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1. Introduction

In this paper we prove existence and regularity of distributional solutions in an
appropriate function space for nonlinear anisotropic elliptic equations. A prototype
example is

−
N∑

�=1

∂

∂xl

(
βl(x)

∣∣∣∣
∂u

∂xl

∣∣∣∣
pl−2

∂u

∂xl

)
− div g(u) + |u|s−1u = f in R

N, (1.1)

where N � 2, each βl : R
N → R is a strictly positive and bounded function;

g = (g1, . . . , gN) is a continuous vector field with components that grow like
|u|s−η for s > 1 and some η ∈ (1, s); and f is locally integrable. We also prove
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corresponding results for nonlinear anisotropic parabolic equations. For (1.1) we
assume that the exponents p1, . . . , pN and s are restricted as follows:






p < N,
1

p
= 1

N

N∑

l=1

1

pl

,

pl > 1 and
p(N − 1)

N(p − 1)
< pl <

p(N − 1)

N − p
, l = 1, . . . , N,

s > pl, l = 1, . . . , N.

(1.2)

We recall that for isotropic elliptic equations with pl = 2 for l = 1, . . . , N and
s > 1, and no advection field, existence and uniqueness results for distributional
solutions are proved in [7]. In the isotropic case with pl = p > 2 − 1/N for
l = 1, . . . , N and s > p − 1, still with no advection field, existence and regularity
results for distributional solutions are proved in [5]. The corresponding results for
isotropic parabolic equations are developed in [6].

Compared to [5, 6], the main feature of of the present paper is the combination
of an anisotropic diffusion operator, nonlinear advection and lower-order terms,
a locally integrable right-hand side f , and an unbounded domain. In the case of
the Dirichlet problem on a bounded domain, existence and regularity results for
distributional solutions with L1-data have been obtained in [4, 11] for a class of
anisotropic elliptic and parabolic equations. For an anisotropic parabolic reaction–
diffusion–advection system with a zero-flux boundary condition, still on a bounded
domain, similar results are established in [2].

Our main purpose is to prove the existence of at least one function u ∈ Ls
loc(R

N)

that possesses the regularity

u ∈
N⋂

l=1

W
1,ql

loc (RN), 1 � ql <
N(p − 1)

p(N − 1)
pl, (1.3)

where p is defined in (1.2), and solves (1.1) in the distributional sense. The aniso-
tropic Sobolev spaces appearing in (1.3) are defined in the next section. Observe
that (1.2) implies p > 2 − 1/N and thus N(p−1)

p(N−1)
pl > 1, which is in accor-

dance with the “isotropic” theory [5]. On the other hand, the condition s > pl

in (1.2) is stronger than in [5]. This is a consequence of the anisotropic Sobolev
inequality [17] that we have at our disposal here.

As in [5, 6], the strategy of an existence proof consist of deriving “good” a
priori estimates for suitable approximate solutions (uε)0<ε<1 (to which the standard
variational framework applies) and passing to the limit as ε → 0. There are two
difficulties associated with this strategy. In view of the assumption that f is only
locally integrable on R

N , the first difficulty is to obtain suitable local a priori esti-
mates on uε and the partial derivatives ∂uε/∂xl , l = 1, . . . , N , that are independent
of ε. The second difficulty lies in passing to the limit in the nonlinear vector field
A(x, ∇uε) + g(uε) and the nonlinear term |uε|s−1uε.
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The remaining part of the paper is organized as follows: In Section 2 we recall
some basic notations and a Sobolev inequality for anisotropic Sobolev spaces. In
addition, we prove an “interpolation” lemma that will be used later to obtain local a
priori estimates. Our main “elliptic” results are stated in Section 3, while the proofs
are given in Section 4. In Section 5 we briefly discuss the Dirichlet problem on a
bounded domain. Finally, we convert our “elliptic” results to “parabolic” results in
Section 6.

2. Anisotropic Sobolev Spaces and a Technical Lemma

We start by recalling the notion of anisotropic Sobolev spaces. These spaces were
introduced and studied by Nikol’skiı̆ [14], Slobodeckiı̆ [16], and Troisi [17], and
later by Trudinger [18] in the framework of Orlicz spaces.

Let � be a bounded domain in R
N with Lipschitz boundary ∂�. Let p1, . . . , pN

be N real numbers with pl � 1, l = 1, . . . , N . With a slight abuse of the notation,
we introduce the anisotropic Sobolev space

W 1,pl (�) =
{
u ∈ Lpl (�) : ∂u

∂xl

∈ Lpl (�)

}
,

which is a Banach space under the norm

‖u‖W 1,pl (�) = ‖u‖Lpl (�) +
∥∥∥∥

∂u

∂xl

∥∥∥∥
Lpl (�)

,

for l = 1, . . . , N .
Let us recall the anisotropic Sobolev imbedding theorem due to Troisi [17] (see

also [1]).

THEOREM 2.1. Let Q be a cube of R
N with faces parallel to the coordinate

planes. Suppose u ∈ ⋂N
l=1 W 1,pl (Q), and set

1

p
= 1

N

N∑

l=1

1

pl

, r =




p� := Np

N − p
, if p� < N,

any number from [1, ∞), if p� � N .

Then there exists a constant C, depending on N , p1, . . . , pN if p < N and also on
r and meas(Q) if p � N , such that

‖u‖Lr(Q) � C

N∏

l=1

[∥∥∥∥
∂u

∂xl

∥∥∥∥
Lpl (Q)

+ ‖u‖Lpl (Q)

]1/N

. (2.1)

Theorem 2.1 is used to prove the “interpolation” lemma below, which is a technical
result we will use later to obtain a priori estimates. A similar result is found in [4]
with W 1,pl (Q) replaced by W

1,pl

0 (�) in the case of a Dirichlet boundary condition.
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LEMMA 2.2. Let Q be a cube of R
N with faces parallel to the coordinate planes

and (uε)0<ε�1 be a sequence in
⋂N

l=1 W 1,pl (Q) with p � N . Suppose that there
exists a constant c, independent of ε, such that

‖uε‖Lpl (Q) � c, l = 1, . . . , N, (2.2)

and

sup
γ>0

N∑

l=1

∫

Bγ

∣∣∣∣
∂uε

∂xl

∣∣∣∣
pl

dx � c, (2.3)

where Bγ = {x ∈ Q : γ � |uε| � γ + 1} f or γ > 0, or

N∑

l=1

∫

Q

| ∂uε

∂xl
|pl

(1 + |uε|)γ
dx � c. (2.4)

Then for every ql such that

1 � ql <
N(p − 1)

p(N − 1)
pl, (2.5)

there exists a constant C, depending on Q, N , p1, . . . , pN , q1, . . . , qN , and c, but
not ε, such that

∥∥∥∥
∂uε

∂xl

∥∥∥∥
Lql (Q)

� C, l = 1, . . . , N, (2.6)

and

‖uε‖Lq(Q) � C,
1

q
= 1

N

N∑

l=1

1

ql

. (2.7)

Proof. We adapt the proof in [3, 4] to our setting. Let ql < pl and γ0 � 1. Then,
using (2.3),

∫

Q

∣∣∣∣
∂uε

∂xl

∣∣∣∣
ql

dx =
γ0−1∑

γ=0

∫

Bγ

∣∣∣∣
∂uε

∂xl

∣∣∣∣
ql

dx +
∞∑

γ=γ0

∫

Bγ

∣∣∣∣
∂uε

∂xl

∣∣∣∣
ql

dx

� Cγ0 +
∞∑

γ=γ0

∫

Bγ

∣∣∣∣
∂uε

∂xl

∣∣∣∣
ql

dx

� Cγ0 +
∞∑

γ=γ0

(∫

Bγ

∣∣∣∣
∂uε

∂xl

∣∣∣∣
pl

dx

)ql/pl

(meas(Bγ ))1−ql/pl

� Cγ0 + C1

∞∑

γ=γ0

(meas(Bγ ))(pl−ql)/pl . (2.8)



ANISOTROPIC ELLIPTIC AND PARABOLIC EQUATIONS 211

Clearly, 1
γ q�

∫
Bγ

|uε|q�

dx � meas(Bγ ). From this estimate and Hölder’s inequality,
we deduce

∫

Q

∣∣∣∣
∂uε

∂xl

∣∣∣∣
ql

dx � C2 + C3

∞∑

γ=γ0

1

γ
pl−ql

pl
q�

(∫

Bγ

|uε|q�

dx

)(pl−ql)/pl

� C2 + C4

( ∞∑

γ=γ0

1

γ
pl−ql

ql
q�

)ql/pl

×
( ∞∑

γ=γ0

∫

Bγ

|uε|q�

dx

)(pl−ql)/pl

. (2.9)

The anisotropic Sobolev inequality (2.1) gives

(∫

Q

|uε|q�

dx

)1/q�

� C5

N∏

l=1

[(∫

Q

∣∣∣∣
∂uε

∂xl

∣∣∣∣
ql

dx

)1/ql

+
(∫

Q

|uε|ql dx

)1/ql
]1/N

, (2.10)

where q� := Nq/(N − q) (note q ∈ (1, N)). Since ql < pl , it follows from (2.10)
and (2.2) that

(∫

Q

|uε|q�

dx

) 1
q�

� C6

N∏

l=1

(∫

Q

∣∣∣∣
∂uε

∂xl

∣∣∣∣
ql

dx

) 1
qlN + C7. (2.11)

By (2.11), (2.9), and the fact that pl−ql

ql
q� > 1 thanks to (2.5),

(∫

Q

|uε|q�

dx

) 1
q�

� C9 + C10

N∏

l=1

(∫

Q

|uε|q�

dx

) pl−ql
qlplN

= C9 + C10

(∫

Q

|uε|q�

dx

)∑N
l=1

pl−ql
qlplN

= C9 + C10

(∫

Q

|uε|q�

dx

) 1
q
− 1

p

.

In other words,

‖uε‖Lq�
(Q) � C9 + C10‖uε‖a

Lq�
(Q)

, a := p − q

q p
q�.

One checks easily that the assumption p < N implies a < 1, and we can therefore
conclude that (2.7) holds. Moreover, (2.6) follows from (2.9) and (2.7).
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Let ql = κpl , l = 1, . . . , N , for any κ ∈ (0,
N(p−1)

p(N−1)
). Let γ = 1−κ

κ
q�, so that

γ
ql

pl−ql
= q�. Recalling pl−ql

ql
q� > 1, we see that γ > 1. Using Hölder’s inequality

and then estimate (2.4), we obtain
∫

Q

∣∣∣∣
∂uε

∂xl

∣∣∣∣
ql

dx �
(∫

Q

| ∂uε

∂xl
|pl

(1 + |uε|)γ
dx

)ql/pl
(∫

Q

(1 + |uε|)γ
ql

pl−ql dx

)(pl−ql)/pl

� C11

(∫

Q

(
1 + |uε|)γ

ql
pl−ql dx

)(pl−ql)/pl

� C12

(∫

Q

|uε|q�

dx

)(pl−ql)/pl

+ C13. (2.12)

Inserting this into (2.11) and proceeding as above, we conclude that (2.6) and (2.7)
hold under condition (2.4) instead of (2.3). �

3. Statements of Results

Instead of (1.1) we will consider more general nonlinear anisotropic elliptic equa-
tions of the form

−div A(x, ∇u) − div g(x, u) + h(x, u) = f (x) in R
N. (3.1)

The vector field A : R
N × R

N → R
N has components al : R

N × R
N → R,

l = 1, . . . , N , and we assume that there exist two constants CA and C ′
A such that

for all ξ1, ξ2 ∈ R
N and for a.e. x

A(x, ξ) · ξ � CA

N∑

l=1

|ξ |pl , (3.2)

|al(x, ξ)| � C ′
A

(
1 +

N∑

�=1

|ξ�|p�−1

)
, l = 1, . . . , N, (3.3)

[A(x, ξ1) − A(x, ξ2)][ξ1 − ξ2] > 0, ξ1 �= ξ2. (3.4)

The advection field g : R
N × R → R

N has continuous components gl :
R

N × R → R, l = 1, . . . , N , and satisfies the following conditions:

|g(x, σ )| � Cg|σ |s−η, for a.e. x ∈ R
N and for all σ ∈ R, (3.5)

|divx g(x, σ )| � C ′
g|σ |s−η, for a.e. x ∈ R

N and for all σ ∈ R, (3.6)

for some constants Cg, C ′
g and some η ∈ (1, s).

The nonlinear function h : R
N ×R → R is assumed to be measurable in x ∈ R

N

for all σ ∈ R and continuous in σ ∈ R for a.e. x ∈ R
N . Furthermore,

h(x, σ )σ � 0, for all σ ∈ R and a.e. x ∈ R
N, (3.7)

sup{|h(x, σ )| : |σ | � τ } ∈ L1
loc(R

N), ∀τ ∈ R. (3.8)



ANISOTROPIC ELLIPTIC AND PARABOLIC EQUATIONS 213

Finally, there should exist s > pl , l = 1, . . . , N , such that

h(x, σ )sign(σ ) � |σ |s, for all σ ∈ R and a.e. x ∈ R
N. (3.9)

We look for distributional solutions to (3.1) in the following sense:

DEFINITION 3.1. A distributional solution of (3.1) is a function u : R
N → R

such

u ∈ W
1,1
loc (RN) ∩ Ls

loc(R
N), A(x, ∇u) ∈ (L1

loc(R
N))N,

and ∀ϕ ∈ C1
c (R

N)

∫

RN

(A(x, ∇u) + g(x, u)) · ∇ϕ dx +
∫

RN

h(x, u)ϕ dx =
∫

RN

f ϕ dx. (3.10)

Note that (1.3) and the conditions on g, h imply that all the terms in (3.10) are
well-defined.

Our main results are collected in the following theorem:

THEOREM 3.1. Assume (3.2)–(3.9) hold and the corresponding exponents
p1, . . . , pN and s are restricted as in (1.2). Let f ∈ L1

loc(R
N). Then (3.1) has at

least one distributional solution u. If f � 0, then u � 0. Moreover, u possesses the
regularity stated in (1.3). Finally, if f ∈ L1(RN) and p > N , then u ∈ L∞

loc(R
N).

4. Proof of Theorem 3.1

For any R > 0, let BR = {x ∈ R
N : |x| < R}. In what follows, it is always

understood that ε takes values in a sequence tending to zero. Let (fε)0<ε<1 ⊂
C∞

c (�) be a sequence of smooth approximations of f such that




|fε| � 1

ε
and |fε| � |f |;

fε → f in L1
loc(R

N) as ε → 0.

(4.1)

Then classical results, see, e.g., [13, 12, 10], provide us with the existence of a
sequence of functions

(uε)0<ε�1 ⊂
N⋂

l=1

W
1,pl

0 (B 1
ε
) ∩ Ls(B 1

ε
),

each of them satisfying the weak formulation
∫

B 1
ε

(A(x, ∇uε) + g(x, uε)) · ∇ϕ dx +
∫

B 1
ε

h(x, uε)ϕ =
∫

B 1
ε

fεϕ dx, (4.2)
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for all ϕ ∈ ⋂N
l=1 W

1,pl

0 (B 1
ε
) ∩ L∞(B 1

ε
), where

W
1,pl

0 (B 1
ε
) =

{
u ∈ W

1,1
0 (B 1

ε
) : ∂u

∂xl

∈ Lpl (B 1
ε
)

}
.

The proof of Theorem 3.1 consists of three main steps. First, we prove
ε-uniform local a priori estimates for uε, which imply a.e. convergence of uε.
Second, we prove strong L1

loc convergence of the nonlinear terms in (4.2). Finally,
we complete the proof of Theorem 3.1 by passing to the limit in (4.1) as ε → 0.

In the remaining part of this paper, we use C, C1, C2, etc. to denote constants
that are independent of ε.

4.1. A PRIORI ESTIMATES

PROPOSITION 4.1. Assume (3.2)–(3.9) hold, and that the exponents p1, . . . , pN

and s are restricted as in (1.2). Set R := 1/ε, and let ρ be any number such that
0 < 2ρ < R. Then, there exist a constant C, not depending on ε, such that

‖uε‖Ls(Bρ) � C (4.3)

and

‖h(x, uε)‖L1(Bρ) � C. (4.4)

Moreover, for every 1 � ql <
N(p−1)

p(N−1)
pl there exists a constant C, depending on

Bρ , N , p1, . . . , pN , q1, . . . , qN , ‖f ‖L1(B2ρ) but not ε, such that

∥∥∥∥
∂uε

∂xl

∥∥∥∥
Lql (Bρ′ )

� C, l = 1, . . . , N, (4.5)

and

‖uε‖Lq(Bρ′ ) � C,
1

q
:= 1

N

N∑

l=1

1

ql

, (4.6)

for any ρ ′ such that 0 < ρ ′ < ρ.
Proof. Following [5], we introduce for γ > 1 the test function

ϕγ (σ ) =




(γ − 1)

∫ σ

0

1

(1 + t)γ
dt = 1 − 1

(1 + σ)γ−1
, σ � 0,

−ϕγ (−σ), σ < 0,

(4.7)

and a smooth cut-off function θ = θ(x) that is supported in the ball B2ρ (recall
0 < 2ρ < R) such that 0 � θ � 1, θ(x) = 1 for |x| � ρ, and |∇θ | � 2/ρ.
Observe that |ϕγ | � 1 and, by assuming ρ � 2, there holds |∇θ | � 1.
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Let α > 1. Inserting ϕ = ϕγ (uε)θ
α into (4.2) gives

∫

BR

A(x, ∇uε) · ∇uεϕ
′
γ (uε)θ

α dx +
∫

BR

g(x, uε) · ∇uεϕ
′
γ (uε)θ

α dx

+
∫

BR

h(x, uε)ϕγ (uε)θ
α dx + α

∫

BR

A(x, ∇uε) · ∇θ ϕγ (uε)θ
α−1 dx

+α

∫

BR

g(x, uε) · ∇θϕγ (uε)θ
α−1 dx

=
∫

BR

fεϕγ (uε)θ
α dx. (4.8)

Now we choose γ and α so that (recall from (3.5) and (3.6) that η ∈ (1, s))

1 < γ <
s

pl − 1
, α > max

{
s,

s

η − 1

}
,

and α >
pls

s − γ (pl − 1)
, l = 1, . . . , N.

(4.9)

Let us introduce the vector field G = (G1, . . . , GN) defined by

Gl(x, σ ) =
∫ σ

0
gl(x, t)ϕ′

γ (t) dt, l = 1, . . . , N.

Using the divergence theorem, G(x, 0) = 0, (3.5) and (3.6), the condition (4.9)
on α, |∇θ | � 1, θα � θα−1, and Young’s inequality, we estimate as follows:

∣∣∣∣
∫

BR

g(x, uε) · ∇uεϕ
′
γ (uε)θ

α dx

∣∣∣∣

=
∣∣∣∣
∫

BR

divG(x, uε)θ
α dx −

∫

BR

(∫ uε

0
divxgl(x, t)ϕ′

γ (t) dt

)
θα dx

∣∣∣∣

=
∣∣∣∣−

∫

BR

αθα−1G(x, uε) · ∇θ dx −
∫

BR

(
θα

∫ uε

0
divxg(x, t)ϕ′

γ (t) dt

)
dx

∣∣∣∣

� C1

∫

BR

|uε|s−η+1θα−1 dx + C2

∫

BR

|uε|s−η+1θα dx

� C3

∫

BR

|uε|s−η+1θα−1 dx = C3

∫

BR

|uε|s−η+1θ
s−η+1

s
αθ

η−1
s

α−1 dx

� 1

8

∫

BR

ϕγ (1)|uε|sθα dx + C4

∫

BR

θ
α− s

η−1 dx

� 1

8

∫

BR

ϕγ (1)|uε|sθα dx + C5meas(B2ρ). (4.10)

Similarly, we deduce the estimate
∣∣∣∣
∫

BR

g(x, uε) · ∇θϕγ (uε)θ
α−1 dx

∣∣∣∣
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�
∫

Bρ

|g(x, uε)|θα−1 dx � 1

8

∫

BR

ϕγ (1)|uε|sθα dx + C6meas(B2ρ). (4.11)

Using the structure conditions (3.2) and (3.3) in (4.8) along with (4.10) and
(4.11), we get

CA

∫

BR

N∑

l=1

∣∣∣∣
∂uε

∂xl

∣∣∣∣
pl

ϕ′
γ (uε)θ

α dx +
∫

BR

h(x, uε)ϕγ (uε)θ
α dx

�
∫

B2ρ

|f | + C7

∫

BR

N∑

l=1

∣∣∣∣
∂uε

∂xl

∣∣∣∣
pl−1

θα−1 dx

+ 1

4

∫

BR

ϕγ (1)|uε|sθα dx + C8meas(B2ρ). (4.12)

An application of Young’s inequality gives

∣∣∣∣
∂uε

∂xl

∣∣∣∣
pl−1

θα−1

=
∣∣∣∣
∂uε

∂xl

∣∣∣∣
pl−1(

ϕ′
γ (uε)

) pl−1
pl θ

α
pl−1
pl

(
ϕ′

γ (uε)
) 1−pl

pl θ
α

α−pl
pl

� CA

2C7

∣∣∣∣
∂uε

∂xl

∣∣∣∣
pl

ϕ′
γ (uε)θ

α + C9
θα−pl

ϕ′
γ (uε)pl−1

= CA

2C7

∣∣∣∣
∂uε

∂xl

∣∣∣∣
pl

ϕ′
γ (uε)θ

α + C10(1 + |uε|)γ (pl−1)θα−pl

= CA

2C7

∣∣∣∣
∂uε

∂xl

∣∣∣∣
pl

ϕ′
γ (uε)θ

α + C11|uε|γ (pl−1)θα−pl + C12θ
α−pl . (4.13)

We can estimate the last term in (4.13) by another application of Young’s inequality
and (3.9):

C11|uε|γ (pl−1)θα−pl = C11|uε|γ (pl−1)θα
γ (pl−1)

s θα
s−γ (pl−1)

s
−pl

� ϕγ (1)

4
|uε|sθα + C13θ

α− pl s

s−γ (pl−1) . (4.14)

From (4.7) and (3.9), it follows that

h(x, σ )ϕγ (σ ) � |σ |sϕγ (1), for σ � 1 and a.e. x ∈ R
N,

and hence

|σ |s � h(x, σ )
ϕγ (σ )

ϕγ (1)
+ 1, for σ ∈ R and a.e. x ∈ R

N. (4.15)
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Using (4.13), (4.14), and (4.15) in (4.12) we obtain

CA

2

∫

BR

N∑

l=1

∣∣∣∣
∂uε

∂xl

∣∣∣∣
pl

ϕ′
γ (uε)θ

α dx + 1

2

∫

BR

h(x, uε)ϕγ (uε)θ
α dx

�
∫

B2ρ

|f | dx + C14meas(B2ρ). (4.16)

Using the definitions of ϕγ and θ , we obtain from (4.16) and (4.15) that
∫

Bρ

|uε|s dx � C15, (4.17)

which proves (4.3) and, via (3.9), also (4.4). Moreover, it follows that
N∑

l=1

∫

Bρ

| ∂uε

∂xl
|pl

(1 + |uε|)γ
dx � C16. (4.18)

Now let 0 < ρ ′ < ρ. We cover Bρ′ with a finite number of cubes well contained
in Bρ with edges parallel to the coordinate axes, and let Q be any of them. We
deduce from (4.17) and (4.18) that

∫

Q

|uε|s dx � C17 (4.19)

and
N∑

l=1

∫

Q

| ∂uε

∂xl
|pl

(1 + |uε|)γ
dx � C18. (4.20)

Estimates (4.5) and (4.6) are then direct consequences of (4.19), (4.20), and
Lemma 2.2. �

4.2. STRONG CONVERGENCE

In this section, we will denote Bρ′ by Bρ . Given any ρ > 0, let ε be such that
1/ε > 2ρ. In view of Proposition 4.1, uε is uniformly (in ε) bounded in W 1,q0(Bρ),
where

q0 := min
1�l�N

ql, (4.21)

and q1, . . . , qN are restricted as in Proposition 4.1. Without loss of generality, we
can therefore assume that{

uε → u strongly in Lq0(Bρ) and a.e. in Bρ,

h(x, uε) → h(x, u), g(x, uε) → g(x, u) a.e. in Bρ.
(4.22)

By a standard diagonal process, we can in fact assume that uε → u in L1
loc(R

N) and
a.e. in R

N , uε → u weakly in W
1,q0
loc (RN), and h(x, uε) → h(x, u), g(x, uε) →

g(x, u) a.e. in R
N .
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For passing to the limit in (4.2), we prove first the convergence in L1(Bρ) of the
sequences (h(x, uε))0<ε�1, (g(x, uε))0<ε�1 to respectively h(x, u), g(x, u).

PROPOSITION 4.2. Assume (3.2)–(3.9) hold, and that the corresponding
exponents p1, . . . , pN and s are restricted as in (1.2). Then the sequences
(h(x, uε))0<ε�1 and (g(x, uε))0<ε�1 converge to respectively h(x, u) and g(x, u)

a.e. in R
N and strongly in L1(Bρ) for any ρ > 0.

Proof. In view of (4.22) and a theorem of Vitali (see, e.g., [8]), it is sufficient
to establish the equi-integrability of (h(x, uε))0<ε�1 on Bρ . To this end, we follow
[5, 6] and introduce for γ, β > 1 the test function ϕγ,β defined by

ϕγ,β(σ ) =





ϕγ (σ − β), σ � β,

0, |σ | < β,

−ϕγ,β(−σ), σ � −β,

(4.23)

where ϕγ is defined in (4.7). Let α > 1. Inserting ϕ = ϕγ,β(uε)θ
α into (4.2) and

proceeding more or less as we did up to (4.16), we find

CA

2

∫

BR

N∑

l=1

∣∣∣∣
∂uε

∂xl

∣∣∣∣
pl

ϕ′
γ,β(uε)θ

α dx + 1

2

∫

BR

h(x, uε)ϕγ,β(uε)θ
α dx

�
∫

B2ρ∩{|uε |�β}
|f | dx + C1meas(B2ρ ∩ {|uε| � β}). (4.24)

Since f ∈ L1(B2ρ) and uε is bounded in L1(B2ρ) uniformly with respect to ε,
∫

B2ρ∩{|uε |�β}
|f | dx + meas(B2ρ ∩ {|uε| � β}) → 0, as β → ∞. (4.25)

From (4.23), (3.7), (4.24), and (4.25), we conclude that
∫

Bρ∩{|uε |�β+1}
|h(x, uε)| dx � C

∫

BR

h(x, uε)ϕγ,β(uε)θ
α dx

β→∞−→ 0

(uniformly in ε).

By (3.8), this implies the desired equi-integrability of (h(x, uε))0<ε�1.
From (3.5) and the convergence proof just given, we deduce easily that g(x, uε)

converges to g(x, u) a.e. in R
N and strongly in L1(Bρ) for any ρ > 0. �

PROPOSITION 4.3. Assume (3.2)–(3.9) hold, and that the corresponding
exponents p1, . . . , pN and s are restricted as in (1.2). Then the sequence
(A(x, ∇uε))0<ε�1 converges to A(x, ∇u) a.e. in R

N and strongly in L1(Bρ) for
any ρ > 0.

Proof. As in [5, 6], we prove first that the sequence (∇uε)0<ε�1 converges to
∇u in measure on Bρ , which implies a.e. convergence after passing to a suitable
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subsequence. It suffices to show that (∇uε)0<ε�1 is a Cauchy sequence in measure
on Bρ , i.e., for any µ > 0,

meas({x ∈ Bρ : |(∇uε′ − ∇uε)(x)| � µ}) → 0, as ε, ε′ → 0.

For any γ, δ > 0, we have

{x ∈ Bρ : |(∇uε′ − ∇uε)(x)| � µ} ⊂ L1 ∪ L2 ∪ L3 ∪ L4,

where L1 = {x ∈ Bρ : |∇uε(x)| � γ }, L2 = {x ∈ Bρ : |∇uε′(x)| � γ },
L3 = {x ∈ Bρ : |(uε − uε′(x)| � δ},

and

L4 = {x ∈ Bρ : |(∇uε − ∇uε′)(x)| � µ, |∇uε(x)| � γ,

|∇uε′(x)| � γ, |(uε − uε′)(x)| � δ}.
In view of Proposition 4.1, by choosing γ large we can make meas(L1) and
meas(L2) arbitrarily small. Since (uε)0<ε�1 is a Cauchy sequence in L1(Bρ), then,
for δ > 0 fixed, meas(L3) tends to 0 as ε, ε′ → 0. It remains to control meas(L4).
Since the set of (ξ1, ξ2) such that |ξ1| � γ , |ξ2| � γ , and |ξ1 −ξ2| � µ is a compact
set and ξ �→ A(x, ξ) is continuous for a.e. x ∈ Bρ , the quantity

[A(x, ξ1) − A(x, ξ2)][ξ1 − ξ2]
reaches its minimum value on this compact set, and we will denote it by q(x).
By (3.4), it is not hard to verify that q(x) > 0 a.e. in Bρ . Consequently, for any
β > 0 there exists β ′ > 0 such that

∫

L4

q(x) dx < β ′ 
⇒ meas(L4) � β. (4.26)

Hence, it is sufficient to show that for any given β ′ > 0, one can produce a small
enough δ > 0 such that

∫

L4

q(x) dx < β ′. (4.27)

For any δ > 0, define Tδ(z) = min(δ, max(z, −δ)). Note that Tδ is a Lipschitz
continuous function satisfying 0 � |Tδ(z)| � δ. By the definitions of q(x) and L4,
we have

∫

L4

q(x) dx �
∫

L4

[A(x, ∇uε) − A(x, ∇uε′)][∇uε − ∇uε′ ]1{|uε−uε′ |�δ} dx

=
∫

L4

[A(x, ∇uε) − A(x, ∇uε′)]∇Tδ(uε − uε′) dx. (4.28)
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Let θ be the cut-off function used in the proof of Proposition 4.1. Set p0 :=
max1�l�N pl , and let q0 be the number defined in (4.21). Thanks to Proposition 4.1,
we can find a q ∈ [p0 − 1, q0) such that ‖ ∂uε

∂xl
‖Lq(B2ρ) is bounded independently

of ε for all l = 1, . . . , N . Specifying Tδ(uε − uε′)θ as test function in the weak
formulations for uε and uε′ and then subtracting the results, we find

∫

Bρ

[A(x, ∇uε) − A(x, ∇uε′)] · ∇Tδ(uε − uε′) dx

� 2δ

[
C1 + C2

∫

B2ρ

N∑

l=1

∣∣∣∣
∂uε

∂xl

∣∣∣∣
pl−1

dx + C3‖uε‖Ls(B2ρ) + ‖f ‖L1(B2ρ)

]

� 2δ

[
C1 + C4

∫

B2ρ

∣∣∣∣
∂uε

∂xl

∣∣∣∣
q

dx + C3‖uε‖Ls(B2ρ) + ‖f ‖L1(B2ρ)

]

δ→0−→ 0 (uniformly in ε and ε′). (4.29)

For δ small enough, we have from (4.28) and (4.29) that (4.27) holds, and, by (4.26),
also that meas(L4) � β. Thus, we have the convergence of (∇uε)0<ε�1 to ∇u in
measure. Thanks to this measure convergence and (4.5), we can finally conclude
that along a subsequence

A(x, ∇uε) → A(x, ∇u) strongly in L1(Bρ). �

4.3. COMPLETING THE PROOF OF THEOREM 3.1

In view of the previous results, we can indeed send ε → 0 in the weak formu-
lation (4.2) with ϕ ∈ C1

c (R
N), thereby obtaining the existence of a distributional

solution (in the sense of Definition 3.1) to (3.1), which possesses the regularity
stated in (1.3). If f � 0, then uε � 0 a.e. in R

N for any ε > 0. Hence the limit u

is also nonnegative. The L∞
loc-bound for uε is proved by replacing q� in the proof

Lemma 2.2 by any number r ∈ [1, ∞) and using Theorem 2.1.

5. The Dirichlet Problem on a Bounded Domain

Let � be an open bounded domain in R
N (N � 2). In this section we wish to

point out that the existence result obtained in the previous section also applies to
the Dirichlet problem on a bounded domain. In fact, on a bounded domain (under
stronger assumptions) it is possible to prove that the constructed distributional solu-
tion has regularity corresponding to the limiting case of equality in the upper bound
on ql in (1.3). Our results generalize those obtained in [4] to general problems of
the form{ −div A(x, ∇u) − div g(x, u) + h(x, u) = f (x) in �,

u = 0 on ∂�,
(5.1)

where A, g, h satisfy the conditions stated in (3.2)–(3.9).
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THEOREM 5.1. Assume (3.2)–(3.9) hold, and that the exponents p1, . . . , pN and s

are restricted as in (1.2). In addition, assume

pl >
1

1 + η − s
, l = 1, . . . , N, η ∈ (s − 1, s), (5.2)

where η is given in (3.5) and (3.6). Let f ∈ L1(�). Then the exists at least one
function u ∈ W

1,1
0 (�) ∩ Ls(�) such that A(x, ∇u) ∈ L1(�), ∂u

∂xl
∈ Lql (�) with

1 � ql <
N(p−1)

p(N−1)
pl , l = 1, . . . , N , and (5.1) holds in the distribution sense. If

f ∈ L1 log L1(�), i.e.,
∫

�

|f | log(1 + |f |) dx < ∞,

then there exists a distributional solution u of (5.1) such that

∂u

∂xl

∈ Lql (�), ql = N(p − 1)

p(N − 1)
pl, l = 1, . . . , N. (5.3)

Proof. Let (uε)0<ε�1 be a sequence of approximate solutions satisfying the weak
formulation (4.2) with B 1

ε
replaced by �. The first part of the theorem can be

proved by adapting the proof of Theorem 3.1. Let us prove (5.3). Since, by (5.2),
(s−η)pl

pl−1 < 1, we deduce from (3.5)

∫

�

∣∣∣∣g(x, uε)
∇uε

(1 + |uε|)
∣∣∣∣ dx

� Cg

∫

�

∣∣∣∣
∇uε

(1 + |uε|)1/pl

us−η
ε

(1 + |uε|)1−1/pl

∣∣∣∣

� CA

2

N∑

l=1

∫

�

| ∂uε

∂xl
|pl

(1 + |uε|) dx + C1

N∑

l=1

∫

�

|uε|
(s−η)pl
pl−1

(1 + |uε|) dx

� CA

2

N∑

l=1

∫

�

| ∂uε

∂xl
|pl

(1 + |uε|) dx + C1

N∑

l=1

∫

�

|uε|
(s−η)pl
pl−1 dx

� CA

2

N∑

l=1

∫

�

| ∂uε

∂xl
|pl

(1 + |uε|) dx + C1

N∑

l=1

∫

�

(1 + |uε|)
(s−η)pl
pl−1 dx

� CA

2

N∑

l=1

∫

�

| ∂uε

∂xl
|pl

(1 + |uε|) dx + C2

∫

�

(1 + |uε|) dx. (5.4)

Following [4], we shall modify the proofs of Proposition 4.1 and Lemma 2.2.
Inserting the test function ϕ = log(1 + |uε|)sign(uε) into the weak formulation for



222 MOSTAFA BENDAHMANE AND KENNETH H. KARLSEN

uε and using (5.4), we find after some work the following a priori estimate:

CA

2

N∑

l=1

∫

�

| ∂uε

∂xl
|pl

(1 + |uε|) dx

� C3

∫

�

(1 + |uε|) dx + C4

∫

�

fε log(1 + |uε|) dx

� C4

∫

�

|fε| log(1 + |fε|) dx + (C3 + C4)

∫

�

(1 + |uε|) dx

� C5 + C6

∫

�

(1 + |uε|) dx, (5.5)

where we have used the well-known inequality xy � x log(1 + x) + exp(y) for
x, y � 0.

To turn (5.5) into an Lql (�) estimate on ∂uε/∂xl , we proceed as in (2.12). As
in the proof of Proposition 4.1, one can prove that uε is uniformly (in ε) bounded
in Ls(�) and thus L1(�). By Hölder’s inequality and then (5.5),

∫

�

∣∣∣∣
∂uε

∂xl

∣∣∣∣
ql

dx �
(∫

�

| ∂uε

∂xl
|pl

(1 + |uε|) dx

)ql/pl
(∫

�

(1 + |uε|)ql/(pl−ql) dx
)(pl−ql)/pl

� C7

(∫

�

(1 + |uε|)ql/(pl−ql) dx

)(pl−ql)/pl

. (5.6)

Inserting (5.6) into (2.11) with Q replaced by �, keeping in mind that ql

pl−ql
< q�,

we find

(∫

�

|uε|q�

dx

)1/q�

� C8 + C9

N∏

l=1

(∫

�

(1 + |uε|)ql/(pl−ql) dx

) pl−ql
qlplN

� C10 + C11

(∫

�

|uε|q�

dx

)1/q−1/p

,

and then we obtain (5.3) as in the proof of Lemma 2.2. �

6. Parabolic Case

We consider nonlinear anisotropic parabolic equations of the form
{

ut − div A(t, x, ∇u) − div g(t, x, u) + h(t, x, u) = f (t, x),

u(x, 0) = u0(x),
(6.1)

where (t, x) ∈ (0, T ) × R
N and T > 0 is a fixed number. The vector field A :

(0, T ) × R
N × R

N → R
N has components al : (0, T ) × R

N × R
N → R, l =
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1, . . . , N , and we assume that there exist two constants CA and C ′
A such that for all

ξ1, ξ2 ∈ R
N and for a.e. (t, x)

A(t, x, ξ) · ξ � CA

N∑

l=1

|ξ |pl , (6.2)

|al(t, x, ξ)| � C ′
A

(
1 +

N∑

�=1

|ξ�|p�−1

)
, l = 1, . . . , N, (6.3)

[A(t, x, ξ1) − A(t, x, ξ2)][ξ1 − ξ2] > 0, ξ1 �= ξ2. (6.4)

We assume that the advection field g : (0, T ) × R
N × R → R

N has continuous
components gl : (0, T ) × R

N × R → R, l = 1, . . . , N , and satisfies the following
conditions:

|g(t, x, σ )| � Cg|σ |s−η, for a.e. (t, x) ∈ (0, T ) × R
N

and for all σ ∈ R (6.5)

|divx g(t, x, σ )| � C ′
g|σ |s−η, for a.e. (t, x) ∈ (0, T ) × R

N

and for all σ ∈ R, (6.6)

for some constants Cg, C ′
g and some η ∈ (1, s).

The function h : (0, T )×R
N ×R → R is assumed to be measurable in (t, x) ∈

(0, T ) × R
N for all σ ∈ R and continuous in σ ∈ R for a.e. (t, x) ∈ (0, T ) × R

N .
Furthermore,

h(t, x, σ )σ � 0, for all σ ∈ R and a.e. (t, x) ∈ (0, T ) × R
N, (6.7)

sup{|h(t, x, σ )| : |σ | � τ } ∈ L1(0, T ;L1
loc(R

N)), ∀τ ∈ R. (6.8)

Finally, there should exist s > pl , l = 1, . . . , N , such that

h(t, x, σ )sign(σ ) � |σ |s,
for all σ ∈ R and a.e. (t, x) ∈ (0, T ) × R

N. (6.9)

The data f , u0 are assumed to satisfy

f ∈ L1(0, T ;L1
loc(R

N)), u0 ∈ L1
loc(R

N). (6.10)

We assume that the exponents p1, . . . , pN and s satisfy the following condi-
tions:






p < N + N

N + 1
,

1

p
= 1

N

N∑

l=1

1

pl

,

2 − 1

N + 1
< pl <

p(N + 1)

N
, l = 1, . . . , N,

s > pl, l = 1, . . . , N.

(6.11)

We seek solutions to (6.1) in the following sense:



224 MOSTAFA BENDAHMANE AND KENNETH H. KARLSEN

DEFINITION 6.1. A distributional solution of (6.1) is a function

u ∈ L1
(
0, T ;W

1,1
loc (RN)

) ∩ Ls
(
0, T , Ls

loc(R
N)

)
,

A(t, x, ∇u) ∈ (
L1(0, T ;L1

loc(R
N))

)N
,

that satisfies

−
∫ T

0

∫

RN

uϕt dx dt +
∫ T

0

∫

RN

(A(t, x, ∇u) + g(t, x, u)) · ∇ϕ dx dt

+
∫ T

0

∫

RN

h(t, x, u)ϕ dx dt

=
∫ T

0

∫

RN

f ϕ dx dt +
∫

RN

u0(x)ϕ(0, x) dx, (6.12)

for all ϕ ∈ C1
0([0, T ) × R

N).

Our main existence result for (6.1) is stated the following theorem:

THEOREM 6.1. Assume (6.2)–(6.10) hold and that the corresponding exponents
p1, . . . , pN and s are restricted as in (6.11). Then (6.1) has at least one distribu-
tional solution u. If f, u0 � 0, then u � 0. Moreover, u possesses the regularity

u ∈
N⋂

l=1

Lql
(
0, T , W

1,ql

loc (RN)
)
, 1 � ql <

pl

p

(
p − N

N + 1

)
. (6.13)

Finally, if f, u0 ∈ L1(RN) and p > N , then u ∈ L∞
loc((0, T ) × R

N).
Proof. The proof is similar to the proof of Theorem 3.1, so we just sketch it. Let

{fε}0<ε�1 and {u0,ε}0<ε�1 be sequences functions satisfying





fε ∈ C∞
c ([0, T ] × R

N) and u0,ε ∈ C∞
c (RN);

|fε| � 1

ε
, |fε| � |f |, fε → f in L1(0, T ;L1

loc(R
N)) as ε → 0;

|u0,ε| � 1

ε
, |u0,ε| � |u0|, u0,ε → u0 in L1

loc(R
N) as ε → 0;

(6.14)

Set R = 1/ε. Then, classical results, see, e.g., [12, 9], provide the existence of
a sequence of functions






uε ∈
N⋂

l=1

Lpl (0, T ;W
1,pl

0 (BR)) ∩ Ls((0, T ) × BR) ∩ C([0, T ];L2(BR)),

∂tuε ∈
N∑

l=1

Lp′
l

(
0, T ; (

W
1,pl

0 (BR)
)′)

,
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each of them satisfying the weak formulation
∫ T

0
〈∂tuε, ϕ〉 dt +

∫ T

0

∫

BR

(A(t, x, ∇uε) + g(t, x, uε)) · ∇ϕ dx dt

+
∫ T

0

∫

�

h(t, x, uε)ϕ dx dt

=
∫ T

0

∫

�

fεϕ dx dt, (6.15)

for all ϕ ∈ ⋂N
l=1 Lpl (0, T ;W

1,pl

0 (BR))∩L∞((0, T )×BR). Moreover, the maximum
principle holds, so that u0,ε � 0 and fε � 0 imply uε � 0.

We introduce the function

ψγ (σ ) =
∫ σ

0
ϕγ (s) ds, where ϕγ is defined in (4.7). (6.16)

As in the proof of Proposition 4.1, we take ϕ = ϕγ (uε)θ
α as a test function in (6.15)

and find
∫

BR

ψγ (uε(x, T ))θα dx +
∫ T

0

∫

BR

A(t, x, ∇uε) · ∇uεϕ
′
γ (uε)θ

α dx dt

+
∫ T

0

∫

BR

g(t, x, uε) · ∇uεϕ
′
γ (uε)θ

α dx dt

+
∫ T

0

∫

BR

h(t, x, uε)ϕγ (uε)θ dx dt

+ α

∫ T

0

∫

BR

A(t, x, ∇uε) · ∇θϕγ (uε)θ
α−1 dx dt

+ α

∫ T

0

∫

BR

g(t, x, uε) · ∇θϕγ (uε)θ
α−1 dx dt

=
∫

BR

ψγ (u0,ε)θ
α dx +

∫ T

0

∫

BR

fεϕγ (uε)θ
α dx dt.

We choose γ and α according to (4.9).
Proceeding as in the proof of Proposition 4.1 up to (4.16), we find eventually

that
∫

BR

ψγ (uε(x, T ))θ(x)α dx + CA

2

∫ T

0

∫

BR

N∑

l=1

∣∣∣∣
∂uε

∂xl

∣∣∣∣
pl

ϕ′
γ (uε)θ

α dx dt

+1

2

∫ T

0

∫

BR

h(t, x, uε)ϕγ (uε)θ
α dx dt

�
∫

B2ρ

ψγ (u0(x)) dx +
∫ T

0

∫

B2ρ

|f | dx dt + C1T meas(B2ρ), (6.17)
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which in turn implies the existence of a constant C2, independent of ε as long as
R = 1/ε > 2ρ for a given ρ, such that

N∑

l=1

∫ T

0

∫

Bρ

| ∂uε

∂xl
|pl

(1 + |uε|)γ
dx dt � C2 (6.18)

and
∫ T

0

∫

Bρ

|uε|s dx dt � C2. (6.19)

Note that from definition of ψγ and estimate (6.17), we deduce also that

sup
t∈(0,T )

∫

Bρ

|uε| dx � C2. (6.20)

Now let 0 < ρ ′ < ρ. We cover Bρ′ with a finite number of cubes well contained
in Bρ with edges parallel to the coordinate axes, and let Q be any of them. In view
of (6.18), (6.19), (6.20), we can then carry out the “interpolation” step as in [2, 11]
and obtain

∥∥∥∥
∂uε

∂xl

∥∥∥∥
Lql ((0,T )×Q)

� C3, l = 1, . . . , N, (6.21)

and

‖uε‖Lq((0,T )×Q) � C4, (6.22)

for every ql satisfying the condition in (6.13).
Then we deduce from (6.21) and (6.22) that

∥∥∥∥
∂uε

∂xl

∥∥∥∥
Lql ((0,T )×Bρ′ )

� C5, l = 1, . . . , N, (6.23)

and

‖uε‖Lq((0,T )×Bρ′ ) � C6, (6.24)

for every ql satisfying the condition in (6.13).
Let q0 = min1�l�N ql . Given any ρ, ρ ′ such that 0 < ρ ′ < ρ, uε is uni-

formly bounded in Lq0(0, T ;W 1,q0(Bρ′)) as long as 1/ε > 2ρ. This is a con-
sequence of (6.23) and (6.24). This implies that ∂tuε is uniformly bounded in
L1(0, T ; (W 1,q0(Bρ′))′) + L1(0, T ;L1(Bρ′)).

We can therefore assume that as ε → 0 (see, e.g., [15, Corollary 4])

uε → u strongly in Lq0((0, T ) × Bρ′) for any ρ ′ and a.e. in (0, T ) × R
N,

and h(t, x, uε) → h(t, x, u) a.e. in (0, T ) × R
N .
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We prove the strong convergence in L1(0, T ;L1
loc(R

N)) of

(h(t, x, uε))0<ε�1, (g(t, x, uε))0<ε�1 , (A(t, x, ∇uε))0<ε�1

as in the proofs of Propositions 4.2 and 4.3. Hence we conclude that the limit func-
tion u is a distribution solution of (1.1) possessing the regularity stated in (6.13). �
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