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Abstract
In this paper, we study the positive solutions for nonlocal differential equations with
concave and convex coefficients:

−A

(∫ 1

0
(u p(s) + uq(s))ds

)
u′′(t) = f (t, u(t)), t ∈ (0, 1),

where 0 < p < 1 ≤ q.Using the fixed point index theory and fixed point theorems on
cones, existence and multiplicity results are obtained, when the nonlinear term f (t, x)
is continuous, has a singularity at x = 0, changes sign, respectively.

Keywords Nonlocal differential equation · Nonlocal boundary condition · Concave
and convex coefficients · Positive solution · Fixed point
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1 Introduction

In this paper, we are concernedwith the existence andmultiplicity of positive solutions
for the following nonlocal differential equation

− A

(∫ 1

0
(u p(s) + uq(s))ds

)
u′′(t) = f (t, u(t)), t ∈ (0, 1), (1.1)
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where 0 < p < 1 ≤ q, the function A : R → R is continuous. Note the differ-

ential Eq. (1.1) is nonlocal due to the coefficient function A
(∫ 1

0 (u p(s) + uq(s))ds
)

involving an integral, and u p is a concave function and uq is a convex function.
In order to better study the positive solutions for nonlocal differential Eq. (1.1),

we convert Eq. (1.1) coupled with different nonlocal boundary conditions into the
following integral equation

u(t) = γ (t)H(ϕ(u)) +
∫ 1

0

(
A

(∫ 1

0
(u p(r) + uq(r))dr

))−1

G(t, s) f (s, u(s))ds, t ∈ [0, 1], (1.2)

where functions γ, H and ϕ are involved in boundary data, and then investigate the
existence of positive solutions to the Eq. (1.2).

Nonlocal differential equations as (1.1) arise in various areas of physics and applied
mathematics (see [1–3, 7, 9] and the references therein). The nonlocal differential
equations and nonlocal boundary conditions are intensively studied by many scholars;
for example, see [4–6, 8, 10, 12–22, 24–33].

Recently,Goodrich [14] studied the following nonlocal differential equationDirich-
let boundary value problems:

⎧⎪⎨
⎪⎩

− A

(∫ 1

0
|u(s)|qds

)
u′′(t) = λ f (t, u(t)), t ∈ (0, 1),

u(0) = u(1) = 0,

(1.3)

where q ≥ 1, λ > 0, A : [0,+∞) → R is continuous, and f : [0, 1] × [0,+∞) →
[0,+∞) is continuous. Under weak condition on the coefficient function A, the author
established the existence of at least one positive solution by using a nonstandard order
cone and fixed point index theory. In fact, (1.3) is a special case of the nonlocal elliptic
PDE

−A

(∫
�

|u|qds
)

�u(x) = λg(u(x)), x ∈ �,

subject to u(x) ≡ 0, for x ∈ ∂�, where � is an annular region. There are also many
variants on (1.3). For example, the case u in coefficient function A of (1.2) is replaced
by u′ is a one-dimensional Kirchhoff-type problem (see [4, 13, 29]).

In [18], Goodrich discussed the following nonlocal differential equation:

− A

(∫ 1

0
(g ◦ u)(s)ds

)
u′′(t) = λ f (t, u(t)), t ∈ (0, 1), (1.4)

where A : [0,+∞) → R is continuous, g : [0,+∞) → [0,+∞) is continuous
concave strictly increasing, and f : [0, 1] × [0,+∞) → [0,+∞) is continuous. In
contrast to [14], g is concave in the coefficient function. A model case of (1.4) is the

123



Positive solutions for nonlocal differential equations… Page 3 of 25    68 

nonlocal differential equation

−A

(∫ 1

0
|u(s)|pds

)
u′′(t) = λ f (t, u(t)), t ∈ (0, 1), 0 < p < 1.

In [20], Goodrich considered the existence result of positive solution for the fol-
lowing perturbed Hammerstein integral equation:

u(t) = γ (t)H(ϕ(u)) + λ

∫ 1

0

(
A

(∫ 1

0
|u(ξ)|qdξ

))−1

G(t, s) f (s, u(s))ds, t ∈ (0, 1), (1.5)

where q ≥ 1, A : [0,+∞) → R, G : [0, 1] × [0, 1] → [0,+∞), f : [0, 1] ×
[0,+∞) → [0,+∞), H : [0,+∞) → [0,+∞), and γ : [0, 1] → [0, 1] are
continuous, and ϕ(u) = ∫ 10 u(s)dα(s), where α is of bounded variation and monotone
increasing on [0, 1]. Solutions of (1.5) can be associated to solutions of a boundary
value problem, which possess two nonlocal elements. The nonlocality is embodied in
differential equation itself and boundary condition.

More recently, Goodrich [17] studied the following nonlocal convolution-type dif-
ferential equations

− A((a ∗ (g ◦ u))(1))u′′(t) = λ f (t, u(t)), t ∈ (0, 1), (1.6)

where g is a continuous function, and there exist constants c1, c2 ∈ (0,∞) and c3 ∈
[0,∞) such that

c1u
p ≤ g(u) ≤ c2(c3 + uq), u ≥ 0, 1 ≤ p ≤ q < +∞.

The author established the existence of positive solution by using fixed point index
theory. If we choose a(x) ≡ 1, g(u) = u p + uq and λ = 1, then convolution-type
Eq. (1.6) reduces to the nonlocal differential Eq. (1.1). We note that Goodrich only
consider the case 1 ≤ p < q.

Greatly inspired by above works, in this paper, we study the positive solutions
for nonlocal differential Eq. (1.1) with concave and convex coefficients. Firstly, we
establish the existence and multiplicity results of Eq. (1.2) when the nonlinear term
f is continuous. Secondly, we obtain the existence of positive solutions of Eq. (1.2)
when f (t, x) is singular at x = 0. Finally, we discuss the existence result when f
changes sign.

2 Multiple positive solutions for Eq. (1.2)

In this section, by using the fixed point index theory in cones, we give the existence and
multiplicity results of positive solutions for integral Eq. (1.2), where 0 < p < 1 ≤ q,
the functions f : [0, 1] × [0,+∞) → [0,+∞) and H : [0,+∞) → [0,+∞) are
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continuous. ϕ(u) = ∫ 10 u(s)dα(s), where α : [0, 1] → R is of bounded variation and
monotonically increasing on [0, 1].

For example, when γ (t) = 1 − t, and

G(t, s) =
{
t(1 − s), 0 ≤ t ≤ s ≤ 1,

s(1 − t), 0 ≤ s ≤ t ≤ 1,

a solution of the integral Eq. (1.2) is equivalent to a solution of the boundary value
problem of differential equation

⎧⎪⎨
⎪⎩

− A

(∫ 1

0
(u p(s) + uq(s))ds

)
u′′(t) = f (t, u(t)), t ∈ (0, 1),

u(0) = H(ϕ(u)), u(1) = 0.

Set E = C([0, 1]). Then E is a Banach space with the norm ‖u‖ = sup
t∈[0,1]

|u(t)|.
We define the cone

P =
{
u ∈ E : u(t) ≥ 0, t ∈ [0, 1], min

t∈[c,d] u(t) � η0‖u‖
}

,

where 0 ≤ c < d ≤ 1, and the constant η0 will be given in (H1). In addition, for
ρ > 0, the sets V̂ρ and �ρ are given by

V̂ρ =
{
u ∈ P :

∫ 1

0
(u p(s) + uq(s))ds < ρ

}

and

�ρ = {u ∈ P : ‖u‖ < ρ}.

For H : [0,+∞) → [0,+∞) a continuous function and given numbers 0 ≤ a <

b < +∞, we denote

Hm
[a,b] = min

y∈[a,b] H(y), HM[a,b] = max
y∈[a,b] H(y).

For f : [0, 1] × [0,+∞) → [0,+∞) a continuous function and given numbers
0 ≤ a1 < b1 ≤ 1 and 0 ≤ a2 < b2 < +∞, then by f m[a1,b1]×[a2,b2] and f M[a1,b1]×[a2,b2]
we will denote, respectively, the numbers

f m[a1,b1]×[a2,b2] = min
(t,x)∈[a1,b1]×[a2,b2]

f (t, x),

f M[a1,b1]×[a2,b2] = max
(t,x)∈[a1,b1]×[a2,b2]

f (t, x).
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Denote by 1 the function 1 : R → {1}. Similarly, the notation 0 will denote the
function that is identically zero. Define the operator T : E → E by

(Tu)(t) = γ (t)H(ϕ(u)) +
∫ 1

0

(
A

(∫ 1

0
(u p(r) + uq(r))dr

))−1

G(t, s) f (s, u(s))ds, t ∈ [0, 1].

A fixed point of T is a solution of nonlocal differential Eq. (1.1) equipped with some
boundary data.

The following assumptions are used in this section.
(H1) G : [0, 1]×[0, 1] → [0,+∞) is continuous, and there exist a set [c, d] ⊆ [0, 1]
and a constant η0 := η0(c, d) ∈ (0, 1] such that

min
t∈[c,d]G(t, s) � η0G(s), s ∈ [0, 1],

where G(s) = max
t∈[0,1] G(t, s);

(H2) γ : [0, 1] → [0, 1] is continuous, and min
t∈[c,d] γ (t) ≥ η0‖γ ‖, where c, d and η0

are the same as we defined in (H1);
(H3) A : [0,+∞) → R is continuous, and there exist 0 ≤ ρ1 ≤ ρ2 such that A(t) > 0
for t ∈ [ρ1, ρ2].

Denote

Q1 = min
t∈[ρ1,ρ2]

A(t), Q2 = max
t∈[ρ1,ρ2]

A(t).

Remark 2.1 From the definitions of V̂ρ and�ρ , it is clear that V̂ρ and�ρ are relatively
open sets in P .

Lemma 2.2 For each fixed ρ > 0, it holds that

�Mρ ⊆ V̂ρ ⊆ �Nρ ,

where Mρ ∈
(
0, ρ

1
q

)
is the unique positive solution of x p + xq = ρ and Nρ ∈(

0, 1
η0

(
ρ

d−c )
1
q

)
is the unique positive solution of (η0x)p + (η0x)q = ρ

d−c .

Proof For any u ∈ �Mρ , we have ‖u‖ ≤ Mρ. Thus,

∫ 1

0
(u p(t) + uq(t))dt ≤ ‖u‖p + ‖u‖q ≤ Mp

ρ + Mq
ρ = ρ.

Then we obtain u ∈ V̂ρ , i.e., �Mρ ⊆ V̂ρ.
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Next, we prove V̂ρ ⊆ �Nρ . In fact, for any u ∈ V̂ρ , we have

ρ ≥
∫ 1

0
(u p(t) + uq(t))dt ≥

∫ d

c
((η0‖u‖)p + (η0‖u‖)q)dt

= (d − c)((η0‖u‖)p + (η0‖u‖)q).

Then

ρ

d − c
≥ (η0‖u‖)p + (η0‖u‖)q .

Let

h(x) = (η0x)
p + (η0x)

q − ρ

d − c
.

It is easy to see that h(x) is a strictly monotone increasing function on [0,+∞). Thus,

we obtain ‖u‖ ≤ Nρ . Therefore, u ∈ �Nρ , i.e., V̂ρ ⊆ �Nρ . This completes the proof.
�

By using standard arguments, we obtain the following result.

Lemma 2.3 Assume that (H1)-(H3) hold. Then T : V̂ρ2\V̂ρ1 → P is completely
continuous.

Lemma 2.4 [23] Let U be a bounded open set, and with K a cone in a real Banach
space X. Suppose both that UK = U ∩ K ⊇ {0} and that UK �= K . Assume that
T : UK → K is completely continuous such that x �= T x, for any x ∈ ∂UK . Then
the fixed point index iK (T ,UK ) has the following properties.

(1) If there exists e ∈ K \ {0} such that x �= T x + λe for each x ∈ ∂UK and λ > 0,
then iK (T ,UK ) = 0.

(2) If μx �= T x for x ∈ ∂UK and μ ≥ 1, then iK (T ,UK ) = 1.
(3) Let U 1

K be a open set in X with U 1
K ⊆ UK . If iK (T ,UK ) = 0 and iK (T ,U 1

K ) = 1,

then T has a fixed point in UK \U 1
K . The same result holds if iK (T ,UK ) = 1 and

iK (T ,U 1
K ) = 0.

Theorem 2.5 Assume that (H1) − (H3) hold. If

(H4)

∫ 1

0

[(
1

A(ρ1)
f m[c,d]×[η0Mρ1 ,Nρ1 ]

∫ d

c
G(t, s)ds

)p

+
(

1

A(ρ1)
f m[c,d]×[η0Mρ1 ,Nρ1 ]

∫ d

c
G(t, s)ds

)q]
dt > ρ1;
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(H5)

∫ 1

0

[(
HM

[0,Nρ2ϕ(1)] + 1

A(ρ2)
f M[0,1]×[0,Nρ2]

∫ 1

0
G(t, s)ds

)p

+
(
HM

[0,Nρ2ϕ(1)] + 1

A(ρ2)
f M[0,1]×[0,Nρ2]

∫ 1

0
G(t, s)ds

)q]
dt < ρ2,

then Eq. (1.2) has at least one positive solution u with Mρ1 ≤ ‖u‖ ≤ Nρ2 .

Proof Clearly, 0 ∈ V̂ρ1 ⊆ V̂ρ2 and c1 ∈ V̂ρ1 for small constant c > 0, so V̂ρ1\{0} �= ∅.

From Lemma 2.3 and the extension theorem of a completely continuous operator,
there exists T̃ : V̂ρ2 → P , which is still completely continuous. Without loss of the
generality, we still write it as T .

Now, we claim that u �= Tu+μ1 for any μ > 0 and u ∈ ∂ V̂ρ1 . Suppose that T has
no fixed points on ∂ V̂ρ1 (otherwise, the proof is finished). Assume by contradiction
that there exist u ∈ ∂ V̂ρ1 and μ > 0 such that u = Tu + μ1. It follows from Lemma
2.2 that

Mρ1 ≤ ‖u‖ ≤ Nρ1 , ∀ u ∈ ∂ V̂ρ1 .

Therefore, for s ∈ [c, d], we have

η0Mρ1 ≤ η0‖u‖ ≤ u(s) ≤ ‖u‖ ≤ Nρ1 .

Then for u ∈ ∂ V̂ρ1 ,

(Tu)(t) ≥ 1

A(ρ1)
f m[c,d]×[η0Mρ1 ,Nρ1 ]

∫ d

c
G(t, s)ds, t ∈ [0, 1].

It follows that

ρ1 =
∫ 1

0
(u p + uq)(t)dt =

∫ 1

0
((Tu + μ1)p + (Tu + μ1)q)(t)dt

≥
∫ 1

0
((Tu)p + (Tu)q)(t)dt ≥

∫ 1

0

[(
1

A(ρ1)
f m[c,d]×[η0Mρ1 ,Nρ1 ]

∫ d

c
G(t, s)ds

)p

+
(

1

A(ρ1)
f m[c,d]×[η0Mρ1 ,Nρ1 ]

∫ d

c
G(t, s)ds

)q]
dt,

which is a contradiction to (H4). So we get

iK (T , V̂ρ1) = 0.

We next show that μu �= Tu for any u ∈ ∂ V̂ρ2 and μ ≥ 1. If otherwise, there
exist u ∈ ∂ V̂ρ2 and μ ≥ 1 such that μu = Tu. For u ∈ ∂ V̂ρ2 , it is easy to check
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that Mρ2 ≤ ‖u‖ ≤ Nρ2 and 0 ≤ u(t) ≤ ‖u‖ ≤ Nρ2 for t ∈ [0, 1], and 0 ≤ ϕ(u) ≤
‖u‖ϕ(1) ≤ Nρ2ϕ(1). It follows that

(Tu)(t) ≤ HM
[0,Nρ2ϕ(1)] + 1

A(ρ2)
f M[0,1]×[0,Nρ2 ]

∫ 1

0
G(t, s)ds, t ∈ [0, 1].

Then we deduce that

ρ2 =
∫ 1

0
(u p + uq)(t)dt ≤

∫ 1

0
((μu)p + (μu)q)(t)dt

=
∫ 1

0
((Tu)p + (Tu)q)(t)dt

≤
∫ 1

0

[(
HM

[0,Nρ2ϕ(1)] + 1

A(ρ2)
f M[0,1]×[0,Nρ2 ]

∫ 1

0
G(t, s)ds

)p

+
(
HM

[0,Nρ2ϕ(1)] + 1

A(ρ2)
f M[0,1]×[0,Nρ2 ]

∫ 1

0
G(t, s)ds

)q]
dt,

which contradicts (H5). So we obtain

iK (T , V̂ρ2) = 1.

It follows from Lemma 2.4 that T has a fixed point u ∈ V̂ρ2\V̂ρ1 with Mρ1 ≤ ‖u‖ ≤
Nρ2 , and u is a positive solution of the Eq. (1.2). �
Corollary 2.6 If we reverse ρ1 and ρ2 in Theorem 2.5, then iK (T , V̂ρ1) = 1,
iK (T , V̂ρ2) = 0. We can get the same result as Theorem 2.5.

Next, we prove the following multiplicity results.

Theorem 2.7 Assume that (H1)−(H4) hold. If

(H6) Nρ1 < Mρ2;

(H7)

∫ 1

0

[(
1

A(ρ2)
f m[c,d]×[η0Mρ2 ,Nρ2 ]

∫ d

c
G(t, s)ds

)p

+
(

1

A(ρ2)
f m[c,d]×[η0Mρ2 ,Nρ2 ]

∫ d

c
G(t, s)ds

)q]
dt > ρ2;

(H8) H
M
[0,Nρ1ϕ(1)] + 1

Q1
f M[0,1]×[0,Nρ1 ]

∫ 1

0
G(s)ds < Nρ1,

then Eq. (1.2) has at least two positive solutions.

Proof Firstly, we prove that T has a fixed point which is either on ∂ V̂ρ1 or in�Nρ1
\V̂ρ1 .

If x �= T x for x ∈ ∂ V̂ρ1 , by Theorem 2.5, we obtain

iK (T , V̂ρ1) = 0.
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We next prove that ‖Tu‖ < ‖u‖ for any u ∈ ∂�Nρ1
. From Lemma 2.2, it follows

that

∂�Nρ1
⊆ �Nρ1

⊆ �Mρ2
⊆ V̂ρ2 .

Then

∫ 1

0
(u p(r) + uq(r))dr ≤ ρ2.

Owing to

∫ 1

0
(u p(r) + uq(r))dr ≥

∫ d

c
(η0‖u‖)p + (η0‖u‖)qdr = ρ1,

we have

Q1 ≤ A

(∫ 1

0
(u p(r) + uq(r))dr

)
≤ Q2.

Since 0 ≤ ϕ(u) ≤ ‖u‖ϕ(1) = Nρ1ϕ(1), we have

‖Tu‖ ≤ HM
[0,Nρ1ϕ(1)] + 1

Q1
f M[0,1]×[0,Nρ1 ]

∫ 1

0
G(s)ds < Nρ1 = ‖u‖.

Therefore, it is obvious that Tu �= u for u ∈ ∂�Nρ1
, and μu �= Tu for u ∈ ∂�Nρ1

and μ ≥ 1. By Lemma 2.4,

iK (T ,�Nρ1
) = 1.

Since V̂ρ1 ⊆ �Nρ1
, by Lemma 2.4, T has a fixed point in �Nρ1

\V̂ρ1 . So T has a fixed

point which is either on ∂ V̂ρ1 or in �Nρ1
\V̂ρ1 .

On the other hand, we prove T has a fixed point which is either on ∂ V̂ρ2 or in
V̂ρ2\�Nρ1

. If x �= T x, x ∈ ∂ V̂ρ2 , by Theorem 2.5, we conclude that

iK (T , V̂ρ2) = 0.

It follows from Lemma 2.4 that T has a fixed point in V̂ρ2\�Nρ1
. So T has a fixed

point which is either on ∂ V̂ρ2 or in V̂ρ2\�Nρ1
.

Therefore, T has at least two fixed points u1 and u2 with 0 < Mρ1 ≤ ‖u1‖ ≤
Nρ1 < Mρ2 < ‖u2‖ ≤ Nρ2 , i.e., Eq. (1.2) has at least two positive solutions. �
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Theorem 2.8 Assume that (H1)-(H3), (H5) and (H6) hold. If

(H9)

∫ 1

0

[(
HM

[0,Nρ1ϕ(1)] + 1

A(ρ1)
f M[0,1]×[0,Nρ1 ]

∫ 1

0
G(t, s)ds

)p

+
(
HM

[0,Nρ1ϕ(1)] + 1

A(ρ1)
f M[0,1]×[0,Nρ1 ]

∫ 1

0
G(t, s)ds

)q]
dt < ρ1;

(H10)
η0

Q2
f m[c,d]×[η0Nρ1 ,Nρ1 ]

∫ d

c
G(s)ds > Nρ1 ,

then Eq. (1.2) has at least two positive solutions.

Proof Similar to the proof of Theorem 2.5, we obtain that iK (T , V̂ρ1) = 1 and
iK (T , V̂ρ2) = 1. So it suffices to show that iK (T ,�Nρ1

) = 0. Assume that there
exist u ∈ ∂�Nρ1

and μ > 0 such that u = Tu + μ1. From Theorem 2.7, we have

Q1 ≤ A
(∫ 1

0 (u p(r) + uq(r))dr
)

≤ Q2. Then we have

Nρ1 = ‖u‖ = ‖Tu + μ1‖ ≥ (Tu)(c) ≥ η0

Q2
f m[c,d]×[η0Nρ1 ,Nρ1 ]

∫ d

c
G(s)ds,

which contradicts the assumption. Then for all u ∈ ∂�Nρ1
and μ > 0, we have

u �= Tu + μ1. It follows from Lemma 2.4 that iK (T ,�Nρ1
) = 0. Then Eq. (1.2) has

at least two positive solutions. �
By arguments similar to Theorems 2.5, 2.7 and 2.8, we have the following results.

Theorem 2.9 Assume that (H1)–(H3), (H6), (H7), (H9) and (H10) hold. If

(H11) H
M
[0,Mρ2ϕ(1)] + 1

Q1
f M[0,1]×[0,Mρ2 ]

∫ 1

0
G(s)ds < Mρ2 ,

then Eq. (1.2) has at least three positive solutions.

Theorem 2.10 Assume that (H1)-(H6) and (H8) hold. If

(H12)
η0

Q2
f m[c,d]×[η0Mρ2 ,Mρ2 ]

∫ d

c
G(s)ds > Mρ2 ,

then Eq. (1.2) has at least three positive solutions.

Example 2.11 Let p = 1
2 , q = 2, A(t) = sin t, ϕ(u) = 1

2u
( 1
3

)+ 1
50u

( 1
10

)
, γ (t) =

1 − t, H(t) = 9
100

√
t, f (t, x) = t x . We consider the following nonlocal problem

⎧⎨
⎩

− sin
(∫ 1

0 (u
1
2 (s) + u2(s))ds

)
u′′(t) = tu(t), t ∈ (0, 1),

u(0) = 9
100

√
1
2u
( 1
3

)+ 1
50u

( 1
10

)
, u(1) = 0.

(2.1)
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Then

G(t, s) =
{
t(1 − s), 0 ≤ t ≤ s ≤ 1,

s(1 − t), 0 ≤ s ≤ t ≤ 1,

and G(s) = max
t∈[0,1] G(t, s) = s(1 − s). Choose c = 1

4 , d = 3
4 . Then η0 =

min {c, 1 − d} = 1
4 . Obviously, (H1) and (H2) hold. Take ρ1 = 0.002, ρ2 = π

2 .
Then A(t) = sin t > 0 on [0.002, π

2 ], which implies (H3) holds. It follows from
Lemma 2.2 that Mρ1 ≈ 4 × 10−6, Nρ1 ≈ 6.4 × 10−5, Mρ2 ≈ 0.817, Nρ2 ≈ 5.598.
Direct computation demonstrates that

∫ 1

0

[(
1

A(ρ1)
f m[c,d]×[η0Mρ1 ,Nρ1 ]

∫ d

c
G(t, s)ds

)p

+
(

1

A(ρ1)
f m[c,d]×[η0Mρ1 ,Nρ1 ]

∫ d

c
G(t, s)ds

)q]
dt

≈
∫ 1

0

⎡
⎣
(

1

sin(0.002)
× 1

4
× 1

4
× 4 × 10−6 ×

∫ 3
4

1
4

G(t, s)ds

) 1
2

+
(

1

sin(0.002)
× 1

4
× 1

4
× 4 × 10−6 ×

∫ 3
4

1
4

G(t, s)ds

)2
⎤
⎦ dt

≈ 0.0023 > ρ1,

and

∫ 1

0

[(
HM

[0,Nρ2ϕ(1)] + 1

A(ρ2)
f M[0,1]×[0,Nρ2]

∫ 1

0
G(t, s)ds

)p

+
(
HM

[0,Nρ2ϕ(1)] + 1

A(ρ2)
f M[0,1]×[0,Nρ2]

∫ 1

0
G(t, s)ds

)q]
dt

≈
∫ 1

0

⎡
⎣
(

9

100
×
√
5.598 × 13

25
+ 1 × 5.598 ×

∫ 1

0
G(t, s)ds

) 1
2

+
(

9

100
×
√
5.598 × 13

25
+ 1 × 5.598 ×

∫ 1

0
G(t, s)ds

)2
⎤
⎦ dt

≈ 1.202 < ρ2.

So assumptions (H4) and (H5) hold. By Theorem 2.5 we conclude that problem (2.1)
has at least one positive solution u with 4 × 10−6 ≤ ‖u‖ ≤ 5.598.
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Remark 2.12 Note in Example 2.11 that the nonlocal coefficient function z �→ sin z
is sign changing on R. This is in considerable contrast to most of the the existing
literature. Our main tool is topological fixed point theory in a nonstandard order cone
due to Goodrich (for example, [14,17,18,20]).

Example 2.13 Let p, q, A, ϕ, γ, c and d are same as those in Example 2.11. Take
ρ1 = 0.01 and ρ2 = π

2 . Then (H1) − (H3) hold. From Lemma 2.2, we know that
Mρ1 ≈ 0.0001, Nρ1 ≈ 0.0016, Mρ2 ≈ 0.817 and Nρ2 ≈ 5.598. Obviously, (H6)

holds. Let f : [0, 1] × [0,+∞) → [0,+∞) be defined by

f (t, x) = 10−8t +
{

1
1250 x + 3

50000 , 0 ≤ x < 0.1,

140x − 699993
50000 , x ≥ 0.1.

Choose H(t) = 9
1000

√
t . By calculation, we obtain

∫ 1

0

[(
1

A(ρ1)
f m[c,d]×[η0Mρ1 ,Nρ1 ]

∫ d

c
G(t, s)ds

)p

+
(

1

A(ρ1)
f m[c,d]×[η0Mρ1 ,Nρ1 ]

∫ d

c
G(t, s)ds

)q]
dt

≈
∫ 1

0

⎡
⎣
(

1

sin(0.01)
×
(
10−8

4
+ 0.0001

5000
+ 3

50000

)
×
∫ 3

4

1
4

G(t, s)ds

) 1
2

+
(

1

sin(0.01)
×
(
10−8

4
+ 0.0001

5000
+ 3

50000

)
×
∫ 3

4

1
4

G(t, s)ds

)2
⎤
⎦ dt

≈ 0.016 > ρ1,∫ 1

0

[(
1

A(ρ2)
f m[c,d]×[η0Mρ2 ,Nρ2 ]

∫ d

c
G(t, s)ds

)p

+
(

1

A(ρ2)
f m[c,d]×[η0Mρ2 ,Nρ2 ]

∫ d

c
G(t, s)ds

)q]
dt

≈
∫ 1

0

⎡
⎣
(

1

sin π
2

×
(
10−8

4
+ 140 × 0.204 − 699993

50000

)
×
∫ 3

4

1
4

G(t, s)ds

) 1
2

+
(

1

sin π
2

×
(
10−8

4
+ 140 × 0.204 − 699993

50000

)
×
∫ 3

4

1
4

G(t, s)ds

)2
⎤
⎦ dt

≈ 1.642 > ρ2,

HM
[0,Nρ1ϕ(1)] + 1

Q1
f M[0,1]×[0,Nρ1 ]

∫ 1

0
G(s)ds
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≈ 9

1000

√
0.0016 × 13

25
+ 1

sin(0.01)
×
(
10−8 + 1

1250
× 0.0016 + 3

50000

)

×
∫ 1

0
s(1 − s)ds ≈ 0.0013 < 0.0016 ≈ Nρ1 .

Therefore, (H4), (H7) and (H8) hold. By Theorem 2.7 we conclude that problem (2.1)
has at least two positive solutions.

3 The case f (t, x) is singular at x = 0

In this section, by applying the Guo–Krasnoselskii fixed point theorem on cones,
we obtain the existence of positive solutions for Eq. (1.1) with nonlocal boundary
conditions when the nonlinear term f (t, x) has singularity at x = 0. It is worth
mentioning that the restrictions on functions A and H are different from those in
Sect. 2.

We continue to study the integral Eq. (1.2), where 0 < p < 1 ≤ q, A : [0,+∞) →
(0,+∞) is continuous and monotone increasing, H : [0,+∞) → [0,+∞) is con-
tinuous and bounded (we will assume that there exists 0 < H < +∞ such that
0 ≤ H(x) ≤ H for x ∈ [0,+∞)). ϕ(u) is the same as Sect. 2. f : [0, 1]×(0,+∞) →
[0,+∞) is continuous and singular at x = 0.

We define a cone

P ′ = {u ∈ E : u(t) � c(t)‖u‖, t ∈ [0, 1]} ,

and a set

�ρ = {u ∈ P ′ : ‖u‖ < ρ},

where c(t) will be given in (H1)
′.

(H1)
′ G : [0, 1] × [0, 1] → [0,+∞) is continuous and there exists a continuous

function c : [0, 1] → [0, 1] with 0 < c(t) < 1 for t ∈ (0, 1) such that

G(t, s) � c(t)G(s), t, s ∈ [0, 1],

where G(s) = max
t∈[0,1] G(t, s), s ∈ [0, 1];

(H2)
′ γ : [0, 1] → [0, 1] is continuous and γ (t) ≥ c(t)‖γ ‖ for t ∈ [0, 1], where c(t)

is the same as we defined in (H1)
′;

(H3)
′ For any 0 < r < R < +∞,

lim
m→∞ sup

u∈�R\�r

∫
e(m)

G(s) f (s, u(s))ds = 0,

where e(m) = [0, 1
m ] ∪ [m−1

m , 1].
For a given θ ∈ (0, 1

2 ), denote η = min{c(t) : θ ≤ t ≤ 1 − θ}.
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Lemma 3.1 Assume that (H1)
′-(H3)

′ hold. Then T : �R\�r → P ′ is completely
continuous.

Proof For any u ∈ �R\�r , we have r ≤ ‖u‖ ≤ R, and 0 ≤ ϕ(u) ≤ ‖u‖ϕ(1) ≤
Rϕ(1) < +∞. For any u ∈ �R\�r , we have

0 < M1 � (1 − 2θ)((ηr)p + (ηr)q)

≤
∫ 1−θ

θ

(η‖u‖)p + (η‖u‖)qdr

≤
∫ 1

0
(u p(r) + uq(r))dr

≤ ‖u‖p + ‖u‖q ≤ Rp + Rq � M2.

It follows from (H3)
′ that there exists a natural number l > 0 such that

sup
u∈�R\�r

∫
e(l)

G(s) f (s, u(s))ds < 1.

For s ∈ [ 1l , l−1
l ], we have η1r ≤ η1‖u‖ ≤ u(s) ≤ ‖u‖ ≤ R, where η1 = min{c(t) :

1
l ≤ t ≤ l−1

l }. Then for any t ∈ [0, 1], we have

Tu(t) ≤ H + (A(M1))
−1

[∫
e(l)

G(s) f (s, u(s))ds + f M[ 1l , l−1
l ]×[η1r ,R]

∫ l−1
l

1
l

G(s)ds

]

≤ H + (A(M1))
−1
(
1 + f M[ 1l , l−1

l ]×[η1r ,R]

∫ 1

0
G(s)ds

)
< +∞.

The proof of (Tu)(t) � c(t)‖Tu‖ is similar to the proof of Lemma 2.3, so we omit
it. Thus, T (�R\�r ) ⊆ P ′.

Suppose that un, u0 ∈ �R\�r and ‖un − u0‖ → 0 (n → ∞). Then

0 ≤ ϕ(un) ≤ Rϕ(1) < +∞, 0 ≤ ϕ(u0) ≤ Rϕ(1) < +∞,

and

0 < M1 ≤
∫ 1

0
((un(r))

p + (un(r))
q)dr ≤ M2,

0 < M1 ≤
∫ 1

0
((u0(r))

p + (u0(r))
q)dr ≤ M2.

By (H3)
′, ∀ ε > 0, there exists a natural number m0 > 0 such that

sup
u∈�R\�r

∫
e(m0)

G(s) f (s, u(s))ds <
εA(M1)

6
.
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For s ∈ [ 1
m0

, m0−1
m0

], we have

η2r ≤ un(s) ≤ R, η2r ≤ u0(s) ≤ R,

where η2 = min{c(s) : 1
m0

≤ s ≤ m0−1
m0

}. Since f is uniformly continuous on

[ 1
m0

, m0−1
m0

] × [η2r , R], then

lim
n→∞ | f (s, un(s)) − f (s, u0(s))| = 0.

Applying Lebesgue dominated convergence theorem, we have

(A(M1))
−1
∫ m0−1

m0

1
m0

G(s)| f (s, un(s)) − f (s, u0(s))|ds → 0 (n → +∞).

For the above ε > 0, there exists a natural number N1 such that if n > N1, then

(A(M1))
−1
∫ m0−1

m0

1
m0

G(s)| f (s, un(s)) − f (s, u0(s))|ds <
ε

3
.

Since H and ϕ are continuous, then there exists a natural number N2 such that for
n > N2,

|H(ϕ(un)) − H(ϕ(u0))| <
ε

3
.

Therefore, for n > N = max{N1, N2}, we have

‖Tun − Tu0‖ ≤ |H(ϕ(un)) − H(ϕ(u0))| + 2(A(M1))
−1
∫
e(m0)

G(s) f (s, u0(s))ds

+(A(M1))
−1
∫ m0−1

m0

1
m0

G(s)| f (s, un(s)) − f (s, u0(s))|ds < ε,

which implies T is continuous.
Assume that B is a bounded subset in�R\�r , fromAscoli–Arzela theorem and the

Lebesgue dominated convergence theorem, it is easy to prove that T (B) is uniformly
bounded and equicontinuous. Thus, T : �R\�r → P ′ is completely continuous. �

The main tool is the Guo–Krasnoselskii fixed point theorem on cones.

Lemma 3.2 [23] Let E be a Banach space and let P be a cone in E. Let �1 and �2
be two bounded open subsets in E such that 0 ∈ �1 and �1 ⊂ �2. Let the operator
A : P ∩ (�2\�1) → P be completely continuous. If the following conditions are
satisfied:

(i) ‖Au‖ ≤ ‖u‖ for any u ∈ P ∩ ∂�1, ‖Au‖ ≥ ‖u‖ for any u ∈ P ∩ ∂�2, or
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(ii) ‖Au‖ ≥ ‖u‖ for any u ∈ P ∩ ∂�1, ‖Au‖ ≤ ‖u‖ for any u ∈ P ∩ ∂�2,

then A has at least one fixed point in P ∩ (�2\�1).
Denote

L = 1

A(2)

∫ 1

0
G(s)ds, l = η2

A(2)

∫ 1−θ

θ

G(s)ds,

where θ ∈ (0, 1
2

)
is given previously.

Theorem 3.3 Assume that (H1)
′-(H3)

′ hold. Further assume that the following con-
ditions hold:

(H4)
′

0 < l−1 < f 0 = lim inf
x→0

min
t∈[0,1]

f (t, x)

x
≤ ∞;

(H5)
′

0 ≤ f ∞ = lim sup
x→+∞

max
t∈[0,1]

f (t, x)

x
≤ L−1.

Then (1.2) has at least one positive solution.

Proof From Lemma 3.1 and the extension theorem of a completely continuous oper-
ator, for any R > 0, there exists T̃ : �R → P ′, which is still completely continuous.
Without loss of the generality, we still write it as T .

By (H4)
′, there exist ε1 > 0 and 0 < r ≤ 1 such that

f (t, x) ≥ (l−1 + ε1)x, 0 < x ≤ r , 0 ≤ t ≤ 1.

For u ∈ ∂�r , we have

∫ 1

0
(u p(r) + uq(r))dr ≤ ‖u‖p + ‖u‖q = r p + rq ≤ 2.

Thus,

0 < A

(∫ 1

0
(u p(r) + uq(r))dr

)
≤ A(2).

It follows that

(Tu)(t) ≥ 1

A(2)

∫ 1

0
G(t, s) f (s, u(s))ds

≥ 1

A(2)

∫ 1

0
c(t)G(s)(l−1 + ε1)u(s)ds
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≥ c(t)

A(2)
(l−1 + ε1)

∫ 1−θ

θ

G(s)η‖u‖ds

≥ η2

A(2)
(l−1 + ε1)‖u‖

∫ 1−θ

θ

G(s)ds > ‖u‖, t ∈ [θ, 1 − θ ].

Therefore, ‖Tu‖ ≥ ‖u‖ for u ∈ ∂�r .
On the other hand, by (H5)

′, there exist 0 < ε2 < L−1 and R1 > 1 such that

f (t, x) ≤ (L−1 − ε2)x, x ≥ R1, 0 ≤ t ≤ 1

Let

M0 = H + sup
u∈∂�R1

∫ 1

0

(
A

(∫ 1

0
(u p(r) + uq(r))dr

))−1

G(s) f (s, u(s))ds.

From Lemma 3.1, we know M0 < +∞. We choose R > max{R1,
1

ε2L
M0}. Let

D(u) = {t ∈ [0, 1] : u(t) > R1}.

For any u ∈ ∂�R and t ∈ D(u), we have R1 < u(t) ≤ R,which implies f (t, u(t)) ≤
(L−1 − ε2)u(t). For u ∈ ∂�R , there exists t0 ∈ [0, 1] such that ‖u‖ = u(t0). Let
u1(t) = min{u(t), R1}. Thenu1(t) ≤ R1 for t ∈ [0, 1] andu1(t0) = min{u(t0), R1} =
min{‖u‖, R1} = R1, which implies that u1 ∈ ∂�R1 . Thus, for t ∈ [0, 1],

Tu(t) ≤ H +
∫
D(u)

(
A

(∫ 1

0
(u p + uq)(r)dr

))−1

G(s) f (s, u(s))ds

+
∫

[0,1]\D(u)

(
A

(∫ 1

0
((u1)

p + (u1)
q)(r)dr

))−1

G(s) f (s, u1(s))ds

≤ H + 1

A(2)
(L−1 − ε2)

∫
D(u)

G(s)‖u‖ds

+
∫ 1

0

(
A

(∫ 1

0
((u1)

p + (u1)
q)(r)dr

))−1

G(s) f (s, u1(s))ds

≤ (L−1 − ε2)L‖u‖ + M0 < ‖u‖.
Therefore, ‖Tu‖ ≤ ‖u‖ for u ∈ ∂�R .

By Lemma 3.2, we conclude that T has a fixed point u ∈ �R\�r , and Eq. (1.2)
has at least one positive solution. �
Example 3.4 Let p = 1

2 , q = 2, A(x) = 2 + x, H(x) = 3 − e−x , ϕ(u) =∫ 1
0 u(s)d(2s), f (t, x) = 2 − t + | ln x |. Consider the following nonlocal problem:

{
−
(
2 + ∫ 10 (u

1
2 (s) + u2(s))ds

)
u′′(t) = 2 − t + | ln u(t)|, t ∈ (0, 1),

u(0) = 3 − e− ∫ 10 u(s)d(2s), u(1) = 0.
(3.1)
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Obviously, f (t, x) is singular at x = 0. It is easy to see that γ (t) = 1 − t , and

G(t, s) =
{
t(1 − s), 0 ≤ t ≤ s ≤ 1,
s(1 − t), 0 ≤ s ≤ t ≤ 1.

Let G(s) = s(1 − s), c(t) = t(1 − t). Then (H1)
′ and (H2)

′ are satisfied.
For any 0 < r < R < +∞ and u ∈ �R\�r , we have 0 < rc(t) ≤ u(t) ≤

R for t ∈ [0, 1]. Then | ln u(t)| ≤ | ln R| + | ln rc(t)|. Due to
∫ 1
0 | ln c(s)|ds =∫ 1

0 (| ln s| + | ln(1 − s)|)ds = 2, the absolute continuity of the integral yields that
lim

m→∞
∫
e(m)

| ln c(s)|ds = 0. Thus,

lim
m→∞ sup

u∈�R\�r

∫
e(m)

G(s) f (u(s))ds

≤ lim
m→∞

∫
e(m)

(2 − s + | ln R| + | ln rc(s)|)ds

= (3 + 2| ln R| + 2| ln r |) lim
m→∞

1

m
+ lim

m→∞

∫
e(m)

| ln c(s)|ds = 0.

So assumption (H3)
′ is satisfied.

We choose θ = 1
4 . Then η = 3

16 , l = ( 3
16 )2

4

∫ 3
4
1
4
s(1 − s)ds = 11

98304 , L =
1
4

∫ 1
0 s(1 − s)ds = 1

24 . Direct computation shows that

lim inf
x→0

min
t∈[0,1]

f (t, x)

x
= ∞, lim sup

x→+∞
max
t∈[0,1]

f (t, x)

x
= 0.

Therefore the assumptions of Theorem 3.3 are satisfied, and nonlocal boundary value
problem (3.1) has at least one positive solution.

4 The case f changes sign

In this section, we investigate nonlocal differential Eq. (1.1) subject to a specific
nonlocal boundary condition

αu(0) − βu′(0) = 0, δu′(1) = ϕ(u), (4.1)

whereα > 0, β > 0, δ > 0, ϕ(u) is the same as Sect. 2.Using the fixed point theorem
in double cones, we obtain the existence of positive solutions. It is worth mentioning
that the nonlinearity is allowed to change sign and tend to negative infinity.

(H)′′ f : [0, 1] × [0,+∞) → R is continuous, and f (t, 0) ≥ 0 ( �≡ 0) for
t ∈ [0, 1].
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Let

� = 1 −
∫ 1

0

β + αt

αδ
dα(t), H(t, s) = β

α
+
{
s, 0 ≤ s ≤ t ≤ 1,
t, 0 ≤ t ≤ s ≤ 1.

By using standard arguments we obtain the following lemma.

Lemma 4.1 Suppose that � �= 0. For any g ∈ C([0, 1]), the nonlocal problem
{

−A
(∫ 1

0 (u p(s) + uq(s))ds
)
u′′(t) = g(t), t ∈ (0, 1),

αu(0) − βu′(0) = 0, δu′(1) = ϕ(u).

has a solution

u(t) =
∫ 1

0

(
A

(∫ 1

0
(u p + uq)(r)dr

))−1

G(t, s)g(s)ds, t ∈ [0, 1],

where

G(t, s) = β + αt

αδ�

∫ 1

0
H(τ, s)dα(τ) + H(t, s).

In the following we always assume that � > 0. Obviously, G : [0, 1] × [0, 1] →
[0,+∞) is continuous.

Define two cones K and K ′:

K = {u ∈ E : u(t) ≥ 0, t ∈ [0, 1]}, K ′ = {u ∈ K : u is concave on [0, 1]}.

Define ά : K ′ → [0,+∞) by

ά(x) = min
t∈[θ,1−θ]x(t), θ ∈

(
0,

1

2

)
.

For ρ > 0, a > 0, b > 0, let

V̂ρ =
{
u ∈ K :

∫ 1

0
(u p(s) + uq(s))ds < ρ

}
,

Kr = {u ∈ K : ‖u‖ < r}, K ′
r = {u ∈ K ′ : ‖u‖ < r},

K (b) = {u ∈ K : ά(u) < b}, Ka(b) = {u ∈ K : a < ‖u‖, ά(u) < b}.

From the definition of ά, we immediately obtain the following properties.

Lemma 4.2 ά is a continuous increasing function satisfying ά(x) ≤ ‖x‖ ≤ M ά(x),
where M ≥ 1 is a constant.
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Define operators S, T and T̃ : E → E as follows:

Su(t) =
∫ 1

0

(
A

(∫ 1

0
(u p(r) + uq (r))dr

))−1

G(t, s) f (s, u(s))ds, t ∈ [0, 1],

Tu(t) =
⎛
⎝∫ 1

0

(
A

(∫ 1

0
(u p(r) + uq (r))dr

))−1

G(t, s) f (s, u(s))ds

⎞
⎠

+
, t ∈ [0, 1],

T̃ u(t) =
∫ 1

0

(
A

(∫ 1

0
(u p(r) + uq (r))dr

))−1

G(t, s) f +(s, u(s))ds, t ∈ [0, 1],

where f +(t, x) = max{ f (t, x), 0}. We define ψ : E → K by (ψu)(t) =
max{u(t), 0}. Then T = ψ ◦ S and u is a positive solution of problem (1.1) and
(4.1) if and only if u is a positive fixed point of operator S.

By the arguments similar to Lemma 3.2 in [11], we have the following result.

Lemma 4.3 If S : V̂ρ2\V̂ρ1 → E is completely continuous, then T = ψ ◦ S :
V̂ρ2\V̂ρ1 → K is completely continuous.

Lemma 4.4 Assume that (H)′′ and (H3) hold. Then T : V̂ρ2\V̂ρ1 → K and T̃ :
K ′ ∩

(
V̂ρ2\V̂ρ1

)
→ K ′ are completely continuous.

Proof From the continuity of f , it is easy to show that S : V̂ρ2\V̂ρ1 → E is completely

continuous. So T : V̂ρ2\V̂ρ1 → K is completely continuous by Lemma 4.3. By

standard arguments, T̃ : K ′ ∩
(
V̂ρ2\V̂ρ1

)
→ K ′ is completely continuous. �

Lemma 4.5 For any ρ > 0, K ′
Mρ

⊆ V̂ρ

⋂
K ′ ⊆ K ′

Eρ
, where Mρ ∈ (0, ρ

1
q ) is the

unique positive solution of x p + xq = ρ and Eρ ∈ (0, 1
θ
(

ρ
1−2θ )

1
q ) is the unique

positive solution of (θx)p + (θx)q − ρ
1−2θ = 0.

Proof The proof is similar to Lemma 2.2, so we omit it. �
Lemma 4.6 [11] Let X be a real Banach space with norm ‖ · ‖, and let K , K ′ ⊂ X
be two cones with K ′ ⊆ K. Suppose that T : K → K and T̃ : K ′ → K ′ are
two completely continuous operators and ά(x) : K ′ → [0,+∞) is a continuous
increasing functional satisfying ά(x) ≤ ‖x‖ ≤ M ά(x) for all x ∈ K ′ and for some
constant M ≥ 1. Suppose that there exist two constants b > a > 0 such that

(1) ‖T̃ x‖ < a for x ∈ ∂K ′
a, and ά(T̃ x) > b for x ∈ ∂K ′(b);

(2) T x = T̃ x for x ∈ K ′
a(b)

⋂{x : T̃ x = x}.
Then T has a fixed point y in K satisfying ‖y‖ > a, ά(y) < b.

Theorem 4.7 Assume that (H)′′ and (H3) hold, and δ > ϕ(1). Suppose that there

exist constants d > 0, θ ∈ (0, 1
2 ) such that 0 <

(
1 + α

β

)
d < Eρ1 < θMρ2 < Mρ2 ,

and
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(1) f (t, x) <
Eρ1
I for (t, x) ∈ [0, 1] × [0, Eρ1 ], where I = 1

Q1
max
t∈[0,1]

∫ 1
0 G(t, s))ds;

(2) f (t, x) >
θMρ2
J for (t, x) ∈ [θ, 1 − θ ] × [θMρ2 , Mρ2 ], where J =

1
Q2

min
t∈[θ,1−θ]

∫ 1−θ

θ
G(t, s)ds;

(3) f (t, x) ≥ 0 for (t, x) ∈ [0, 1] × [d, Mρ2 ].
Then boundary value problem (1.1) and (4.1) has a positive solution.

Proof For u ∈ ∂K ′
Eρ1

and t ∈ [0, 1], we have 0 ≤ u(t) ≤ ‖u‖ = Eρ1 . Then

f +(t, u(t)) ≤ Eρ1

I
.

Since min
t∈[θ,1−θ]u(t) ≥ θ‖u‖ and ∂K ′

Eρ1
⊆ K ′

Eρ1
⊆ K ′

Mρ2
⊆ V̂ρ2

⋂
K ′, we have

∫ 1

0
(u p(r) + uq(r))dr ≥

∫ 1−θ

θ

[(θ‖u‖)p + (θ‖u‖)q ]dr = ρ1,

and

∫ 1

0
(u p(r) + uq(r))dr ≤

∫ 1

0
(‖u‖p + ‖u‖q)dr ≤ (Mρ2)

p + (Mρ2)
q = ρ2.

Then

‖T̃ u‖ ≤ 1

Q1
max
t∈[0,1]

∫ 1

0
G(t, s) f +(s, u(s))ds

≤ 1

Q1
max
t∈[0,1]

∫ 1

0
G(t, s)

Eρ1

I
ds = Eρ1, u ∈ ∂K ′

Eρ1
.

For u ∈ ∂K ′(θMρ2), we have Eρ1 < θMρ2 = ά(u) ≤ ‖u‖ ≤ 1
θ
ά(u) = Mρ2 . By

Lemma4.5,wededuce thatρ1 <
∫ 1
0 (u p(r)+uq(r))dr ≤ ρ2, and θMρ2 ≤ u(t) ≤ Mρ2

for t ∈ [θ, 1 − θ ]. Thus, we calculate

ά(T̃ u) = min
t∈[θ,1−θ](T̃ u)(t) > min

t∈[θ,1−θ]
1

Q2

∫ 1−θ

θ

G(t, s)
θMρ2

J
ds

= θMρ2 , u ∈ ∂K ′(θMρ2).

On the other hand, for u ∈ K ′
Eρ1

(θMρ2)
⋂{u : T̃ u = u}, we have ‖u‖ > Eρ1 >(

1 + α
β

)
d, ά(u) < θMρ2 , αu(0) − βu′(0) = 0 and δu′(1) = ϕ(u). Since u is

concave, u(t) minimizes at t = 0 or t = 1. Due to ϕ(u) = ∫ 1
0 u(s)dα(s) ≥ 0, we

have u′(1) = 1
δ
ϕ(u) ≥ 0. Therefore, u(0) = min0≤t≤1 u(t) and u(1) = ‖u‖.
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We claim that u(0) ≥ d. Otherwise, we assume u(0) < d. Then there exists
t0 ∈ (0, 1) such that u′(t0) = u(1) − u(0) = ‖u‖ − u(0) > α

β
d. Thanks to the fact

that u is concave, u′(0) ≥ u′(t0) > α
β
d. It follows that

0 = αu(0) − βu′(0) < αd − β
α

β
d = 0,

which is a contradiction. Then for t ∈ [0, 1], we have d ≤ u(0) ≤ u(t) ≤ ‖u‖ ≤
1
θ
ά(u) < Mρ2 . By condition (3) of the theorem, we have f +(t, u(t)) = f (t, u(t)).

Thus, for u ∈ K ′
Eρ1

(θMρ2)
⋂{u : T̃ u = u}, we obtain that Tu = T̃ u = u. It follows

from Lemma 4.6 that T has a fixed point u0 in K satisfying ‖u0‖ > Eρ1 > 0 and

ά(u0) < θMρ2 . Thus Eρ1 ≤ ‖u0‖ ≤ Mρ2 , and ρ1 ≤ ∫ 10 (u p
0 (r) + uq0(r))dr ≤ ρ2.

We next show that u0 is a positive solution of problem (1.1) and (4.1). It is sufficient
to prove that u0 is a fixed point of S. Arguing indirectly, we suppose that there exists
t1 ∈ (0, 1) such that u0(t1) �= (Su0)(t1). From u0(t) = (Tu0)(t) = max{(Su0)(t), 0},
it follows that (Su0)(t1) < 0 and u0(t1) = 0. Assume that (t2, t3) contains t1, and it
is the maximum interval which satisfies (Su0)(t) < 0 for any t ∈ (t2, t3). By (H)′′,
we get [t2, t3] �= [0, 1]. Thus t2 > 0 or t3 < 1.

For the case t3 < 1, we have (Su0)(t) < 0, u0(t) = 0 for any t ∈ (t2, t3), so
(Su0)(t3) = 0, and (Su0)′(t3) ≥ 0. Noting that

(Su1)
′′(t) = −

(
A

(∫ 1

0
(u p

0 (r) + uq0(r))ds

))−1

f (t, 0) ≤ 0, t ∈ (t2, t3),

so (Su0)′(t) ≥ (Su0)′(t3) ≥ 0 for t ∈ [t2, t3]. It follows that (Su0)(t) ≤ (Su0)(t3) = 0
for t ∈ [t2, t3], which implies t2 = 0, which contradicts (Su0)′(0) = α

β
(Su0)(0) < 0.

For the case t2 > 0, we have u0(t) = 0 for t ∈ [t2, t3] and (Su0)(t2) = 0. Then
(Su0)′(t2) ≤ 0. From (H1)

′′, we have

(Su0)
′′(t) = −

(
A

(∫ 1

0
(u p

0 (r) + uq0(r))dr

))−1

f (t, 0) ≤ 0, t ∈ (t2, t3),

and

(Su0)
′(t) ≤ (Su0)

′(t2) ≤ 0, t ∈ [t2, t3].

Then (Su0)(t) ≤ (Su0)(t2) = 0 for t ∈ [t2, t3]. Therefore, t3 = 1 and (Su0)′(1) < 0.
We claim that (Su0)(t) ≥ 0 for t ∈ [0, t2]. If otherwise, there exists t5 ∈ (0, t2)

such that (Su0)(t5) < 0 and u0(t5) = 0. Assume that (t6, t7) ⊆ [0, t2) contains t5,
and it is the maximum interval which satisfies (Su0)(t) < 0 for any t ∈ (t6, t7). Due
to t7 < t2 < 1, we can obtain a contradiction by a similar proof to the case of t3 < 1.
Thus, (Su0)(t) ≥ 0 for t ∈ [0, t2]. Explicit computations show that

0 > δ(Su0)
′(1) = ϕ(Su0) =

∫ 1

0
(Su0)(t)dα(t) ≥

∫ 1

t2
(Su0)(t)dα(t),
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and

|δ(Su0)′(1)| ≤
∣∣∣∣
∫ 1

t2
(Su0)(t)dα(t)

∣∣∣∣ ≤
∫ 1

t2
|(Su0)(t)|dα(t).

In view of the fact that (Su0)′(t) ≤ 0 and (Su0)(t) ≤ 0 for t ∈ [t2, 1], we have

|(Su0)′(1)| ≥ |(Su0)(t) − (Su0)(t2)|
t − t2

, t ∈ (t2, 1).

Thus, |(Su0)(t)| ≤ (t − t2)|(Su0)′(1)| ≤ |(Su0)′(1)| for t ∈ (t2, 1). It follows that

|δ(Su0)′(1)| ≤
∫ 1

t2
|(Su0)′(1)|dα(t) ≤ ϕ(1)|(Su0)′(1)|.

Hence δ ≤ ϕ(1), which is a contradiction to δ > ϕ(1). In a conclusion, u0 is a fixed
point of S, i.e., u0 is a positive solution of problem (1.1) and (4.1). �
Example 4.8 Let p = 1

2 , q = 2, α = β = δ = 1, ϕ(u) = ∫ 1
0 u(s) d( 12 s). Then

δ > ϕ(1). Choose A(t) = sin t, ρ1 = 0.1 and ρ2 = 2. Then (H3) holds and
Eρ1 ≈ 0.16, Mρ2 = 1. Define the function f : [0, 1] × [0,+∞) → R by

f (t, x) = 1

1000
t +
⎧⎨
⎩

1
1000 x, x ∈ [0, 0.2],
15.98x2 − 3.195x, x ∈ (0.2, 1],
−x + 13.785, x ∈ (1,+∞).

It is easy to see that (H)′′ holds. Consider the nonlocal problem
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− sin

(∫ 1

0
(u

1
2 (s) + u2(s))ds

)
u′′(t) = f (t, u(t)), t ∈ (0, 1),

u(0) − u′(0) = 0, u′(1) =
∫ 1

0
u(s)d

(
1

2
s

)
.

(4.2)

Let d = 1
20 > 0, θ = 1

4 . Then 0 <
(
1 + α

β

)
d < Eρ1 < θMρ2 < Mρ2 . Simple

calculation shows that I = 935
9 , J = 895

384 ,

max
(t,x)∈[0,1]×[0,0.16] f (t, x) ≈ 0.00116 <

0.16

I
≈ 0.0015,

min
(t,x)∈[ 14 , 34 ]×[0.25,1]

f (t, x) ≈ 0.2 >
0.2

J1
≈ 0.11

and

min
(t,x)∈[0,1]×[ 1

20 ,1]
f (t, x) ≥ 0.
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So, all conditions of Theorem 4.7 are satisfied. Then nonlocal problem (4.2) has a
positive solution.
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