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Abstract. In this paper, we prove two-sided pointwise estimates for the Green function of a parabolic
operator with singular first order term on a C1,1-cylindrical domain �. Basing on these estimates,
we establish the equivalence of the parabolic measure, the adjoint parabolic measure and the surface
measure on the lateral boundary of �. These results are first studied by some authors for certain
elliptic and less general parabolic operators.
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1. Introduction

To study the potential theory of a second-order elliptic or parabolic operator, one
of the ways led up to understand the behavior of its Green function and harmonic
measure. In the last years, this kind of problems have received much attention by
several authors. In [18], Hueber and Sieveking proved the comparability of the
Green function of an elliptic operator L with bounded Hölder continuous coeffi-
cients to the Laplacian Green function on a C1,1-bounded domain. This result was
also studied by Ancona [1] on a Lipschitz domain, and as a consequence he estab-
lished the equivalence of the L-harmonic measure, the adjoint L-harmonic measure
and the surface measure, which initially proved by Dahlberg [6] in the classical
case. Some upper estimates for the Laplacian Green function on Liapunov–Dini
domains were proved by Widman in [24] and later extended by Grüter and Widman
in [14] to elliptic operators in divergence form with Dini continuous coefficients.
Lower estimates were proved by Zhao in [28] and Hueber in [17] on C1,1-bounded
domains which provide a complete description of the boundary behavior of the
Green function. In [5], Cranston and Zhao studied the operator L = 1

2� + b · ∇.
Assuming that |b| and |b|2 are, respectively, in the Kato classes Kn+1 and Kn (see
definition in [5]), they proved by a probabilistic method the comparability of the
L-Green function and the L-harmonic measure to those of � which enabled them
to obtain some potential-theoretic results for L which are known to hold for �.
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In the parabolic setting, it was shown that the fundamental solution satisfies upper
and lower Gaussian bounds in different situations which were used to prove some
interior and boundary estimates for weak solutions (boundness, Harnack inequal-
ities, Hölder continuity, boundary Harnack principles, etc.). We refer the reader
to [2, 3, 11, 12, 15] and [27] and the references therein. In [7] Davies proved,
by using logarithmic Sobolev inequalities, upper estimates for the heat kernels of
some elliptic operators in divergence form on some subdomains (see also [8], The-
orem 4.6.9). In [19], Hui proved upper estimates for the Green function of the heat
equation in a smooth cylindrical domain which played an important role to prove
a Fatou theorem at the corner points. In the half-space, lower and upper estimates
were established in [22] and used to study the boundary behavior of parabolic
potentials. They were also used in [23] to prove boundary Harnack principles and
the existence of the Martin kernel function. In [25], Wu studied the heat equation
and he proved that if E is a null set for the surface measure on a general Lipschitz
domain in R

n+1, n � 1, then there is a decomposition of E in two subsets, E1 with
zero caloric measure, and E2 with zero adjoint caloric measure. In this case the
caloric measure and the surface measure may be mutually singular (see [20]). How-
ever, for the heat equation on a Lipschitz cylinder the equivalence of the caloric
measure and the surface measure is established by Fabes and Salsa in [10]. In [15],
Heurteaux extended this result to the parabolic operator ∂/∂t − div(A(x, t)∇x)

on a Lip(1, 1
2 + ε) domain. His idea is based on some boundary Harnack princi-

ples. Recently, Hofmann and Lewis [16] proved the same result for the operator
∂/∂t − div(A(x, t)∇x) + B(x, t) · ∇x on a half-space provided that the coefficients
satisfy some conditions defined by Carleson measures. They studied the operator as
a pullback of the heat equation on certain time varying domains considered before
by Levis and Murray and Hofmann and Levis (see [16] for all details). They also
obtained the elliptic counterpart results.

Following the above mentioned works, our aim in this paper is to investigate the
behavior of the Green function and the harmonic measure for a parabolic operator
with first-order term in the so-called parabolic Kato class on a C1,1-cylindrical
domain. The parabolic Kato class is introduced in [26, 27], and is being proposed
as a natural generalization of the Kato class in the elliptic case. Our ideas of proofs
could be applied to other similar operators and our results imply their counterparts
in the elliptic setting. More precisely, we will consider the parabolic operator

L = ∂

∂t
− div(A(x, t)∇x) + B(x, t) · ∇x

on � = D × ]0, T [, where D is a bounded C1,1-domain in R
n, n � 1 and

0 < T < ∞. By a domain we mean an open connected set. The matrix A(x, t) =
(aij (x, t))1�i,j�n is assumed to be real, symmetric, and uniformly elliptic, i.e.,
(1/µ)‖ξ‖2 � 〈A(x, t)ξ, ξ 〉 � µ‖ξ‖2, for some µ � 1, all (x, t) ∈ � and all
ξ ∈ R

n, with µ-Lipschitz coefficients with respect to the parabolic distance, i.e.,
|aij (x, t) − aij (y, s)| � µ(|x − y| ∨ |t − s|1/2). The vector B(x, t) is assumed to
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be in the parabolic Kato class, i.e., B ∈ L1
loc(�) and satisfies limh→0 Nα

h (B) = 0,
where

Nα
h (B) ≡ sup

x,t

∫ t

t−h

∫
D

|B(y, s)|exp(−α
|x−y|2
t−s

)

(t − s)(n+1)/2
dy ds +

+ sup
y,s

∫ s+h

s

∫
D

|B(x, t)|exp(−α
|x−y|2

t−s
)

(t − s)(n+1)/2
dx dt

for some constant α > 0. Note that the parabolic Kato class depends on the para-
meter α. The choice of α will be fixed later. The existence and uniqueness of the
L-Green function G for the initial Dirichlet problem on � are shown in [26] using
an approximation argument and the standard theory in [3].

In Section 2, we are interested in the problem of bounding the L-Green function
G on �. With the help of some known results of parabolic equations, we have
proved lower and upper estimates for G which reveal its behavior especially near
the boundary. The proof is done in two steps. The first step is concerned with the
case B ≡ 0 and the second with the proof on its generality. As a consequence
we deduce that G is comparable to the Green functions of parabolic operators of
the form ∂/∂t − c�x . In Section 3, we derive lower and upper estimates for the
L-Poisson kernel on � which allow us to prove the equivalence of the L-parabolic
measure, the adjoint L-parabolic measure and the surface measure on the lateral
boundary of �. In Section 4, we apply the Green function estimates to prove the
counterpart results for the elliptic operator div(A(x)∇x) + B(x) · ∇x , with B only
in the elliptic Kato class Kn+1 on a bounded C1,1-domain.

To prove our main results we need to give a few more notations and recall some
known results. We call a bounded domain D in R

n, n � 2, a C1,1-domain if there
exist positive constants c0 and R0 such that for every z ∈ ∂D there exists a function
ψz : R

n−1 → R satisfying |∇ψz(x
′) − ∇ψz(y

′)| � c0|x ′ − y ′| for all x ′, y ′ ∈ R
n−1

and an orthonormal coordinate system CSz such that if y = (y ′, yn) in the CSz

coordinate, then

B(z, R0) ∩ D = B(z, R0) ∩ {y = (y ′, yn) : yn > ψz(y
′)}

and

B(z, R0) ∩ ∂D = B(z, R0) ∩ {y = (y ′, yn) : yn = ψz(y
′)}.

We will call c0 the C1,1-constant of D and R0 the localization radius of D.
It is well known that the bounded C1,1 domain D satisfies the uniform interior

and exterior ball condition: There exists r0 > 0 depending only on D such that
for any z ∈ ∂D, there exist two balls Bz

1 and Bz
2 of radius r0 such that Bz

1 ⊂ D,
Bz

2 ⊂ R
n \ D, and ∂Bz

1 ∩ ∂Bz
2 = {z} (see [4], p. 179, we may take r0 = R0

2 ∧ 1
c0

).
For x ∈ D, we denote by d(x) the Euclidian distance from x to the boundary of

D and d(D) the diameter of D. For r > 0 small, we let Dr = {ξ ∈ D : d(ξ) > r}.
Obviously for r ∈ ]0, r0], Dr is an open connected set.
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We will use �0 and G0 to denote, respectively, the fundamental solution and the
Green function on � of the unperturbed operator L0 = ∂/∂t − div(A(x, t)∇x). For
�0 and G0 we recall the well known estimates:

(i) Gaussian estimates:
1

k(t − s)n/2
exp

(
−|x − y|2

c(t − s)

)
� �0(x, t; y, s)

� k

(t − s)n/2
exp

(
−c

|x − y|2
t − s

)
,

for all x, y ∈ R
n and s < t , where k = k(n, µ) > 0 and c = c(n, µ) > 0 (see

[2, 3, 11]).
(ii) Estimate on the gradient of G0:

|∇xG0(x, t; y, s)| � k

(t − s)(n+1)/2
exp

(
−c

|x − y|2
t − s

)
,

for all x, y ∈ D and 0 � s < t � T , where k = k(n, µ, T , D) > 0 and
c = c(n, µ, D) > 0.

The inequality (ii) follows easily from the upper estimate in (i) and, depending on
whether or not d(x)2 � t − s, from the interior or boundary estimates for solutions
to parabolic equations given by Theorems 4.8 and 4.27 in [21]. It is the reason that
we require the Hölder continuity of A(x, t).

(iii) Rescaling property: For 0 < r � 1, let Ar(x, t) = A(rx, r2t) which is µ-
Lipschitz, Lr = ∂/∂t − div(Ar(x, t)∇x) and Gr the Lr -Green function on
�r = (r−1D) × ]0, r−2T [. Then

Gr(x, t; y, s) = rnG0(rx, r2t; ry, r2s)

for all x, y ∈ r−1D, 0 < s < t < r−2T .
(iv) Reproducing property: The L-Green function G on � satisfies:

G(x, t; y, s) =
∫

D

G(x, t; ξ, τ )G(ξ, τ ; y, s) dξ,

for all x, y ∈ D and s < τ < t ([3] and [26]).

Note that the constant c in the inequality (ii) does not depend on T because of the
inequality on D×]0, 1[ and the reproducing property. The choice of the Kato class
exponent α will be determined only by means of c.

For simplicity we will also use, when we need, for a > 0, the notation

�a(x, t; y, s) = 1

(t − s)n/2
exp

(
−a

|x − y|2
t − s

)
,

for all x, y ∈ R
n and t > s.
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( a
π
)n/2�a is the fundamental solution of the operator ∂

∂t
− 1

4a
�x on R

n × R and
so it satisfies the reproducing property.

2. Bounds for the Green Function G

The main result of this section is the following.

THEOREM 2.1. Let D be a bounded C1,1-domain in R
n and G the L-Green

function for the initial Dirichlet problem on D × ]0, T [, 0 < T < ∞. Then,
there exist positive constants k, c1 and c2 depending only on n, µ, T , r0, d(D) and
on B in terms of the rate of convergence of Nα

h (B) to zero as h → 0, such that

1

k
γc2(x, t; y, s) � G(x, t; y, s) � kγc1(x, t; y, s),

for all x, y ∈ D, 0 � s < t � T , where

γa(x, t; y, s) = min

(
1,

d(x)√
t − s

,
d(y)√
t − s

,
d(x)d(y)

t − s

)
exp(−a

|x−y|2
t−s

)

(t − s)n/2
.

Proof. By translation with respect to time, we may assume s = 0. We divide the
proof into two steps.

Step 1: B ≡ 0, i.e., L ≡ L0 and then G ≡ G0.
We first prove the upper bound. Let x, y ∈ D and t ∈ ]0, T [ be fixed. Since

G0(z, t; y, 0) = 0 for z ∈ ∂D then by the mean value inequality and (ii), we have

G0(x, t; y, 0) � d(x)|∇xG0(x̄, t; y, 0)|
� k

d(x)

t(n+1)/2
exp

(
−c

|x̄ − y|2
t

)
,

where |x̄ − x| � d(x).
By using the inequality

|x̄ − y|2 � 1

2
|x − y|2 − |x̄ − x|2 � 1

2
|x − y|2 − d2(x),

it follows that

G0(x, t; y, 0) � k
d(x)

t(n+1)/2
exp

(
−c

( |x − y|2
2t

− d2(x)

t

))
,

which yields

G0(x, t; y, 0) � k
d(x)

t(n+1)/2
exp

(
−c

2

|x − y|2
t

)
, (1)

for all x, y ∈ D, t ∈ ]0, T [ with 0 < d(x)/
√

t � 1.
We conclude the following cases:
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Case 1: 0 < d(x)/
√

t � 1 and d(y)/
√

t � 1.
The upper bound follows from (1).
Case 2: 0 < d(x)/

√
t � 1 and 0 < d(y)/

√
t � 1.

By the reproducing property (iv), the inequality (1), we have

G0(x, t; y, 0) =
∫

D

G0(x, t; ξ, t/2)G0(ξ, t/2; y, 0) dξ

� k2 d(x)d(y)

t

∫
D

�c/2(x, t; ξ, t/2)�c/2(ξ, t/2; y, 0) dξ

� k′ d(x)d(y)

t
�c/2(x, t; y, 0)

= k′ d(x)d(y)

tn/2+1
exp

(
−c

2

|x − y|2
t

)
.

Case 3: d(x)/
√

t � 1 and d(y)/
√

t � 1.
From the upper estimate in (i), we have

G0(x, t; y, 0) � �0(x, t; y, 0) � k

tn/2
exp

(
−c

|x − y|2
t

)

which completes the proof of the upper bound.
We next prove the lower bound.
We first note that by dividing ]0, T [ into intervals of length r2

0 and using the
reproducing property, it suffices to prove the lower estimate for t ∈ ]0, r2

0 ].
Case 1: d(x)/

√
t � 1 and d(y)/

√
t � 1.

Subcase 1: |x − y|/√t � 1/2.
Let G̃0 be the L0-Green function on B(x,

√
t) × ]0, T [ ⊂ �. From Lemma 5.1

in [11], there is a constant k = k(n, µ) > 0 such that

G0(x, t; y, 0) � G̃0(x, t; y, 0) � 1

ktn/2
.

Subcase 2: |x − y|/√t > 1/2.
Since D is a C1,1 bounded domain then we can easily show that there exists

λ0 � 1 depending only on D in terms of the ratio d(D)/r0 and a parameterized
curve l ⊂ D connecting x and y with length |l| � λ0|x − y| and d(l, ∂D) �

√
t .

Hence by following the proof of Theorem 2.7 in [11] and using Subcase 1, we
obtain

G0(x, t; y, 0) � 1

ktn/2
exp

(
−c′ |x − y|2

t

)
,

where k = k(n, µ) > 0 and c′ = c′(n, µ, d(D)/r0) > 0.
Case 2: 0 < d(x)/

√
t � 1 and d(y)/

√
t � 1.

A point x in R
n will be denoted by (x ′, xn), where x ′ ∈ R

n−1 and xn ∈ R.
Without loss of generality we may assume (0, 0) ∈ ∂D and let ψ(0,0) be the C1,1-
function which defines the boundary of D around (0, 0). By definition ∇x′ψ(0,0) is
c0-Lipschitz.
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Let V(0,0) = {x ∈ R
n : |x ′| < r0, |xn| < r0}.

Since for y ∈ D with d(y) > r0, G0(·,·; y, 0) is a positive L0-solution on
(D ∩ V(0,0))×]0, T [ vanishing on (∂D ∩ V(0,0))×]0, T [ then by Corollary 2.8 in
[15], there exists a constant k = k(n, µ, c0) > 0 such that

G0(x, r2
0 ; y, 0) � 1

k

d(x)

r0
G0((0, r0/2), r2

0/2; y, 0), (2)

for x ∈ D ∩ V(0,0) and y ∈ D with d(y) > r0.
From (2), Case 1 and the inequality

|(0, r0/2) − y|2 � 2|(0, r0/2) − x|2 + 2|x − y|2 � 9r2
0/2 + 2|x − y|2,

it follows that

G0(x, r2
0 ; y, 0) � 1

k′
d(x)

rn+1
0

exp

(
−2c′ |x − y|2

r2
0

)
, (3)

for x ∈ V(0,0) and y ∈ D with d(y) > r0.
Clearly, by a compactness argument, we obtain the inequality (3) for all x, y ∈

D with 0 < d(x) < r0 and d(y) > r0.
Since k′ = k′(n, µ, c0) and c′ = c′(n, µ, d(D)/r0), then by using the rescaling

property (iii) with r = √
t/r0 and taking into account that the C1,1-constant of

r−1D is equal to rc0 � c0, it follows that

G0(x, t; y, 0) � 1

k′
d(x)

t(n+1)/2
exp

(
−2c′ |x − y|2

t

)

for all x, y ∈ D, t ∈ ]0, r2
0 ] with 0 < d(x) <

√
t and d(y) >

√
t .

Case 3: 0 < d(x)/
√

t � 1 and 0 < d(y)/
√

t � 1.
We know that there exists exactly one point y0 ∈ ∂D with y = y0 + d(y)ny0

where ny0 is the unique inner normal at y0 with |ny0 | = 1. Put z0 = y0 + 3
2

√
tny0 .

We have B(z0,
√

t/2) ⊂ B
y0
1 ⊂ D and so B(z0,

√
t/2) ⊂ D√

t/2. Hence from the
reproducing property (iv), Case 2 and the inequality |x−ξ |2 � 2|x−y|2+2|y−ξ |2,
we have

G0(x, t; y, 0)

�
∫

D√
t/2

G0(x, t; ξ, t/2)G0(ξ, t/2; y, 0) dξ

� 1

k2

d(x)d(y)

tn+1

∫
D√

t/2

exp

(
−2c′

( |x − ξ |2 + |y − ξ |2
t

))
dξ

� 1

k2

d(x)d(y)

tn+1
exp

(
−4c′ |x − y|2

t

)∫
B(z0,

√
t/2)

exp

(
−6c′ |y − ξ |2

t

)
dξ

� 1

k2

d(x)d(y)

tn+1
exp

(
−4c′ |x − y|2

t

)
exp(−24c′)

∫
B(z0,

√
t/2)

dξ

= 1

k′
d(x)d(y)

tn/2+1
exp

(
−4c′ |x − y|2

t

)
.
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It follows that

G0(x, t; y, 0) � 1

k′
d(x)d(y)

tn/2+1
exp

(
−4c′ |x − y|2

t

)
,

for all x, y ∈ D and t ∈ ]0, r2
0 ], satisfying 0 < d(x)/

√
t � 1 and 0 < d(y)/

√
t � 1.

Step 2: General case: B ∈ Kato class.
In order to prove the estimates in this case we need the following lemmas.

LEMMA 2.2 (see [27]). For b > a > 0 and α = min(b − a, a/2), there exists a
constant Ca,b > 0 depending only on a and b such that for 0 < t � h, we have

(1)

∫ t

0

∫
Rn

exp(−a
|x−z|2
t−τ

)

(t − τ)n/2
|B(z, τ )|exp(−b

|z−y|2
τ

)

τ (n+1)/2
dz dτ

� Ca,bN
α
h (B)

exp(−a
|x−y|2

t
)

tn/2
,

(2)

∫ t

0

∫
Rn

exp(−a
|x−z|2
t−τ

)

(t − τ)(n+1)/2
|B(z, τ )|exp(−b

|z−y|2
τ

)

τ (n+1)/2
dz dτ

� Ca,bN
α
h (B)

exp(−a
|x−y|2

t
)

t (n+1)/2
.

LEMMA 2.3. There exists a constant k > 0 depending only on n, µ, T and D

such that

|∇zG0(z, τ ; y, 0)| � k min

(
1,

d(y)√
τ

)
exp(− c

2
|z−y|2

τ
)

τ (n+1)/2
,

for all y, z ∈ D and τ ∈ ]0, T [.
Proof. From the reproducing property (iv), and the inequalities (i) and (ii), we

have

|∇zG0(z, τ ; y, 0)| �
∫

D

|∇zG0(z, τ ; ξ, τ/2)|G0(ξ, τ/2; y, 0) dξ

� 2k2
∫

D

1

τ 1/2
�c(z, τ ; ξ, τ/2)

d(y)

τ 1/2
�c/2(ξ, τ/2; y, 0) dξ

� k′ d(y)

τ
�c/2(z, τ ; y, 0)

= k′d(y)
exp(− c

2
|z−y|2

τ
)

τ n/2+1
.

Combining the last inequality and (ii), we obtain the inequality given in the
lemma. �
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Now we are ready to prove the estimates of Theorem 2.1. By dividing ]0, T [ into
intervals of length h and using the reproducing property it suffices to prove the
estimates for t ∈ ]0, h], where h is a small positive number. From [26] we know
that G satisfies the integral equation:

G(x, t; y, 0)

= G0(x, t; y, 0) −
∫ t

0

∫
D

G(x, t; z, τ )B(z, τ )∇zG0(z, τ ; y, 0) dz dτ

≡ G0(x, t; y, 0) − G ∗ (B∇G0)(x, t; y, 0)

for all x, y ∈ D and 0 < t < T .
By iteration we obtain

G(x, t; y, 0) =
+∞∑
m=0

G0 ∗ (−B∇G0)
∗m(x, t; y, 0) ≡

+∞∑
m=0

Jm(x, t; y, 0). (4)

We will show by recurrence that there exists a constant k′ > 0 such that

|Jm(x, t; y, 0)| � k
(
k′Nc/8

h (B)
)m

γc/4(x, t; y, 0), (5)

for all x, y ∈ D and 0 < t � h.
In view of the formula Jm+1 = Jm∗(−B∇G0) with J0 = G0 � kγc/4 by Step 1,

it is sufficient to prove that γc/4 ∗ |B∇G0| � k′Nc/8
h (B)γc/4.

We have

γc/4 ∗ |B∇G0|(x, t; y, 0)

=
∫ t

0

∫
D

γc/4(x, t; z, τ )|B(z, τ )||∇zG0(z, τ ; y, 0)| dz dτ

=
∫ t/2

0

∫
D

. . . dz dτ +
∫ t

t/2

∫
D

. . . dz dτ

≡ I1 + I2. (6)

By Lemma 2.3, we have

I1(x, t; y, 0)

� k

∫ t/2

0

∫
D

min

(
1,

d(x)√
t − τ

)
min

(
1,

d(z)√
t − τ

)
exp(− c

4
|x−z|2
t−τ

)

(t − τ)n/2
×

× |B(z, τ )| min

(
1,

d(y)√
τ

)
exp(− c

2
|z−y|2

τ
)

τ (n+1)/2
dz dτ. (7)

On the other hand by using the inequality d(z) � d(y) + |z − y|, we have

min

(
1,

d(z)√
t − τ

)
� min

(
1,

d(z)

d(y)

d(y)√
t − τ

)
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� min

(
1,

(
1 + |z − y|

d(y)

)
d(y)√
t − τ

)

�
(

1 + |z − y|
d(y)

)
min

(
1,

d(y)√
t − τ

)
,

which yields

min

(
1,

d(z)√
t − τ

)
min

(
1,

d(y)√
τ

)
�

(
1 + |z − y|√

τ

)
min

(
1,

d(y)√
t − τ

)
. (8)

Combining (7) and (8), using the inequality (1 + θ)e− c
8 θ2 � 1 + ( 2

c
)1/2 and (1) of

Lemma 2.2, we obtain

I1(x, t; y, 0) � k

∫ t/2

0

∫
D

min

(
1,

d(x)√
t − τ

)
×

× min

(
1,

d(y)√
t − τ

)
exp(− c

4
|x−z|2
t−τ

)

(t − τ)n/2
×

× |B(z, τ )|
(

1 + |z − y|√
τ

)
exp(− c

2
|z−y|2

τ
)

τ (n+1)/2
dz dτ

� 2k

(
1 +

(
2

c

)1/2)
min

(
1,

d(x)√
t

)
min

(
1,

d(y)√
t

)
×

×
∫ t/2

0

∫
D

exp(− c
4

|x−z|2
t−τ

)

(t − τ)n/2
|B(z, τ )|exp(− 3c

8
|z−y|2

τ
)

τ (n+1)/2
dz dτ

� 2k

(
1 +

(
2

c

)1/2)
CN

c/8
h (B)γc/4(x, t; y, 0), (9)

for x, y ∈ D and 0 < t � h.
Now we estimate I2. From Lemma 2.3 and (2) of Lemma 2.2, we have

I2(x, t; y, 0) =
∫ t

t/2

∫
D

γc/4(x, t; z, τ )|B(z, τ )||∇zG0(z, τ ; y, 0)| dz dτ

� k

∫ t

t/2

∫
D

min

(
1,

d(x)√
t − τ

)
exp(− c

4
|x−z|2
t−τ

)

(t − τ)n/2
×

× |B(z, τ )| min

(
1,

d(y)√
τ

)
exp(− c

2
|z−y|2

τ
)

τ (n+1)/2
dz dτ

� 2k min

(
1,

d(x)√
t

)
min

(
1,

d(y)√
t

)√
t ×

×
∫ t

t/2

∫
D

exp(− c
4

|x−z|2
t−τ

)

(t − τ)(n+1)/2
|B(z, τ )|exp(− c

2
|z−y|2

τ
)

τ (n+1)/2
dz dτ

� 2kCN
c/8
h (B)γc/4(x, t; y, 0), (10)
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for x, y ∈ D and 0 < t � h.
Combining (6), (9) and (10), we then have

γc/4 ∗ |B∇G0|(x, t; y, 0) � kk′Nc/8
h (B)γc/4(x, t; y, 0),

for x, y ∈ D and 0 < t � h.
By going back to (4) and (5) and choosing h sufficiently small so that k′Nc/8

h (B)

� 1/2, we obtain

G(x, t; y, 0) � 2kγc/4(x, t; y, 0),

for all x, y ∈ D and 0 < t � h.
We next prove the lower bound. From (4), we have

G(x, t; y, 0) − G0(x, t; y, 0) =
+∞∑
m=1

Jm(x, t; y, 0),

and then by (5), it follows that

|G(x, t; y, 0) − G0(x, t; y, 0)| � kk′Nc/8
h (B)γc/4(x, t; y, 0),

for x, y ∈ D and 0 < t � h.
By recalling that G0 � 1

k
γc2 , we deduce

G(x, t; y, 0) � min

(
1,

d(x)√
t

,
d(y)√

t
,
d(x)d(y)

t

)
1

tn/2
×

×
[

1

k
exp

(
−c2

|x − y|2
t

)
− kk′Nc/8

h (B)

]

for all x, y ∈ D and 0 < t � h.
Then, for h so small that k2k′ec2N

c/8
h (B) � 1/2, we obtain

G(x, t; y, 0) � e−c2

2k
min

(
1,

d(x)√
t

,
d(y)√

t
,
d(x)d(y)

t

)
1

tn/2
, (11)

for all x, y ∈ D and 0 < t � h with |x − y|2/t � 1.
Now, to prove the lower bound we first consider x, y ∈ D√

t . By following the
proof of Theorem 2.7 in [11] and using (11), we obtain the existence of a constant
c′ = c′(n, µ, r0, d(D)) > 0 such that

G(x, t; y, 0) � e−c2

2ktn/2
exp

(
−c′ |x − y|2

t

)
, (12)

for all x, y ∈ D and 0 < t � h.
For the general case, when x, y are arbitrary inside D, let x0, y0 ∈ D√

t such
that |x − x0| �

√
t and |y − y0| �

√
t .
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From (11) and (12), we have

G(x, t; y, 0) �
∫

B(x0,
√

t/2)

∫
B(y0,

√
t/2)

G
(
x, t; ξ1,

2t

3

)
×

× G
(
ξ1,

2t

3
; ξ2,

t

3

)
G

(
ξ2,

t

3
; y, 0

)
dξ1 dξ2

� 1

kt3n/2
min

(
1,

d(x)√
t

)
min

(
1,

d(y)√
t

)
×

×
∫

B(x0,
√

t/2)

∫
B(y0,

√
t/2)

exp

(
−c′ |ξ1 − ξ2|2

t

)
dξ1 dξ2.

Since

|ξ1 − ξ2|2 � (|ξ1 − x| + |x − y| + |y − ξ2|)2

� (3
√

t + |x − y|)2 � 18t + 2|x − y|2,
then, we obtain

G(x, t; y, 0)

� 1

k

(√
t

2

)2n

w2
n min

(
1,

d(x)√
t

,
d(y)√

t
,
d(x)d(y)

t

)
exp(−2c′ |x−y|2

t
)

t3n/2

= 1

k′ γ2c′(x, t; y, 0),

for all x, y ∈ D and 0 < t � h, which ends the proof. �
The following is a simple consequence of Theorem 2.1.

COROLLARY 2.4. There exists a constant k′ > 0 depending only on n, µ, T , D

and on B in terms of the rate of convergence of N
c/8
h (B) to zero as h → 0 such

that

1

k′ Gc1/c2 � G � k′Gc2/c1,

where for a > 0, Ga denotes the Green function of ∂
∂t

− a�x on �.

We also deduce the following estimate on the gradient.

COROLLARY 2.5. There exists a constant k′ > 0 depending only on n, µ, T , D

and on B in terms of the rate of convergence of N
c/8
h (B) to zero as h → 0 such

that

|∇xG(x, t; y, s)| � k min

(
1,

d(y)√
t − s

)
exp(− c1

2
|x−y|2

t−s
)

(t − s)(n+1)/2
,

for all x, y ∈ D and 0 < s < t < T .
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Proof. The estimate follows immediately from the equality

∇xG(x, t; y, 0) =
+∞∑
m=0

∇xG0 ∗ (−B∇G0)
∗m(x, t; y, 0),

by using (ii), (2) of Lemma 2.2, the inequality G � kγc1 and the argument given in
Lemma 2.3. �
REMARKS 2.6. (1) From the proof we can see that the constants c1 and c2 which
occur in Theorem 2.1 depend only on n, µ, r0, d(D) and do not depend on T and
B in any way. The independence on T is also clear from the estimates on D×]0, 1[
and the reproducing property.

(2) Since A is C0,1 with respect to the space variables, we can also write L in
the non-divergence form:

L = ∂

∂t
−

n∑
i,j=1

aij (x, t)
∂2

∂xi∂xj

+ (B + B ′)(x, t) · ∇x,

where B ′ = (B ′
1, . . . , B

′
n) with B ′

j = − ∑n
i=1

∂aij

∂xi
∈ L∞(�).

From this observation we see that the estimates on the Green function are valid
for the operators in the non-divergence form as well.

(3) Although the adjoint operator L∗ = − ∂
∂t

−div(A(x, t)∇x)−div(B(x, t).) has
a different structure, by symmetry with respect to x and y, the estimates in Theorem
2.1 are also valid for the L∗-Green function G∗(x, t; y, s) = G(y, s; x, t).

(4) When the domain D is only Lipschitz, Theorem 2.1 may fail to hold. This
is clear from the following example. Let

D = {x = (x1, x2) ∈ R
2 : 0 < x1 < 1, 0 < x2 < x1}.

Fix y ∈ D and let V = D ∩ B(0, r) with y does not belong to B(0, r). Consider
the parabolic operators

L1 = ∂

∂t
− �x, L2 = ∂

∂t
−

(
∂2

∂x2
1

+ ∂2

∂x1∂x2
+ ∂2

∂x2
2

)
,

and the functions

u1(x) = x3
1x2 − x1x

3
2 , u2(x) = x2

1x2 − x1x
2
2 .

The function ui is a positive Li-solution on � = D × (0, ∞) for i = 1, 2. Let
Gi denote the Li-Green function on � for i = 1, 2. From the local comparison
theorem (Theorem 1.6 in [12] or Theorem 1.4 in [15]), it follows that there exist
two positive constants k1 and k2 such that, for t > 0 and r small be fixed, we have

1

k1
� u1(x, t)

G1(x, t; y, 0)
� k1, for all x ∈ V,
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1

k2
� u2(x, t)

G2(x, t; y, 0)
� k2, for all x ∈ V.

Therefore

1

k
� u2(x, t)

u1(x, t)

G1(x, t; y, 0)

G2(x, t; y, 0)
� k, for all x ∈ V.

Suppose that the estimates of Theorem 2.1 are true, then

1

k′ exp

(
−c′ |x − y|2

t

)
� G1(x, t; y, 0)

G2(x, t; y, 0)
� k′ exp

(
c′ |x − y|2

t

)
,

for all x ∈ D.

The previous two-sided inequalities now imply that u2/u1 is bounded near zero,
which is a contradiction.

(5) In general, the estimates of Theorem 2.1 are not global in time. This is clear
from the following simple example. Consider L = ∂/∂t − �x − u · ∇x , where
u ∈ R

n be fixed and � = B(0, 1) × (0, ∞). Denote by G the L-Green function
on �. The L-fundamental solution is given by

�(x, t; y, 0) = 1

(4πt)n/2
exp

(
−|x − y + tu|2

4t

)

for all x, y ∈ R
n and t > 0.

Suppose that there is a time global lower bound; then by recalling that G � �,
it follows that

1

k
min

(
1,

d(x)√
t

)
min

(
1,

d(y)√
t

)
exp(−c2

|x−y|2
t

s)

tn/2
� �(x, t; y, 0)

for all t > 0 and x, y ∈ B(0, 1).
If we choose u, x, y such that x = y �= 0 and |u| = 1, then we find

min

(
1,

d2(x)

t

)
� k exp

(
− t

4

)

for all t > 0, which is a contradiction.

3. Estimates of the Poisson Kernel and Parabolic Measures

Let L be the parabolic operator introduced in Section 1 on the cylinder �. We will
prove the equivalence of the L-parabolic measure, the L∗-parabolic measure and
the surface measure on the lateral boundary ∂D × ]0, T [ of �. In particular, we
present a simple proof based on the Green function estimates (Theorem 2.1). We
first introduce the definition of the L-parabolic measure. From [9] and a limiting
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argument given in [26], for any ϕ ∈ C(∂p�), there exists a unique solution u = H�
ϕ

of the Dirichlet problem Lu = 0 on � and u/∂p� = ϕ. For all M ∈ �, the map
ϕ → H�

ϕ (M) is a linear positive continuous functional on C(∂p�) and so by the
Riesz representation theorem there exists a unique Borel measure µM on ∂p� such
that

H�
ϕ (M) =

∫
∂p�

ϕ(ξ) dµM(ξ).

µM will be called the L-parabolic measure at M . The L∗-parabolic measure µ∗
M at

M is defined in a similar way. To establish our main result, we first prove a two-
sided estimate for the L-Martin–Poisson kernel P . The existence and uniqueness
of the L-Martin–Poisson kernel on � hold by using the Green function bounds
(Theorem 2.1), the Harnack inequality (Theorem 1.1 in [26]) and by closely fol-
lowing the arguments in [23] (for all details we refer the reader to [23]). We have
the following.

THEOREM 3.1. The L-Poisson kernel P on � satisfies the following estimates:
there exists a constant k > 0 depending only on n, µ, D, T and on B in terms of
the rate of convergence of N

c/8
h (B) to zero as h → 0, such that

1

k
min

(
1,

d(x)√
t − s

)
exp(−c2

|x−Q|2
t−s

)

(t − s)(n+1)/2

� P(x, t;Q, s) � k min

(
1,

d(x)√
t − s

)
exp(−c1

|x−Q|2
t−s

)

(t − s)(n+1)/2
,

for all x ∈ D, Q ∈ ∂D, 0 � s < t � T .
Proof. Since � is of C1,1-boundary then by the divergence theorem we have,

for all x ∈ D, Q ∈ ∂D and 0 � s < t � T ,

P(x, t;Q, s) = ∂G

∂N(Q,s)

(x, t;Q, s),

where N(Q,s) = A(Q, s)nQ with nQ is the unit inner normal to ∂D at Q.
We write

N(Q,s) = T(Q,s) + a(Q, s)nQ,

where T(Q,s) is a tangential vector field to ∂D at Q. Therefore

∂G

∂N(Q,s)

(x, t;Q, s) = ∂G

∂T(Q,s)

(x, t;Q, s) + a(Q, s)
∂G

∂nQ

(x, t;Q, s).

Since G(x, t; ·, s) = 0 on ∂D, then

∂G

∂T(Q,s)

(x, t;Q, s) ≡ ∂

∂T(Q,s)

(G(x, t; ·, s))(Q) = 0,
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and so

P(x, t;Q, s) = a(Q, s)
∂G

∂nQ

(x, t;Q, s)

≡ a(Q, s) lim
r→0+

G(x, t;Q + rnQ, s)

r
. (13)

For r > 0 small we have d(Q + rnQ) = r and so from the estimates in Theo-
rem 2.1, it follows that,

1

k
min

(
1,

d(x)√
t − s

)
exp(−c2

|x−Q−rnQ|2
t−s

)

(t − s)(n+1)/2

� G(x, t;Q + rnQ, s)

r

� k min

(
1,

d(x)√
t − s

)
exp(−c1

|x−Q−rnQ|2
t−s

)

(t − s)(n+1)/2
. (14)

By noting that 1/µ � a(Q, s) = 〈N(Q,s), nQ〉 � µ, combining (13) and (14) and
letting r to zero, we get the estimates stated in Theorem 3.1. �
For (Q, s) ∈ R

n × R and r > 0, let Tr(Q, s) be the cylinder

Tr(Q, s) ={
(x, t) ∈ R

n × R : |x − Q| < r, |t − s| < r2
}
.

Let σ be the surface measure on the lateral boundary ∂D ×]0, T [ of �. We deduce
the following result.

COROLLARY 3.2. Let (Q0, s0) ∈ ∂D × ]0, T [ such that M0 = (Q0, s0) +
(r0nQ0, 2r2

0 ) ∈ �, M∗
0 = (Q0, s0) + (r0nQ0, −2r2

0 ) ∈ � and set F =
(∂D × ]0, T [) ∩ Tr0(Q0, s0). Then there exists a constant k > 0 depending only on
n, µ, r0, d(D), T and on B in terms of the rate of convergence of N

c/8
h (B) to zero

as h → 0, such that

1

k
σ/F � µM0/F � kσ/F and

1

k
σ/F � µ∗

M∗
0 /F

� kσ/F .

Proof. For any nonnegative continuous function f : ∂D × ]0, T [ → R, the
potential

u(x, t) =
∫ t

0

∫
∂D

P (x, t;Q, s)f (Q, s) dσ(Q, s)

represents the L-solution of the Dirichlet problem with boundary data f on
∂D×]0, T [ and zero on D × {0}.
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Set M0 = (x0, t0) ≡ (Q0, s0) + (r0nQ0, 2r2
0 ). By the estimates on the Poisson

kernel in Theorem 3.1, for any Borel subset A ⊂ F , we then have

µM0(A) =
∫∫

A

P (x0, t0;Q, s) dσ(Q, s)

� k

∫∫
A

exp(−c1
|x0−Q|2

t0−s
)

(t0 − s)(n+1)/2
dσ(Q, s)

� k

rn+1
0

σ(A).

On the other hand, we have

µM0(A) =
∫∫

A

P (x0, t0;Q, s) dσ(Q, s)

� 1

k

∫∫
A

min

(
1,

d(x0)√
t0 − s

)exp(−c2
|x0−Q|2

t0−s
)

(t0 − s)(n+1)/2
dσ(Q, s).

Since by the assumptions

|x0 − Q|2
t0 − s

� (|x0 − Q0| + |Q0 − Q|)2

t0 − s
� (2r0)

2

r2
0

= 4

and

d(x0)√
t0 − s

� r0√
2r2

0

= 1√
2
,

then it follows that

µM0(A) � 1

k(2r0)n+1

e−4c2

√
2

σ(A).

In a similar way we prove that

1

k
σ/F � µ∗

M∗
0 /F

� kσ/F . �
REMARK 3.3. Since the operator L could be written in the non-divergence form
as is stated in Remark 2.6(2), then the previous results are also valid for such
operators. The concept of parabolic measures in the non-divergence form case is
introduced by Garofalo in [13] using an elementary barrier technique.

4. Applications to the Elliptic Operators

In this section we apply the estimates in Theorem 2.1 to obtain the counterpart
results for the elliptic operator L = div(A(x)∇x)+B(x) · ∇x on the C1,1-bounded
domain D in R

n, n � 3 with matrix A(x) = (aij (x))1�i,j�n uniformly elliptic
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and µ-Lipschitz continuous, and vector B = B(x) in the elliptic Kato class, i.e.,
B ∈ L1

loc(D) and satisfies

lim
r→0

sup
x∈D

∫
D∩(|x−y|<r)

|B(y)|
|x − y|n−1

dy = 0.

We point out that ‖B‖ ≡ supx∈D

∫
D

|B(y)|
|x−y|n−1 dy < ∞. Let g denotes the L-Green

function on D. We have the following estimates.

THEOREM 4.1. Let B in the elliptic Kato class with ‖B‖ � C0, for some suitable
constant C0. Then, there exists a constant k > 0 depending only on n, µ, r0, d(D)

and ‖B‖ such that

1

k|x − y|n−2
ϕ(x, y) � g(x, y) � k

|x − y|n−2
ϕ(x, y),

for all x, y ∈ D, where ϕ(x, y) = min(1, d(x)

|x−y| ,
d(y)

|x−y| ,
d(x)d(y)

|x−y|2 ).
Proof. Let L = ∂/∂t − div(A(x)∇x) − B(x) · ∇x and G its Green function on

D × (0, ∞). Then g(x, y) = ∫ ∞
0 G(x, t; y, 0) dt .

By integrating with respect to time the lower bound in Theorem 2.1, we obtain

1

k

∫ 1

0
min

(
1,

d(x)√
t

,
d(y)√

t
,
d(x)d(y)

t

)
exp(−c2

|x−y|2
t

)

tn/2
dt � g(x, y).

Making the change of variable r = |x − y|2/t , it follows that

1

k|x − y|n−2

∫ ∞

|x−y|2
min

(
1,

r1/2d(x)

|x − y| ,
r1/2d(y)

|x − y| , r
d(x)d(y)

|x − y|2
)

rn/2−2e−c2r dr

� g(x, y).

This implies

1

k|x − y|n−2
ϕ(x, y)

∫ ∞

d(D)2
rn/2−2e−c2r dr � g(x, y),

and so

1

k′|x − y|n−2
ϕ(x, y) � g(x, y)

for all x, y ∈ D, where k′ = k′(n, µ, r0, d(D)) > 0, which proves the lower
bound.

On the other hand from the reproducing property (iv), the upper bound in The-
orem 2.1 and the global upper bound in Corollary 1.1 of [27], we have for all
t > 1,
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G(x, t; y, 0) =
∫

D

G(x, t; ξ, t − 1)G(ξ, t − 1; y, 0) dξ

=
∫

D

G(x, 1; ξ, 0)G(ξ, t − 1; y, 0) dξ

�
∫

D

k1d(x)�c1(x, 1; ξ, 0)k�c(ξ, t − 1; y, 0) dξ

= k1kd(x)

∫
D

�c1(x, t; ξ, t − 1)�c(ξ, t − 1; y, 0) dξ

� k′d(x)�c1(x, t; y, 0),

where k′ is independent of t .
Using again the reproducing property, we also obtain

G(x, t; y, 0) � k′d(x)d(y)
exp(−c1

|x−y|2
t

)

tn/2
.

Then, we have, for all t > 1,

G(x, t; y, 0) � k′ min(1, d(x), d(y), d(x)d(y))
exp(−c1

|x−y|2
t

)

tn/2
. (15)

From (15) and the upper bound in Theorem 2.1, we have

g(x, y)

� k

∫ 1

0
min

(
1,

d(x)√
t

,
d(y)√

t
,
d(x)d(y)

t

)
exp(−c1

|x−y|2
t

)

tn/2
dt +

+ k′ min(1, d(x), d(y), d(x)d(y))

∫ ∞

1

exp(−c1
|x−y|2

t
)

tn/2
dt

= k

|x − y|n−2

∫ ∞

|x−y|2
min

(
1,

r1/2d(x)

|x − y| ,
r1/2d(y)

|x − y| ,
rd(x)d(y)

|x − y|2
)

rn/2−2e−c1r dr +

+ k′ min(1, d(x), d(y), d(x)d(y))

∫ ∞

1

exp(−c1
|x−y|2

t
)

tn/2
dt

� k

∫ ∞

0
e− c1

2 r dr
1

|x − y|n−2
ϕ(x, y) +

+ k′ min(1, d(x), d(y), d(x)d(y))
1

|x − y|n−2

� k"

|x − y|n−2
ϕ(x, y),

which proves the upper bound. �
REMARK 4.2. The same upper estimate was first proved by Widman in [24]
for the Laplacian Green function on Liapunov–Dini domains and later extended
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by Grüter and Widman in [14] to elliptic operator in divergence form with Dini
continuous coefficients. The lower estimate was first proved by Zhao in [28] for
the Laplacian Green function on bounded C1,1-domains and extended by Hueber
in [17] to elliptic operators with bounded Hölder continuous coefficients.

Let p denotes the L-Poisson kernel on D. From Theorem 4.1 we derive the fol-
lowing estimates for p.

COROLLARY 4.3. Let B in the elliptic Kato class with ‖B‖ � C0, for some
suitable constant C0. Then, there exists a constant k > 0 depending only on n, µ,
r0, d(D) and ‖B‖ such that

1

k

d(x)

|x − Q|n � p(x, Q) � k
d(x)

|x − Q|n ,

for all x ∈ D and Q ∈ ∂D.
Proof. As in the proof of Theorem 3.1, the estimates hold by using that

p(x, Q) = a(Q)
∂g

∂nQ

(x, Q) ≡ a(Q) lim
r→0+

g(x, Q + rnQ)

r
,

where 1/µ � a(Q) = 〈A(Q)nQ, nQ〉 � µ and the estimates in Theorem 4.1. �
For x ∈ D let mx (resp. m∗

x) denotes the L (resp. L∗)-harmonic measure at x on
∂D and σ the surface measure on ∂D. We have the following.

COROLLARY 4.4. Let B in the elliptic Kato class with ‖B‖ � C0, for some
suitable constant C0. Then, the measures mx , m∗

x and σ are equivalent on ∂D.
Proof. For any Borel subset A ⊂ ∂D, we have

mx(A) =
∫

A

p(x, Q) dσ(Q)

and so by Corollary 4.3, it follows that

1

k

d(x)

d(D)n
σ (A) � mx(A) � k

d(x)n−1
σ(A).

The same inequalities hold for m∗
x . �
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