ⊂⊂ � there exist positive constants C0, C1 only dependent on the step of the Lie
algebra such that

C0 dc(x, y) ≤ d(x, y) ≤ C1 dc(x, y),

for any x, y ∈ K. Since we are interested in establishing estimates we can use either
the first or the second definition.

If (Xi)i=1,...,ν are free up to step s, then n = ν the n−tuple I in the previous
definition is unique, and the distance is defined in terms of the exponential map.
Indeed, for every fixed point x0 in Rn there exist a neighborhood V of x0 and for
every x ∈ V a neighborhood Ux of x in the Lie algebra, such that for every x ∈ V the
exponential mapping

u 7−→ y = exp

(
n∑

i=1

ui Xi

)
(x) (18)
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is defined in Ux. The definition of distance simply reduces to

d(x, y) =

n∑
i=1

|ui|
1

deg(X i ) , x, y ∈ W, (19)

where ui are defined in (18). Suitable restricting V and choosing W ⊂⊂ V we can
assume that for every x ∈ W the map in (18) is defined on the same U ⊂ Ux and it is a
diffeomorphism from U onto the image. Its inverse mapping denoted 2x(u) satisfies
U ⊆ 2x(V) for every x ∈ W. Finally

2 : W × W → Rn,

defined by

2(x, y) = 2x(y) on W × W (20)

is C∞. For a fixed x, the function 2x introduces a change of variable called {canon-
ical}. The space is not homogeneous, but, due to the fact that the vector fields
(X i)i=1,...,ν are free up to step s and together with their commutators of order s span
the tangent space at every point, the following number is constant and it is called local
homogeneous dimension of the space

Q =

n∑
i=1

deg(Xi). (21)

In this case, for any K ⊂⊂ Rn there exists R > 0 such that for any x ∈ K and 0 <
r < R the measure of the ball is

C0 rQ
≤ |B(x, r)| ≤ C1 rQ, (22)

with suitable positive constants C0, C1 depending only on K.
Assume now that the family

X1 . . . , Xm, Xm+1, . . . , Xn

has the property that the variables defining the vectors X1 . . . , Xm, and the one
defining Xm+1, · · · Xn, are completely different. Also assume that the two different
families are free up to the same step s and span the tangent space at every point,
together with their commutators of step up to s. Also in this case we can define the
local dimension of the space as in (21), and the measure of the ball is estimated as in
(22).

Let us go back to the properties of a general operator L. Note that, if the family
of Lie algebra generated by (Xi)i=1,...,ν is not free, it is always possible to lift it to a
Lie algebra free up to a step s, via the lifting procedure introduced by Rothschild and
Stein. Precisely

THEOREM 2.1. (Theorem 4 in [19]) Let (Xi)i=1,...,ν be C∞ vector fields, which,
together with their commutators up to step s, span the tangent space at a point x0. Then
we can find new variables x̂ and vector fields defined in a neighborhood of x0

X̃i(x, x̂) = Xi(x)+ Z i, Z i =

l∑
j=1

a j
i (x, x̂)

∂

∂ x̂ j
∀i = 1, . . . , ν

such that the system (X̃i)i=1,...,ν is free up to order s at x0 and span RÑ,where Ñ = n + l.
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In order to simplify notations we give the following definition

DEFINITION 2.1. We say that k is an regular kernel of type λ with respect to
the vectors X1, . . . , Xν, and the distance d in an open set W and we denote k ∈

Fλ(X,d,W) if for every p ∈ N there exists a positive constant Cp such that, one has
for every x, y ∈ W with x 6= y

| X i1 · · · X ip k(x, y)| ≤ Cp
dλ−p(x, y)

|B(x,d(x, y))|
, i1, . . . , ip ∈ {1, . . . , ν}. (23)

If λ = 0 we also require that there exists positive constant C∗ such that for any 0 <
a < b ∫

a≤d(x,y)≤b
k(x, y)|detJ2x(y)|dy ≤ C∗(b − a). (24)

3. The Lifting Procedure

In this section we introduce our lifting method, for the vector fields defining the
operator Lε in (4). By simplicity we call

Xε,i = Xi, i = 1, . . . ,m, Xε,i = εXi, i = m + 1, . . . , ν.

and we lift them to a new family (X̃ε,i)i=1,...,ν which satisfies the following assumptions:
for every i = 1, . . . , ν there exists a vector field Z̃ i depending on variables different

from the ones defining Xε,i such that

X̃ε,i = Xε,i + Z̃ i, (25)

the family (X̃ε,i)i=1,...,Ñ is a basis of the tangent space at every x. (26)

3.1. Vector Fields Free Up to a Fixed Step

We start with describing the lifting procedure under the additional assumption that
the vector fields X1, . . . , Xm defined in (2) are defined on R n, generate a Lie algebra
free up to a step s, and together with their commutators of order at most s span the
tangent space at every point. This ensures that the list

Xm+1, . . . , Xn (27)

of the commutators up to step s complete the collection X1, . . . , Xm to a basis of R n.
Hence the number ν in (3) simply coincides with n.

In turn the list (Xε,i)i=1,...,n can be completed to a set of generators of the space,
with the complete list of commutators up to step s

Xε,n+1, . . . , Xε,N.

Clearly these vectors are not linearly independent. We start by lifting the vector
fields (Xε,i)i=m+1,...,n to new vector fields linearly independent of the commutators
of (Xε,i)i=1,...,m. More precisely, since the vector fields (εXi)i=m+1,...,n have step s,
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we call µ the dimension of the free Lie algebra g(s,n − m), with n − m generators
and step s and define n − m new vector fields free and nilpotent of step s

X̃m+1, . . . , X̃n, (28)

in term of µ completely new variables. The initial family (Xε,i)i=1,...,n can be lifted as
follows

X̃ε,i = X i, i = 1, . . . ,m, X̃ε,i = εX i + X̃ i, i = m + 1, . . . ,n. (29)

The vector fields (X̃ε,i)i=1,...,n generate a Lie algebra with n generators, direct sum of
a free algebra of step s and an algebra free up to step s (and not necessarily free).
In the lifted space RÑ we can complete the family (X̃ε,i)i=1,...,n to a basis of the Lie
algebra, with the complete list of all the non-zero commutators, up to step s denoted
(X̃ε,i)i=1,...,Ñ . This list is ordered in such a way that the first N vectors are the lifted of
the list (Xε,i)i=1,...,N .

The correspondent sublaplacian is

L̃ε =

n∑
i=1

X̃ 2
ε,i =

m∑
i=1

X 2
i +

n∑
i=m+1

(εX i + X̃ i)
2, (30)

in RÑ
= Rn

× Rµ We need a third operator L̃, with the same structure of Lε , but
independent of ε:

L̃ =

m∑
i=1

X 2
i +

n∑
i=m+1

X̃2
i .

We also denote X̃i = Xi for all i = 1, . . . ,m, in such a way that L̃ can be represented
as
∑n

i=1 X̃ 2
i . And we complete the family (X̃i)i=1,...,n to a basis of the space

X̃1, . . . , X̃n, X̃n+1, . . . , X̃Ñ (31)

with the list of all commutators ordered as the list (X̃ε,i)i=n+1,...,Ñ .

3.2. The General Case

We conclude here the description of the lifting procedure, removing the assumptions
on the Lie algebra generated by X1, . . . , Xm formulated in the previous section. We
will start from an operator Lε , and perform a first lifting, it order to reduce to the
case described in the previous section. In order to keep trace of the dependence on
ε we first apply the lifting of Rothschild and Stein only on the initial family of vector
fields (Xi)i=1,...,m. The vector fields (Xi)i=1,...,m are lifted to (Xi + Z i)i=1,...,m, free at
step s in a neighborhood U of x0, according to Theorem 2.1. The commutators will be
accordingly lifted. Hence, also the vector fields εXi are lifted to ε(Xi + Z i) for every
i = m + 1, . . . , ν. Consequently we have a first lifting of the operator Lε is lifted to
the operator

m∑
i=1

(Xi + Z i)
2
+

ν∑
i=m+1

(εXi + εZ i)
2.
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Note that the family (Xi + Z i)i=1,...,m defining the first part of the operator is
free up to step s. The family (εXi + εZ i)i=m+1,...,ν is a subfamily of the collection
of all commutators. Hence we can apply the same procedure as before, denoting
(X̃i)i=m+1,...,ν a family of vector fields generating a Lie algebra nilpotent and free of
step s. And defining the vectors

X̃ε,i = Xi + Z i, for all i = 1, . . . ,m,

X̃ε,i = εXi + εZ i + X̃ i, for all i = m + 1, . . . , ν.

We can finally define

L̃ε =

ν∑
i=1

X̃ 2
ε,i, L̃ =

ν∑
i=1

X̃ 2
i (32)

where X̃i = Xi + Z i for all i = 1, . . . ,m. Again we can complete the family
(X̃ε,i)i=1,...,N to a basis of the space with the complete list of commutators of step
s denoted (X̃ε,i)i=1,...,Ñ . The family (X̃i)i=1,...,N will be similarly completed to the list
of its commutators (X̃i)i=1,...,Ñ .

4. Estimates of the Metric

In this section we provide the properties of the metric dε associated to the vector
fields (Xε,i)i=1,...,n, the metric d̃ε associated to the vector fields (X̃ε,i)i=1,...,Ñ and the

metric d̃ associated to the vector fields (X̃i)i=1,...,Ñ according to definition (19).

4.1. The Metric d̃ε

The generic point of the lifted space RÑ is denoted by x̃ and the homogeneous dimen-
sion is denoted Q̃ (see definition (21)). The function defining canonical coordinates
with respect to the basis X̃1, . . . , X̃Ñ according to (31) is called 2x̃(ỹ) = ũ.

Let ψε be a Lie algebra isomorphism defined as L̃ε and L̃, as

ψε(X̃i) = X̃ε,i, i = 1, . . . ,n.

Clearly ψε can be extended on the whole algebra via the bracket, so that

X̃ε,i = ψε(X̃i) = X̃i +

Ñ∑
j=1

aijX̃ j, ∀i = 1, . . . , Ñ, (33)

where

|aij| ≤ ε ∀i, j ∈ {1, . . . , Ñ}. (34)

Since ψε is linear and lower diagonal, with 1 on the diagonal, it has jacobian deter-
minant 1. The function ψε induces, via the mapping 2, a change of variables on RÑ

8ε : RÑ
→ RÑ, 8ε = Exp ◦ ψε ◦20. (35)
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Since the function Exp and 20 are local diffeomorphisms, with determinant 1
in 0, and independent of ε, also the jacobian determinant of 8ε is independent of ε
in a neighborhood of 0. Besides the distance can be computed as

d̃ε(x̃, ỹ) = d̃(8ε(x̃),8ε(ỹ)).

In particular, this provides a simple estimate of the ball of the metric d̃ε : There exist
positive constants C0 and C1 independent of ε such that

C0rQ̃
≤ |B̃ε(x̃, r)| ≤ C1rQ̃.

4.2. The Metric dε and its Lifting

The generic point of the lifted space RÑ is denoted by x̃ = (x, x̂), where x ∈ Rn is the
initial variable and x̂ ∈ RÑ−n the added ones.

Let us study the relation between the metrics induced by the family of vector fields
(Xε,i)i=1,...,ν , and their lifted counterpart. The procedure we use is a generalization of
the one introduced by [18], who study the relationship between the metric dε and d̃ε
under the assumptions (25), (26) on the defining vector fields. We follow the same
ideas, but we also study the dependence on the variable ε. We denote Bε(x, r) and
B̃ε(x̃, r) the balls in the two metrics dε and d̃ε . Precisely, if πi denote the projections

π1 : RÑ
−→ Rn, π1(x, x̂ ) = x, π2 : RÑ

−→ Rn, π1(x, x̂ ) = x̂,

then

LEMMA 4.1 (Lemma 3.1 in [18]). The projection π1 has the following properties:

π1 : B̃ε((x, 0), r) −→ Bε(x, r),

and the map is onto. Besides

π1

(
exp

(∑
i

ui X̃ε,i

))
= exp

(∑
i

ui Xε,i

)
.

Furthermore the following result is satisfied:

LEMMA 4.2 (Theorem 7 in [18]). Let K ⊂⊂ Rn. There exist constants 0<η2<η1<1,
and constants C0, C1 such that ∀x ∈ K, ∀r > 0, ∀ε > 0 there exists a n-tuple I with the
following properties

|λI(ε, x)| rdeg(XI ) ≥ η2 max
J

|λJ(ε, x)| rdeg(XJ)

where λI(ε, x) = det(Xε,i : i ∈ I) and deg(XI) =
∑

i∈I deg(Xi). Besides, if we define

8û(u) = exp
(∑

i∈I

ui Xε,i +

∑
i/∈I

ûi Xε,i

)
(x), (36)
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the following is true:

– if |û j| ≤ η2rdeg(X̃ε, j) the function 8û is one to one on the ball Bε(x, r);

– if |û j| ≤ η2rdeg(X̃ε, j) the function 8û is non-singular, and if |J8û| denotes the
jacobian, then on Bε(x, r)

1

4
|λI(ε, x)| ≤ |J8û| ≤ 4|λI(ε, x)|;

– the measure of the sphere can be estimated as

rdeg(XI )

|λI(ε, x)|
≤ |Bε(x, r)| ≤

1

|λI(ε, x)|

( r
η1

)deg(XI )

.

Using these results we prove the following lemma, which is the main result of this
section.

LEMMA 4.3. For every compact set K ⊂ Rn there exist positive constants C1,C2

independent of ε such that if χB̃ε ((x,0),r) is the characteristic function of the ball

B̃ε((x, 0), r), then for every x ∈ K and r > 0∫
χB̃ε ((x,0),r)(y, ŷ)dŷ ≤ C2

rQ̃

|Bε(x, r)|
.

Note that the integration is performed only in the added variables ŷ.

Proof. We follow here the proof of Lemma 3.2 in [18], checking the independence
on ε of all the constants. Now∫

χB̃ε ((x,0),r)(y, ỹ)dŷ =

∣∣∣{ŷ : (y, ŷ) ∈ B̃ε((x, 0), r)
}∣∣∣ .

By definition of B̃ε((x, 0), r), if (y, ŷ) ∈ B̃ε((x, 0), r) then y ∈ π1(Bε((x, 0), r)). Let us
choose I as in Lemma 4.2, and, for y fixed let us denote

6y =

{
ũ : y = π1

(
exp

(∑
i∈I

ui X̃ε,i +

∑
i/∈I

ûi X̃ε,i

)
(x, 0), |ũi| ≤ η2rdeg(X̃ε,i)

)}
.

By Lemma 4.2, the mapping 8û defined in (36) is one to one, then ∀y ∈ Bε(x, r), ∀û,
such that |û j| ≤ η2rdeg(X̃ε, j) for every j = n + 1, . . . , Ñ, there exists unique u = θ(û),
such that |u j| ≤ η1rdeg(Xε, j) for every j = 1, . . . ,n, and

y = 8û(θ(û)).

If we denote

8̃(u, û) = exp
(∑

i∈I

ui X̃ε,i +

∑
i/∈I

ûi X̃ε,i

)
(x, 0),

then the preceding equality means that

y = 8û(θ(û)) = π1(8̃(u, û)).
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If we differentiate this equation with respect to û, and use the fact, stated in
Lemma 4.2, that the jacobian of 8û is bounded from above and from below by
|λI(ε, x)|, we deduce that

|Jθ(û)| ≤ |λ−1
I (ε, x)|.

Hence the map g : û 7→ ŷ = π2(8̃(u, û)) is a diffeomorphism, with jacobian bounded
by |λ−1

I (ε, x)|. Then∣∣∣ ∫ χ B̃ε ((x,0),r)dŷ
∣∣∣ ≤

∣∣∣ ∫
g

({
ûε :|ûε, j|≤η2rdeg(X̃ε, j), ∀ j=n+1,...,N

}) ∣∣∣
= C

rdeg(XI )

|λ−1
I (ε, x)|

≤ C
rQ̃

|Bε(x, r)|
.

�

Also note that we have the following local inclusions, which ensure that local
estimates uniform in ε with respect to dε are local estimates uniform in ε with respect
to the distance d:

LEMMA 4.4. For every compact set K ⊂ Rn there exists a positive constant C indepen-
dent of ε such that for every x ∈ K, for every r > 0

Bε(x, r) ⊂ B(x,C(r + (εr)
1
s ))

and

B(x, r) ⊂ Bε(x,C(r + (εr)
1
s )),

where s is the step of Lie algebra.

Proof. Let us consider a point y ∈ Bε(x, r). Then there exists ŷ ∈ RÑ−n such that

(y, ŷ) = exp
( Ñ∑

i=1

ũε,i X̃ε,i

)
(x, 0) and |ũε,i|

1
deg(X̃ε,i ) < r. (37)

By (33) we can write

(y, ŷ) = exp
( Ñ∑

i=1

ũε,i
(
X̃i +

Ñ∑
j=1

aijX̃ j
))
(x, 0) = exp

( Ñ∑
j=1

Ñ∑
i=1

ũε,i
(
δij + aij

)
X̃ j

)
(x, 0).

Now ∣∣∣ũε,i(δij + aij
)∣∣∣ 1

deg(X̃ j)
≤

by (34) and the fact that deg(X̃ j) ≤ s

≤ C|ũε, j|

1
deg(X̃ j) + |εũε,i|

1
s ≤ C

(
r + (εr)

1
s
)
,

by (37). It follows that y ∈ B(x,C
(
r + (εr)

1
s
)
).

The proof of the second inclusion is similar. �
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5. Uniform Estimates of the Fundamental Solution

In this section we conclude the uniform estimates of the fundamental solution of
the operator Lε . We first use the estimates of the fundamental solution of L̃ to
obtain estimates of the fundamental solution of L̃ε independent of ε. Then, with
a generalization of the projection-result of Sánchez-Calle, we deduce the uniform
estimates of the fundamental solution of Lε from the uniform estimates of L̃ε .

5.1. Estimates of the Fundamental Solution of L̃ε

Using the function 8ε defined in (35) the fundamental solution of the operator L̃ε

can be represented in terms of the fundamental solution 0̃ of the operator L̃

0̃ε(x̃, ỹ) = 0̃(8ε(x̃),8ε(ỹ)).

Besides

X̃ε,i0̃ε(x̃, ỹ) = (X̃i0̃)(8ε(x̃),8ε(ỹ)).

Hence 0̃ε satisfies the estimates (7) and (8), with the same constants as L̃. Precisely,
if p ∈ N then there exist positive constant Cp and C such that for every i1 . . . , ip ∈

{1, . . . ,n}, one has

|X̃ε,i1 , . . . , X̃ε,ip 0̃ε(x̃, ỹ)| ≤ Cp(d̃(8ε(x̃),8ε(x̃))2−Q−p
= Cp(d̃ε(x̃, ỹ))2−Q−p. (38)

For every 0 < a < b∫
a≤d̃ε (x̃,ỹ)≤b

|X̃i1 X̃i2 0̃ε(x, y)|dỹ ≤ C(b − a) i1, i2 ∈ {1, . . . ,n}.

Also note that for every x̃, ỹ, z̃ such that d̃ε(x̃, ỹ) ≥ d̃ε(ỹ, z̃)

|0̃ε(x̃, ỹ)− 0̃ε(x̃, z̃)| ≤ C̄ d̃ε(ỹ, z̃)
(

d̃−Q̃+1
ε (x̃, ỹ)+ d̃−Q̃+1

ε (x̃, z̃)
)
.

The constants Cp, C and C̄ are independent of ε.

5.2. Estimates of the Fundamental Solution of Lε

The parametrix of the fundamental solution of Lε is defined as the restriction on Rn

of the fundamental solution 0̃ε . Following [19], we define a restriction operator R
mapping kernels in �̃ to kernels on � as follows:

Rf (y) =

∫
f (y, ŷ)â(ŷ)dŷ (39)

where â is a fixed function of class C∞(RÑ−n) with compact support, say in the sphere
of radius η, and integral equal to 1.

With this definition we see that there is a natural relation between kernels of type
Fλ(X̃ε, d̃ε,U), and their restriction on Rn, which belongs to Fλ(Xε,dε,W), according
to Definition 2.1. Indeed

PROPOSITION 5.1. If k̃(x̃, ỹ) is a kernel of class Fλ(X̃ε, d̃ε,U), then k(x, y) =

Rk̃(x̃, ỹ) is a kernel of class Fλ(Xε,dε,W), which satisfies inequalities (23), (24), with
the same constants as k.
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Proof. We develop the integral in diadic spheres:

∫
k((x, 0), (y, ŷ))â(ŷ)dŷ ≤

∑
j

∫
η2− j≤d̃ε ((x,0),(y,ŷ))≤η2− j+1

k̃((x, 0), (y, ŷ))â(ŷ)dŷ ≤

≤ C
∑

j

∫
η2− j≤d̃ε ((x,0),(y,ŷ))≤η2− j+1

d̃λε ((x, 0), (y, ŷ)))

|B̃ε((x, 0), d̃ε((x, 0), (y, ŷ)))|
dŷ ≤

since in each term of the sum dε(x, y) ≤ d̃ε((x, 0), (y, ŷ)) ≤ η2− j+1.

≤ C
∑

dε (x,y)≤η2− j+1

(η2− j)λ

|B̃ε((x, 0), η2− j+1)|

∫
χB̃ε ((x,0),η2− j+1) ≤

≤

∑
dε (x,y)≤η2− j+1

(η2− j)λ

|Bε(x, η2− j+1)|
≤

≤
1

|Bε(x,dε(x, y))|

∑
dε (x,y)≤η2− j+1

(η2− j)λ ≤
dλε (x, y)

|Bε(x,dε(x, y))|
.

�

REMARK 5.1. In the sequel we will need to evaluate the derivatives of the restriction
mapping R. Since the lifted vector fields are of the form:

X̃ε,i = Xε,i +

∑
j

λi, j(x, x̂)
∂

∂ x̂ j
,

differentiating the expression of R we get

Xε,i R( f )(y) = R(X̃ε,i f̃ )(y)+

∑
j

∫
∂

∂ ŷ j

(
λi, j(y, ŷ)â(ŷ)

)
f̃ (y, ŷ)dŷ. (40)

More generally, for every p ∈ N

Xε,i1 · · · Xε,ip R = RX̃ε,i1 · · · X̃ε,ip + RM̃ε,p−1,

where the rest M̃ε,p−1 is the reduction of a suitable operator of order p − 1:

M̃ε,p−1 =

∑
(α1···αl), l≤p−1

X̃ε,α1 · · · X̃ε,α j

in particular the coefficients of M̃ε,p−1 are independent of ε.
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THEOREM 5.1. Let a ∈ C∞

0 (W ) and let p ∈ N. There exist kernels Kε,p ∈ F2(Xε,

dε,W ) and Hε,p ∈ Fp(Xε,dε,W ), satisfying (23), (24) with constants independent of
ε such that for every x, y ∈ W

Ly
ε (Kε,p(x, y)) = a(x)δy(x)+ Hε,p(x, y) (41)

with δy the Dirac distribution at y, and where Ly
ε means that the differentiation is

in the y-variable. Analogously, there exist kernels K
′

ε,p ∈ F2(X ε,d ε,W ) and H
′

ε,p ∈

Fp(Xε,dε,W ), satisfying (23), (24) with constants independent of ε such that

Lx
ε (K

′

ε,p(x, y)) = a(x)δy(x)+ H
′

ε,p(x, y) (42)

for every x, y ∈ W where Lx
ε means that the differentiation is in the x-variable.

Proof. The proof is similar to Theorem 2 in [20]. We set

K̃ε,0(x̃, ỹ) = 0̃ε(x̃, ỹ)a(y),

and

Kε,0(x, y) = Ry(K̃ε,0((x, 0), · ))(y) =

∫
K̃ε,0((x, 0), (y, ŷ))â(ŷ)dŷ,

where the function and the operator R are defined in (39). Here the symbol Ry

indicates that the reduction is made with respect to the variable y, so that the variable
x acts as a parameter. Besides Kε,0 satisfies (23), (24) with constants independent of
ε. We have

L̃y
ε (K̃ε,0)(x̃, ỹ) = a(x)δỹ + P̃ε,1(x̃, ỹ),

with P̃ε,1(x̃, ỹ) ∈ F1(X̃ε, d̃ε,U). Then by the preceding remark there exists a suitable
operator M̃ε,1 of first order such that

Ly
ε (Kε,0)(x, y) = Ly

ε (Ry(K̃ε,0((x, 0), ·)))(y)

= Ry(L̃y
ε (K̃ε,0((x, 0), ·)))(y)+ Ry(M̃ε,1(K̃ε,0((x, 0), ·)))(y)

= Ry(a(x)δỹ)+ Ry((P̃ε,1 + M̃ε,1(K̃ε,0))((x, 0), ·)))(y)

= a(x)δy(x)+ Hε,1(x, y)

where we have called Hε,1(x, y) = Ry(H̃ε,1((x, 0), ·))(y), H̃ε,1 = (P̃ε,1 + M̃ε,1(K̃ε,0)).
Besides H̃ε,1 ∈ F1(X̃ε, d̃ε,U) and Hε,1 ∈ F1(Xε,dε,W ), with the constants in (23), (24)
independent of ε. By construction Kε,0 and Hε,1 are represented in terms of the
function a or its derivatives, so that for every x, x̂, ŷ

support
(

K̃ε,0((x, x̂), ( · , ŷ)
)

⊂ support(a),

support
(

H̃ε,1((x, x̂), ( · , ŷ)
)

⊂ support(a).

Define

Kε,1 = Kε,0 − Ry(H̃ε,1 ∗ 0̃ε).
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Then

Ly
ε (Kε,1) = Ly

ε (Kε,0)− Ly
ε Ry(H̃ε,1 ∗ 0̃ε)

= a(x)δy(x)+ Hε,1(x, y)− Ry

(
L̃y
ε (H̃ε,1 ∗ 0̃ε)

)
− Ry

(
M̃y
ε (H̃ε,1 ∗ 0̃ε)

)
= a(x)δy(x)+ Hε,2(x, y)

with Hε,2 = Ry(M̃
y
ε (H̃ε,1 ∗ 0̃ε))∈ F2(Xε,dε,W ), with constants in (23), (24) indepen-

dent of ε. Iterating this procedure we get the assertion.
The proof of the second assertion is similar, starting with

K̃
′

ε,0(x̃, ỹ) = 0̃ε(x̃, ỹ) K
′

ε,0(x, y) =

∫
â(x̂)K̃

′

ε,0((x, x̂), (y, 0))dx̂.

�

Proof of Theorem 1.1. Note that for every f ∈ C∞

0 (W ) if â is a function of class
C∞

0 (R
Ñ−n) such that

∫
â2(x̂)dx̂ = 1 then

f (x) =

∫
f (x)â2(x̂)dx̂

=

∫
â(x̂)

∫ ∫
0̃ε((x, x̂), (y, ŷ))L̃ε( f (y)â(ŷ))dy dŷ dx̂

=

∫ ∫ ∫
0̃ε((x, x̂), (y, ŷ))L̃ε â(ŷ)â(x̂)dx̂ dŷ f (y)dy

−

∫ ∫ ∫
X̃ε,i

(
0̃ε((x, x̂), (y, ŷ))X̃ε,iâ(ŷ)

)
â(x̂)dx̂ dŷ f (y)dy

+

∫ ∫ ∫
0̃ε((x, x̂), (y, ŷ))â(ŷ)â(x̂)dx̂ dŷLε f (y)dy

In particular we can apply this representation formula to K′
ε,p − a(x)0ε . Since

Lx
ε (K

′

ε,p − a0ε)(x, z) = H
′

ε,p(x, z),

and H
′

ε,p(x, z) is arbitrary regular, then the desired estimate for 0ε follows. On the
other hand the kernel arising in the preceding formula can be differentiated using
Remark 5.1, and we get the estimates also for all derivatives of 0ε . �

Proof of Corollary 1.1. Let us start with a new estimate for 0ε . Let us fix x, y, z ∈ �,
with dε(x, y) ≥ 4dε(y, z). By the definition of distance (15) there exists a multiindex I
such that deg(Xi) = 1 for every i ∈ I and continuous functions (ui)i∈I such that

z = γ (1), γ ′(t) =

∑
i∈I

uε,i Xε,i(γ ), γ (0) = 0.
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Hence by the mean value theorem

|0ε(x, y)− 0ε(x, z)| ≤

∑
i∈I

|uε,i||Xε, j0ε(x, s)| ≤ C dε(y, z)
|dε(x, s)|

|Bε(x,dε(x, s))|
,

for a suitable point s=γ (τ),τ∈ [0, 1]. On the other hand dε(x, s)≥dε(x, y)−dε(y, s) ≥

dε(x, y)−dε(y, z)≥ 3
4 dε(x, y) and dε(x, s)≤dε(x, y)+ dε(y, s)≤dε(x, y)+ dε(y, z) ≤

5
4 dε(x, y). Inserting in the previous expression, and using the doubling property of
the spheres, we have

|0ε(x, y)− 0ε(x, z)| ≤ C dε(y, z)
|dε(x, y)|

|Bε(x,dε(x, y))|
,

with C positive constant independent of ε.
The properties (7) and (8) in Theorem 1.1 together with this last inequality allow

to apply Theorem 6, page 290 in [19], and deduce that

||u||W k+2,q
ε,X (Bε (x,2r)) ≤ C|| f ||W k,q

ε,X (Bε (x,4r)),

with a constant C only depending on the constant in the previously recalled asser-
tions, hence independent of ε. Finally we can use Lemma 4.4 to deduce that, if ε is
sufficiently small

‖u‖Wk+2,q
ε,X (B(x,r)) ≤ C||u||Wk+2,q

ε,X (Bε (x,2r))

≤ C|| f ||Wk,q
ε,X (Bε (x,4r)) ≤ C|| f ||Wk,q

ε,X (B(x,8r)).
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