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Abstract
This paper proposes a line search technique to solve a special class of multi-objective
optimization problems in which the objective functions are supposed to be convex
but need not be differentiable. This is an iterative process to determine Pareto critical
points. A suitable sub-problem is proposed at every iteration of the iterative process
to determine the direction vector using the sub-differential of every objective function
at that point. The proposed method is verified in numerical examples. This method-
ology does not bear any burden of selecting suitable parameters like the scalarization
methods.

Keywords Line search technique · Convex optimization · Pareto optimal point ·
Multi-objective optimization · Sub-gradient method
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1 Introduction

The formulation of a general unconstrained multi-objective optimization problem is

MP : min
x∈Rn

F (x),

where F (x) = ( f1(x), f2(x), f3(x), . . . , fm(x))T , fi : R
n → R, i =

1, 2, 3, . . . ,m, m ≥ 2. In an ideal situation, a single point minimizes all the objective
functions. But, in real-life situations, at least one objective is compromised. There-
fore, the solution ofMP is termed as a compromising/Pareto optimal/efficient solution.
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The scalarization approaches [1–3] are the well-known techniques to solve MP, which
transform MP into a single objective optimization problem using some parameters,
provided by the decision maker. These methods often have difficulties in finding a
well-diversified Pareto front. Heuristic methods [4–9] are widely used to solve MP,
for which convergence property is not guaranteed. However, these methods usually
provide approximate Pareto front.

In recent years, line search techniques for single objective cases have been extended
to MP to avoid these difficulties. Some of the line search techniques for MP are
the steepest descent methods [10, 11], projected gradient methods [12, 13], Newton
method [14], quasi-Newtonmethods [15], q-Newton’smethod [16], q-steepest descent
method [17], Newton’s method for uncertain MP [18] and some known references
for constrained MP are sequential quadratic programming techniques [19], sequential
quadratically constrained quadratic programming techniques [20, 21] etc.. The general
line search techniques forMP, which are developed in these reference papers, generate
a sequence of points {xk} as xk+1 = xk + αkdk , which converges to a Pareto critical
point under some assumptions. A suitable sub-problem is formulated at every iterate
xk , whose solution is the direction vector dk , and the step length αk is determined
using Armijo-like conditions. The BFGS update formula is modified to generate a
sequence of positive definite matrices to ensure the descent property. All the above-
stated methods are gradient-based algorithms and applicable only if all functions of
MP are continuously differentiable.

In recent years, some line search techniques have been developed for nonsmooth
MP, in which all the functions may not be differentiable. Recently the concept of
subdifferential has been used by Tanabe et. al [22] to develop the proximal gradient
method for a specific class of optimization problems, in which each objective func-
tion is composed of two parts. One part is a proper convex function that is lower
semicontinuous but not necessarily differentiable. The other part is a continuously
differentiable function. The subproblem at every iterating point takes care of the first-
order information of the differentiable function. The proximal sub-gradient method
is also extended by Bento et. al [23] to constrained MP, in which the subproblems
are constructed using one element of the subdifferential set. Da Cruz Neto et al. [24]
develop a subgradient method for a class of MP, in which all the objective functions
are quasi-convex, locally Lipschitz functions, and not necessarily differentiable. These
papers have studied many theoretical results related to the existence of solutions to
MP using subdifferential concepts.

The present work aims to develop an iterative process for MP in which the gradient
information of all the functions is unavailable. The basic concept of this method is a
variation of the existing gradient-basedmethods cited above. First, the direction vector
at every iterate is obtained as the solution of a subproblem using sub-differentials of the
objective functions, which are not differentiable. The step-length selection process is
provided to ensure the descent property of every objective function along this direction.
Moreover, under some standard assumptions, the global convergence of this iterative
process is justified.

The following is an outline for the paper. In Sect. 2, certain prerequisites pertaining
to MP are described. Section3 develops some theoretical results for converging the
iterative process. In Sect. 4, the methodology is verified in some numerical examples.
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2 Prerequisites

Throughout this manuscript, we use the following notations.
MP: Multi-objective programming
SP: Single objective programming
PF: Pareto front
PO: Pareto optimal
PC: Pareto critical
�m = {1, 2, 3, . . . ,m}, Rm+ := {a ∈ R

m | 0 ≤ ai for all i ∈ �m}
R
m++ := {a ∈ R

m | 0 < ai for all i ∈ �m}.
For a1, a2 ∈ R

m , the vector inequalities are defined as:
a2 ≥ a1 ⇔ a2 − a1 ∈ R

m+\{0} and a2 > a1 ⇔ a2 − a1 ∈ R
m++.

F : Rn → R
m is called a convex vector function if for each y, z ∈ R

n, b ∈ [0, 1]

F (by + (1 − b)z) ≤ bF (y) + (1 − b)F (z).

F : Rn → R
m is called a strict convex vector function if for each y, z ∈ R

n, b ∈
(0, 1)

F (by + (1 − b)z) < bF (y) + (1 − b)F (z).

Subdifferential of a convex function fi on R
n at x is defined as

∂ fi (x) := {gi ∈ R
n| gTi (y − x) ≤ fi (y) − fi (x) ∀ y ∈ R

n}.

The column vector gi := gi (x) is the subgradient of fi at x . If fi is differentiable then
gi = ∇ fi (x).

Subdifferential of a convex vector function F : Rn → R
m at x is

∂F (x) := {A ∈ L(Rn,Rm)| A(y − x) ≤ F (y) − F (x) for all y ∈ R
n}.

Here L(Rn,Rm) represents the space of linear continuous mappings fromR
n intoRm ,

it is also known as the (m × n) real matrix space. If all fi are differentiable at x then
JF (x) = ∂F (x), JF (x) represents the Jacobian ofF at point x . In fact the matrix
A ∈ ∂F (x) is (g1, g2, . . . gm)T .

Let every fi be locally Lipschitz continuous at y. TheClarke generalized directional
derivative of the function fi at y along the direction of d ∈ R

n is stated as follows.

f oi (y; d) = lim sup
z→y,t↓0

fi (z + td) − fi (z)

t

The subsequent symbols are employed throughout this manuscript. dx is the direction
vector at x , dxk is the direction vector at xk , gi := gi (x) ∈ ∂ fi (x), i ∈ �m and
gki := gi (xk) ∈ ∂ fi (xk), i ∈ �m .
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3 Methodology

A point x∗ is called the PO solution of MP if no other point exists x such thatF (x) ≤
F (x∗) and F (x) �= F (x∗), and x∗ is said to be the weak PO solution of MP if
no other point exists x for which F (x) < F (x∗). Suppose x∗ is not a PO point
of MP. Then ∃ x ∈ R

n such that F (x) ≤ F (x∗) and F (x) �= F (x∗). Using the
subdifferential’s definition ofF at x∗,

0 ≥ F (x) − F (x∗) ≥ A(x − x∗) for all A ∈ ∂F (x∗).

For x = x∗ + αd, where α > 0 and the direction vector d at x∗, the above inequality
becomes Ad ≤ 0.Hence, if x∗ is not a POpoint then there existsd ∈ R

n such that Ad ∈
−R

m+−{0}for all A ∈ ∂F (x∗). A point x∗ is a PO point if ∃ d ∈ R
n, Ad /∈ −R

m+−{0}
for some A ∈ ∂F (x∗). Therefore if for all d ∈ R

n, Ad /∈ −R
m++, for some A ∈

∂F (x∗) then x∗ is a local weak PO point of MP. We say a point that satisfies this
necessary condition is a PC point. Hence, the definition of the PC point defined in [25]
is similar to the one that follows.

Definition 1 A point x∗ ∈ R
n is said to be a PC point of MP if ∃ A ∈ ∂F (x∗) so that

(Ad)i ≥ 0 for at least one i ∈ �m and for all d ∈ R
n , where (Ad)i denotes the i th

component of vector Ad.

Theorem 1 If F is a convex vector function then the PC point of MP is a weak PO
point. IfF is a strictly convex vector function then the PC point of MP is a PO point.

Proof SupposeF is a convex vector function and x∗ is a PC point of MP. If possible,
x∗ is not a weak PO point. It is consequent that there exists y ∈ R

n , y �= x∗ such that
fi (y) < fi (x∗) for all i ∈ �m . Therefore

0 > fi (y) − fi (x
∗) ≥ gTi (y − x∗) for all i ∈ �m, for all gi ∈ ∂ fi (x).

Hence ∃ d (= y − x∗) such that Ad < 0 for all A ∈ ∂F (x∗). This implies x∗ is
not a PC point, which follows from Definition 1. So x∗ is a weak PO point.

Suppose F is a strictly convex vector function and x∗ is a PC point of MP. If
possible, suppose x∗ is not a PO point. Therefore, ∃ a y ∈ R

n such that fi (y) ≤
fi (x) ∀ i ∈ �m . Since all fi are strictly convex functions, for every i ∈ �m ,

fi (x
∗) + α( fi (y) − fi (x

∗)) > fi (x
∗ + α(y − x∗)) ∀ α ∈ (0, 1).

Consequently, for all i ∈ �m and for all gi ∈ ∂ fi (x∗),

0 ≥ α( fi (y) − fi (x
∗)) > fi (x

∗+α(y − x∗))− fi (x
∗) ≥ gTi ((x∗+α(y − x∗) − x∗).

This implies gTi (y− x∗) < 0 ∀i ∈ �m . Hence ∃ d = y − x∗ such that Ad < 0 ∀A ∈
∂F (x∗). This contradicts the idea that x is a PC point. So x∗ must be a PO point. 
�

123



A line search technique for a class of multi-objective… Page 5 of 17 34

For x ∈ R
n define Fx : Rn → R as

Fx (d) = max{(Ad)1, (Ad)2, (Ad)3, ..., (Ad)m ∀A ∈ ∂F (x)},

and consider a subproblem at x as

min
d∈Rn

Fx (d) + 1

2
‖d‖2 (1)

A simple reformulation of the above subproblem is

(Px ) :
{

min
t∈R,d∈Rn

t + 1
2‖d‖2

s.t . (Ad)i ≤ t, ∀i ∈ �m, ∀A ∈ ∂F (x)
.

Solution of (Px ): (Px ) is a convex quadratic semi-infinite programming problem char-
acterized by linear inequality constraints. It is difficult to solve a general semi-infinite
programming problem. However, with a known subdifferential set, some heuristic
approaches can solve (Px ) using the discretization process over the sudifferential set.
The MATLAB command ’fseminf’ also takes care of the discretization process, as
discussed in Subsection 3.1. This heuristic approach can be implemented if the sub-
differential set is known in advance. To compute the subdifferential set, a separate
methodology has to be developed for general nonsmooth functions, which is beside
the context of the current work. The proposed methodology focuses only on the theo-
retical developments behind an iterative process based on a line search technique for
MP using subdifferential set information.

Theorem 2 Let (dx , tx ) be the unique solution of the Subproblem (Px ) and vx be the
optimal value.

1. For any x ∈ R
n, optimal value of (Px ) is non positive and vanishes if x is a PC

point of MP.
2. If x is a PC point of MP then (tx , dx ) = (0, 0) is the solution of (Px ).
3. If x is not a PC then vx < 0 and Fx (dx ) ≤ −(1/2)‖dx‖2 < 0.
4. The mappings x → dx and x → vx are continuous.

Proof 1. For any x ∈ R
n, suppose vx is the optimal value of (Px ), which is acquired

at the optimal solution (tx , dx ).We haveFx (dx )+ 1
2‖dx‖2 ≤ Fx (d)+ 1

2‖d‖2 ∀d ∈
R
n . At d = 0, Fx (d) + 1

2‖d‖2 = 0.
Hence Fx (dx ) + 1

2‖dx‖2 ≤ 0. That is, vx ≤ 0.
Suppose x is a PC point for MP and vx < 0. That is, Fx (dx ) + 1

2‖dx‖2 < 0 or
Fx (dx ) < 0. So Adx < 0 ∀A ∈ ∂F (x∗), which follows from the definition of
Fx (dx ). This contradicts that x is the PC point for which Ad /∈ −R

m++ for some
A ∈ ∂F (x) and ∀d ∈ R

n . Hence vx = 0.
2. From (1), vx = 0 at the PC point x and (tx , dx ) is the solution of (Px ), so tx +

1
2‖dx‖2 = 0. That is,

Fx (dx ) ≤ tx ≤ tx + 1

2
‖dx‖2 = 0
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Since x is a PC point soFx (dx ) ≥ 0. Hence tx = 0, dx = 0.
3. Consider x to be a non-PC point. It follows that there is d ∈ R

n such that Ad < 0
∀A ∈ ∂F (x). That is,Fx (d) < 0 for some d ∈ R

n .
SinceFx (d) is positive homogeneous of degree 1 we can consider Fx (d)

‖d‖2 , denote

Fx (d) = −Fx (d)

‖d‖2 , and d̄ = Fx (d). d. Hence

Fx (d̄) + 1

2
‖d̄‖2 = Fx (d).Fx (d) + 1

2
(Fx (d))2‖d‖2

= − (Fx (d))2

‖d‖2 + 1

2

(
−Fx (d)

‖d‖2
)2‖d‖2

= −1

2

(Fx (d))2

‖d‖2
< 0.

Hence vx < 0. This implies min
d∈Rn

Fx (d) + 1
2‖d‖2 < 0. That is, ∃ d ∈ R

n such

that Fx (d) + 1
2‖d‖2 < 0. The result follows.

4. For ε > 0 and x̄ ∈ R
n , consider the set S(x̄) := {d ∈ R

n | ‖dx̄ − d‖ = ε} .

Let dx̄ be the minimizer for the Subproblem (1) at x̄ . The objective function of
Subproblem (1) is strongly convex with a modulus of 1/2 sinceFx (·) is a convex
function. Therefore,

Fx̄ (d) + (1/2)‖d‖2 � Fx̄ (dx̄ ) + (1/2) ‖dx̄‖2 + (1/2)ε2 ∀d ∈ S(x̄).

Since S(x̄) is a compact set andFx (d) is a continuous function, ∃ δ > 0 such that

Fx (d) + (1/2)‖d‖2 > Fx (dx̄ ) + (1/2) ‖dx̄‖2 ∀d ∈ S, whenever ‖x − x̄‖ � δ.

SinceFx (d)+(1/2)‖d‖2 is a convex function and dx is the minimizer ofFx (d)+
(1/2)‖d‖2, therefore, from the above inequality we can conclude that dx does not
lie in the region ‖d − dx̄‖ > ε for ‖x − x̄‖ ≤ δ. Hence ‖dx − dx̄‖ ≤ ε. This
justifies that dx is continuous.
For the second part, it is sufficient to prove that vx is continuous on every compact
subset of Rn . Consider a function γ i

x : U → R at every x ∈ R
n , where U is an

arbitrary compact subset of Rn , i = 1, 2, 3, . . . ,m, as

γ i
x (z) = max

A∈∂F (z)
{(Adx )i } + 1

2
‖dx‖2

and

�x (z) = max{γ 1
x (z), γ 2

x (z), . . . , γm
x (z)},

where z ∈ U . For every x ∈ R
n, γ i

x is a continuous function for each i and,
hence �x is a continuous function. Therefore for ε > 0, ∃ δ > 0 such that for all
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y, z ∈ U , ‖y − z‖ < δ �⇒ |�x (y) − �x (z)| < ε. From the Subproblem (1),

vz = Fz(dz) + 1

2
‖dz‖2 ≤ Fz(dy) + 1

2
‖dy‖2, where dy �= dz

= max
A∈∂F (z)

{(Ady)i : i = 1, 2, . . . ,m} + 1

2
‖dy‖2

= �y(z) ≤ �y(y) + |�y(z) − �y(y)|
≤ vy + ε, when ‖y − z‖ < δ

That is, vz − vy < ε whenever ‖y − z‖ < δ.
Similarly interchanging y and z in the above inequality, we get vy − vz < ε

whenever ‖y − z‖ ≤ δ. Hence |vy − vz | < ε whenever ‖y − z‖ < δ. So vx is
continuous.


�
The subsequent outcome is proved to compute the step length α like Armijo type

condition. This result justifies the descent property of every objective function.

Lemma 1 Suppose F be a convex vector function and β ∈ (0, 1). If x is not a PC
point, then there exists a positive value α̂ satisfies,

F (x + αdx ) ≤ F (x) + αβtx 1̂ ∀α ∈ (0, α̂),

where 1̂ is the vector of dimension n × 1 and all of its entries are equal to 1.

Proof Given that x does not represent a PC point, the directional derivative for every
objective function fi at x along the direction dx is

f
′
i (x; dx ) = lim

α↓0
fi (x + αdx ) − fi (x)

α
= max

gi∈∂ fi (x)
gTi dx < 0.

That is,

lim
α↓0

fi (x + αdx ) − fi (x)

α
= max

gi∈∂ fi (x)
gTi dx ≤ β max

gi∈∂ fi (x)
gTi dx .

Hence ∃ α̂ > 0 such that

fi (x + αdx ) − fi (x) ≤ αβ max
gi∈∂ fi (x)

gTi dx ∀α ∈ (0, α̂),

holds for every i ∈ �m . Since (tx , dx ) is the solution of the subproblem (Px ) at x ,
so fi (x + αdx ) − fi (x) ≤ αβtx ∀α ∈ (0, α̂) holds for each i ∈ �m . This implies
F (x + αdx ) ≤ F (x) + αβtx 1̂ ∀α ∈ (0, α̂). 
�

In the remaining part of the manuscript, we utilize the notations: dk := dxk , tk :=
txk , Ak := A ∈ ∂F (xk) and f ki := fi (xk).
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Theorem 3 (Convergence property) Suppose F : R
n → R

m be a convex vector
function and

{
xk

}
be a sequence generated as xk+1 = xk + αkdk starting with

the initial point x0, dk is an approximate solution of the Subproblem (1) and αk

corresponds to the first element of
{
1
2 ,

1
22

, 1
23

, . . .
}
satisfying

f k+1
i ≤ f ki + αkβtk for all i ∈ �m, (2)

for some β ∈ (0, 1). Further, suppose M0 = {
x ∈ R

n : F (x) ≤ F
(
x0

)}
is convex

and bounded, fi (x) is bounded below for every i ∈ �m. Then every accumulation
point of

{
xk

}
is a PC point of (MP).

Proof If Inequality (2) holds then ∃ at least one i ∈ �m such that

fi
(
xk + 1

2ω dk
) − fi

(
xk

)
1
2ω

> βtk for sufficiently large ω.

Taking ω → ∞, f ′
i (x

k; dk) ≥ βtk . That is,

max
gki ∈∂ fi (xk )

gki
T
dk ≥ βtk for at least one i ∈ �m . (3)

From the constraints of the Subproblem (Px ) we have (Akdk)i ≤ tk,∀Ak ∈
∂F (xk), ∀i ∈ �m . This implies gki

T
dk ≤ tk ∀gki ∈ ∂ fi (xk),∀i ∈ �m . Hence

max
gki ∈∂ fi (xk )

(
gki

T
dk

)≤ tk ∀i ∈ �m .

Using the above relation and (3),

β max
gki ∈∂ fi (xk )

gki
T
dk ≤ βtk ≤ max

gki ∈∂ fi (xk )
gki

T
dk for at least one i ∈ �m

⇒ (1 − β) max
gki ∈∂ fi (xk )

gki
T
dk ≥ 0 for at least one i ∈ �m .

Hence max
gki ∈∂ fi (xk )

gki
T
dk ≥ 0 for at least one i ∈ �m . This contradicts Ak(dk) < 0

∀Ak ∈ ∂F (xk).
Hence ∃ some α̂ > 0 such that α̂ ≤ αk holds for each k. Since xk is not PC point

so max
i∈�m

(Ak(dk))i < 0 and from Theorem 2-(3), tk ≤ − 1
2‖dk‖2. Substituting this

Inequality in (2),

fi (x
k+1) ≤ fi (x

k) − 1

2
βαk

∥∥∥dk∥∥∥2
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≤ fi (x
k−1) − 1

2
βαk−1

∥∥∥dk−1
∥∥∥2 − 1

2
βαk

∥∥∥dk∥∥∥2
. . .

≤ fi (x
0) − 1

2
β

k
�
j=0

α j

∥∥∥d j
∥∥∥2

⇒ fi (x
0) − fi (x

k+1) ≥ 1

2
β�k

j=0α j

∥∥∥d j
∥∥∥2 . (4)

{
fi (xk)

}
is a monotonically decreasing sequence and bounded below. Let { fi (xk)}

converges to some f ∗
i as k → ∞. Taking k → ∞ in Inequality(4). We have,

∞ > fi (x
0) − f ∗

i ≥ 1

2
β

∞
�
j=0

α j

∥∥∥d j
∥∥∥2 ≥ 1

2
βα̂

∞
�
j=0

∥∥∥d j
∥∥∥2 .

Suppose ‖d j‖ �= 0 for all j and inf
j∈N ‖d j‖ = m. Then

∞ > fi (x
0) − f ∗

i ≥ 1

2
β α̂ m2

∞∑
j=0

1.

This is not possible since β �= 0 and m �= 0. So dk → 0 as k → ∞. Hence tk → 0
as k → ∞.

Since tk = max{(Akdk)1, (Akdk)2, (Akdk)3, . . . , (Akdk)m ∀Ak ∈ ∂F (xk)},
∃ gki ∈ ∂ fi (xk) such that gki

T
dk → 0 as k → ∞. Since M0 is a bounded set,

{
xk

}
must have at least one accumulation point. Hence ∃ a sub sequence {xkl } such that
xkl → x∗ and limkl→∞ dkl = 0 and limkl→∞ tkl = 0. That is, x∗ is a PC point of
MP. 
�

From Theorem 2-(2), one can conclude that if at xk , tk �= 0, dk �= 0 then xk is not
a PC point. In this situation, the next iterating point should be calculated. Note that
since vxk is non-positive, from Theorem 2-(3), one can conclude that either vxk = 0
(or |vxk | = 0 ) or Fx (dx ) = 0. Then xk is a PC point, and iterating process can stop
here.

Observe that if the point xk is not a PC point, then using the Theorem (2)-(3),

max
i

(A(dk))i ≤ max
i

(A(dk))i + 1

2
‖dk‖2 < 0 ∀A ∈ ∂F(xk).

Hence Tk := {α = 1/2 j | j ∈ N,F (xk + αdk) ≤ F (xk) + βαtk 1̂} �= ∅. When
F is a scalar-valued differentiable function, the determination of the step length is
reduced to an Armijo-like rule. The steps of this method are demonstrated through the
following examples.
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4 Numerical examples

The theoretical results of the previous section can be summarized in the following
steps.

• Starting at any point x0, a sequence {xk} is generated in the proposedmethodology,
which converges to a PC point. Convergence of the sequence is guaranteed in
Theorem 3.

• (tk, dk) is the solution of the Subproblem (Px ) and αk satisfies (2) at every iterating
point xk , corresponding to the first element of { 12 , 1

22
, 1
23

, . . .} for some 0 < β < 1.

Thus, the iterative process can be generated as xk+1 = xk + αkdk .
• From Theorem 2, it is clear that if xk is a PC point then the solution (txk , dxk ) of
the Subproblem (Px ) at xk satisfies (txk , dxk ) = (0, 0) or vxk = 0.
The converse part of this result can be justified as follows. From Theorem 2(3),
one can conclude that if vxk ≥ 0 or Fxk (dxk ) ≥ 0 then xk is a PC point. From
Theorem 2(1), vxk ≤ 0 for all xk . Hence vxk=0. This implies (txk , dxk ) = (0, 0).
Therefore, xk is a PC point if and only if vxk = 0 or (txk , dxk ) = (0, 0).
In a practical situation, an error term ε can be considered so that |vxk | < ε.

Example 1 Consider an optimization problem: min
x∈R F (x), where F (x) = ( f1(x),

f2(x))T , f1(x) = |x | and f2(x) = |x |+ |x +1|+ |x +2|. The objective functions are
not differentiable everywhere.Hence this problemcannot be solved by the existing line
search techniques proposed in the papers, which are stated in the introduction section.
From Fig. 1, it is clear that the PO set is [−1, 0]. Using the proposed methodology,
this can be verified as follows.

Consider x0 = −2.

F is not differentiable at x0 and ∂F (x0) =
{(−1

a

)
: a ∈ [−3,−1]

}
. To

compute the descent direction d0, consider

(Px0) :
{

min
t,d∈R t + 1

2‖d‖2
s.t . (Ad)i < t i = 1, 2 ∀A ∈ ∂F (−2)

,

which is similar to

min
t,d∈R t + 1

2‖d‖2
s.t . − d ≤ t and ad ≤ t, ∀a ∈ [−3,−1]

The subproblem is solved using the MATLAB command “optimproblem" after dis-
cretizing the value of a. The solution of this subproblem is found as dx0 = 1 and
tx0 = −1 and the optimal value is v(x0) = −0.5. Since v(x0) < 0 so x0 is not a PC
point, which can also be verified from Figure 1 as in the neighbourhood of x0, both
f1 and f2 are decreasing. For β = 1/2,

α0 = max T0 = max
{ 1

2 j
| j ∈ N,F (x0 + 1

2 j
d0) � F (x0) + β

1

2 j
t01̂

}
123



A line search technique for a class of multi-objective… Page 11 of 17 34

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

9

10

11

12

AB

f
1

f
2

Fig. 1 Set of solutions of Example 1

= max

{
1

2 j
| j ∈ N,

(
2 − 1

2 j

3 − 1
2 j

)
�

(
2 − 1

2 j+1

3 − 1
2 j+1

) }
= 1

2

x1 = x0 + α1d1 = −1.5 and F (x1) =
(
1.5
2.5

)
. Here F (x1) < F (x0). Other

points are computed in a similar manner. At x1, both the functions are differentiable.

∂F (x1) =
{( −1

− 1

)}
. (Px1) is a convex quadratic problemwhich has unique solution

(t1, d1) = (−1, 1), optimal value is v(x1) = −0.5 and α1 = 1
2 . Hence x2 = x1 +

α1d1 = −1.

At x2, ∂F (x1)=
{ (−1

a

)
|a ∈ [−1, 1]

}
and (Px2)=

⎧⎪⎨
⎪⎩

min
t,d∈R t + 1

2‖d‖2
s.t . − d ≤ t
and ad ≤ t,∀a ∈ [−1, 1]

.

Solution of this subproblem (Px2) is (t1, d2) = (3.2195× 10−4, 3.2195× 10−4) and
optimal value is v(x2) ≈ 3.2201 × 10−4. Hence x2 is an approximate PC point. One
can also verify this from Fig. 1.

The set of all PC points and efficient frontier can be determined by repeating the
same process with different initial points and a suitable spreading technique. In Fig. 2a,
the PF generated by this methodology is compared with the PF generated byNSGA-II.
One may observe that both are approximately the same.

Example 2 Consider the problem.
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Fig. 2 Red circles and blue stars denote the PF using the proposed methodology and NSGA-II, respectively

min
x∈R2

F (x) = min
x∈R2

((x1 − 1)2 + (x2 − 1)2, x21 + |x2|) where f1(x) = (x1 − 1)2 +
(x2 − 1)2 and f2(x) = x21 + |x2|.

The steps of the proposed methodology for this example are summarized in the
following Table 1.

Using the proposed methodology, the solution to this problem is found as x4 =(
0.5911
0.64598

)
, starting with an initial point x0 =

(
1.5
0

)
. In Fig. 2b, the PF generated by

this methodology is compared with the PF generated by NSGA-II. One may observe
that both are approximately the same.

Some more problems are solved in a similar way using the proposed methodology
and summarized in Table 2. The objective functions of these problems are borrowed
from [26–28].

All these problems are nonsmooth and convex. The proposed method is imple-
mented in MATLAB. To find the solution to the subproblem at every iteration, first,
we created the subproblem using the MATLAB command ’optimproblem’. This is
a semi-infinite programming problem, which is solved using the discretization pro-
cess and then solved using the MATLAB command ’solve’. We have observed that
the solution of the subproblem using the MATLAB command ’fseminf’ provided the
same solution set by solving the subproblem using the commands ’optimproblem’
and ’solve’ with discretization. The pre-specified constant β and the stopping param-
eter are taken 1

2 and 10−3 respectively. In each case, we have verified that the PF is
generated using the proposed methodology with the NSGA-II method.

5 Concluding remarks

A methodology for unconstrained MP, which uses the subdifferential information
of the nonsmooth objective functions, is proposed in this paper. The iterative pro-
cess develops a sequence, converging to the PC point under reasonable assumptions,
preserving the descent property. The proposed methodology is applied in a set of
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numerical examples. However, getting information on the subdifferential set of all
types of functions isn’t easy. Some computational processes should be developed to
generate the subdifferential set to determine the descent direction explicitly. Gener-
ating a well-distributed Pareto front is also a challenge to this aspect. These are the
possible future scope of the current work
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