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Abstract
In this paper, a subgradient projection method for quasiconvexminimization problems
is provided. By employing strong subdifferentials, it is proved that the generated
sequence of the proposed algorithm converges to the solution of the minimization
problem of a proper, lower semicontinuous, and strongly quasiconvex function (in
the sense of Polyak in Soviet Math 7:72–75, 1966), under the same assumptions as
those required for convex functions with the convex subdifferentials. Furthermore, a
quasi-linear convergence rate of the iterates, extending similar results for the general
quasiconvex case, is also provided.

Keywords Subgradient methods · First-order methods · Nonconvex optimization ·
Generalized convexity · Quasiconvexity

Mathematics Subject Classification 90C26 · 90C30 · 49M37

1 Introduction

Let K be a closed and convex set in R
n and h : Rn → R := R ∪ {±∞} be a proper

function such that K ⊆ dom h. We consider the constraint minimization problem
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given by:

min
x∈K h(x). (COP)

If h is differentiable, then one of the most important iterative methods for finding a
solution of problem (COP) is the gradient method, which has been well studied due to
its important properties and applications in several fields of themathematical sciences,
engineering and economics among others.

If h is not differentiable, but lower semicontinuous (lsc henceforth) and convex,
then we may apply the subgradient algorithm: Given zk ∈ int dom h ⊆ K , we take

zk+1 = zk − αkξ
k, (1.1)

where ξ k ∈ ∂h(zk) is the convex subdifferential (see (2.7) below) and {αk}k is a
positive sequence of parameters. If ξ k = 0, then zk is a solution of problem (COP), if
not, then we take k = k + 1 and we repeat (1.1).

In contrast to the gradient method, the subgradient method (with the convex subdi-
fferential) does not decrease at each step even for convex functions (see [2, Example
8.3] and also [20]). However, the (convex) subgradient method converges to the solu-
tion of the problem for convex functions (see [2, Theorem 8.17] for instance), but also
for classes of quasiconvex functions with generalized subdifferentials (see [6, 7, 9, 13,
14, 22] and references therein).

In this paper, and by using new existence results and generalized subdifferentials,
we provide a subgradient projection method for finding the unique solution of the
minimization problem of a proper, lsc and strongly quasiconvex function. The subdif-
ferential that we use is the strong subdifferential (see [12]) which has been especially
introduced for studying strongly quasiconvex functions. We prove the convergence
of the generated sequence to the solution of problem (COP) for a proper, lsc and
strongly quasiconvex function under the same assumptions than the convex case with
the convex subdifferential. Recall that the class of strongly quasiconvex functionswere
introduced in the sixties, it is the natural extension of the strongly convex functions
and its definition goes back to the famous paper on existence theorems in extremum
problems of Polyak [18].

The structure of the paper is as follows: In Sect. 2 we present notation, preliminaries
and the basic results on generalized convexity and generalized subdifferentials. In
Sect. 3, we present new theoretical results for the strong subdifferential which will be
useful for the convergence analysis of the algorithm, then we present our subgradient
method and the basic assumptions for its implementation. Furthermore, we provide the
convergence analysis for the proposed algorithm in which we prove the convergence
of the generated sequence to the unique solution of problem (COP) under a proper, lsc,
and strongly quasiconvexity assumption with a quasi-linear convergence rate. Finally,
theoretical examples showing the advantages of our approach are discussed in the
conclusions.
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2 Preliminaries and basic definitions

The inner product in Rn and the Euclidean norm are denoted by 〈·, ·〉 and ‖·‖, respec-
tively. Given a convex and closed set K , the projection of x on K is denoted by PK (x),
and the indicator function on K by ιK . The set ]0,+∞[ is denoted by R++. The unit
sphere centered at the origin is denoted by B.

For a closed and convex set K ⊆ R
n , the metric projection satisfies that

v = PK (u) ⇐⇒ 〈u − v,w − v〉 ≤ 0, ∀ w ∈ K . (2.1)

Given any extended-valued function h : R
n → R, the effective domain of h is

defined by dom h := {x ∈ R
n : h(x) < +∞}. It is said that h is proper if dom h

is nonempty and h(x) > −∞ for all x ∈ R
n . The notion of properness is important

when dealing with minimization problems.
It is indicated by epi h := {(x, t) ∈ R

n × R : h(x) ≤ t} the epigraph of h, by
Sλ(h) := {x ∈ R

n : h(x) ≤ λ} the sublevel set of h at the height λ ∈ R and by
argminRn h the set of all minimal points of h. A function h is lower semicontinuous
at x ∈ R

n if for any sequence {xk}k ∈ R
n with xk → x , h(x) ≤ lim infk→+∞ h(xk).

Furthermore, the current convention sup∅ h := −∞ and inf∅ h := +∞ is adopted.
A function h with a convex domain is said to be

(a) convex if, given any x, y ∈ dom h, then

h(λx + (1 − λ)y) ≤ λh(x) + (1 − λ)h(y), ∀ λ ∈ [0, 1]; (2.2)

(b) semistrictly quasiconvex if, given any x, y ∈ dom h, with h(x) �= h(y), then

h(λx + (1 − λ)y) < max{h(x), h(y)}, ∀ λ ∈ ]0, 1[; (2.3)

(c) quasiconvex if, given any x, y ∈ dom h, then

h(λx + (1 − λ)y) ≤ max{h(x), h(y)}, ∀ λ ∈ [0, 1]. (2.4)

It is said that h is strictly convex (resp. strictly quasiconvex) if the inequality in
(2.2) (resp. (2.4)) is strict whenever x �= y.

Every (stricly) convex function is (stricly) quasiconvex and semistrictly quasi-
convex, and every semistrictly quasiconvex and lsc function is quasiconvex. The
continuous function h : R → R given by h(x) := min{|x |, 1} is quasiconvex without
being semistrictly quasiconvex. Furthermore, recall that a function h is convex iff epi h
is a convex set and that is quasiconvex iff the sublevel sets Sλ(h) are convex sets for
all λ ∈ R.

A function h with a convex domain is said to be (see [1, 2, 11, 18]):

(a) strongly convex on dom h if there exists γ ∈ ]0,+∞[ such that for all x, y ∈ dom h
and all λ ∈ [0, 1], we have

h(λy + (1 − λ)x) ≤ λh(y) + (1 − λ)h(x) − λ(1 − λ)
γ

2
‖x − y‖2, (2.5)
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(b) strongly quasiconvex on dom h if there exists γ ∈ ]0,+∞[ such that for all x, y ∈
dom h and all λ ∈ [0, 1], we have

h(λy + (1 − λ)x) ≤ max{h(y), h(x)} − λ(1 − λ)
γ

2
‖x − y‖2. (2.6)

In these cases, it is said that h is strongly convex (resp. quasiconvex) with modulus
γ > 0. Note that every strongly convex function is strongly quasiconvex, and every
strongly quasiconvex function is strictly quasiconvex. The Euclidean norm h1(x) =
‖x‖ is strongly quasiconvex without being strongly convex on any bounded convex
set K ⊆ R

n (see [11, Theorem 2]) and the function h2(x) = x3 is strictly quasiconvex
without being strongly quasiconvex on R. Summarizing (quasiconvex is denoted by
qcx):

strongly convex �⇒ strictly convex �⇒ convex �⇒ qcx
⇓ ⇓ ⇓

strongly qcx �⇒ strictly qcx �⇒ semistrictly qcx
⇓
qcx

If in addition the function is lsc, then all the previous notions are quasiconvex.

Remark 2.1 There is no relationship between convex and strongly quasiconvex func-
tions. Indeed, the function h : Rn → R given by h(x) = √‖x‖ is strongly quasiconvex
on any bounded and convex set K in R

n without being convex ([15, Theorem 17]),
while the function h(x) ≡ 1 is convex without being strongly quasiconvex. However,
strongly convex functions are both convex and strongly quasiconvex.

The following existence result is the starting point of our research.

Lemma 2.1 ([15, Corollary 3]) Let K ⊆ R
n be a closed and convex set and h : Rn →

R be a proper, lsc, and strongly quasiconvex function on K ⊆ dom h with modulus
γ > 0. Then, argminK h is a singleton.

Given a proper function h : Rn → R, the convex subdifferential of h at x ∈ dom h
is defined by

∂h(x) := {ξ ∈ R
n : h(y) ≥ h(x) + 〈ξ, y − x〉, ∀ y ∈ R

n}, (2.7)

and by ∂h(x) = ∅ if x /∈ dom h.
The convex subdifferential is an outstanding tool in continuous optimization. It is

especially useful when the function is proper, lsc and convex, but when the function
is nonconvex, the convex subdifferential is no longer useful. For this reason, sev-
eral authors have introduced different generalized subdifferentials for dealing with
different classes of nonconvex functions (see [16, 17, 19]).

For the case of quasiconvex and strongly quasiconvex functions, we recall the
following notion of generalized subdifferential from [12].
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The strong subdifferential of h at x ∈ dom h ∩ K is defined by

∂K
β,γ h(x) := {ξ ∈ R

n : max{h(y), h(x)} ≥ h(x) + λ

β
〈ξ, y − x〉

+ λ

2

(
γ − λ

β
− λγ

)
‖y − x‖2, ∀ y ∈ K , ∀ λ ∈ [0, 1]}. (2.8)

Clearly, ∂K
β,γ is a closed and convex set. Furthermore, we also have.

Lemma 2.2 ([12, Proposition 7(d)]) Let h : Rn → R be a proper function, β > 0,
γ ≥ 0, K ⊆ R

n, and x ∈ dom h ∩ K. Then ∂K
β,γ h(x) is compact for every x ∈

int (dom h ∩ K ).

We recall some interesting and useful properties of the strong subdifferentials.
Before that, we first recall that x is an (α, K )-strong minimum point of h if there
exists α > 0 such that

h(y) ≥ h(x) + α‖y − x‖2, ∀ y ∈ K\{x}, (2.9)

Clearly, every (α, K )-strong minimum point is a strict minimum point and every strict
minimum point is a global minimum point, but both reverse statements do not hold.

Lemma 2.3 ([12, Theorem 24(a)]) Let K ⊆ R
n be a closed and convex set, h : Rn →

R be a proper function such that K ⊆ dom h, β > 0, γ > 0 and x ∈ K. Then,

0 ∈ ∂K
β,γ h(x) iff x is a

(
γ 2β

8(1+γβ)
, K

)
-strong minimum point of h.

The strong subdifferential is nonempty for bigger classes of quasiconvex functions
as we can see below.

Lemma 2.4 ([12, Corollary 38(a)]) Let K ⊆ R
n be a closed and convex set, h : Rn →

R be a proper and lsc function such that K ⊆ dom h, and β > 0. If h is strongly
quasiconvex on K with modulus γ > 0, then ∂K

β,γ h(x) �= ∅ for every x ∈ K.

Another useful property is the following.

Lemma 2.5 ([12, Proposition40])Let K ⊆ R
n be a closedand convex set, h : Rn → R

be a proper and lsc function such that K ⊆ dom h, β > 0 and x ∈ K. If h is strongly
quasiconvex on K with modulus γ > 0, then

y ∈ K ∩ Sh(x)(h) �⇒ 〈ξ, y − x〉 ≤ −βγ

2
‖y − x‖2, ∀ ξ ∈ ∂K

β,γ h(x). (2.10)

We also recall the notion of quasi-Fejér convergence and its properties. A detailed
survey on this subject can be found in [5].

Definition 2.1 Let C ⊆ R
n and {xk}k ⊆ R

n be any sequence in Rn Then,
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(i) The sequence {xk}k ⊆ R
n is called quasi-Fejér related to set C ⊆ R

n if for every
z ∈ C there exists a sequence {εk}k ⊆ R+ such that

‖xk+1 − z‖2 ≤ ‖xk − z‖2 + εk,

with
∑+∞

k=1 εk < +∞.
(ii) The sequence {xk}k ⊆ R

n converges to x ∈ R
n quasi R-linearly, if there exists a

constant 0 < θ < 1, k0 ∈ N, and {εk}k ⊆ R+ (which does not depend on xk) such
that

‖xk+1 − x‖2 ≤ θ ‖xk − x‖2 + εk,∀ k ≥ k0

with
∑+∞

k=1 εk < +∞.

To end this section, we state the main properties of the quasi-Fejér sequences that
will be needed in our analysis.

Lemma 2.6 ([4, Theorem 1]) Let {xk}k ⊆ R
n be quasi-Fejér convergent to a nonempty

set C ⊆ R
n. Then, the following assertions hold:

(a) {xk}k is bounded;
(b) If a cluster point x∗ of {xk}k belongs to C, then limk→+∞ xk = x∗.

For a further study on nonsmooth analysis and generalized convexity we refer to
[11, 12, 15–19].

3 Subgradient methods for quasiconvexminimization

Throughout the paper, we assume the following assumption on h:

(A) h is a proper, lsc and strongly quasiconvex function on K ⊆ dom h with modulus
γ > 0.

3.1 Properties for the strong subdifferential

Before introducing our algorithm, we show some useful theoretical results.

Proposition 3.1 Let K ⊆ R
n be a closed and convex set, h : Rn → R be a proper

function such that K ⊆ dom h, β > 0, γ > 0 and z ∈ K. Given α > 0 and
ξ ∈ ∂K

β,γ h(z), set

x+ := PK (z − αξ). (3.1)

Then the following assertions hold:

(a) ‖x+ − z‖ ≤ α‖ξ‖.
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(b) For every x ∈ K, we have

‖x+ − x‖2 ≤ ‖z − x‖2 + α2‖ξ‖2 + 2α〈ξ, x − z〉. (3.2)

Proof (a): It follows from (3.1) and (2.1) that,

〈z − αξ − x+, y − x+〉 ≤ 0, ∀ y ∈ K ,

taking y = z, then using the Cauchy–Schwarz inequality, we deduce

‖z − x+‖2 ≤ α〈ξ, z − x+〉 ≤ α‖ξ‖‖z − x+‖

(b): Let x ∈ K . Using the nonexpansivity of the projection operator, we have

‖x+ − x‖2 = ‖PK (z − αξ) − PK (x)‖2
≤ ‖z − αξ − x‖2
= ‖z − x‖2 + α2‖ξ‖2 + 2α〈ξ, x − z〉,

which proves (3.2). ��
By using the structure of the strong subdifferential, we obtain the following.

Proposition 3.2 Let K ⊆ R
n be a closed and convex set, h : Rn → R be a proper

function such that K ⊆ dom h, β > 0, γ > 0 and z ∈ K. Given ξ ∈ ∂K
β,γ h(z), α > 0

and x+ := PK (z − αξ). Then, for every x ∈ K, we have

(a) If h(x) > h(z), then

‖x+ − x‖2 ≤ ‖z − x‖2 + α2‖ξ‖2 + 2α(1 + γβ)

γ
(h(x) − h(z)) . (3.3)

(b) If h(x) ≤ h(z), then

‖x+ − x‖2 ≤ (1 − αγβ) ‖z − x‖2 + α2‖ξ‖2. (3.4)

Proof Since ξ ∈ ∂K
β,γ h(z), we have

max{h(y), h(z)} − h(z) ≥ λ

β
〈ξ, y − z〉+λ

2

(
γ − λ

β
− λγ

)
‖y − z‖2,

∀ y ∈ K , ∀ λ ∈ [0, 1]. (3.5)

Taking y = x into (3.5), we separate in two cases:

(a) If h(x) > h(z), then max{h(x), h(z)}−h(z) = h(x)−h(z). Hence (3.5) becomes

〈ξ, x − z〉 ≤ −β

2

(
γ − λ

β
− λγ

)
‖x − z‖2 + β

λ
(h(x) − h(z)) .
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Replacing this in (3.2), we obtain

‖x+ − x‖2 ≤
(
1 − αβ(γ − λ

β
− λγ )

)
‖z − x‖2 + α2‖ξ‖2 + 2

αβ

λ
(h(x) − h(z)) .

Choosing 0 < λ = γβ
1+γβ

< 1 and taking into account h(x) > h(z), we have

‖x+ − x‖2 ≤ ‖z − x‖2 + α2‖ξ‖2 + 2α(1 + γβ)

γ
(h(x) − h(z)) .

(b) If h(x) ≤ h(z), then max{h(x), h(z)} − h(z) = 0. By a similar argument to the
used at item (a), we obtain

‖x+ − x‖2 ≤
(
1 − αβ(γ − λ

β
− λγ )

)
‖z − x‖2 + α2‖ξ‖2.

Taking λ → 0+, we conclude

‖x+ − x‖2 ≤ (1 − αγβ) ‖z − x‖2 + α2‖ξ‖2,
which completes the proof. ��

An interesting theoretical result for continuous strongly quasiconvex functions is
given below.

Proposition 3.3 Let K ⊆ R
n be a closed and convex set and h : Rn → R be a proper,

continuous and strongly quasiconvex function on K ⊆ dom h with modulus γ > 0.
Let {xk}k ⊆ K and {ξ k}k ⊆ R

n be such that ξ k ∈ ∂K
β,γ h(xk) for all k ∈ N. If ξ k → 0

and xk → x, then 0 ∈ ∂K
β,γ h(x). Hence, the point x is a global minimizer.

Proof Suppose the contrary that 0 /∈ ∂K
β,γ h(x), then by [12, Corollary 37] there exists

x̂ ∈ K such that

h(̂x) < h(x) + γ 2β

8(1 + γβ)
‖x̂ − x‖2. (3.6)

Furthermore, since ξ k ∈ ∂K
β,γ h(xk) for every k ∈ N, we have

max{h(y), h(xk)} ≥ h(xk) + λ

β
〈ξ k, y − xk〉+λ

2

(
γ − λ

β
− λγ

)
‖y − xk‖2,

∀ y ∈ K , ∀ λ ∈ [0, 1].
By taking y = x̂ ,

max{h(̂x), h(xk)} ≥ h(xk) + λ

β
〈ξ k, x̂ − xk〉+λ

2

(
γ − λ

β
− λγ

)
‖x̂ − xk‖2,

∀ λ ∈ [0, 1]. (3.7)
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Taking limk→+∞ in (3.7), and since ξ k → 0 and xk → x , we have

max{h(̂x), h(x)} ≥ h(x) + λ

2

(
γ − λ

β
− λγ

)
‖x̂ − x‖2, ∀ λ ∈ [0, 1]

≥ h(x) + γ 2β

8(1 + γβ)
‖x̂ − x‖2, (3.8)

where the second inequality yields from the fact that the real function [0, 1] � λ �→
λ
2

(
γ − λ

β
− λγ

)
reaches its minimum at λ = γβ

2(1+γβ)
and its value is γ 2β

8(1+γβ)
. Then,

(3.8) contradicts (3.6). Therefore, 0 ∈ ∂K
β,γ h(x) and the proof is complete. ��

Remark 3.1 A similar result to Proposition 3.3 may be found in [6, Proposition 7] for
Plastria’s subdifferential (see [17]) and quasiconvex Lipschitz continuous functions.
The previous result is expected to be useful for implementing inexact proximal point
methods for strongly quasiconvex functions using strong subdifferentials.

We finish this subsection with the following result in the continuous case, which
shows that the subgradients of points in a given compact set contained in the interior
of the domain are always bounded as in the convex case for the convex subdifferential.

Proposition 3.4 Let K ⊆ R
n be a closed and convex set and h : Rn → R be a proper,

continuous and strongly quasiconvex function on K ⊆ int dom h with modulus γ > 0.
If K is compact, then Y := ⋃

x∈K ∂K
β,γ h(x) is nonempty and bounded.

Proof We follow the reasoning line of [2, Theorem 3.16]. Since h is proper, continuous
and strongly quasiconvex, Y �= ∅ by Lemma 2.4. Now, suppose for the contrary that
Y is unbounded. Then there exist sequences {xk}k ⊆ K and ξ k ∈ ∂K

β,γ h(xk) such that

‖ξ k‖ → +∞ as k → +∞.
Since K is compact, (int dom h)c is closed and K ∩ (int dom h)c = ∅. Then there

exists ε > 0 such that

‖x − y‖ ≥ ε, ∀ x ∈ K , ∀ y ∈ (int dom h)c. (3.9)

On the other hand, since ξ k ∈ ∂K
β,γ h(xk), we have

max{h(y), h(xk)} − h(xk) ≥ λ

β
〈ξ k, y − xk〉+λ

2

(
γ − λ

β
− λγ

)
‖y − xk‖2.

Take y = xk + ε
2

ξ k

‖ξ k‖ (∈ int dom h). Then,

max

{
h

(
xk + ε

2

ξ k

‖ξ k‖
)

, h(xk)

}
− h(xk) ≥ λ

β

ε

2
‖ξ k‖ + λ

2

ε2

4

(
γ − λ

β
− λγ

)

= λε

2

(‖ξ k‖
β

+ ε

4
(γ − λ

β
− λγ )

)
.
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Taking 0 < λ = γβ
1+γβ

< 1, we have

max

{
h

(
xk + ε

2

ξ k

‖ξ k‖
)

, h(xk)

}
− h(xk) ≥ γ ε

2(1 + γβ)
‖ξ k‖. (3.10)

We claim that the left-hand side in (3.10) is bounded. Indeed, suppose for the contrary

that there exist subsequences {xkl }l and
{

ξ kl

‖ξ kl ‖
}
l
such that

h

(
xkl + ε

2

ξ kl

‖ξ kl‖
)

− h(xkl ) → +∞as l → +∞. (3.11)

Now, without loss of generality, we assume that

max

{
h

(
xkl + ε

2

ξ kl

‖ξ kl‖
)

, h(xkl )

}
= h

(
xkl + ε

2

ξ kl

‖ξ kl‖
)

, ∀ l ∈ N.

Since {xkl }l and
{

ξ kl

‖ξ kl ‖
}
l
are bounded sequences, there exist sequences {xkl j } j and{

ξ
kl j

‖ξ kl j ‖

}
j
such that xkl j → x̂ and ξ

kl j

‖ξ kl j ‖
→ ξ̂ as j → +∞. Finally, since {xkl j },

{xkl j + ε
2

ξ
kl j

‖ξ kl j ‖
} and x̂ + ε

2 ξ̂ belongs to int dom h, it follows from the continuity of h

that

h

(
xkl j + ε

2

ξ
kl j

‖ξ kl j ‖

)
− h(xkl j ) −→ h

(
x̂ + ε

2
ξ̂
)

− h(̂x), as j → +∞,

which contradicts (3.11). Therefore, the left-hand side in (3.10) is bounded, i.e., the
right-hand side in (3.10) is bounded too, which contradicts the fact that ‖ξ k‖ → +∞.

Therefore, Y is bounded, and the proof is complete ��

3.2 The algorithm

In order to present our algorithm, we first consider the following compatibility condi-
tions:

(C1) K ⊆ int dom h.
(C2) There exists M > 0 such that ‖ξ‖ ≤ M for all ξ ∈ ∂K

β,γ h(x) and all x ∈ K .

(C3) The sequence {αk}k ⊆]0,+∞[ is such that 0 < αk < 1
γβ

for every k ∈ N, and

∞∑
k=0

αk = +∞,

∞∑
k=1

α2
k < +∞. (3.12)

We analyze the previous assumptions below.
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Remark 3.2 (i) Assumptions (Ci) with i = 1, 2, 3 are usual assumptions for subgra-
dient algorithms. Indeed, (C1) and (C2) are actually used for convex functions
with the convex subdifferential (see Assumption 8.7(C) and Assumption 8.12 in
[2], respectively).

(ii) As in the convex case, we know by Proposition 3.4 that if K is compact, then
assumption (C3) holds for proper, continuous and strongly quasiconvex functions.

The conceptual algorithm to find a solution of problem (COP) is given below.

Algorithm 1 Subgradient Method for Strongly Quasiconvex Functions

Step 0. Take x0 ∈ K and set k := 0.
Step 1. Given xk ∈ K , take ξk ∈ ∂Kβ,γ h(xk ).

If ξk = 0, then STOP, xk is a solution of problem (COP). Otherwise, go to Step 2.
Step 2. Compute

xk+1 = PK
(
xk − αkξ

k
)

, (3.13)

take k = k + 1 and go to Step 1.

Remark 3.3 (i) Note that under assumption (A), Algorithm 1 is well-defined. Indeed,
for every k ∈ N, the subgradient ξ k ∈ ∂K

β,γ h(xk) exists by Lemma 2.4. Further-
more, under assumption (C1) and [12, Proposition 7(d)], we have for every iterate
xk that ∂K

β,γ h(xk) is bounded.

(ii) If Algorithm 1 stops, then 0 ∈ ∂K
β,γ h(xk), thus xk ∈ argminK h by Lemma 2.3,

i.e., xk is solution to problem (COP).
(iii) The stopping criteria “0 ∈ ∂K

β,γ h(xk)” can be replaced by “xk+1 = xk”. Indeed,

if xk+1 = xk , then xk = PK (xk − αkξ
k), i.e., relation (2.1) yields

〈−αkξ
k, y − xk〉 ≤ 0, ∀ y ∈ K ⇐⇒ 〈ξ k, y − xk〉 ≥ 0, ∀ y ∈ K .

Since ξ k ∈ ∂K
β,γ h(xk) and 〈ξ k, y − xk〉 ≥ 0 for all y ∈ K , we have

max{h(y), h(xk)} ≥ h(xk) + λ

2

(
γ − λ

β
− λγ

)
‖y − xk‖2, ∀ y ∈ K , ∀ λ ∈ [0, 1].

Taking 0 < λ <
γβ

1+γβ
< 1, we have

max{h(y), h(xk)} > h(xk), ∀ y ∈ K\{xk},
i.e., xk ∈ argminK h. Therefore, if xk+1 = xk , then xk ∈ argminK h.

(iv) The projection step (3.13) is equivalent to the following regularizedminimization
problem

xk+1 = argmin

{
〈αkξ

k, y〉 + 1

2
‖y − xk‖2 : y ∈ K

}
. (3.14)
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Indeed, (3.14) is equivalent to

xk+1 = argmin

{
〈αkξ

k, y〉 + 1

2
‖y − xk‖2 + ιK (y) : y ∈ R

n
}

.

Hence, using the optimality condition, we have

0 ∈ αkξ
k + xk+1 − xk + NK (xk+1) ⇐⇒ (I + NK )xk+1 = xk − αkξ

k

⇐⇒ xk+1 = (I + NK )−1(xk − αkξ
k) ⇐⇒ xk+1 = PK (xk − αkξ

k),

where the last equivalence holds due to [1, Example 23.4].

3.3 Convergence analysis

In order to prove the convergence of the sequence generated for Algorithm 1 under
assumption (A), we consider the following set:

� = {x ∈ K : h(x) ≤ h(xk), ∀ k ∈ N}. (3.15)

Note that under assumption (A), argminK h is a singleton by [15, Corollary 3], thus
� �= ∅.

The following corollary is an easy consequence of Proposition 3.2 which is a key
for establishing the convergence analysis of subgradient methods.

Corollary 3.1 Let K ⊆ R
n be a closed and convex set, h : Rn → R be a function such

that assumption (A) holds, {αk}k be a sequence of positive numbers, {xk}k and {ξ k}k
be the sequences generated by Algorithm 1 and x̃ ∈ �. Then, for every k ∈ N, we
have

‖xk+1 − x̃‖2 ≤ ‖xk − x̃‖2 + α2
k‖ξ k‖2 + 2αk〈ξ k, x̃ − xk〉, (3.16)

‖xk+1 − x̃‖2 ≤ (1 − γβαk) ‖xk − x̃‖2 + α2
k‖ξ k‖2. (3.17)

Proof It follows immediately from relation (3.2) and Proposition 3.2(b) with x+ =
xk+1, z = xk , ξ = ξ k, x = x̃ and α = αk . ��

We also have the following.

Corollary 3.2 Let K ⊆ R
n be a closed and convex set, h : Rn → R be a function such

that assumption (A) holds, {αk}k be a sequence of positive numbers, and {xk}k and
{ξ k}k be the sequences generated by Algorithm 1. Then, for every k ∈ N, we have

‖xk+1 − xk‖ ≤ αk‖ξ k‖. (3.18)

Proof It follows immediately fromProposition 3.1(a)with x+ = xk+1, z = xk , ξ = ξ k

and α = αk . ��
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Another result that will be useful for the convergence of the algorithm is the fol-
lowing:

Proposition 3.5 Let K ⊆ R
n be a closed and convex set, h : Rn → R be a function

such that assumption (A) holds, {αk}k be a sequence of positive numbers and {xk}k and
{ξ k}k be the sequences generated by Algorithm 1. If assumptions (Ci) with i = 1, 2, 3
holds, then

(a) for every x̃ ∈ � we have

lim
k→∞〈ξ k, xk − x̃〉 = 0; (3.19)

(b)
∑∞

k=0‖xk+1 − xk‖2 < +∞. In particular, limk→+∞‖xk+1 − xk‖ = 0.

Proof (a): Since ξ k ∈ ∂K
β,γ h(xk) for every k ∈ N and x̃ ∈ �, we have by Lemma 2.5

that

〈ξ k, xk − x̃〉 ≥ βγ

2
‖xk − x̃‖2 ≥ 0.

Furthermore, it follows from relation (3.16) that

N∑
k=0

αk〈ξ k, xk − x̃〉 ≤ 1

2
‖x0 − x̃‖2 − 1

2
‖xN+1 − x̃‖2 + M2

2

N∑
k=0

α2
k .

Then,
∑∞

k=0 αk〈ξ k, xk − x̃〉 < +∞. Finally, by (C3),
∑∞

k=0 αk = +∞, thus
limk→∞〈ξ k, xk − x̃〉 = 0.

(b): It follows directly by summing up in (3.18) (after squaring both sides of the
equality) taking into account (Ci) with i = 1, 3. ��

Our main result, which shows that the sequences {xk}k , generated by Algorithm 1,
converge to the optimal solution of problem (COP) under assumption (A), is given
below.

Theorem 3.1 Let K ⊆ R
n be a closed and convex set, h : Rn → R be a function

such that assumption (A) holds, {αk}k be a sequence of positive numbers and {xk}k
and {ξ k}k be the sequences generated by Algorithm 1. Suppose that Assumption (Ci)
with i = 1, 2, 3 holds. Then {xk}k converges to {x} = argminK h. If moreover, h is
continuous, limk→+∞ h(xk) = h(x) = minK h.

Proof By assumption (C2), we have ‖ξ k‖ ≤ M for every k ∈ N. Hence, we have
from (3.17) that for every x̃ ∈ �,

‖xk+1 − x̃‖2 ≤ (1 − γβαk) ‖xk − x̃‖2 + α2
k‖ξ k‖2 ≤ ‖xk − x̃‖2 + M2α2

k . (3.20)

Furthermore, since
∑∞

k=0 α2
k < +∞ by (C3), it follows from Lemma 2.6(a) that

{xk}k is quasi-Fejér and, as a consequence, {xk}k is bounded, i.e., it has cluster points.
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Let x̂ ∈ K a cluster point of {xk}k . Then there exists a subsequence {xk j } j ⊆ {xk}k
such that xk j → x̂ as j → +∞.

Since for every k, ξ k ∈ ∂K
β,γ h(xk), then for every j ∈ N,

max{h(y), h(xk j )} ≥ h(xk j ) + λ

2

(
γ − λ

β
− λγ

)
‖xk j − y‖2

+ λ

β
〈ξ k j , y − xk j 〉, ∀ y ∈ K .

Take y = x (where {x} = argminK h ⊆ �). Then

〈ξ k j , x − xk j 〉 ≤ −β

2

(
γ − λ

β
− γ λ

)
‖x − xk j ‖2, ∀ λ ∈ ]0, 1[,

which is equivalent to (taking 0 < λ <
γβ

1+γβ
)

0 ≤ β

2

(
γ − λ

β
− γ λ

)
‖x − xk j ‖2 ≤ 〈ξ k j , xk j − x〉 . (3.21)

Since xk j → x̂ as j → +∞ and lim j→∞〈ξ k j , xk j − x〉 = 0 by Proposition 3.5(i),
taking the limit as j → +∞ in (3.21) we conclude that ‖x − x̂‖2 = 0, i.e., x = x̂ .
Hence, every cluster point of the sequence {xk}k is a minimum of problem (COP),
and since h is strongly quasiconvex by (A), argminK h is a singleton, hence the whole
sequence {xk}k converges to {x} = argminK h by Lemma 2.6(b), and the proof is
complete. The last statement of this theorem follows immediately from the fact that
limk→+∞ xk = x , continuity of h and Lemma 2.1. ��

Next, we show a quasi-linear convergence rate of the iterates.

Corollary 3.3 Let K ⊆ R
n be a closed and convex set, h : Rn → R be a function such

that assumption (A) holds, {αk}k be a sequence of positive numbers and {xk}k and
{ξ k}k be the sequences generated by Algorithm 1. Suppose that Assumption (Ci) with
i = 1, 2, 3 holds. Then, for {x} = argminK h, the sequence {xk}k converges quasi
linearly to x, and

‖xk − x‖2 ≤ 
k−1
j=0

(
1 − γβα j

) ‖x0 − x‖2 + εk, (3.22)

with limk→+∞ εk = 0.

Proof From (3.17) and assumption (C2) it follows that for any k ∈ N,

‖xk+1 − x‖2 ≤ (1 − γβαk) ‖xk − x‖2 + M2α2
k .

123



A subgradient projection method for quasiconvex minimization Page 15 of 18    64 

Since 1 − γβαk < 1 and
∑∞

k α2
k < +∞ by assumption (C3), we show the first

statement. Moreover, we obtain recursively

‖xk+1 − x‖2 ≤ (1 − γβαk)
[
(1 − γβαk−1) ‖xk − x‖2 + M2α2

k−1

]
+ M2α2

k

...

≤ 
k
j=0

(
1 − γβα j

) ‖x0 − x‖2 + M2
k∑
j=0

α2
j ,

which implies (3.22) with εk = ∑k−1
j=0 α2

j−1. ��

We finish the paper with the following remark.

Remark 3.4 In [6], the authors uses Plastria’s subdifferential [17] for quasiconvexLips-
chitz continuous functions, which is completely different from our case with strongly
quasiconvex functions with strong subdifferential because there is no relationship
between strongly quasiconvex functions and quasiconvex Lipschitz continuous func-
tions. Indeed, the function h(x) = √|x | is strongly quasiconvex on any ball centered
at the origin without being Lipschitz continuous while the function h(x) = 0 is qua-
siconvex and Lipschitz continuous without being strongly quasiconvex.

4 Conclusions

The main difference between Algorithm 1 with other subgradient methods based on
generalized subdifferentials for quasiconvex functions (see [6, 8, 13, 14]) is that we
use the strong subdifferential (see relation (2.8)). This theoretical difference which has
many algorithmic consequences as, for instance, the strong subdifferential is compact
at every point of the interior of the effective domain of the function (Lemma 2.2) while
other generalized subdifferentials are unbounded (see [6, 8, 13, 14]). Furthermore, in
[6, 8, 13, 14], the subgradient is taken from those unbounded subdifferentials and it
needs to be normalized, thus the subgradient that they used belongs to the intersec-
tion with the unit ball in R

n . In our case, Algorithm 1 can take any vector from the
strong subdifferential and since the strong subdifferential was motivated by strongly
quasiconvex functions, its geometrical structure will provide much more valuable
information.

We added two examples to show the difference between the strong subdifferential
and the intersection of the GP subdifferential and the unit ball. In these examples, we
can see the advantages of using the strong subdifferential instead of the GP subdiffer-
ential.

Let h : Rn → R be a quasiconvex function and x ∈ R
n . Then the Greenberg–

Pierskalla (GP henceforth) of h at x is defined by

∂GPh(x) := {ξ ∈ R
n : 〈ξ, y − x〉 < 0, ∀ y ∈ S<

h(x)(h)},
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while all the other subdifferentials used in [13] are variants of the previous one. Clearly,
∂GP is unbounded (as well as its variants of [13] and the ones used in [6, 8, 14]).

Now, let us consider the following examples:

(i) Let K = [−1, 1] and h : R → R be given by h(x) = √|x |. h is strongly
quasiconvex on K with modulus γ = 1

2 > 0. Take x = 0 and β = 1. Then, by
[12, Remark 20] we have

∂
[−1,1]
1, 12

h(0) = [−3

2
,
3

2
],

while ∂GPh(0) = R and ∂GPh(0) ∩ B(0, 1) = {−1, 1}
(ii) Let h : R → R be given by

h(x) =
⎧⎨
⎩
0, if x = 0,
− 1

x , if 0 < x ≤ 1,
+∞, otherwise.

Note that h is strongly quasiconvex with modulus γh = 1 (see [10]). Take x = 0
and β = 1. Then by [12, Remark 6(ii)] we have

∂
[−1,1]
1,1 h(0) =

]
− ∞,−1

2

]
,

while ∂GPh(0) =] − ∞, 0[ and ∂GPh(0) ∩ B(0, 1) = {−1}.
We observe that the strong subdifferential is smaller than the GP subdifferential

and its variants for this class of functions. For instance, in case (i), where the function
is continuous, the GP subdifferential is the entire space, which is not particularly
informative, while the strong subdifferential is compact. In the more challenging case
(i i), where the function is not even lower semicontinuous, both subdifferentials are
unbounded. However, the strong subdifferential is smaller and has a positive distance
from zero, which could prevent the algorithm from terminating prematurely due to
approximation errors.

We hope this research offers new insights into subgradient-type methods for a
broader range of quasiconvex functions. This includes nonlinear projected subgradient
methods [3], conditional subgradient methods [7], incremental subgradient methods
[8], and other approaches involving strongly quasiconvex functions and strong subd-
ifferential.
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