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Abstract
In this paper, we first introduce some types of set relations on the power set of
n-dimensional Euclidean spaces which are proposed by Kuroiwa–Tanaka–Ha and
Jahn–Ha. We also mention new types of cancellation laws of set relations. Second,
we introduce a complete lattice-valued problem on the power set of n-dimensional
Euclidean spaces proposed by Hamel et al. Applying nonlinear scalarizing technique
in complete lattice, we present a new type of minimal element theorem and general-
ized Ekeland’s variational principles in complete lattice optimization problem.We also
present an existence theorem of minimal solutions related to the famous Takahashi’s
minimization theorem in complete lattice optimization problem.
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1 Introduction

The set optimization problem formalized as follows:

(P)

{
Optimize F(x)

Subject to x ∈ X ,
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where X is a nonempty set, Y is a topological vector space ordered by a closed convex
cone C ⊂ Y and F : X → 2Y is a set-valued map with domain X , that is, F(x) �= ∅
for each x ∈ X .

The vector optimization problem is to take the union of all objective values and
then search for (weakly, properly etc.) minimal points in this union with respect to
the vector ordering. This approach has been applied as a leading idea since the late
1980s, and supported by a number of researchers. This approach is called the vector
approach to set optimization.

The situation changed in the case that set order relationswere proposed byKuroiwa–
Tanaka–Ha [33, 35] around 2000. They introduced six types of set order relations on
the power set of topological vector space applying a convex ordering cone C with
nonempty interior. Its basic idea is to “lift” the concept of minimal (=non-dominated)
image points from the elements of a vector space to those of the power set of the
vector space: see [26]. Therefore, this approach is called the set relation approach to
set optimization. Jahn [31] states in his book that the set relations approach ‘opens
a new and wide field of research’ and the so called set relations ‘turn out to be very
promising in set optimization.’ Since the lower type and upper type set order relations
satisfy reflexivity and transitivity, many researchers recognize that the above two are
specifically important in set optimization problem.

In the 2010s, there is a big progress in set optimization problem. By the definitions
of equivalent classes with respect to lower and upper type set order relations men-
tioned the above and hull operations, Hamel et al. [26] defines spaces of sets which
enjoy lattice structure. They called the above one “complete lattice approach” to set
optimization. The set order relations outwardly disappear and the subset or supset
inclusions appears as a partial order. We will discuss the complete lattice optimization
problem and introduce new concepts for this problem.

Recently, new types of cancellation laws of set order relations are proposed by
Durea-Florea [16] and algebraic operations of set order relations [5] were investigated.
In Sect. 4, wewill also discuss cancellation laws of set order relations and the complete
lattice.

The important applications of minimal points are of special interest in vector opti-
mization problems, vector equilibrium problems, vector variational inequality, and
vector complementarity problem. In 1976, Brézis and Browder established a famous
minimal point theorem on a quasi-ordered set (so-called Brézis–Browder’s principle)
as follows:

Theorem 1.1 (Brézis–Browder [11]) Let (W ,�) be a quasi-ordered set (that is, � is
a reflexive and transitive relation on W) and let φ : W → R be a function satisfying

(A1) φ is bounded below,
(A2) w1 � w2 implies φ(w1) ≤ φ(w2),
(A3) for every �-decreasing sequence {wn}n∈N ⊆ W there exists some w ∈ W such

that w � wn for all n ∈ N.

Then for every w0 ∈ W there exists some w̄ ∈ W such that

(i) w̄ � w0,
(ii) ŵ � w̄ implies φ(ŵ) = φ(w̄).
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TheBrézis–Browder’s principle and variousminimal/maximal point theorems have
been generalized and improved in many various different directions; for more details,
we refer the readers to the papers [1, 13–15, 19, 25, 26, 36, 37] and references therein.

In 1980s, Gerstewitz [20] introduced a nonlinear scalarizing function for deriving
separation theorems for nonconvex sets and scalarization methods in vector optimiza-
tion. The readers can check a short history of Gerstewitz’s scalarizing functions in
Sect. 4.15 of [45]. Araya [6, 9] discussed generalizing Gerstewitz’s function to set-
valued version. The functions studied by Araya [6, 9] play the role of utility functions
(for details, see Sec. 4 below). In this work, we will consider nonlinear scalarizing
functions in complete lattices.

In this paper,we aim to obtain a newexistence result of complete lattice optimization
problem using the Brézis–Browder’s principle. For this purpose, we establish some
new concepts on complete lattice optimization problem to derive nonlinear scalariza-
tion technique in complete lattice which is a natural generalization of Gerstewitz’s
scalarizing function [20].

This paper is organized as follows. First, we introduce some types of set relations
on the power set of n-dimensional Euclidean spaces which are proposed by Kuroiwa–
Tanaka–Ha [35]. We also mention cancellation laws of set order relations. Second
we introduce a complete lattice-valued problems on the power set of n-dimensional
Euclidean spaces proposed by Hamel et al. [26]. Applying nonlinear scalarizing tech-
nique in complete lattice, we present a new type of minimal element theorem and
generalized Ekeland’s variational principle in complete lattice optimization problem.
We also present an existence theorem of minimal solutions in complete lattice opti-
mization problem.

2 Preliminaries

We first recall some notations, definitions and well-known results, which will be used
in this paper. Let R

n be n-dimensional Euclidean space,

R
n+ := {x = (x1, x2, . . . , xn) ∈ R

n | x1 ≥ 0, x2 ≥ 0, ..., xn ≥ 0}

be its nonnegative orthant and 0 be the origin of R
n , respectively.

For a set A ⊂ R
n , int(A), cl(A) and cor(A) denote the topological interior, the

topological closure, and algebraic interior respectively. A nonempty set A is called
solid if intA �= ∅. The symbol P(Rn) denote the family of nonempty subsets of R

n

including the empty set ∅ and V denote the family of nonempty subsets of R
n . The

sum of two sets V1, V2 ∈ V and the product of α ∈ R and V ∈ V are defined by

(OP) V1 + V2 := {v1 + v2 |v1 ∈ V1, v2 ∈ V2 }, αV := {αv |v ∈ V }.
In this paper, we assume that C ⊂ R

n is a solid pointed closed convex cone, that is,
intC �= ∅, C ∩ (−C) = {0}, clC = C , C + C ⊂ C and t · C ⊂ C for all t ∈ [0,∞).

Lemma 2.1 For C ⊂ R
n a closed convex cone and A, B, V ∈ V , the following

statements hold:
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(i) C + C = C;
(ii) C + int(C) = int(C);
(iii) cl(A) + cl(B) ⊂ cl(A + B);
(iv) cl(V + C) + C = cl(V + C).

Definition 2.1 For a, b ∈ R
n and a solid convex cone C ⊂ R

n , we define

a ≤C b by b − a ∈ C a ≤intC b by b − a ∈ int(C).

Proposition 2.1 For x ∈ R
n and y ∈ R

n, the following statements hold:

(i) x ≤C y implies that x + z ≤C y + z for all z ∈ R
n,

(ii) x ≤C y implies that αx ≤C αy for all α ≥ 0,
(iii) ≤C is reflexive and transitive. Moreover, if C is pointed, ≤C is antisymmetric

and hence a partial order.

We next introduce the concept of minimal elements in vector optimization problem,
which are also known as Edgeworth-Pareto-minimal or efficient elements.

Definition 2.2 (Optimality notions in vector optimization [17]) Let Z denote a real
vector space that is pre-ordered by some convex cone C ⊂ Z and let A denote some
nonempty subset of Z . We also suppose that cor(C) �= ∅.
• An element z̄ ∈ A is called a minimal element of the set A, if

A ∩ (z̄ − C) ⊂ {z̄} + C .

If C is pointed, then the above inclusions can be replaced by

A ∩ (z̄ − C) = {z̄}.

• An element z̄ ∈ A is called a weakly minimal element of the set A, if

A ∩ (z̄ − cor(C)) = ∅.

Lemma 2.2 ([17]) Let C have a nonempty algebraic interior and C �= Z. Then every
minimal element of the set A is also a weakly minimal element of the set A.

3 Set optimization and complete lattice optimization problem

3.1 Preliminaries in set optimization

Definition 3.1 (Kuroiwa–Tanaka–Ha [35]) For A, B ∈ V and a solid closed convex
cone C ⊂ R

n , we define

• (Lower type) A ≤l
C B by B ⊂ A + C ;

• (Upper type) A ≤u
C B by A ⊂ B − C .
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Proposition 3.1 (see also [6, 9, 26]) For A, B, D ∈ V and α ≥ 0, the following
statements hold.

(i) ≤l
C and ≤u

C are reflexive and transitive.

(ii) A ≤l
C B ⇐⇒ −B ≤u

C −A ⇐⇒ B ≤l
−C −A.

(iii) A ≤l
C B ⇐⇒ B + C ⊂ A + C and A ≤u

C B ⇐⇒ A − C ⊂ B − C.

(iv) A ≤l
C B and A ≤u

C B are not comparable, that is, A ≤l
C B does not imply

A ≤u
C B and A ≤u

C B does not imply A ≤l
C B.

(v) A ≤l
C B implies A + D ≤l

C B + D and A ≤u
C B implies A + D ≤u

C B + D.

(vi) A ≤l
C B implies αA ≤l

C αB and A ≤u
C B implies αA ≤u

C αB.

Definition 3.2 ([28, 40]) It is said that A ∈ V is

(i) C-proper (resp. (−C)-proper) if A + C �= R
n (resp. A − C �= R

n).
(ii) C-closed (resp. (−C)-closed) if A + C (resp. A − C) is a closed set,
(iii) C-bounded (resp. (−C)-bounded) if for each neighborhood U of zero in R

n

there is some positive number t > 0 such that

A ⊂ tU + C (resp. A ⊂ tU − C),

(iv) C-compact (resp. (−C)-compact) if any cover of A the form

{Uα + C | Uα are open} (resp. {Uα − C | Uα are open})

admits a finite subcover,
(v) C-convex (resp. (−C)-convex) if A + C (resp. A − C) is a convex set.

The symbolVC denote the family ofC-proper subsets ofR
n ,V−C denote the family

of (−C)-proper subsets of R
n , respectively. It is easy to see that every C-compact set

is C-closed and C-bounded.

Introducing the equivalence relations

A �l B ⇐⇒ A ≤l
C B and B ≤l

C A,

A �u B ⇐⇒ A ≤u
C B and B ≤u

C A,

we can generate the set of equivalence classes which are denoted by [·]l and [·]u ,
respectively. The followings are easily confirmed.

(�) A ∈ [B]l ⇐⇒ A + C = B + C, A ∈ [B]u ⇐⇒ A − C = B − C .

Definition 3.3 (l-minimal element, u-minimal element) Let S ⊂ V . We say that Ā ∈ S
is a l[u]-minimal element if for any A ∈ S,
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A ≤l[u]
C Ā implies Ā ≤l[u]

C A.

The symbols l[u]-Min(S;C) denote the family of l[u]-minimal elements of S.

3.2 Complete lattice optimization problem

In this section, we introduce the concept of lattice which is an abstract structure studied
in the mathematical subdisciplines of order theory and abstract algebra.

Definition 3.4 (Join, meet [12]) Let P be a nonempty partially ordered set and x, y ∈
P . We write x ∨ y (read as ‘x join y’) in place of sup{x, y} when it exists and x ∧ y
(read as ‘x meet y’) in place of inf{x, y} when it exists. Similarly, we write

∨
P S (the

‘join of S’) and
∧

P S (the ‘meet of S’) instead of sup S and inf S, when these exist.

Definition 3.5 (Lattice, complete lattice [12]) Let P be a nonempty partially ordered
set.

(i) If x ∨ y and x ∧ y exist for all x, y ∈ P , then P is called a lattice.
(ii) If

∨
S and

∧
S exist for all S ⊆ P , then P is called a complete lattice.

Proposition 3.2 ([12]) Let L be a lattice. Then ∨ and ∧ satisfy associative laws,
commutative laws, idempotency laws and absorption laws.

Next, we consider complete lattice-valued optimization problem on the power set
of R

n . We recall that the infimum of a subset V ⊆ W of a partially ordered set (W ,�)

is an element w̄ ∈ W satisfying w̄ � v for all v ∈ V and w � w̄ whenever w � v for
all v ∈ V . This means that the infimum is the greatest lower bound of V in W . The
infimum of V is denoted by inf V . Likewise, the supremum sup V is defined as the
least upper bound of V (see also [26]). The property (iii) in Proposition 3.1 and (�)

allow to define the following set

L := {A ∈ P(Rn) |A = A + C }, U := {A ∈ P(Rn) |A = A − C }.

A

B

A + C

B + C

B

A

B − C

A − C

Left: A, B ∈ L such that A ⊃ B. Right: A, B ∈ U such that A ⊂ B.
We can easily see that (L,⊇) and (U ,⊆), are partially ordered set (that is, the above

order relations satisfy the antisymmetric property).
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Proposition 3.3 ([26]) The pair (L,⊇) is a complete lattice. Moreover, for a subset
A ⊆ L, the infimum and supremum of A are given by

inf A =
⋃
A∈A

A, supA =
⋂
A∈A

A

where it is understood that inf A = ∅ and supA = R
n wheneverA = ∅. The greatest

(top) element of L with respect to ⊇ is ∅, the least (bottom) element is R
n.

Proposition 3.4 ([26]) The following statements hold.

(i) For A, B, D, E ∈ L, A ⊇ B, D ⊇ E implies A + D ⊇ B + E.
(ii) For A, B ∈ L, A ⊇ B, s ≥ 0 implies s A ⊇ sB.
(iii) A ⊆ L, B ∈ L implies inf(A + B) = (inf A) + B and A ⊆ L, B ∈ L implies

sup(A + B) ⊇ (supA) + B, where A + B = {A + B |A ∈ A }.

Inspired by Definition 3.2, we introduce the following new concepts.

Definition 3.6 It is said that A ∈ L (resp. B ∈ U) is
(i) L-proper (resp. U-proper) if A �= R

n (resp. B �= R
n).

(ii) L-closed (resp. U-closed) if A (resp. B) is a closed set,
(iii) L-bounded (resp. U-bounded) if for each neighborhoodU1 (resp.U2) of zero in

R
n

U1 = U1 + C (resp. U2 = U2 − C),

there is some positive number t > 0 such that A ⊂ tU1 (resp. B ⊂ tU2),
(iv) L-compact (resp. U-compact) if any cover of A the form

{Uα| Uα are open and Uα + C = Uα}
(resp. {Uα| Uα are open and Uα − C = Uα})

admits a finite subcover,
(v) L-convex (resp. U-convex) if A (resp. B) is a convex set.

The symbol LC denotes the family of L-proper subsets of Y and U−C denotes the
family of U-proper subsets of Y , respectively.

Remark 3.1 We first remark that the following relationships:

(i) Every L-compact set is L-closed and L-bounded.
(ii) Every U-compact set is U-closed and U-bounded.

We now compare L-compactness with the concept of compactness in lattice shown
below.
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Definition 3.7 (Compactness in lattice [12]) Let L be a complete lattice and let k ∈ L .
k is said to be compact if for every subset S ⊆ L , there is some finite subset T of S
such that

k ≤
∨

S �⇒ k ≤
∨

T .

The set of compact elements of L is denoted K (L).

Remark 3.2 When Uβ is a finite subset of Uα , (iv) of Definition 3.6 can be written as
follows:

A ≤
∨

Uα �⇒ A ≤
∨

Uβ

It can be seen that the two concepts completely coincide. Furthermore, youwill also see
that “compactness in topological space” implies “compactness in complete lattice”. In
other words, we found that compactness in ordered space is an extension of topological
compactness under a certain situation.

We conclude this subsection by introducing the solution concept in complete lattice-
valued optimization problem. We set

cl(L) := {A ∈ P(Rn) |A = cl(A + C) },
clconv(L) := {A ∈ P(Rn) |A = clconv(A + C) }.

Definition 3.8 ([26]) Let A ⊆ cl(L). An element Ā ∈ A is called l-minimal for A if
it satisfies

A ∈ A, A ⊇ Ā �⇒ A = Ā.

The set of all l-minimal elements of A is denoted by MinA.

Let M be a nonempty set and F : M → cl(L) a set-valued mapping. Similar to
[46], we consider the following complete lattice-valued optimization problem:

(CLOP) Minimize F(x) subject to x ∈ M .

Definition 3.9 (Minimal solutions) A point x0 ∈ M is said to be

(i) an L-minimal solutions of (CLOP) if for any x ∈ M , F(x) ⊂ F(x0) implies
F(x) = F(x0). The set of all L-minimal solutions of (CLOP) is denoted by
Min(F(M);⊂).

(ii) a weak L-minimal solutions of (CLOP) if for any x ∈ M , F(x) ⊂ int(F(x0))
implies F(x) = F(x0). The set of all weak L-minimal solutions of (CLOP) is
denoted by wMin(F(M);⊂).

Remark 3.3 In [26], they introduced complete lattice optimization problem (CL) using
the concept of the infimum and minimal elements. Given a set A ⊆ cl(L) or A ⊆
clconv(L), complete lattice optimization problem look for
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(CL) a set B ⊆ A such that

inf B = inf A and B ⊆ MinA.

In this paper, for simplicity, we adopt the definition of the minimal solution of
(CLOP) using the definition 3.8 and 3.9. The concept of minimal solutions using (CL)
is a subject for future research.

3.3 Cancellation laws in complete lattices

The Rådström cancellation law [43] is a well-known fundamental result.

Proposition 3.5 ([43]) Let X be a normed space over the real field R. Suppose that
A, B,C ⊂ X are nonempty sets and B is closed and convex, C is bounded, and

A + C ⊂ B + C .

Then A ⊂ B.

After, Prakash-Sertel [41, 42] generalized the above result. In [5], the author rewrote
the following forms using set order relations.

Proposition 3.6 (Cancelation law [5]: see also [41–43]) For A, B ∈ V and C ⊂ R
n a

closed convex cone, the following statements hold.

(i) If B ∈ V is bounded, then B ≤l
C B + A implies 0 ≤l

C A.
(ii) If B ∈ V is bounded, then B + A ≤u

C B implies A ≤u
C 0.

(iii) If B ∈ V is compact, then B ≤l
intC B + A implies 0 ≤l

intC A.
(iv) If B ∈ V is compact, then B + A ≤u

intC B implies A ≤u
intC 0.

Recently in [16], they gave a new cancellation law which is a generalization of
[41–43].

Proposition 3.7 (Durea-Florea [16]) Let X be a normed space over the real field R

andC ⊂ X be a pointed closed convex cone. Suppose that A, B, D ⊂ X are nonempty
sets such that D is C-bounded and

A + D ⊂ B + D + C .

Then we have that

A ⊂ cl conv(B + C).

Following the same line as [16], we have the following form.

Proposition 3.8 LetC ⊂ R
n be a pointed closed convex cone. Suppose that A, B, D ⊂

X are nonempty sets such that D is (−C)-bounded and

A + D ⊂ B + D − C .
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Then we have that

A ⊂ cl conv(B − C).

Using Proposition 3.7 and 3.8, we obtain new cancellation laws which is more
relaxed version of Proposition 3.6.

Proposition 3.9 We assume that A1 ∈ V is C-closed, C-convex, B1 ∈ V and D1 ∈ V
is C-bounded. We also assume that A2 ∈ V , B2 ∈ V is (−C)-closed, (−C)-convex
and D2 ∈ V is (−C)-bounded. Then the following statements hold.

(i) A1 ≤l
C B1 is equivalent to A1 + D1 ≤l

C B1 + D1 and
(ii) A2 ≤u

C B2 is equivalent to A2 + D2 ≤u
C B2 + D2.

Remark 3.4 In Proposition 3.9, we have found that the concept of C-closedness, C-
convexity and C-boundedness play an important role to obtain cancellation laws.
Using [43], Nuriya-Kuroiwa [32, 34] introduced parametrized embedding functions
on compact and convex subset to observe l-type solutions.Moreover in [5],we assumed
C-convexity to establish algebraic operations on V . It is a subject of next research is
to investigate the relationships among embedding theorems, cancellation laws and
algebraic operations of set order relations.

As a direct consequence of Proposition 3.9, we obtain the following cancellation
laws in complete lattices.

Proposition 3.10 The following statements hold.

(i) Let A, B, D ∈ L be such that L-closed, L-bounded and L-convex. Then

A ⊇ B ⇐⇒ A + D ⊇ B + D.

(ii) Let A, B, D ∈ U be such that U-closed, U-bounded and U-convex. Then

A ⊆ B ⇐⇒ A + D ⊆ B + D.

4 Nonlinear scalarizations in complete lattices

In 1980s, Gerstewitz [20] introduced a nonlinear scalarizing function for deriving sep-
aration theorems for nonconvex sets and scalarization methods in vector optimization.
We first recall the following concepts.

Definition 4.1 (Scalarization directions of sets [10]) Let A be a nonempty subset in a
real vector space Y . A vector k ∈ Y \ {0} is called a scalarization direction of A if the
following condition hold:

(a) ∀t ≥ 0, A + tk ⊆ A, and
(b) ∀y ∈ Y , ∃t ∈ R, y + tk /∈ A.

The set of all scalarization direction of A is denoted by sd(A).
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We remark that if A = C is a convex cone, then sd(C) = C\(−C).

Definition 4.2 (Nonlinear scalarization functionals [10, 21, 22, 45]) Let A be a
nonempty subset in a real vector space Y and k ∈ sd(A) be a scalarization direc-
tion of A. The functional ϕA,k : Y → [−∞,∞] defined by

ϕA,k(y) = inf{t ∈ R |y ∈ A + tk }

with inf ∅ = ∞ is called Gerstewitz’s nonlinear (separating) scalarization functional
generated by the set A and the scalarization direction k.

The readers can check a short history ofGerstewitz’s scalarizing functions inSection
4.15 of [45]. In this paper, we simply discuss that C ⊂ R

n a solid closed convex cone.
Moreover, the scalarizing function ϕA,k has a dual form. Agreeing sup ∅ = −∞, we
define ψA,k : Y → [−∞,∞]

ψA,k(y) = sup{t ∈ R |y ∈ −A + tk } (
ϕA,k(y) = −ψA,k(−y)

)
.

From the 2010s, Araya discussed generalizing Gerstewitz’s scalarization function-
als to set-valued version: for more details, see [6, 9, 23]. Assume that k0 ∈ intC .
Agreeing inf ∅ = ∞ and sup∅ = −∞, we defined hlinf(·; k0), huinf(·; k0) : V →
[−∞,∞] and hlsup(·; k0), husup(·; k0) : V → [−∞,∞] by

hlinf(V ; k0) = inf
{
t ∈ R

∣∣∣V ≤l
C {tk0}

}
= inf

{
t ∈ R

∣∣∣tk0 ∈ V + C
}

,

huinf(V ; k0) = inf
{
t ∈ R

∣∣∣V ≤u
C {tk0}

}
= inf

{
t ∈ R

∣∣∣V ⊂ tk0 − C
}

,

hlsup(V ; k0) = sup
{
t ∈ R

∣∣∣{tk0} ≤l
C V

}
= sup

{
t ∈ R

∣∣∣V ⊂ tk0 + C
}

,

husup(V ; k0) = sup
{
t ∈ R

∣∣∣{tk0} ≤u
C V

}
= sup

{
t ∈ R

∣∣∣tk0 ∈ V − C
}

.

The functions hlinf(·; k0), huinf(·; k0), hlsup(·; k0) and husup(·; k0) play the role of util-
ity functions.

Example 4.1 We set Y = R
2, C = R

2+, k0 = (1, 1) and

V = {(x, y) ∈ R
2
∣∣∣(x − 3)2 + (y − 3)2 = 22 },

hlinf(V ; k0) = 3 − √
2, huinf(V ; k0) = 5,

hlsup(V ; k0) = 1, husup(V ; k0) = 3 + √
2.
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C

V

k0

hlinf(V )

huinf(V )
husup(V )

hlsup(V )

We consider nonlinear scalarizing functions in complete lattices. Replacing V ∈
V with V ∈ L or V ∈ U , that is, hlinf(·; k0), hlsup(·; k0), : L → [−∞,∞] and

huinf(·; k0), husup(·; k0) : U → [−∞,∞], we obtain the following form:

hlinf(V ; k0) := inf
{
t ∈ R

∣∣∣tk0 ∈ V
}

,

huinf(V ; k0) := inf
{
t ∈ R

∣∣∣V ⊂ tk0 − C
}

,

hlsup(V ; k0) := sup
{
t ∈ R

∣∣∣V ⊂ tk0 + C
}

,

husup(V ; k0) := sup
{
t ∈ R

∣∣∣tk0 ∈ V
}

.

We can confirm that the functions hlinf and husup are very similar to Minkowski
functional.

Proposition 4.1 ([6, 9]) The following statements hold:

hlsup(V ; k0) = −huinf(−V ; k0) and husup(V ; k0) = −hlinf(−V ; k0).

Definition 4.3 We say that the function

(i) f1 : L → [−∞,∞] is L-increasing if V1 ⊃ V2 implies f1(V1) ≤ f1(V2),
(ii) f2 : cl(L) → [−∞,∞] is strictly L-increasing if int(V1) ⊃ V2 implies

f2(V1) < f2(V2).

Remark 4.1 In this paper, we investigate l-infimum type scalarizing function based on
the following two reasons:
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(A) It is suitable for minimization problem to adopt L-valued complete lattices.
Rockafellar-Wets [44] remarked that the second distributivity law does not extend
to all of extended real field R. To solve the above problem, Löhne [38, 39] inves-
tigated the concept of conlinear spaces (semi-vector spaces: see also [5]). After,
Hamel-Schrage [29] established an order theoretic and algebraic framework for
the extended real numbers which includes extensions of the usual difference to
expressions involving −∞ and/or +∞, so-called residuations. The authors of
[44] consider that it is natural to associate minimization with inf-addition. From
the above facts, Hamel et al. [26] also pointed out that associating ≤l

C with min-
imization and ≤u

C with maximization, the theory works for these cases: see also
[26] (the footnote at bottom of page 77). The authors agree their opinions.

(B) Gerstewitz’s scalarizing functions ϕC,k0 [20] is suitable for minimization prob-
lem.

Replacing V ∈ VC with V ∈ LC and using Lemma 2.1 and [7], we obtain the
following properties. The proofs of the following results are similar to Lemma 3.3 in
[7], however, we give their proofs here for the sake of completeness and the reader’s
convenience.

Lemma 4.1 Let k0 ∈ intC. The function hlinf(·; k0) : LC → (−∞,∞] has the fol-
lowing properties:

(i) hlinf(V ; k0) ≤ t ⇐⇒ tk0 ∈ cl(V );

(ii) hlinf(·; k0) is L-increasing;
(iii) hlinf(V + λk0; k0) = hlinf(V ; k0) + λ for every λ ∈ R;

(iv) hlinf(·; k0) is sublinear;
(v) hlinf(·; k0) is bounded from below;

(vi) hlinf(V ; k0) < t ⇐⇒ tk0 ∈ int(V );

(vii) hlinf(·; k0) is strictly L-increasing.
Proof We define

�l−(V ; k0) :=
{
t ∈ R

∣∣∣tk0 ∈ int(V )
}

,

�l(V ; k0) :=
{
t ∈ R

∣∣∣tk0 ∈ V
}

,

�l+(V ; k0) :=
{
t ∈ R

∣∣∣tk0 ∈ cl(V )
}

.

Then we have obviously that �l−(V ; k0) ⊂ �l(V ; k0) ⊂ �l+(V ; k0) and hence

inf �l+(V ; k0) ≤ inf �l(V ; k0)(= hlinf(V ; k0)) ≤ inf �l−(V ; k0).

(i) We assume hlinf(V ; k0) ≤ t and let t ∈ R be fixed. Then by the definitions of
hlinf and �l being of epigraphical type (that is, t ∈ �l and t̂ > t implies t̂ ∈ �l ,
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see [9]), we have

(
t + 1

n

)
k0 ∈ V

for all n ∈ N. Taking the limit when n → ∞, we obtain tk0 ∈ cl(V ).
Conversely, by the definitions of hlinf(·; k0), we show

inf �l+(V ; k0) = inf �l(V ; k0) = inf �l−(V ; k0).

On the contrary, assume that inf �l+(V ; k0) < inf �l−(V ; k0). Then there
exists t1, t2 ∈ R such that inf �l+(V ; k0) ≤ t1 < t2 < inf �l−(V ; k0). By
inf �l+(V ; k0) ≤ t1 [t1k0 ∈ cl(V )] and using (iv) of Lemma 2.1, we have

(∗) t1k
0 + C ⊂ cl(V ) + C = cl(V ).

On the other hand, we have

(∗∗) t2k
0 ∈ t2k

0 + C = t1k
0 + C + (t2 − t1)k

0 ⊂ t1k
0 + intC = int(t1k

0 + C).

By (∗), we have the following inclusion

(∗ ∗ ∗) int(t1k
0 + C) ⊂ int(cl(V )) = int(V ).

By (∗∗) and (∗ ∗ ∗), we obtain t2k0 ∈ int(V ), which contradicts the inequality
t2 < inf �l−(V ; k0).

(ii) Let V1, V2 ∈ LC be such that V2 ⊂ V1. If hlinf(V2; k0) = ∞, we have that
condition (ii) clearly holds. Taking hlinf(V2; k0) ∈ R, we obtain

hlinf(V2; k0)k0 ⊂ cl(V2) ⊂ cl(V1).

Using (i) of Lemma 4.1, we have hlinf(V1; k0) ≤ hlinf(V2; k0).
(iii) The conclusion follows immediately from the definition.
(iv) We prove sub-additivity. For any V1, V2 ∈ LC by the definition of hlinf(·; k0)we

have

hlinf(V1; k0)k0 ⊂ cl(V1) and hlinf(V2; k0)k0 ⊂ cl(V2).

If hlinf(V1; k0) = ∞ or hlinf(V2; k0) = ∞, we have that condition (v) clearly
holds. By adding the above inclusions and using (iii) of Lemma 2.1, we obtain

{hlinf(V1; k0) + hlinf(V2; k0)}k0 ⊂ cl(V1) + cl(V2) ⊂ cl(V1 + V2).

Using conclusion (i), we obtain the sub-additivity of hlinf(·; k0). The positively
homogeneity of hlinf(·; k0) is easy.
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(v) If V = R
n for V ∈ LC , then we have tk0 ⊂ V = R

n for all t ∈ R, which is
equivalent to hlinf(V ; k0) = −∞. Conversely, let tk0 ⊂ V for all t ∈ R and
V ∈ LC . Then we have

tk0 + C ⊂ V + C = V .

For k0 ∈ intC , it is known that⋃
t∈R

(tk0 + C) = R
n

and hence V = R
n .

(vi) Let hlinf(V ; k0) < t . Then there exists t̂ ∈ R such that hlinf(V ; k0) ≤ t̂ < t . By
using (i), we have

tk0 = t̂ k0 + (t − t̂)k0 ∈ cl(V ) + (t − t̂)k0 ⊂ int(V ).

Conversely, let tk0 ∈ int(V ). For k0 ∈ intC , it is known that

intC =
⋃
ε>0

(εk0 + intC).

Therefore, we have

tk0 ∈ int(V ) =
⋃
ε>0

(int(V ) + εk0 + intC + C)

and {int(V ) + εk0 + intC + C}ε>0 is an open cover of {tk0}. Since {tk0} is
compact, we can find ε1, ε2, · · · , εm > 0 such that

tk0 ∈
m⋃
i=1

(int(V ) + εi k
0 + intC + C) = int(V ) + ε0k

0 + intC ⊂ cl(V ) + ε0k
0,

where ε0 := min{εi |i = 1, 2 · · ·m} > 0. Then we have (t − ε0)k0 ∈ cl(V ) and
therefore hlinf(V ; k0) ≤ t − ε0 < t .

(vii) Let V1, V2 ∈ cl(LC ) such that L-closed and V2 ⊂ int(V1). Then we have

hlinf(V2; k0)k0 ⊂ cl(V2) = V2 ⊂ int(V1).

Applying property (vi), we obtain the conclusion.

��
Corollary 4.1 Suppose that C ⊂ R

n is a solid closed convex cone, k0 ∈ intC and
V ∈ cl(LC ) a L-proper and L-closed set. Then we have

0 ∈ int(V ) ⇐⇒ hlinf(V ; k0) < 0.

123



   67 Page 16 of 24 Y. Araya, W.-S. Du

Proof The proof of this Corollary is consequences of (vi) of Lemma 4.1. ��

5 Aminimal element theorem and generalized Ekeland’s variational
principle for complete lattices with set perturbation

The aim of this section is to present a minimal element theorem with set perturbation
in complete lattice optimization problem using Brézis–Browder’s principle, sublinear
scalarizing functions for complete lattice. In [8], we defined the following new order
relations on X × VC . where X is a metric space. The idea of these relations depends
on [19] and chapter 2 of [24].

(x1, V1) �l
k0,hlinf

(x2, V2) ⇐⇒
{

(x1, V1) �l
k0

(x2, V2)

hlinf(V1) < hlinf(V2)
or

{
x1 = x2
V2 ∈ [V1]l ,

where

(x1, V1) �l
k0 (x2, V2) ⇐⇒ V1 + d(x1, x2)k

0 ≤l
C V2.

We see that �l
k0,hlinf

is reflexive and transitive on X × VC .

Let DL ⊂ R
n be a convex set. As a natural generalization of the above order

relation, we define the following new order relation, on X ×LC , where X is a metric
space:

(x1, V1) �DL (x2, V2) ⇐⇒ V2 + d(x1, x2)DL ⊂ V1.

Proposition 5.1 Let DL ⊂ R
n be a convex set. Then �DL is reflexive and transitive

on X × LC .

Proof We can easily see that �DL is reflexive since d(x1, x1) = 0. We assume that
(x1, V1) �DL (x2, V2) and (x2, V2) �DL (x3, V3). Then we have

V2 + d(x1, x2)DL ⊂ V1 and V3 + d(x2, x3)DL ⊂ V2.

Adding d(x1, x2)DL to the latter inclusion, we obtain

V3 + d(x1, x2)DL + d(x2, x3)DL ⊂ V2 + d(x1, x2)DL ⊂ V1.

Since DL ⊂ R
n is a convex set, we have

d(x1, x2)DL + d(x2, x3)DL = {d(x1, x2) + d(x2, x3)}DL .

Then we obtain

V3 + {d(x1, x2) + d(x2, x3)}DL ⊂ V1.
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By the triangle inequality and distance function is non-negative, we have

d(x1, x3)DL ⊂ {d(x1, x2) + d(x2, x3)}DL

and hence

V3 + d(x1, x3)DL ⊂ V3 + {d(x1, x2) + d(x2, x3)}DL ⊂ V1,

which is a desired result. ��
We also define new type order relations on X × LC :

(x1, V1) �hlinf
DL

(x2, V2) ⇐⇒
{

(x1, V1) �DL (x2, V2)

hlinf(V1; k0) < hlinf(V2; k0)
or

{
x1 = x2
V1 = V2.

We also see that �hlinf
DL

is reflexive and transitive on X × LC .

5.1 Existence results

Let PX and PY be projections of X × Y onto X and Y , respectively, that is, for every
(x, y) ∈ X × Y

PX (x, y) = x PY (x, y) = y.

Theorem 5.1 Let X be a complete metric space, C ⊂ R
n a solid closed convex cone,

LC a family of L-proper and L-closed subsets of R
n, k0 ∈ intC, DL ∈ clconv(LC ) a

L-proper, L-closed and L-convex subset ofRn such that 0 ∈ int(DL) andA ⊂ X×LC

a nonempty set. We assume the following conditions:

(i) A is bounded below (there exists Ṽ ∈ LC such that Ṽ ⊃ PLC (A));
(ii) For all �DL -decreasing sequence {(xn, Vn)}n∈N ⊂ A with xn → x ∈ X, there

exists (x, V ) ∈ A such that (x, V ) �DL (xn, Vn) for all n ∈ N.

Then for every (x0, V0) ∈ A there exists (x̄, V̄ ) ∈ A such that

(a) (x̄, V̄ ) �DL (x0, V0), and
(b) If (x̂, V̂ ) ∈ A such that (x̂, V̂ ) �DL (x̄, V̄ ) then x̂ = x̄ .

Moreover, if we replace �DL with �hlinf
DL

, conclusion (b) can be replaced to

(b’) If (x̂, V̂ ) ∈ A such that (x̂, V̂ ) �hlinf
DL

(x̄, V̄ ) then x̂ = x̄ and V̂ = V̄ .

Proof Let

A0 := {(x, V ) ∈ A | (x, V ) �DL (x0, V0)}.
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We apply the Brézis–Browder’s principle to the quasi-ordered set (A0,�DL ) and the
following functional

φ : A0 → R, φ(x, V ) := hlinf(V ; k0).

We show thatφ satisfies the assumptions of Theorem 1.1. By (ii) and (v) of Lemma 4.1,
we have for Ṽ ∈ LC

−∞ < hlinf(Ṽ ; k0) ≤ hlinf(PLC (A); k0)

for all x ∈ X . Then, we have that hlinf(PLC (A); k0) is bounded from below on X , that
is, (A1) holds. By condition (ii) and (iv) of Lemma 4.1, we have that

(x1, V1) �DL (x2, V2)

(
⇐⇒ V2 + d(x1, x2)DL ⊂ V1

)

implies

hlinf(V1; k0) ≤ hlinf(V2 + d(x1, x2)DL ; k0)
≤ hlinf(V2; k0) + hlinf(d(x1, x2)DL ; k0) = hlinf(V2; k0) + d(x1, x2)h

l
inf(DL ; k0).

By Corollary 4.1, we have hlinf(DL) < 0 and hence

hlinf(V1; k0) ≤ hlinf(V2; k0),

that is, (A2) holds. We easily see that condition (ii) implies (A3). Therefore, by The-
orem 1.1, for every (x0, V0) ∈ A0 there exists (x̄, V̄ ) ∈ A0 such that

(1) (x̄, V̄ ) �DL (x0, V0),
(2) (x̂, V̂ ) �DL (x̄, V̄ ) implies φ(x̂, V̂ ) = φ(x̄, V̄ ).

Condition (1) implies conclusion (a). Since (x̂, V̂ ) ∈ A0, by condition (ii) and (iv) of
Lemma 4.1, we have that (x̂, V̂ ) �DL (x̄, V̄ ) implies

hlinf(V̂ ; k0) ≤ hlinf(V̄ + d(x̂, x̄)DL ; k0) ≤ hlinf(V̄ ; k0) + d(x̂, x̄)hlinf(DL ; k0).

Now we have hlinf(V̂ ; k0) = φ(x̂, V̂ ) = φ(x̄, V̄ ) = hlinf(V̄ ; k0), we obtain

d(x̂, x̄)hlinf(DL ; k0) ≥ 0.

Then, by the assumption and Corollary 4.1, we have d(x̂, x̄) = 0 and hence x̂ = x̄ ,
that is, conclusion (b) holds. To prove (b’), let

B0 :=
{
(x, V ) ∈ A | (x, V ) �hlinf

DL
(x0, V0)

}
,

φ : B0 → R, φ(x, V ) := hlinf(V ; k0).
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Similarly, we can also show that φ satisfies the assumptions of Theorem 1.1 and we
obtain conclusion (b’). ��

In 1972, Ekeland [18] presented the following variational principle, which pro-
vides powerful tools in modern variational analysis. In fact, the celebrated Ekeland’s
variational principle is a direct consequence of the Brézis–Browder’s principle.

Theorem 5.2 (Ekeland [18]) Let (X , d) be a complete metric space and f : X →
(−∞,∞] a l.s.c. function, �≡ +∞, bounded from below. Let ε > 0 and u ∈ X satisfy

f (u) ≤ inf
x∈X f (x) + ε.

Then there exists v ∈ X such that

(i) f (v) ≤ f (u),
(ii) d(u, v) ≤ 1, and
(iii) for each w �= v, f (v) − εd(v,w) < f (w).

Using scalarizing functions hlinf(·; k0) and applying Theorem 5.1, we obtain the fol-
lowing new strong form andweak form of Ekeland’s variational principle for complete
lattices with set perturbation. We consider the following conditions:

(H) X is a complete metric space, C ⊂ R
n is a solid closed convex cone, k0 ∈

intC , DL ∈ clconv(LC ) is a L-proper, L-closed and L-convex set such that
0 ∈ int(DL), F : X → LC is a L-proper and L-closed valued function. We also
assume that

(i) F is bounded below (there exists Ṽ ∈ LC such that Ṽ ⊃ F(x) for all x ∈ X );
(ii) {x̂ ∈ X |(x̂, F(x̂)) �DL (x, F(x))} is closed for all x ∈ X .

Theorem 5.3 (Strong form of generalized Ekeland’s variational principle)We suppose
condition (H). Then for any x0 ∈ X with F(x0) + int(DL) �⊂ F(x) for all x ∈ X,
there exists x̄ ∈ X such that

(a) F(x̄) ⊃ F(x0),
(b) d(x̄, x0) ≤ 1 and
(c) F(x̄) + d(x̄, x)DL �⊂ F(x) for all x ∈ X with x �= x̄ .

Proof Let A = grF := {(x, F(x))|x ∈ X} ⊂ X × LC . Of course, PLC (A) = F(X).
Let us show that condition (ii) in Theorem 5.1 holds. Let {(xn, Vn)}n∈N ⊂ A be a�DL -
decreasing sequence with xn → x ∈ X . Of course, Vn = F(xn). For all n, p ∈ N, we
have that

xn+p ∈ An := {x ∈ X |F(xn) + d(x, xn)DL ⊂ F(x)}

By condition (ii), An contains a limit x of the sequence (xn+p)p∈N. Therefore,
(x, F(x)) �DL (xn, F(xn)) for every n. Therefore, all the assumptions of Theo-
rem 5.1 are satisfied. Let x0 ∈ X satisfying F(x0) + int(DL) �⊂ F(x) for all x ∈ X .
Applying Theorem 5.1, there exists x̄ ∈ X such that (x̄, F(x̄)) ∈ grF satisfies
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(1) (x̄, F(x̄)) �DL (x0, F(x0)),
(2) (x, F(x)) �DL (x̄, F(x̄)) for all x �= x̄ .

Condition (2) is condition (c). By condition (1), we have that

F(x0) ⊂ F(x0) + d(x̄, x0)DL ⊂ F(x̄),

that is, (a) holds. To prove condition (b), we suppose that d(x̄, x0) > 1. Then we
obtain

d(x̄, x0)DL ⊃ int(DL).

Moreover, we have

F(x0) + int(DL) ⊂ F(x0) + d(x̄, x0)DL ⊂ F(x̄),

a contradiction. Therefore we show that d(x̄, x0) ≤ 1. ��
Theorem 5.4 (Weak form of generalized Ekeland’s variational principle)We suppose
condition (H). Then for any x0 ∈ X, there exists x̄ ∈ X such that

(a) F(x̄) ⊃ F(x0),
(b) F(x̄) + d(x̄, x)DL �⊂ F(x) for all x ∈ X with x �= x̄ .

Proof Let A = grF := {(x, F(x))|x ∈ X} ⊂ X × LC . So PLC (A) = F(X).
Following the same argument as in the proof of Theorem 5.3, we can show that
(x, F(x)) �DL (xn, F(xn)) for every n. Therefore condition (ii) in Theorem 5.1 holds
and hence all the assumptions of Theorem 5.1 are satisfied. Let x0 ∈ X . Applying
Theorem 5.1, there exists x̄ ∈ X such that (x̄, F(x̄)) ∈ grF satisfies

(1) (x̄, F(x̄)) �DL (x0, F(x0)),
(2) (x, F(x)) �DL (x̄, F(x̄)) for all x �= x̄ .

Condition (2) is condition (b). By condition (1), we obtain

F(x0) ⊂ F(x0) + d(x̄, x0)DL ⊂ F(x̄),

which means that (a) holds. The proof is completed. ��
By applying Theorem 5.4, we establish an existence theorem of minimal solutions

related to the famous Takahashi’s minimization theorem.

Theorem 5.5 (Generalized Takahashi’s minimization theorem)We suppose condition
(H). Moreover, we assume

(T) For any x ∈ X with F(x) /∈ Min(F(X),⊂) there exists y = y(x) ∈ X with y �= x
such that

F(x) + d(x, y)DL ⊂ F(y).
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Then there exists p ∈ X such that F(p) ∈ Min(F(X),⊂).

Proof Let x0 ∈ X . By Theorem 5.4, there exists x̄ ∈ X such that

(a) F(x̄) ⊃ F(x0),
(b) F(x̄) + d(x̄, x)DL �⊂ F(x) for all x ∈ X with x �= x̄ .

We verify F(x̄) ∈ Min(F(X),⊂). Suppose that F(x̄) /∈ Min(F(X),⊂). By condition
(T), there exists y = y(x̄) ∈ X with y �= x̄ such that

F(x̄) + d(x̄, y)DL ⊂ F(y),

which contradicts to (b). Hence F(x̄) ∈ Min(F(X),⊂). ��

5.2 Some remarks on existence results

We obtained a minimal element theorem and Ekeland’s variational principles (EVP)
for set-valued map via nonlinear scalarizing technique. Setting k0 ∈ intC and DL :=
{−k0}, we obtain l-type Ekeland’s variational principle for set-valued map (see [8]).
In [2, 3], they obtained set-valued EVP with respect to the weighted set relation that
is roughly speaking a convex combination of l-type and u-type set order relations. On
the other hand, we dealt with a special class of l-type set relation in this paper: see
also Remark 4.1. More generalized result of [2, 3] is seen in [4]. However, there are
still many open problems.

(a) In this paper, we dealt with complete lattice optimization problem, which is a
set optimization problem with lattice structure. So, our results are expected to be
applicable, for example, to Boolean algebra. Furthermore, our theory may have
the potential to bridge discrete optimization problem and continuous optimization
problem.

(b) In [27], they made a comprehensive research on minimal element theorems.
Moreover, they proposed generalized Brézis–Browder’s principle. Therefore, our
existence theorem could be obtained more relaxed form. It is a subject of the
next research that generalizations of our existence results and comparisons among
existence results related to minimal element theorem.

(c) In [46], they proposed some existence results for weak minimal solutions of
nonconvex set optimization problem whose image spaces have no topology. Com-
bining the results in [46] and Theorem 5.5 may enable us to remove the topology
of the image space R

n of set-valued map F : X → LC .

6 Conclusions

In this paper, we establish new cancellation laws of set order relations. Moreover,
we introduce new concepts on complete lattice optimization problem. Applying non-
linear scalarizing technique in complete lattice, we present a new type of minimal
element theorem and generalized Ekeland’s variational principles in complete lat-
tice optimization problem. Moreover, we proposed an existence theorem of minimal
solutions related to Takahashi’s minimization theorem.
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We have found that the family ofC-closed, bounded and convex subset ofR
n allow

cancellation laws and algebraic operations on some complete lattice. This fact may
bring a new insight to the complete lattice optimization problems and new existence
results are expected.
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