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Abstract
This paper investigates second-order optimality conditions for general constrained
set-valued optimization problems in normed vector spaces under the set criterion. To
this aim we introduce several new concepts of second-order directional derivatives
for set-valued maps by means of excess from a set to another one, and discuss some
of their properties. By virtue of these directional derivatives and by adopting the
notion of set criterion intoduced by Kuroiwa, we obtain second-order necessary and
sufficient optimality conditions in the primal form. Moreover, under some additional
assumptions we obtain dual second-order necessary optimality conditions in terms of
Lagrange–Fritz–John and in terms of Lagrange–Karush–Kuhn–Tucker multipliers.

Keywords Second-order directional derivatives of set-valued maps · Optimality
conditions · Set-valued optimization problems
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1 Introduction

Recently, the first order optimality conditions for set-valued optimization problems
under set criterion (i.e., the solution concepts of the problem are based on feasible
points whose image sets are nondominated with respect to certain binary relations
on the power set of the objective space (see [13–15])) have been widely investigated,
and a lot of notions about directional derivatives for set-valued mappings have been
proposed and applied to set up the optimality conditions; for example we cite [2–5, 8,
9, 11, 13–15, 20]. In [2], necessary optimality conditions have been obtained by using
continuous selections of the objective mapping and their directional derivatives. In [3,
20], necessary and sufficient optimality conditions have been proved by using different
graphical or epigraphical derivatives of set-valued mappings. Ha [8] introduced a
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Hausdorff-type distance relative to an ordering cone between two sets in a Banach
space and used it to define a directional derivative for set-valued mappings and studied
necessary and sufficient optimality conditions in the primal form. Based on a special
concept of the difference of sets, Jahn [11] introduced a directional derivative of a set-
valued map and applied it to formulate necessary and sufficient optimality conditions
for set optimization problems with set less order relation. Han et al. [9] employed the
oriented distance function of Hiriart-Urruty to define the Dini directional derivatives
for set-valued mappings, and when the data of the problem are convex they derive
necessary and sufficient optimality conditions in terms of this derivative. Burlica et
al. [4] present a main concept of directional derivative for set-valued maps defined by
means of excess from a set to another one, and established first order necessary and
sufficient optimality conditions in the primal form.

The purpose of this paper is to investigate second order optimality conditions for
set-valued optimization problems in the sense of set criterion. To this aim, inspired by
[4], we introduce several second-order directional derivatives for set-valued maps by
means of excess from a set to another one. By using these directional derivatives and
by adopting the notion of set criterion introduced by Kuroiwa [13–15], the second-
order necessary and sufficient optimality conditions are given in the primal form.
Moreover, under some additional assumptions we obtain dual second-order necessary
optimality conditions in terms of Lagrange–Fritz–John and in terms of Lagrange–
Karush–Kuhn–Tucker multipliers. Since the set criterion of solution can be viewed as
a weaker version of Pareto efficient concept (see Remark 1), our optimality results are
sharper than those of [10, 16, 19] where the Pareto efficient notion was used. To our
knowledge, until now there is no study on second-order optimality conditions under
the set criterion. Therefore, this paper constitues an attempt in this field.

The outlines of the paper are as follows: Preliminaries results are described in
Sect. 2. Second order directional derivatives of set-valued maps are introduced in
Sect. 3. Primal second-order necessary and sufficient optimality conditions for the
unconstrained and the constrained problems are given in Sect. 4. Dual second-order
necessary optimality conditions are established in Sect. 5.

2 Preliminaries

Throughout this paper, let X , Y and Z be real normed vector spaces and 0X , 0Y , 0Z ,
0 be the origins of X , Y , Z , R, respectively. Moreover, We denote by ‖.‖X , ‖.‖Y ,
‖.‖Z the norms on X , Y , Z , respectively. Let C be a pointed (C ∩ −C = {0Y })
closed and convex cone with nonempty interior introducing a partial order in Y . We
denote by BX , BY and BZ the closed unit balls of X , Y and Z , respectively. As usual,
we denote by int A, cl A, ∂A, the interior, the closure, and the boundary of a subset
A ⊂ X . Throughout the paper, Y ∗ and Z∗ will denote the continuous duals of Y and Z ,
respectively, and we write 〈., .〉 the canonical bilinear form with respect to the duality
(Y ∗,Y ). Moreover, we denote by SX the unit sphere centred at the origin of X and v⊥
denotes the orthogonal subspace to v ∈ X .
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Let A1, A2 be nonempty subsets of Y and α ∈ R. The next operations and rules
will be used:

A1 + A2 = {y1 + y2 : y1 ∈ A1, y2 ∈ A2} , αA1 = {αy : y ∈ A1} ,

∅ + A1 = A1 + ∅ = ∅, α∅ = ∅.

Consider a set-valued map F : X ⇒ Y . In the sequel we denote the domain (domF)
and the graph (gr F) of F respectively by

domF := {x ∈ X : F(x) 
= ∅} and gr F := {(x, y) ∈ X × Y : y ∈ F(x)}.

If V is a nonempty subset of X , then F(V ) := ∪
x∈V F(x)

Recall that F is C-convex if for each λ ∈ [0, 1] and for each (x1, x2) ∈ X × Y one
has

λF(x1) + (1 − λ)F(x2) ⊂ F(λx1 + (1 − λ)x2) + C .

In the sequel, the epigraphical of F with respect toC is the set-valuedmap EpiC F :
X ⇒ Y defined by EpiC F(x) := F(x)+C . Moreover, letG : X ⇒ Z be a set-valued
mapping. In the sequel, the set-valued map (F,G) : X ⇒ Y × Z is defined by

(F,G)(x) := F(x) × G(x) ∀x ∈ X .

Aset-valuedmap F : X ⇒ Y is Lipschitzian at x ∈ X , if there exist a neighborhood
V of x and k > 0 such that for all x1, x2 ∈ V ,

F(x1) ⊂ F(x2) + k‖x1 − x2‖XBY .

Let f : Y → R ∪ {+∞} be a function with dom f := {y ∈ Y : f (y) < +∞}, and
G : X ⇒ Y be a set-valuedmapping. The composite set-valuedmap f ◦G : X ⇒ R∪
{+∞} is defined by ( f ◦G)(x) := f (G(x)) if x ∈ dom(G) and ( f ◦G)(x) := {+∞}
otherwise. It is immediate that

dom( f ◦ G) = {x ∈ X : ( f ◦ G)(x) 
= {+∞}}.

For a closed cone S of Y , S◦ will be the negative polar of S, that is

S◦ := {y∗ ∈ Y ∗ : 〈y∗, y〉 ≤ 0 ∀y ∈ S}.

Let B be a nonempty convex subset of Y . The normal cone N (B, b) to B at b ∈ B
is

N (B, b) := {y∗ ∈ Y ∗ : 〈y∗, y − b〉 ≤ 0 ∀y ∈ B}.
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Let A be a nonempty subset of Y . The element y ∈ A is said to be a weak Pareto
minimal point of A with respect to C if

(A − y) ∩ −intC = ∅.

We shall denote by WMin(A,C) the set of all weak Pareto minimal point of A
with respect to C . If A = ∅, we put WMin(A,C) = ∅.

Definition 1 Let B be a nonempty subset of X and F : X ⇒ Y be a set valued
mapping. It said that x ∈ B is,

(i) a local weak Pareto minimal point of F on B with respect to C , if there exists a
neighborhood V of x such that

F(x) ∩ WMin(F(V ∩ B),C) 
= ∅.

(ii) a local minimal point of F on B in set criterion (or local weak l-minimal point of
F on B) with respect to C , if there exists a neighborhood V of x such that

F(x) 
⊂ F(x) + intC, ∀x ∈ V ∩ B.

(iii) In (i) (resp. (ii)), if V := X , then x is called a global weak Pereto minimal point
of F (resp. a global weak l-minimal point of F) on B with respect to C .

Remark 1 It is easy to see that if x is a local weak Pareto minimal point of F on B
with respect to C , then it is a local weak l-minimal point of F on B with respect to C .
The converse is not true, see for instance [1].

First of all, we recall some standard notions used in this paper.

Definition 2 (see [19]) Let S be a nonempty subset of X , x ∈ clS and v ∈ X .

(1) The first order contingent cone to S at x is

K (S, x) := {v ∈ X : ∃(tn) ↓ 0, ∃(vn) → v, x + tnvn ∈ S,∀n ∈ N}.

(2) The second-order contingent set of S at x with respect to v is

K 2(S, x, v) := {w ∈ X : ∃(tn) ↓ 0, ∃(wn) → w, x + tnv + t2nwn ∈ S, ∀n ∈ N}.

(3) The asymptotic second order contingent cone to S at x with respect to v is the
set K ′′(S, x, v) of elements w ∈ X such that there exist (tn, rn) → (0+, 0+) and
(wn) → w with tn

rn
→ 0 and x + tnv + tnrnwn ∈ S for all n ∈ N.

(4) The interior tangent cone to S at x is the set I (S, x) of elements v ∈ X such that
there exists δ > 0 with x + tu ∈ S for all u ∈ v + δBX and t ∈ (0, δ].
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Definition 3 (see Definition 5.21 of [18]) Let S be a nonempty subset of X and x ∈
cl(S). The Clarke tangent cone (or circa-tangent cone) to S at x is the set TC (S, x)
of v ∈ X such that for all sequences (xn) ⊂ S and (tn) ⊂ R+\{0} with (xn) → x
and (tn) → 0 there exists a sequence (vn) with limit v such that xn + tnvn ∈ S for all
n ∈ N.

Remark 2 Let S be a nonempty subset of X , x ∈ clS and v ∈ X .

(a) It is well known that the cone I (S, x) is open and convex.

(b) The cone K ′′(S, x, v) and the set K 2(S, x, v) are closed. Moreover are convex
whenever S is convex.

(c) Note that if v /∈ K (S, x) then K 2(S, x, v) = K ′′(S, x, v) = ∅.
If v = 0 then K 2(S, x, v) = K ′′(S, x, v) = K (S, x).

(d) (see [6, Proposition 2.3]) If S is convex and int S 
= ∅, then

int K (S, x) = I (int S, x).

(e) The cone TC (S, x) is closed and convex. It is immediate that, 0X ∈ TC (S, x)
and TC (S, x) ⊂ K (S, x) ⊂ cl(cone(S − x)). Moreover, if S is convex, then one
obviously has (see also [12, Theorem 4.4.1 (3)], [7, Proposition 2.4 (i)] and [18,
Proposition 5.26])

TC (S, x) = K (S, x) = cl(cone(S − x)).

Indeed, we present a proof for the reader’s convenience. Let v ∈ R+(S− x)\{0X }.
Then there exists s > 0 such that x + sv ∈ S. Now, let (xn)n∈N ⊂ S with
lim

n→+∞xn = x , and let (tn)n∈N ⊂ R+\{0} with lim
n→+∞tn = 0. As lim

n→+∞
tn
s = 0,

then there exists n0 ∈ N such that tn
s ∈ (0, 1] for all n ≥ n0. By convexity of S, it

follows that

xn + tn(
x − xn

s
+ v) ∈ S, ∀n ≥ n0.

Now, put vn := x−xn
s + v for n ≥ n0 and vn := 0 for n < n0. Obviously, one has

(vn) → v as n → +∞. Moreover, one has

xn + tnvn ∈ S, ∀n ∈ N.

Therefore, v ∈ TC (S, x), and so R+(S− x)\{0X } ⊂ TC (S, x), which implies that
cl(R+(S − x)) ⊂ TC (S, x) since TC (S, x) is closed and 0X ∈ TC (S, x). Thus the
proof is complete since TC (S, x) ⊂ K (S, x) ⊂ cl(cone(S − x)).

(f) Let S1 and S2 be nonempty subsets of X , and xi ∈ Si for i := 1, 2. It is immediate
that the following relation (E) holds (see also [12, Theorem 4.2.10 (13)] and [18,

123



47 Page 6 of 31 A. Taa

Proposition 5.28])

(E) : TC (S1 × S2, (x1, x2)) = TC (S1, x1) × TC (S2, x2).

Moreover, if S1 and S2 are convex then by (e) and relation (E), it follows that

K (S1 × S2, (x1, x2)) = K (S1, x1) × K (S2, x2).

Here, for x ∈ X we set d(x,C) := in f {‖ x − a ‖X : a ∈ C} to denote the distance
function to a nonempty set C ⊂ X with d(x, ∅) := +∞.

Now, let A, B be nonemty subsets of Y . The excess e(A, B) from A to B is defined
by

e(A, B) := sup
a∈A

d(a, B)withe(∅, B) := 0, e(∅, ∅) := 0ande(A, ∅) := +∞.

Clearly, for ρ > 0 one has

e(A, B) < ρ ⇒ A ⊂ B + ρBY ,

A ⊂ B + ρBY ⇒ e(A, B) ≤ ρ.

Definition 4 (see [4]) Let F : X ⇒ Y be a set-valued mapping with nonempty closed
values, and x, v ∈ X .

(1) The (H−)-directional derivative of F at x in the direction v the set, DH−F(x)(v)

of all y ∈ Y such that for all (tn) ↓ 0 and (vn) → v

lim
n→+∞

1

tn
e(F(x) + tn y, F(x + tnvn)) = 0.

(2) The (H+)-directional derivative of F at x in the direction v the set, DH+F(x)(v)

of all y ∈ Y such that for all (tn) ↓ 0 and (vn) → u

lim
n→+∞

1

tn
e(F(x + tnvn), F(x) + tn y) = 0.

Inspired by Definition 4, we introduce the following definition.

Definition 5 Let F : X ⇒ Y be a set-valued mapping with nonempty values, and
x, v ∈ X .

(1) The lower (H−)-directional derivative of F at x in the direction v, is the set
DH−l F(x)(v) of all y ∈ Y such that

lim in f
t↓0,u→v

1

t
e(F(x) + t y, F(x + tu) = 0.
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(2) The lower (H+)-directional derivative of F at x in the direction v, is the set
DH+l F(x)(v) of all y ∈ Y such that

lim in f
t↓0,u→v

1

t
e(F(x + tu), F(x) + t y) = 0.

Remark 3 Let F : X ⇒ Y be a set-valued mapping with nonempty values, and
x, v ∈ X .

(1) (see [4]) Let σ ∈ {−, +}. So, DHσ F(x)(v) is closed, and if α > 0 and v′ ∈
DHσ F(x)(v), then αv′ ∈ DHσ F(x)(αv). Moreover, if F is Lipschitzian at x , then
0 ∈ DHσ F(x)(0).

(2) Let θ ∈ {−l, +l}. If α > 0 and v′ ∈ DHθ F(x)(v), then αv′ ∈ DHθ F(x)(αv).
Moreover, gr DHθ F(x) is closed. Indeed,we only prove the conclusion for θ := −l
since the case when θ := +l is similar. As the part αv′ ∈ DH−l F(x)(αv) is
obvious, we only check that gr DH−l F(x) is closed. Let (un) → u and (yn) → y
with yn ∈ DH−l F(x)(un) for all n ∈ N. Then for each n ∈ N, there exists
(wn,m) → un and (tn,m) ↓ 0 such that

lim
m→+∞

1

tn,m
e(F(x) + t yn, F(x + tn,mwn,m)) = 0.

So, for each n ∈ N, there exists mn ≥ n such that for all n ∈ N,

F(x) + tn,mn yn ⊂ F(x + tn,mnwn,mn ) + tn,mn

1

2n
BY

and

‖wn,mn − un‖X ≤ 1

2n
.

Since (un) → u as n → +∞, then (wn,mn ) → u as n → +∞. Now, let ε > 0.
Then, there exists n0(ε) ≥ 0 such that for all n ≥ n0(ε),

‖yn − y‖Y ≤ 1

2
ε

and

1

2n
≤ ε

2
.

Therefore, for all n ≥ n0(ε),

F(x) + tn,mn y ⊂ F(x + tn,mnwn,mn ) + tn,mnεBY ,

and this completes the proof.
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(3) 0 ∈ DHθ F(x)(0), where θ ∈ {−l, +l}.

(4) It is easy to see that

DH−F(x)(v) ⊂ DH−l F(x)(v) and DH+F(x)(v) ⊂ DH+l F(x)(v).

The inclusions in (4) of Remark 3 are strict. We illustrate that by the following
example.

Example 1 Let F : R ⇒ R be a set valued map defined by F(x) = {x} if x ≥ 0 and
F(x) = {−x +2} if x < 0. Then one obviously has DH−l F(0)(0) = DH+l F(0)(0) =
{0}. But DH−F(0)(0) = DH+F(0)(0) = ∅.

3 Second-order directional derivatives of set-valuedmaps

In this section, inspired by Definition 4, we introduce some new second-order direc-
tional derivatives for set-valued maps, which will be used in next sections.

Definition 6 Let F : X ⇒ Y be a set-valued map with nonempty values, and (x, v) ∈
X × X , v′ ∈ Y .

(1) The second-order lower (H−)-directional derivative of F at x with respect to (v, v′)
in the direction w ∈ X , is the set D2

H−l
F(x, v, v′)(w) of all w′ such that

lim in f
t↓0,u→w

1

t2
e(F(x) + tv′ + t2w′, F(x + tv + t2u)) = 0.

(2) The second-order lower (H+)-directional derivative of F at x with respect to (v, v′)
in the direction w ∈ X is the set D2

H+l
F(x, v, v′)(w) of all w′ ∈ Y such that

lim in f
t↓0,u→w

1

t2
e(F(x + tv + t2u), F(x) + tv′ + t2w′) = 0.

(3) The second-order (H−)-directional derivative of F at x with respect to (v, v′) in
the direction w ∈ X is the set D2

H−F(x, v, v′)(w) of all w′ ∈ Y such that

lim
t↓0,u→w

1

t2
e(F(x) + tv′ + t2w′, F(x + tv + t2u)) = 0.

(4) The second-order (H+)-directional derivative of F at x with respect to (v, v′) in
the direction w ∈ X is the set D2

H+F(x, v, v′)(w) of all w′ ∈ Y such that

lim
t↓0,u→w

1

t2
e(F(x + tv + t2u), F(x) + tv′ + t2w′) = 0.
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(5) the asymptotic second-order lower (H−)-directional derivative of F at x with
respect to (v, v′) in the direction w ∈ X , is the set D′′

H−l
F(x, v, v′)(w) of all

w′ ∈ Y such that

lim in f
t↓0,s↓0,t/s→0,u→w

1

ts
e(F(x) + tv′ + tsw′, F(x + tv + tsu)) = 0.

(6) the asymptotic second-order lower (H+)-directional derivative of F at x with
respect to (v, v′) in the direction w ∈ X , is the set D′′

H+l
F(x, v, v′)(w) of all

w′ ∈ Y such that

lim in f
t↓0,s↓0,t/s→0,u→w

1

ts
e(F(x + tv + tsu), F(x) + tv′ + tsw′) = 0.

(7) the asymptotic second-order (H−)-directional derivative of F at x with respect to
(v, v′) in the direction w ∈ X is the set D′′

H−F(x, v, v′)(w) of all w′ ∈ Y such
that

lim
t↓0,s↓0,t/s→0,u→w

1

ts
e(F(x) + tv′ + tsw′, F(x + tv + tsu)) = 0.

(8) The asymptotic second-order (H+)-directional derivative of F at x with respect
to (v, v′) in the direction w ∈ X , is the set D′′

H+F(x, v, v′)(w) of all w′ ∈ Y such
that

lim
t↓0,s↓0,t/s→0,u→w

1

ts
e(F(x + tv + tsu), F(x) + tv′ + tsw′) = 0.

Remark 4 Let F : X ⇒ Y be a set-valued map with nonempty values, and
(x, v, w) ∈ X × X × X and v′ ∈ Y . From Definition 6, we have the following
results:

(a) Let σ ∈ {−l, +l}. If w′ ∈ D2
Hσ

F(x, v, v′)(w) (resp. D′′
Hσ

F(x, v, v′)(w)), then
v′ ∈ DHσ F(x)(v). Note that if v′ /∈ DHσ F(x)(v), then

D2
Hσ

F(x, v, v′)(w) = D′′
Hσ

F(x, v, v′)(w) = ∅.

(b) Suppose that F is Lipschitzian at x . If w′ ∈ D2
Hθ

F(x, v, v′)(w) (resp.
D′′

Hθ
F(x, v, v′)(w)), then v′ ∈ DHθ F(x)(v), where θ ∈ {−,+}. Indeed, we only

prove the case where θ := −, since the other case is similar. Let ε > 0. Then there
exists δ > 0 and a neighborhood U0 of w such that for all t ∈ (0, δ] and u ∈ U0,

F(x) + tv′ + t2w′ ⊂ F(x + tv + t2u) + t2
ε

3
BY .
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Since F is Lipschitzian at x , then there exist k > 0 and a neighborhood V of x
such that for all x1, x2 ∈ V ,

F(x1) ⊂ F(x2) + k‖x1 − x2‖XBY .

Since lim
t↓0,u→w

x + tv + t2u = x ∈ V , lim
t↓0,z→v

x + t z = x ∈ V and lim
t↓0 tw′ = 0Y ,

then there exist δ1 > 0 with δ1 ≤ δ, and neighborhoods U1 and U2 of w and v,
respectively, with U1 ⊂ U0 such that for all t ∈ (0, δ1], u ∈ U1 and z ∈ U2 one
has

x + tv + t2u ∈ V , x + t z ∈ V , ‖tw′‖Y ≤ ε

3
and k‖v + tu − z‖X ≤ ε

3
.

Therefore, we conclude that

F(x) + tv′ ⊂ F(x + t z) + tεBY

for all t ∈ (0, δ1] and z ∈ U2. Thus the proof is complete.
(c) For σ ∈ {−, −l, } one has

D2
Hσ

F(x, v, v′) + C ⊂ D2
Hσ

(EpiC F)(x, v, v′),
D′′

Hσ
F(x, v, v′) + C ⊂ D′′

Hσ
(EpiC F)(x, v, v′).

For σ ∈ {+, +l} one has

D2
Hσ

F(x, v, v′) − C ⊂ D2
Hσ

(Epi(−C)F)(x, v, v′),
D′′

Hσ
F(x, v, v′) − C ⊂ D′′

Hσ
(Epi(−C)F)(x, v, v′).

The proof of the following proposition is immediate.

Proposition 1 Let F, G : X ⇒ Y and Γ : X ⇒ Z be set-valued maps with nonempty
values, (x, v, w) ∈ X × X × X and (v′, v′′) ∈ Y × Z. The following statements hold:

(1) Let σ ∈ {−, +, −l, +l}. Then

D2
Hσ

F(x, 0X , 0Y )(w) = D′′
Hσ

F(x, 0X , 0Y )(w) = DHσ F(x)(w),

(2) D2
H−F(x, v, v′) ⊂ D2

H−l
F(x, v, v′)(w),

(3) D2
H+F(x, v, v′) ⊂ D2

H+l
F(x, v, v′)(w),

(4) D′′
H−F(x, v, v′)(w) ⊂ D′′

H−l
F(x, (v, v′))(w),

(5) D′′
H+F(x, v, v′)(w) ⊂ D′′

H+l
F(x, v, v′)(w),

(6) D2
Hσ

F(x, v, v′)(w) is closed for σ ∈ {−, +}. Moreover, for σ ∈ {−l, +l},
gr D2

Hσ
F(x, v, v′) is closed,

(7) For σ ∈ {−, +}, the set D′′
Hσ

F(x, v, v′)(w) is closed, and if α > 0 and
w′ ∈ D′′

Hσ
F(x, v, v′)(w) then αw′ ∈ D′′

Hσ
F(x, v, v′)(αw). Moreover, for σ ∈

{−l, +l}, gr D′′
Hσ

F(x, v, v′) is a closed cone,
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(8) For σ ∈ {−,+}, one has

D2
Hσ

F(x, v, v′) + D2
Hσ

G(x, v, v′) ⊂ D2
Hσ

(F + G)(x, v, v′)(w),

D′′
Hσ

F(x, v, v′)(w) + D′′
Hσ

G(x, v, v′)(w) ⊂ D′′
Hσ

(F + G)(x, v, v′)(w),

D2
Hσ

(F, Γ )(x, v, v′, v′′)(w) = D2
Hσ

F(x, v, v′)(w) × D2
Hσ

Γ (x, v, v′′)(w),

D′′
Hσ

(F, Γ )(x, v, v′, v′′)(w) = D′′
Hσ

F(x, v, v′)(w) × D′′
Hσ

Γ (x, v, v′′)(w).

(9) For σ ∈ {−l,+l}, one has

D2
Hσ

(F, Γ )(x, v, v′, v′′)(w) ⊂ D2
Hσ

F(x, v, v′)(w) × D2
Hσ

Γ (x, v, v′′)(w),

D′′
Hσ

(F, Γ )(x, v, v′, v′′)(w) ⊂ D′′
Hσ

F(x, v, v′)(w) × D′′
Hσ

Γ (x, v, v′′)(w).

Again, consider Example 1 above. We have

D2
H−l

F(0X , 0, 0)(0) = D2
H+l

F(0, 0, 0)(0) = {0}

and

D′′
H−l

F(0, 0, 0)(0) = D′′
H+l

F(0, 0, 0)(0X ) = {0}.

However, D2
H−F(0, (0, 0))(0), D2

H+F(0, 0, 0)(0), D′′
H−F(0, 0, 0)(0) and D′′

H+
F(0, 0, 0)(0) are empty. Therefore, the inclusions in (2), (3), (4) and (5) of Proposition
1 are strict.

Definition 7 (see [6, 19]) Let f : X −→ Y be a vector valued function and x ∈ X .

(1) f is said to be first-order Hadamard directional differentiable at x , if for all v ∈ X
the following limit exists

d f (x, v) := lim
t↓0,u→v

t−1[ f (x + tu) − f (x)].

(2) f is said to be second-order Hadamard directional differentiable at x , if for all
v ∈ X one has d f (x, v) exists and for all w ∈ X the following limit exists

d2 f (x, v, w) := lim
t↓0,u→w

t−2[ f (x + tv + t2u) − td f (x, v) − f (x)].

(3) f is said to be asymptotic second-order Hadamard directional differentiable at x ,
if for all v ∈ X one has d f (x, v) exists and for all w ∈ X the following limit
exists

d20 f (x, v, w) := lim
t↓0,r↓0,t/r→0,u→w

(tr)−1[ f (x + tv + tru) − td f (x, v) − f (x)].
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The results of the Proposition 2 bellow are inspired from [4]. The results in [4]
are established in terms of the first order (H−) (resp. (H+)) directional derivative of
F := f + C in the case where f is Fréchet différentiable at x under the closdness of
C + BY.

Proposition 2 Let v,w ∈ X and f : X → Y be a second-order Hadamard differen-
tiable mapping at x. Then

d2 f (x, v, w) + C ⊂ D2
H−(EpiC f )(x, v, d f (x, v))(w) (1)

and

d2 f (x, v, w) − C ⊂ D2
H+(EpiC f )(x, v, d f (x, v))(w). (2)

Moreover, if C + BY is closed, then

d2 f (x, v, w) + C = D2
H−(EpiC f )(x, v, d f (x, v))(w)

= D2
H−l

(EpiC f )(x, v, d f (x, v))(w) (3)

and

d2 f (x, v, w) − C = D2
H+(EpiC f )(x, v, d f (x, v))(w)

= D2
H+l

(EpiC f )(x, v, d f (x, v))(w). (4)

Proof It is easy to check (1) and (2). Suppose that C + BY is closed. We only prove
(3) since (4) is similar. By Proposition 1, we start by proving that

D2
H−l

(EpiC f )(x, v, d f (x, v))(w) ⊂ d2 f (x, v, w) + C . (5)

Letw′ ∈ D2
H−l

(EpiC f )(x, v, d f (x, v))(w). Then, there exists sequences (tn) → 0+,
(wn) → w such that

lim
n→∞t−2

n e((EpiC f )(x) + tnd f (x, v) + t2nw′, (EpiC f )(x + tnv + t2nwn)) = 0.

Let ε > 0. There exists n0(ε) ∈ N such that

(EpiC f )(x) + tnd f (x, v) + t2nw′

⊂ (EpiC f )(x + tnv + t2nwn) + t2n εBY , ∀n ≥ n0(ε).

So, for all n ≥ n0(ε) one has

w′ − t−2
n [ f (x + tnv + t2nwn) − tnd f (x, v) − f (x)] ∈ C + εBY .

Since C + BY is closed, then

w′ − d2 f (x, v, w) ∈ C + εBY ,∀ε > 0.
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As C is closed, it follows that

w′ ∈ d2 f (x, v, w) + C,

and this completes the proof of the inclusion (5). From (1) and the statement (2) of
Proposition 1, we conclude (3). ��

The proof of the following proposition is similar to that of Proposition 2.

Proposition 3 Let v,w ∈ X and f : X → Y be a asymptotic second-order Hadamard
differentiable mapping at x. Then

d20 f (x, v, w) + C ⊂ D′′
H−(EpiC f )(x, v, d f (x, v))(w)

and

d20 f (x, v, w) − C ⊂ D′′
H+(EpiC f )(x, v, d f (x, v))(w).

Moreover, if C + BY is closed, then

d20 f (x, v, w) + C = D′′
H−(EpiC f )(x, v, d f (x, v))(w)

= D′′
H−l

(EpiC f )(x, v, d f (x, v))(w)

and

d20 f (x, v, w) − C = D′′
H+(EpiC f )(x, v, d f (x, v))(w)

= D′′
H+l

(EpiC f )(x, v, d f (x, v))(w).

4 Primal second-order optimality conditions

The purpose of this section is to establish second-order necessary and sufficient con-
ditions for local weak l-minimal solutions of set-valued optimization problems in the
primal form. We start with the unconstrained case.

Proposition 4 Let x ∈ domF be a local weak l-minimal point of a set-valued map F :
X ⇒ Y with respect to C. Then, for all v ∈ X and v′ ∈ DH−l (EpiC F)(x)(v)∩−∂C,
the following results hold.

(i) DH−l (EpiC F)(x)(X) ∩ −intC = ∅,
(ii) D2

H−l
(EpiC F)(x, v, v′)(X) ∩ int K (−C, v′) = ∅,

(iii) D′′
H−l

(EpiC F)(x, v, v′)(X) ∩ int K (−C, v′) = ∅.

Proof (i) is a direct consequence of (ii), Proposition 1, (3) of Remark 3 and
int K (−C, 0Y ) = −intC . We only prove (ii) since (iii) is similar. Suppose one
the contrary that there is w ∈ X and w′ ∈ D2

H−(EpiC F)(x, v, v′)(w) with w′ ∈
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int K (−C, v′). Since intC 
= ∅, then by (d) of Remark 2 on has int K (−C, v′) =
I (−intC, v′). Hence, there exists δ > 0 such that

v′ + t z ∈ −intC, ∀t ∈ (0, δ] and z ∈ w′ + δBY . (6)

By definition of D2
H−l

(EpiC F)(x, v, v′)(w), there exists sequences (tn) ↓ 0 and
(wn) → w, and n0(δ) ≥ 0 such that

F(x) + tnv
′ + t2nw′ ⊂ F(x + tnv + t2nwn) + C + t2n δBY , ∀n ≥ n0(δ).

By (6), there exists n1(δ) ≥ n0(δ) such that tn ∈ (0, δ] for all n ≥ n0(δ). Consequently
for each n ≥ n1(δ) on has

tnv
′ + t2nw′ + δt2nBY ⊂ −intC . (7)

As BY = −BY , we conclude that

F(x) ⊂ F(x + tnv + t2nwn) + intC, ∀n ≥ n1(δ),

which contradicts the fact that x is a local weak l-minimal point of F on X . ��
Remark 5 Part (ii) and (iii) of Proposition 4 are valid for all v ∈ X and v′ ∈ Y ,
but is only meaningful for v ∈ X and v′ ∈ DH−l (EpiC F)(x)(v) ∩ −∂C , since if
v′ /∈ DH−l (EpiC F)(x)(v) then

D2
H−l

(EpiC F)(x, v, v′)(X) = D′′
H−l

(EpiC F)(x, v, v′)(X) = ∅

(see Remark 4) and if v′ /∈ −C then K (−C, v′) = ∅. Finally, if v′ ∈ −intC then by
(i) of Proposition 4 one has v′ /∈ DH−l (EpiC F)(x)(v).

The following example illustate Proposition 4.

Example 2 Let C := R+ × R+ and F : R
2 ⇒ R

2 be a set-valued map defined by

F(x) := {y := (y1, y2) ∈ R
2 : y1 ≥ −x1, y2 ≥ x21+|x2|}, ∀x := (x1, x2) ∈ R

2,

where R+ := {x ∈ R x ≥ 0}. Take x := (0, 0) ∈ R
2. It is easy to verify that x is

a local weak l-minimal point of F on R
2. It follows from Definition 5 that the set

A := {v′ := (v′
1, v

′
2) ∈ R

2 : v := (v1, v2) ∈ R
2, v′ ∈ DH−l (EpiC F)(x)(v) ∩ −∂C}

= {v′ := (v′
1, v

′
2) ∈ R

2 : v := (v1, v2) ∈ R
2, 0 ≥ v′

1 ≥ −v1, 0 ≥ v′
2 ≥ |v2|}

= {v′ := (v′
1, v

′
2) ∈ R

2 : v1 ≥ 0, v2 = 0, 0 ≥ v′
1 ≥ −v1, v′

2 = 0}.

Thus, for every v := (v1, v2) ∈ R
2 and every v′ := (v′

1, v
′
1) ∈ A, we have v1 ≥

0, v2 = 0 and 0 ≥ v′
1 ≥ −v1, v′

2 = 0. Moreover, for every v := (v1, v2) ∈ R
2,
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v′ := (v′
1, v

′
2) ∈ A and every w := (w1, w2) ∈ R

2, it follows from Definition 6 that

D2
H−l

(EpiC F)(x, v, v′)(w) = L1 and D′′
H−l

(EpiC F)(x, v, v′)(w) = L2,

where

L1 :=
{ {w′ := (w′

1, w
′
2) ∈ R

2 w′
1 ≥ −w1, w′

2 ≥ v21 + |w2|} i f v′
1 = −v1

{w′ := (w′
1, w

′
2) ∈ R

2 w′
1 ∈ R, w′

2 ≥ v21 + |w2|}, i f v′
1 > −v1,

and

L2 :=
{ {w′ := (w′

1, w
′
2) ∈ R

2 w′
1 ≥ −w1, w′

2 ≥ |w2|} i f v′
1 = −v1

{w′ := (w′
1, w

′
2) ∈ R

2 w′
1 ∈ R, w′

2 ≥ |w2|}, i f v′
1 > −v1.

Thus, together with

K (−C, v′) =
{−(R+ × R+) i f v′

1 = 0
R × (−R+) i f v′

1 < 0,

we have

D2
H−l

(EpiC F)(x, v, v′)(X) ∩ int K (−C, v′) = ∅

and

D′′
H−l

(EpiC F)(x, v, v′)(X) ∩ int K (−C, v′) = ∅.

Thus, Proposition 4 is fulfilled.

Now, we establish optimality conditions under an arbitrary constrained set. The
verification of the following result is similar to that of Proposition 4. We present a
proof for the reader’s convenience.

Proposition 5 Let x ∈ B ⊂ X be a local weak l-minimal point on B of a set-valued
map F : X ⇒ Y with respect to C. Assume that F is Lipschitzian at x. Then, for all
v ∈ K (B, x) and v′ ∈ DH−(EpiC F)(x)(v) ∩ −∂C, the following results hold.

(i) ( [4]) DH−(EpiC F)(x)(K (B, x)) ∩ −intC = ∅,
(ii) D2

H−(EpiC F)(x, v, v′)(K 2(B, x, v)) ∩ int K (−C, v′) = ∅,
(iii) D′′

H−(EpiC F)(x, v, v′)(K ′′(B, x, v)) ∩ int K (−C, v′) = ∅.

Proof (i) is a direct consequence of (ii), Proposition 1, (1) of Remark 3, int K (−C, 0Y )

= −intC and (c) of Remark 2. We only prove that (ii) holds since (iii) is
similar. Suppose on the contrary that there is w ∈ K 2(B, x, v)) and w′ ∈
D2

H−(EpiC F)(x, v, v′)(w) such thatw′ ∈ int K (−C, v′). Bydefinitionof K 2(B, x, v),
there exists sequences (tn) ↓ 0 and (wn) → w such that

x + tnv + tnwn ∈ B,∀n ∈ N.
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Since intC 
= ∅, then by (d) of Remark 2 one has int K (−C, v′) = I (−intC, v′).
Hence, there exists δ > 0 such that

v′ + t z ∈ −intC, ∀t ∈ (0, δ] and z ∈ w′ + δBY .

So, there exists n0(δ) > 0 such that tn ∈ (0, δ] for all n ≥ n0(δ). Consequently for
each n ≥ n0(δ) on has

tnv
′ + t2nw′ + δt2nBY ⊂ −intC . (8)

By definition of D2
H−(EpiC F)(x, v, v′)(w), there exists n1(ε) ≥ n0(δ) such that

F(x) + tnv
′ + t2nw′ ⊂ F(x + tnv + tnwn) + C + t2n δBY , ∀n ≥ n1(δ).

By (8), we conclude that

F(x) ⊂ F(x + tnv + tnwn) + intC, ∀n ≥ n1(δ),

which contradicts that x is a local weak l-minimal point of F on B. Thus the proof is
complete. ��
Remark 6 Part (ii) and (iii) of Proposition 5 are valid for all v ∈ X and v′ ∈ Y ,
but is only meaningful for v ∈ K (B, x) and v′ ∈ DH−(EpiC F)(x)(v) ∩ −∂C ,
since if v /∈ K (B, x) then K 2(B, x, v) = K ′′(B, x, v) = ∅ (see Remark 2), and if
v′ /∈ DH−(EpiC F)(x)(v) then

D2
H−(EpiC F)(x, v, v′)(X) = D′′

H−(EpiC F)(x, v, v′)(X) = ∅

(see Remark 4 (b)) and if v′ /∈ −C then K (−C, v′) = ∅. Finally, if v′ ∈ −intC then
by (i) of Proposition 5 one has v /∈ K (B, x).

The following example illustrate Proposition 5.

Example 3 Let F and C be as in Example 2, and B := [0, 1] × [−1, 1]. Take x :=
(0, 0). It is easy to very that F is Lipshitzian at x , and x is a local weak l-minimal
point of F on B. It follows from Definitions 2 and 5 that K (B, x) = R+ × R and

A1 := {v′ := (v′
1, v

′
2) ∈ R

2 : v := (v1, v2) ∈ K (B, x),

v′ ∈ DH−(EpiC F)(x)(v) ∩ −∂C}
= {v′ := (v′

1, v
′
2) ∈ R

2 : v1 ≥ 0, v2 = 0, 0 ≥ v′
1 ≥ −v1, v′

2 = 0}.

Thus, for every v := (v1, v2) ∈ K (B, x) and every v′ = (v′
1, v

′
2) ∈ A1, we have v1 ≥

0, v2 = 0 and 0 ≥ v′
1 ≥ −v1, v′

2 = 0. Moreover, for every v := (v1, v2) ∈ K (B, x)
and every v′ := (v′

1, v
′
2) ∈ A1, it follows from Definition 2 that

K 2(B, x, v) = K ′′(B, x, v) =
{

R+ × R, i f v1 = 0.
R × R, i f v1 > 0.
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Also, for every for every v := (v1, v2) ∈ K (B, x), v′ := (v′
1, v

′
2) ∈ A1 and every

w := (w1, w2) ∈ K 2(B, x, v), it follows from Definition 6 that

D2
H−l

(EpiC F)(x, v, v′)(w) = L3 and D′′
H−l

(EpiC F)(x, v, v′)(w) = L4,

where

L3 :=
{ {w′ := (w′

1, w
′
2) ∈ R

2 w′
1 ≥ −w1, w′

2 ≥ v21 + |w2|}, i f v′
1 = −v1.

{w′ := (w′
1, w

′
2) ∈ R

2 w′
1 ∈ R, w′

2 ≥ v21 + |w2|}, i f v′
1 > −v1

and

L4 :=
{ {w′ := (w′

1, w
′
2) ∈ R

2 w′
1 ≥ −w1, w′

2 ≥ |w2|}, i f v′
1 = −v1

{w′ := (w′
1, w

′
2) ∈ R

2 w′
1 ∈ R, w′

2 ≥ |w2|}, i f v′
1 > −v1.

Thus, together with

K (−C, v′) =
{−(R+ × R+) i f v′

1 = 0
R × (−R+) i f v′

1 < 0,

we have

D2
H−(EpiC F)(x, v, v′)(K 2(B, x, v)) ∩ int K (−C, v′) = ∅

and

D′′
H−(EpiC F)(x, v, v′)(K ′′(B, x, v)) ∩ int K (−C, v′) = ∅.

Thus, Proposition 5 is fulfilled.

Now, we state second order sufficient optimality conditions. To this end, we start
by the following recall.

Definition 8 Let B be a nonempty subset of X , F : X ⇒ Y be a set-valued mapping,
and x ∈ B. It is said that x is a strict local weak l-minimal point of F on B with
respect to C if there exists a neighborhood V of x such that

F(x) 
⊂ F(x) + intC, ∀x ∈ V ∩ B\{x}.

Remark 7 It is easy to see that every local l-weak minimal point is a strict local l-weak
minimal point. Reciprocally, if WMin(F(x),C) 
= ∅ and x is a strict local weak
l-minimal point of F on B, then one obviously has x is a local weak l-minimal point
of F on B.

Proposition 6 Let B be a subset of a finite dimensional space X and let F : X ⇒ Y
be a set-valued map, x ∈ B and WMin(F(x),C) 
= ∅. Suppose that for every
v ∈ K (B, x)\{0X }andeveryv′ ∈ DH+l (EpiC F)(x)(v)∩∂C, the following conditions
hold.
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(i) D2
H+(EpiC F)(x, v, v′)(w) ∩ int K (C, v′) 
= ∅ ∀ w ∈ K 2(B, x, v) ∩ v⊥,

(ii) D′′
H+(EpiC F)(x, v, v′)(w) ∩ int K (C, v′) 
= ∅ ∀w ∈ K ′′(B, x, v) ∩ v⊥\{0X }.

Then x is a strict local weak l-minimal point of F on B with respect to C.

Proof Suppose on the contray that there exists a sequence (xn) → x such that for all
n ∈ N one has xn ∈ B\{x} and

F(x) ⊂ F(xn) + intC . (9)

Setting tn := ‖xn − x‖X we may assume that vn := t−1
n (xn − x) converges to some

unit vector v ∈ K (B, x). Consider now, the sequence (wn) such that

xn = x + tnv + t2nwn, ∀n ∈ N. (10)

We have two cases. The case (a): The sequence (wn) is bounded. Observe that v +
tnwn ∈ SX for all n ∈ N. Since K (SX , v) = v⊥, so by passing to a subsequence,
we may suppose that (wn) converges to some w ∈ K 2(B, x, v)) ∩ v⊥. Take v′ ∈
DH+l (EpiC F)(x)(v) ∩ ∂C and

w′ ∈ D2
H+(EpiC F)(x, v, v′)(w) ∩ int K (C, v′).

Since intC 
= ∅, then by (d) of Remark 2,

int K (C, v′) = I (intC, v′).

Hence, there exists δ > 0 such that

v′ + t z ∈ intC (11)

for all t ∈ (0, δ] and z ∈ w′ + δBY . So, there exists n0(δ) > 0 such that

tn ∈ (0, δ] ∀n ≥ n0(δ). (12)

Consequently for each n ≥ n0(δ) one has

tnv
′ + t2nw′ + δt2nBY ⊂ intC . (13)

By definition of D2
H+(EpiC F)(x, v, v′)(w), there exists n1(δ) ≥ n0(δ) such that

F(x + tnv + t2nwn) ⊂ F(x) + tnv
′ + t2nw′ + C + t2n δBY , ∀n ≥ n1(δ).

The latter with (9), (10), (13) and BY = −BY , we get

F(x) ⊂ F(x) + intC,
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which contradicts thatW .Min(F(x),C) 
= ∅. The case (b): The sequence (wn) is not
bounded. Wemay suppose that (‖wn‖X ) → +∞ (taking a subsequence if necessary).
Then the sequence (xn) can be written as

xn = x + tnv + t2n‖wn‖X (wn‖wn‖−1
X ). (14)

Observe that, rn := tn‖wn‖ = ‖vn − v‖ ↓ 0, tn
rn

= 1
‖wn‖X → 0 and

v + rn(wn‖wn‖−1
X ) = v + tn‖wn‖X (wn‖wn‖−1

X ) ∈ SX for all n ∈ N.

without loss of generality we may assume that (wn|wn‖−1
X ) → w. Then

w ∈ K ′′(B, x, v) ∩ v⊥\{0X }.

By (11) and (12) we have

tnv
′ + t2n‖wn‖Xw′ + δt2n‖wn‖XBY ⊂ intC ∀n ≥ n0(δ). (15)

By definition of D′′
H+(EpiC F)(x, v, v′)(w), there exists n1(δ) ≥ n0(δ) such that

F(x + tnv + t2n‖wn‖X (wn‖wn‖−1
X ))

⊂ F(x) + tnv
′ + t2n‖wn‖Xw′ + C + t2n‖wn‖XδBY , ∀n ≥ n1(δ).

The latter with (9), (10), (14) and (15) we get

F(x) ⊂ F(x) + intC,

which contradicts that WMin(F(x),C) 
= ∅. ��
The following example illustrate Proposition 6.

Example 4 Let C := R+ × R+, B := [0, 1] × [−1, 1] and F : R
2 ⇒ R

2 be a set
valued map defined by

F(x) := {y := (y1, y2) ∈ R
2 : y1 ≥ x22 + x1, y2 ≥ x21 + |x2|},∀x := (x1, x2) ∈ R

2.

Take x := (0, 0). It is easy to verify that WMin(F(x),C) 
= ∅ and x is a strict
local weak l-minimal point of F on B. It follows from Definitions 2 and 5 that

K (B, x) = R+ × R

and

A2 := {v′ := (v′
1, v

′
2) ∈ R

2 : v := (v1, v2) ∈ K (B, x), v′ ∈ DH+l (EpiC F)(x)(v) ∩ ∂C}
= {v′ := (v′

1, v
′
2) ∈ R

2 : v := (v1, v2) ∈ K (B, x), 0 ≤ v′
1 ≤ v1, 0 ≤ v′

2 ≤ |v2|, v′ ∈ ∂C}
= {v′ := (v′

1, v
′
2) ∈ R

2 : v1 ≥ 0, v2 ∈ R, 0 ≤ v′
1 ≤ v1, 0 ≤ v′

2 ≤ |v2|, v′ ∈ ∂C}.
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Thus, for every v := (v1, v2) ∈ K (B, x)\{(0, 0)}, and every v′ := (v′
1, v

′
2) ∈ A2,

we have (v1, v2) ∈ (R+ × R)\{(0, 0)}, and 0 ≤ v′
1 ≤ v1, 0 ≤ v′

2 ≤ |v2|, v′ ∈ ∂C .
Moreover, for every v := (v1, v2) ∈ K (B, x)\{(0, 0)} and every v′ := (v′

1, v
′
2) ∈ A2,

it follows from Definition 2 that

K 2(B, x, v) = K ′′(B, x, v) =
{

R+ × R, i f v1 = 0.
R × R, i f v1 > 0

and

v⊥ =
⎧⎨
⎩

R × {0}, i f v1 = 0, v2 
= 0.
{0} × R, i f v1 > 0, v2 = 0.
{(0, 0)}, i f v1 > 0, v2 
= 0.

So,

K 2(B, x, v) ∩ v⊥ =
⎧⎨
⎩

R+ × {0}, i f v1 = 0, v2 
= 0.
{0} × R, i f v1 > 0, v2 = 0,
{(0, 0)}, i f v1 > 0, v2 
= 0

and

K 2(B, x, v) ∩ (v⊥\{(0, 0)}) =
{

(R+\{0}) × {0}, i f v1 = 0, v2 
= 0.
{0} × (R\{0}), i f v1 > 0, v2 = 0.

Also, for every v := (v1, v2) ∈ K (B, x)\{(0, 0)}, v′ := (v′
1, v

′
2) ∈ A2 and every

w := (w1, w2) ∈ K 2(B, x, v) ∩ v⊥, it follows from Definition 6 that

D2
H+(EpiC F)(x, v, v′)(w) = L6,

where

L6 :=

⎧⎪⎪⎨
⎪⎪⎩

{w′ := (w′
1, w

′
2) ∈ R

2 : w′
1 ≤ w1 + v22 , w′

2 ≤ |w2| + v21}, i f v′
1 = v1, v′

2 = |v2|.
{w′ := (w′

1, w
′
2) ∈ R

2 : w′
1 ≤ w1 + v22 , w′

2 ∈ R}, i f v′
1 = v1, v′

2 < |v2|.
{w′ := (w′

1, w
′
2) ∈ R

2 : w′
2 ≤ |w2| + v21}, i f v′

1 < v1, v′
2 = |v2|.

R × R, i f v′
1 < v1, v′

2 < |v2|.

Further, for every v := (v1, v2) ∈ K (B, x)\{(0, 0)}, v′ := (v′
1, v

′
2) ∈ A2 and every

w := (w1, w2) ∈ K 2(B, x, v) ∩ (v⊥\{(0, 0)}), it follows from Definition 6 that

D′′
H+(EpiC F)(x, v, v′)(w) = L7,
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where

L7 :=

⎧⎪⎪⎨
⎪⎪⎩

{w′ := (w′
1, w

′
2) ∈ R

2 w′
1 ≤ w1, w′

2 ≤ |w2|}, i f v′
1 = v1, v′

2 = |v2|.
{w′ := (w′

1, w
′
2) ∈ R

2 w′
1 ≤ w1, w′

2 ∈ R}, i f v′
1 = v1, v′

2 < |v2|.
{w′ := (w′

1, w
′
2) ∈ R

2 w′
2 ≤ |w2|}, i f v′

1 < v1, v′
2 = |v2|.

R × R, i f v′
1 < v1, v′

2 < |v2|.

Thus, together with

K (C, v′) =
⎧⎨
⎩

R+ × R+, i f v′
1 = v′

2 = 0.
R+ × R, i f v′

1 = 0, v′
2 > 0.

R × R+, i f v′
1 > 0, v′

2 = 0,

we have

D2
H+(EpiC F)(x, v, v′)(K 2(B, x, v) ∩ v⊥) ∩ int K (C, v′) 
= ∅

and

D′′
H+(EpiC F)(x, v, v′)(K ′′(B, x, v) ∩ (v⊥\{(0, 0)})) ∩ int K (C, v′) 
= ∅.

Thus, Proposition 6 is fulfilled.

5 Dual second-order optimality conditions

From the results established in Sect. 4, we can derive dual second-order optimality
conditions in terms of Lagrange–Fritz–John and in terms of Lagrange–Karush–Kuhn–
Tucker multipliers. To this end, we start by the following lemmas.

Lemma 1 Let S be a nonempty and convex subset of X, F : X ⇒ Y be a set-valued
mapping, x ∈ domF, (v, v′) ∈ X × Y . If F is C-convex and Lipschitzian at x, then
DH−(EpiC F)(x)(S), D2

H−(EpiC F)(x, v, v′)(S) and D′′
H−(EpiC F)(x, v, v′)(S) are

convex.

Proof We only prove that D2
H−(EpiC F)(x, v, v′)(S) is convex since the cases

of DH−(EpiC F)(x)(S) and D′′
H−(EpiC F)(x, v, v′)(S) are similar. Let w′

i ∈
D2

H−(EpiC F)(x, v, v′)(S) for i ∈ {1, 2}. Then, there exists wi ∈ S for i ∈ {1, 2}
such that w′

i ∈ DH−(EpiC F)(x, v, v′)(wi ). Let ε > 0. Then there exist δ > 0 and
a neighborhood Ui of wi with i ∈ {1, 2} such that for all t ∈ (0, δ], ui ∈ Ui and
i ∈ {1, 2},

F(x) + C + tv′ + t2w′
i ⊂ F(x + tv + t2ui ) + C + t2

ε

4
BY .
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Let λ ∈ [0, 1]. As F is C-convex and F(x) ⊂ λF(x) + (1 − λ)F(x), then

F(x) + C + tv′ + t2(λw′
1 + (1 − λ)w′

2)

⊂ F(x + tv + t2(λu1 + (1 − λ)u2) + C + t2
ε

2
BY .

Since F is Lipschitzian at x , then there exist a neighborhood U of x and k > 0 such
that that for all x1, x2 ∈ U ,

F(x1) ⊂ F(x2) + k‖x1 − x2‖XBY .

As lim
t↓0,u→λw1+(1−λ)w2

(x + tv + t2u) = x ∈ U ,

lim
t↓0,u1→w1,u2→w2,u→λw1+(1−λ)w2

k‖λu1 + (1 − λ)u2 − u‖X = 0

and

lim
t↓0,u1→w1,u2→w2

(x + tv + t2(λu1 + (1 − λ)u2)) = x ∈ U ,

then there exist η > 0 with η ≤ δ, and neighborhoods U ′
1, U

′
2 and U ′

3 of w1, w2 and
λw1+(1−λ)w2, respectively, withU ′

1 ⊂ U1 andU ′
2 ⊂ U2 such that for all t ∈ (0, η],

u1 ∈ U ′
1, u2 ∈ U ′

2 and u ∈ U ′
3 one has

k‖λu1 + (1 − λ)u2 − u‖X <
ε

2
,

x + tv + t2(λu1 + (1 − λ)u2) ∈ U

and

x + tv + t2u ∈ U .

Therefore, we conclude that

F(x) + C + tv′ + t2(λw′
1 + (1 − λ)w′

2) ⊂ F(x + tv + t2u) + C + t2εBY

for all t ∈ (0, η] and u ∈ U ′
3. So,

λw′
1 + (1 − λ)w′

2 ∈ DH−(EpiC F)(x, v, v′)(λw1 + (1 − λ)w2).

Thus the proof is complete. ��
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In what follows the subset B ⊂ X is defined by:

B := {x ∈ S : G(x) ∩ −Q 
= ∅},

where S is a nonempty subset of X and G : X ⇒ Z is a set-valued mapping, and
Q ⊂ Z denotes the pointed, closed and convex cone with nonempty interior.

Lemma 2 Let x ∈ B be a local weak l-minimal point on B of a set-valued map
F : X ⇒ Y with respect to C. Then x is a local weak l-minimal point of (F,G) on S
with respect to C × Q.

Proof Suppose on the contrary that there exists a sequence (xn) ⊂ S such that (xn) →
x and

(F,G)(x) ⊂ (F,G)(xn) + int(C × Q), ∀n ∈ N.

Then for all n ∈ N one has

F(x) ⊂ F(xn) + intC

and

G(x) ⊂ G(xn) + int Q.

Take z ∈ G(x) ∩ −Q. Then there exist yn ∈ G(xn) and an ∈ int Q such that
z = yn + an .This means that yn = z − an ∈ −Q − int Q ⊂ −Q, and so xn ∈ B,
which contradicts that x is a local weak l-minimal point of F on B with respect to C .

��
Remark 8 (see [1]) Let B be a nonempty subset of Y , F : X ⇒ Y be a set valued
mapping which is C-convex, and x ∈ B. Then x is a local weak l-minimal point of F
on B with respect to C if and only if it is a global weak l-minimal point of F on B
with respect to C .

Now, we are able to establish second-order necessary optimality conditions in terms
of Lagrange–Fritz–John multipliers.

Proposition 7 Let x ∈ B be a local weak l-minimal point on B of a set-valued map
F : X ⇒ Y with respect to C, and v ∈ K (S, x), v′ ∈ DH−(EpiC F)(x)(v) ∩ −∂C
and v′′ ∈ DH−(EpiQG)(x)(v) ∩ −∂Q. Suppose that

(i) D2
H−(EpiC×Q(F,G))(x, v, v′, v′′)(K 2(S, x, v)) is convex,

(ii) F and G are Lipschitzian at x.

Then there exists (y∗, z∗) ∈ (−C)◦ × (−Q)◦\{(0Y ∗ , 0Z∗)} such that 〈y∗, v′〉 = 0,
〈z∗, v′′〉 = 0 and

〈y∗, w′〉 + 〈z∗, w′′〉 ≥ 0

for all w ∈ K 2(S, x, v), w′ ∈ D2
H−F(x, v, v′)(w) and w′′ ∈ D2

H−G(x, v, v′′)(w).
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Proof From Lemma 2 and (ii) of Proposition 5, it follows that

cl(D2
H−(EpiC×Q(F,G))(x, v, v′, v′′)(K 2(S, x, v)))

∩ int K ((−C) × (−Q), (v′, v′′)) = ∅.

By the standard Hahn-Banach separation theorem, there exists (y∗, z∗) ∈ (Y ∗ ×
Z∗)\{(0Y ∗ , 0Z∗)} such that

〈(y∗, z∗), (w′, w′′)〉 ≥ 〈(y∗, z∗), (y, z)〉

for all (w′, w′′) ∈ cl(D2
H−(EpiC×Q(F,G))(x, v, v′, v′′)(K 2(S, x, v))) and (y, z) ∈

int K (−C × (−Q), (v′, v′′)). Since K (−C × (−Q), (v′, v′′)) is closed and convex
with nonempty interior, then

K (−C × (−Q), (v′, v′′)) = cl(int K (−C × (−Q), (v′, v′′))).

By (c) of Remark 4 and (8) of Proposition 1, we get

〈y∗, w′ + d1〉 + 〈z∗, w′′ + d2〉 ≥ 〈y∗, y〉 + 〈z∗, z〉 (16)

for all w ∈ K 2(S, x, v), w′ ∈ D2
H−F(x, v, v′)(w), w′′ ∈ D2

H−G(x, v, v′′)(w),
(d1, d2) ∈ C × Q and (y, z) ∈ K (−C × (−Q), (v′, v′′)). Since (−C) and (−Q)

are convex, then by (f) of Remark 2 one has

K ((−C) × (−Q), (v′, v′′)) = K (−C, v′) × K (−Q, v′′).

This with (16) imply

〈y∗, w′〉 + 〈z∗, w′′〉 ≥ 〈y∗, y〉 + 〈z∗, z〉 (17)

for all w ∈ K 2(S, x, v), w′ ∈ D2
H−F(x, v, v′)(w), w′′ ∈ D2

H−G(x, v, v′′)(w) and
(y, z) ∈ K (−C, v′) × K (−Q, v′′). Hence

y∗ ∈ (−C)◦ ∩ N (−C, v′) and z∗ ∈ (−Q)◦ ∩ N (−Q, v′′).

Indeed, letw0 ∈ K 2(S, x, v),w′
0 ∈ D2

H−F(x, v, v′)(w0),w′′
0 ∈ D2

H−G(x, v, v′′)(w0),
(y, z) ∈ K (−C, v′)× K (−Q, v′′) and λ > 0. As K (−C, v′)× K (−Q, v′′) is a cone,
then λ(y, z) ∈ K (−C, v′) × K (−Q, v′′). By (17) one has

1

λ
(〈y∗, w′

0〉 + 〈z∗, w′′
0 〉) ≥ 〈y∗, y〉 + 〈z∗, z〉

Taking the limit as λ → +∞, we get

〈y∗, y〉 + 〈z∗, z〉 ≤ 0, ∀(y, z) ∈ K (−C, v′) × K (−Q, v′′).
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Since 0Y ∈ K (−C, v′) and 0Z ∈ K (−Q, v′′), then one obviously has y∗ ∈
(K (−C, v′))◦ and z∗ ∈ (K (−Q, v′′))◦. By convexity of (−C) and (−Q), we have by
(e) of Remark 2 that

K (−C, v′) = cl(R+(−C − v′)) and K (−Q, v′′) = cl(R+(−Q − v′′)).

So, we get

y∗ ∈ N (−C, v′)) and z∗ ∈ N (−Q, v′′).

As v′ ∈ (−C) and v′′ ∈ (−Q), it follows that y∗ ∈ (−C)◦ ∩ N (−C, v′) and z∗ ∈
(−Q)◦ ∩ N (−Q, v′′). Now, as v′ ∈ −C and v′′ ∈ −Q, we get 〈y∗, v′〉 = 0 and
〈z∗, v′′〉 = 0. Since 0Y ∈ K (−C, v′) and 0Z ∈ K (−Q, v′′), we conclude from (17)
the proof of Proposition 7. ��
The proof of the following proposition runs in analogous way as in Proposition 7,
when we apply Proposition 5 (iii) instead of Proposition 5(ii).

Proposition 8 Let x ∈ B be a local weak l-minimal point on B of a set-valued map
F : X ⇒ Y with respect to C, and v ∈ K (S, x), v′ ∈ DH−(EpiC F)(x)(v) ∩ −∂C,
v′′ ∈ DH−(EpiQG)(x)(v)∩−∂Q and the assumption (ii) of Proposition 7 be satisfied.
Suppose that D′′

H−(EpiC×Q(F,G))(x, v, v′, v′′)(K ′′(S, x, v)) is convex. Then there
exists (y∗, z∗) ∈ (−C)◦ × (−Q)◦\{(0Y ∗ , 0Z∗)} such that 〈y∗, v′〉 = 0, 〈z∗, v′′〉 = 0
and

〈y∗, w′〉 + 〈z∗, w′′〉 ≥ 0

for all w ∈ K ′′(S, x, v), w′ ∈ D′′
H−F(x, v, v′)(w) and w′′ ∈ D′′

H−G(x, v, v′′)(w).

The following corollary is a direct consequence of Propositions 1, 7 and Remark 2 (c).

Corollary 1 Let x ∈ B be a local weak l-minimal point on B of a set-valued map
F : X ⇒ Y with respect to C. Suppose that DH−(EpiC×Q(F,G))(x)(K (S, x))
is convex and the assumptions (ii) of Proposition 7 is satisfied. Then there exists
(y∗, z∗) ∈ (−C)◦ × (−Q)◦\{(0Y ∗ , 0Z∗)} such that

〈y∗, w′〉 + 〈z∗, w′′〉 ≥ 0

for all w ∈ K (S, x), w′ ∈ DH−F(x)(w) and w′′ ∈ DH−G(x)(w).

In next, we establish second-order necessary optimality conditions in terms of
Lagrange–Karush–Kuhn–Tucker multipliers. To this end, we start by the following
recall.

Definition 9 Let U be a nonempty subset of X . The core of U , is the set core(U ) of
elements a ∈ U such that for all h ∈ X , there exists α > 0 such that a + th ∈ U for
all t ∈ [−α, α].
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Let L(Z ,Y ) be the set of all continuous linear operators from Z into Y .

Proposition 9 Let the assumption of Proposition 7 be satisfied. Moreover, suppose
that there exists w0 ∈ K 2(S, x, v) such that 0Z ∈ core(D2

H−G(x, v, v′′)(w0) + Q).
Then, the following statements hold:

(a) There exists (y∗, z∗) ∈ (−C)◦ × (−Q)◦ with y∗ 
= 0Y ∗ such that 〈y∗, v′〉 = 0,
〈z∗, v′′〉 = 0 and

〈y∗, w′〉 + 〈z∗, w′′〉 ≥ 0

for allw ∈ K 2(S, x, v),w′ ∈ D2
H−F(x, v, v′)(w) andw′′ ∈ D2

H−G(x, v, v′′)(w).
(b) There exists T ∈ L(Z ,Y ) such that T v′′ = 0Y , T (Q) ⊂ C and

(D2
H−F(x, v, v′) + (T ◦ D2

H−G(x, v, v′′)))(w) ∩ int K (−C, v′)
= ∅,∀w ∈ K 2(S, x, v).

Proof (a) By Proposition 7, there exists (y∗, z∗) ∈ (−C)◦ ×(−Q)◦\{(0Y ∗ , 0Z∗)} such
that 〈y∗, v′〉 = 0, 〈z∗, v′′〉 = 0 and

〈y∗, w′〉 + 〈z∗, w′′〉 ≥ 0 (18)

for all w ∈ K 2(S, x, v), w′ ∈ D2
H−F(x, v, v′)(w) and w′′ ∈ D2

H−G(x, v, v′′)(w).
Suppose that y∗ = 0Y . From (18) one has 〈z∗, w′′ + d〉 ≥ 〈z∗, d〉 ≥ 0 for all
w′′ ∈ D2

H−G(x, v, v′′)(w0) and d ∈ Q. By our assumption, for all h ∈ Z , there exists
α > 0 such that

αh ∈ D2
H−G(x, v, v′′)(w0) + Q.

Then 〈z∗, h〉 ≥ 0 for all h ∈ Z . Thus z∗ = 0Z∗ , which is a contradiction. (b) Since
intC 
= ∅, then there exists e ∈ intC such that 〈y∗, e〉 = 1. We define a continuous
linear operator T : Z → Y by T z = 〈z∗, z〉e. Clearly, T v′′ = 0Y , T (Q) ⊂ C
and y∗ ◦ T = z∗. Suppose on the contrary that there exists w ∈ K 2(S, x, v) and
w′ ∈ int K (−C, v′) such that

w′ ∈ D2
H−F(x, v, v′)(w) + T ◦ D2

H−G(x, v, v′′)(w).

Since y∗ ∈ (−C)◦ and 〈y∗, v′〉 = 0, then y∗ ∈ N (−C, v′). Therefore, 〈y∗, w′〉 < 0,
which contradicts (18). Thus the proof is complete. ��

The following example illustrate Proposition 9 (b).

Example 5 Let S := [−1, 1] × [−1, 1], C := R+ × R+, Q := R+ and the set-valued
maps F : R

2 ⇒ R
2,

F(x) := {y := (y1, y2) ∈ R
2 : y1 ≥ x1, y2 ≥ x2},∀x := (x1, x2) ∈ R

2
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and G : R
2 → R,

G(x) := {y ∈ R : y ≥ −x1},∀x := (x1, x2) ∈ R
2.

Then B := {x ∈ S G(x) ∩ (−R+) 
= ∅} = [0, 1] × [−1, 1]. Take x := (0, 0). It
is easy to verify that x is a local weak l-minimal point of F on B, and F and G are
Lipschitzian at x . It follows from Definitions 2 and 5 that

K (S, x) = R × R

and

A := {(v′, v′′) := ((v′
1, v

′
2), v

′′) ∈ R
3 : v :=(v1, v2)∈K (S, x), v′ ∈ A1, v′′ ∈ A2}

= {(v′
1, v

′
2, v

′′) ∈ R
3 : v1 ≤ v′

1 ≤ 0, v2 ≤ v′
2 ≤ 0, 0 ≥ v′′ ≥ −v1}

= {(v′
1, v

′
2, v

′′) ∈ R
3 : v1 = 0, v2 ≤ 0, v′

1 = 0, v2 ≤ v′
2 ≤ 0, v′′ = 0},

where A1 := DH−(EpiC F)(x)(v) ∩ −∂C and A2 := DH−(EpiQG)(x)(v) ∩ −∂Q.

Thus, for every (v1, v2) ∈ K (S, x) and every (v′
1, v

′
2, v

′′) ∈ A, we have v1 = 0,
v2 ≤ 0 and v′

1 = 0, v2 ≤ v′
2 ≤ 0, v′′ = 0. Moreover, for every v := (v1, v2) ∈

K (S, x) and every (v′
1, v

′
2, v

′′) ∈ A, it follows from Definition 2 that

K 2(S, x, v) = R
2.

Also, it follows from Lemma 1 that D2
H−(EpiC×Q(F,G))(x, v, v′, v′′)(K 2(S, x, v))

is convex since F and G are C-convex and Q-convex, respectively. Further, for every
v := (v1, v2) ∈ K (S, x), (v′, v′′) := ((v′

1, v
′
2), v

′′) ∈ A and every w := (w1, w2) ∈
K 2(S, x, v), we have

D2
H−(EpiC F)(x, v, v′)(w) = L1 and D2

H−(EpiQG)(x, v, v′′)(w) = L2,

where

L1 :=
{ {w′ := (w′

1, w
′
2) ∈ R

2 w′
1 ≥ w1, w′

2 ≥ w2} i f v′
2 = v2

{w′ := (w′
1, w

′
2) ∈ R

2 w′
1 ≥ w1, w′

2 ∈ R}, i f v′
2 > v2,

L2 := {w′′ ∈ R w′′ ≥ −w1}.

Thus, together with

T (z) := (z, z),∀z ∈ R

and

K (−C, v′) =
{−(R+ × R+) i f v′

2 = 0
(−R+) × R i f v′

2 < 0,
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we have T v′′ = (0, 0), T (Q) ⊂ C and

(D2
H−(EpiC F)(x, v, v′) + (T ◦ D2

H−(EpiQG)(x, v, v′′)))(K 2(S, x, v))

∩ int K (−C, v′) = ∅.

Thus, Proposition 9 is fulfilled.

From Proposition 9, we derive the following result closes to the one established in
[7, Theorem 5.2]. The proof in [7, Theorem 5.2] deponds heavily on the us of Farkas’
lemma.

Corollary 2 Let f : X −→ Y and g : X −→ Z be single vector-valued mappings,
which are twiceFréchet differentiables at x ∈ B := S∩g−1(−Q), where g−1(−Q) :=
{x ∈ X g(x) ∈ −Q}, Y and Z are finite-dimensional, and S is a nonempty and convex
subset of X. Let v ∈ K (S, x), ∇ f (x)v ∈ −∂C and ∇g(x)v ∈ −∂Q. Suppose that
x is a local weak Pareto minimal point of f on B, K 2(S, x, v) 
= ∅ and 0Z ∈
core(∇g(x)(K (K (S, x), v))+Q). Then there exists (y∗, z∗) ∈ (−C)◦ × (−Q)◦ with
y∗ 
= 0Y ∗ such that

(a) 〈y∗,∇ f (x)v〉 = 0, 〈z∗,∇g(x)v〉 = 0,
(b) −y∗ ◦ ∇ f (x) − z∗ ◦ ∇g(x) ∈ N (S, x),
(c) 〈y∗,∇ f (x)w + 1

2∇2 f (x)(v, v)〉+〈z∗,∇g(x)w + 1
2∇2g(x)(v, v)〉 ≥ 0 for all

w ∈ K 2(S, x, v).

Proof Let F : X ⇒ Y and G : X ⇒ Z be set-valued maps defined by

F(x) := { f (x)} and G(x) := {g(x)}, for all x ∈ X .

Let v ∈ K (S, x). From [4], we get DH−(EpiC F)(x)(v) = ∇ f (x)v + C and
DH−(EpiQG)(x)(v) = ∇g(x)v+Q, where∇ f (x) is the first order Fréchet derivative
of f at x . Moreover, by computing, we get

D2
H−(EpiC×Q(F,G))(x, v,∇ f (x)v,∇g(x)v)(K 2(S, x, v))

= ∇( f , g)(x)(K 2(S, x, v)) + 1

2
∇2( f , g)(x)(v, v) + C × Q,

where ∇2( f , g)(x) is the second order Fréchet derivative of ( f , g) at x . Therefore,
we have

v′ := ∇ f (x)v ∈ DH−(EpiC F)(x)(v) ∩ −∂C,

v′′ := ∇g(x)v ∈ DH−(EpiQG)(x)(v) ∩ −∂Q

and D2
H−(EpiC×Q(F,G))(x, v,∇ f (x)v,∇g(x)v)(K 2(S, x, v)) is convex. Further,

as ∇g(x)(K (K (S, x), v)) + Q is convex, it follows by relation (6,1) of [12] that
0Y ∈ core(∇g(x)(K (K (S, x), v)) + Q) is equivalent to

Z = ∇g(x)(K (K (S, x), v)) + Q.
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Since S is convex, then (see [7, Proposition 2.5]) one has

(R) : K 2(S, x, v) + K (K (S, x), v) ⊂ K 2(S, x, v).

As K 2(S, x, v) 
= ∅, it follows that

Z = ∇g(x)(K 2(S, x, v)) + Q.

which implies that

Z = ∇g(x)(K 2(S, x, v)) + 1

2
∇2g(x)(v, v) + Q.

As

D2
H−G(x, v,∇g(x)v)(K 2(S, x, v)) = ∇g(x)(K 2(S, x, v)) + 1

2
∇2g(x)(v, v),

then we conclude that

0Z ∈ core(D2
H−G(x, v,∇g(x)v)(K 2(S, x, v)) + Q).

Therefore, the proof follows from Proposition 9 and relation (R). ��
Remark 9 (a) In Proposition 9, the operator T := 0L(Z ,Y ) in general does not verify

the statement (b) of this proposition since x is a local weak l-minimal point of F
on B but it is not necessarily a local weak l-minimal point of F on S (see Example
5).

(b) InPropsitions 7 and9, the vectorv ∈ K (S, x) such thatv′ ∈ DH−(EpiC F)(x)(v)∩
−∂C and v′′ ∈ DH−(EpiQG)(x)(v) ∩ −∂Q is called the critical direction (see
for instance [7, 17]). Therefore, in order to establish second order necessary opti-
mality conditions, the vectors v′ and v′′ are chosen appropriately as a function of
vector v (see Corollary 2 where v ∈ K (S, x), v′ := ∇ f (x)v and v′′ := ∇g(x)v).
Consequently, the dependence of themultipliers of these vectors is not a restriction
(for more details see [7, Theorem 5.2] and [17, Theorem 4.4]).

The proof of the following proposition runs in analogous way as in Proposition 9,
when we apply Proposition 8 instead of Proposition 7.

Proposition 10 Let the assumption of Proposition 8 be satisfied. Moreover, suppose
that there exists w0 ∈ K ′′(S, x, v) such that 0Z ∈ core(D′′

H−G(x, v, v′′)(w0) + Q).
Then, the following statements hold:

(a) There exists (y∗, z∗) ∈ (−C)◦ × (−Q)◦ with y∗ 
= 0Y ∗ such that 〈y∗, v′〉 = 0,
〈z∗, v′′〉 = 0 and

〈y∗, w′〉 + 〈z∗, w′′〉 ≥ 0

for allw ∈ K ′′(S, x, v),w′ ∈ D′′
H−F(x, v, v′)(w) andw′′ ∈ D′′

H−G(x, v, v′′)(w).
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(b) There exists T ∈ L(Z ,Y ) such that T v′′ = 0Y , T (Q) ⊂ C and

(D′′
H−F(x, v, v′) + (T ◦ D′′

H−G(x, v, v′′)))(w) ∩ int K (−C, v′)
= ∅,∀w ∈ K ′′(S, x, v).

The following result is a direct consequence of Propositions 1, 9 and Remark 1.

Corollary 3 Let the assumptions of Corollary 1 be satisfied. Moreover, suppose that
there exists w0 ∈ K (S, x) such that 0Z ∈ core(DH−G(x)(w0) + Q). Then, the
following statements hold:

(a) There exists (y∗, z∗) ∈ (−C)◦ × (−Q)◦ with y∗ 
= 0Y ∗ such that

〈y∗, w′〉 + 〈z∗, w′′〉 ≥ 0

for all w ∈ K (S, x), w′ ∈ D′
H−F(x)(w) and w′′ ∈ DH−G(x)(w).

(b There exists T ∈ L(Z ,Y ) such that T (Q) ⊂ C and

(DH−F(x)(w) + (T ◦ DH−G(x))(w)) ∩ −intC = ∅, ∀w ∈ K (S, x).

6 Conclusion

Inspired by [4], we propose several new concepts of second-order directional deriva-
tives for set-valued maps by means of excess from a set to another one, and discuss
some of their properties. By using these directional derivatives and by adopting the
notion of set criterion introduced by Kuroiwa [13–15], we obtain second-order nec-
essary and sufficient optimality conditions in the primal form. Moreover, under some
additional assumptions, we obtain dual second-order necessary optimality conditions
in terms of Lagrange–Fritz–John and in terms of Lagrange–Karush–Kuhn–Tucker
multipliers. The case of sufficient second order optimality conditions in terms of
Lagrange–Karush–Kuhn–Tucker multipliers will be treated elsewhere.
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