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Abstract
We show that for an ideal H in an Archimedean vector lattice F the following condi-
tions are equivalent:

• H is a projection band;
• Any collection of mutually disjoint vectors in H , which is order bounded in F , is
order bounded in H ;

• H is an infinite meet-distributive element of the lattice IF of all ideals in F in the
sense that

⋂
J∈J (H + J ) = H + ⋂J , for any J ⊂ IF .

Additionally, we show that if F is uniformly complete and H is a uniformly closed
principal ideal, then H is a projection band. In the process we investigate some order
properties of lattices of continuous functions on Tychonoff topological spaces.
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1 Introduction and preliminaries

In this article we largely continue the work started in [4], where we studied some
properties of abstract Archimedean vector lattices by “modelling” them on the dense
sublattices of C (K ), for compact Hausdorff K . While the aforementioned paper was
mostly dedicated to order continuity of lattice homomorphisms and regularity of sub-
lattices, the present article is mainly concerned with characterization of projection
bands. The subobjects of this type correspond to decompositions of the vector lat-
tices into direct sums, and so it is important to track their presence. In particular, the
principal projection property (PPP) often plays the role of the minimal “richness”
assumption about a vector lattice.
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The main results of the paper characterize projection bands in a “horizontal” and
a “vertical” ways. Namely, the former (Theorem 3.6) claims that an ideal H in
an Archimedean vector lattice F is a projection band if and only if it is an infi-
nite meet-distributive element of the lattice IF of all ideals of F in the sense that⋂

J∈J (H + J ) = H + ⋂J , for any J ⊂ IF ; the latter (Theorem 3.10) asserts that
H is a projection band if and only if for the (disjoint) subsets of H order boundedness
in H is equivalent to order boundedness in F .

On the way to proving these results, in Sect. 2 we take a detour to investigate
various properties of the sublattices of the spaces of continuous function on Tychonoff
spaces, in particular the structure of ideals on such spaces (where we continue the
line of investigation in e.g. [6, 11]). In particular, we prove several versions of the
Urysohn lemma (Proposition 2.1, Corollary 2.2, Proposition 2.3 and Remark 2.13),
most of which can then be reinterpreted as representations of sublattices of C (X)

as sums of two ideals (Proposition 2.12). We also characterize regular sublattices
of Cb (X) in terms of the supports of the order dense ideals in them (Proposition
2.18).

Section 3 is dedicated to projection bands in abstract vector lattices, in particular it
contains the two theorems quoted above. On top of that we show that being a projection
band is a local property (Proposition 3.1), and find the largest ideal of a vector lattice
which has PP (the projection property) or PPP (Corollary 3.4). We also show that a
vector lattice has PP or PPP if it has amajorizing order dense sublattice with PP or PPP,
respectively (Corollary 3.2). As a consequence of Theorem 3.10, we show (Corollary
3.16) that a vector lattice has PP if and only if it is “locally” a dense sublattice of
C (K ), for a compact extremally disconnected Hausdorff K . Finally, in Corollary 3.20
we prove that a uniformly closed principal ideal in a uniformly complete Archimedean
vector lattice is a projection band.

One of the motives permeating this work is that some properties of a vector lat-
tice are “horizontal” in nature, in particular completely describable on the level of
the compact spaces on which the vector lattice is modelled. An alternative way
of discussing these “horizontal” properties is in terms of the lattice of the ide-
als of a vector lattice. In this section we take an opportunity to draw attention
to the utility of this language, in particular to the fact (Corollary 1.9) that in an
Archimedean vector lattice bands and projection bands can be described as pseudo-
complemented and complemented elements of the lattice of the ideals, respectively.We
also examine the equivalent characterizations of the ideals of a vector lattice (Propo-
sition 1.4), and discuss some correspondences between the vector lattice concepts
and their lattice-theoretic counterparts. Roughly speaking a vector lattice concept
“restricted” to the positive cone becomes the corresponding lattice-theoretic con-
cept (Proposition 1.5, Corollary 1.6 and Corollary 1.8). The material of this section
is not novel, but it does not seem to be present in the literature in a coherent
form.
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1.1 Some facts from lattice theory

In this subsection we gather some results and concepts from the general lattice the-
ory. All this material can be found in the standard references such as [7] and [10].
Everywhere in this section (P,≤) is a partially ordered set.

We will call P a join / meet semi-lattice, if p∨q := sup {p, q} / p∧q := inf {p, q}
exists in P , for every p, q ∈ P . If P is both join and meet semi-lattice, it is called a
lattice. A complete lattice is a lattice in which every set has infimum and supremum.
Note that if Q ⊂ P is join-closed, i.e. if p ∨ q ∈ Q, for every p, q ∈ Q, then
p ∨ q = p ∨Q q (the latter means the supremum with respect to the partially ordered
set Q). A sublattice of a lattice is a subset which is both meet-closed and join-closed.
We will call a sublattice Q ⊂ P regular if r = ∨

Q R ⇒ r = ∨
P R, for R ⊂ Q and

r ∈ Q, and the same for infimum.
Recall that an ideal in a lattice P is a nonempty join-closed down-closed subset

(i.e. J ⊂ P is an ideal, if p, q ∈ J , r ∈ P ⇒ p ∨ q, p ∧ r ∈ J ). We denote the set of
all ideals in P by JP . It is easy to see that a nonempty intersection of any collection
of ideals is an ideal. Hence, JP ∪ {∅} is a complete lattice.

We will say that a lattice P is distributive if p ∧ (q ∨ r) = p ∧ q ∨ p ∧ r , for any
p, q, r ∈ P . Note that the inequality ≥ is always satisfied. This condition is self-dual
in the sense that it is equivalent to p∨q ∧r = (p ∨ q)∧ (p ∨ r), for any p, q, r ∈ P .
We will say that P is infinite-join distributive, if p ∧ ∨

R = ∨
r∈R p ∧ r , for every

p ∈ P and R ⊂ P for which
∨

R exists. In this case
∨

Q∧∨
R = ∨

q∈Q, r∈R p∧q,
for any Q, R ⊂ P with supremums.

Proposition 1.1 Let P be a distributive lattice. Then:

(i) JP is an infinite-join distributive lattice. It is complete if and only if P has the
least element.

(ii) J ∨JP H = J ∨ H := { j ∨ h, j ∈ J , h ∈ H} and J ∧JP H = J ∩ H, for any
J , H ∈ JP .

(iii) If I ⊂ JP , then
∨

JP
I = ∨ I := { j1 ∨ ... ∨ jn, jk ∈ Jk ∈ I} and ∧

JP
I =⋂ I.

If P has a minimal element 0, it is then the least element of P . We say that p, q in
P are disjoint (and denote it p⊥q), if p ∧ q = 0. The pseudo-complement p∗ of p
is the greatest element of P disjoint with p (if it exists). Consider the most important
special case.

Proposition 1.2 If P is a distributive lattice with a minimum 0 and maximum 1, and
p, q ∈ P are such that p ∧ q = 0 and p ∨ q = 1, then q = p∗ (in this case we
will call q the complement of p). The set Pcomp of all complemented elements in
P is a Boolean algebra, which is a sublattice of P, that contains 0, 1. In particular,
(p ∧ q)∗ = p∗ ∨ q∗ and (p ∨ q)∗ = p∗ ∧ q∗, for every p, q ∈ Pcomp.

Theorem 1.3 (GlivenkoTheorem)Let P be a complete infinite-join distributive lattice.
Then:

(i) p∗ exists for every p ∈ P, and the set P∗ = {p∗, p ∈ P} = {p ∈ P, p = p∗∗}
is a complete Boolean algebra, which is also meet-closed in P.
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(ii) p ∨P∗ q = (p∗ ∧ q∗)∗ = (p ∨ q)∗∗, for every p, q ∈ P∗; we also have
(p ∧ q)∗ = (p∗∗ ∧ q)∗ and (p ∧ q)∗∗ = p∗∗ ∧ q∗∗, for every p, q ∈ P.

(iii) If r ∈ P, then the pseudo-complementation p → p∗r in [0, r ] is given by
p∗r = p∗ ∧ r and p∗∗r = p∗∗ ∧ r .

1.2 Ideals of a vector lattice

We start with recalling some basic facts and concepts from the vector lattice theory. Let
F be a vector lattice, whose positive cone is denoted by F+. For any setG ⊂ F wewill
denoteG+ = G∩F+. Note that the underlying lattice of a vector lattice is infinite-join
and infinite-meet distributive (see [2, Theorem 1.8]). Also, by Riesz Decomposition
theorem ( [13, Corollary 15.6]), [0, e]+ [0, f ] = [0, e + f ] and [−e, e]+ [− f , f ] =
[−e − f , e + f ], for any e, f ∈ F+. Recall that F is Archimedean if

∧ 1
n f = 0, for

every f ∈ F+.
A linear map T : F → E between vector lattices is a homomorphism if it preserves

the lattice operations (it is enough to require that it preserves the absolute value | f | :
f ∨ − f ). By a sublattice of F we will always mean a linear sublattice, i.e. a vector
subspace E of F , which is closed with respect to the lattice operations (it is enough
to require that it contains the absolute value of any of its elements). If on top of that
0 ≤ f ≤ e ∈ E implies f ∈ E , we say that E is an ideal of F . Recall that G ⊂ F
is called solid if f ∈ F and g ∈ G with | f | ≤ |g| yield f ∈ G. It follows from
Riesz Decomposition theorem that if G, H ⊂ F are solid then G + H is solid with
(G + H)+ = G+ + H+.

Proposition 1.4 For E ⊂ F the following conditions are equivalent:

(i) E is an ideal in F;
(ii) E is a sublattice with e ∈ E+, f ∈ F+ ⇒ f ∧ e ∈ E;
(iii) E+ is a lattice ideal in F+, with 2E+ ⊂ E+ and E = {e ∈ F, |e| ∈ E+};
(iv) E is solid and E+ + E+ ⊂ E;
(v) {(e, f ) ∈ F × F, e − f ∈ E} is a sublattice of F × F;
(vi) E is the kernel of a homomorphism with domain E.

Proof (ii)⇔(i)⇒(iii) are easy to see. (v)⇔(vi) follows from the general construction
of a quotient of an algebraic structure.

(iii)⇒(iv): Since E+ is a lattice ideal in F+, it follows that E = {e ∈ F, |e| ∈ E+}
is solid; furthermore if e, f ∈ E+, then e + f ≤ 2 (e ∨ f ) ∈ E+, and so e + f ∈ E .

(iv)⇒(i): Since a solid set is always closed with respect to |·|, we only need to
prove that E is a linear subspace. If e, f ∈ E , since E is solid we have |e| , | f | ∈ E+,
from where |e + f | ≤ |e| + | f | ∈ E+, and using solidness again, we conclude that
e + f ∈ E . If λ ∈ R, take n ∈ N such that |λ| ≤ n; we have that |λe| = n

∣
∣λ
n e

∣
∣ ∈

E+ + ... + E+ (n times). Hence, |λe| ∈ E+, from where λe ∈ E .

(ii)+(iv)⇒(v): Let G be the set in (v); it is clear that G is a linear subspace of
F × F . If (e, f ) ∈ G, then e − f ∈ E , from where ||e| − | f || ≤ |e − f | ∈ E , hence
|e| − | f | ∈ E , and so (|e| , | f |) ∈ G.
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(v)⇒(ii): First, E×{0} = G∩(F × {0}) is a sublattice of F×F , hence a sublattice
of F × {0}, from where E is a sublattice of F . Next, if e ∈ E+, f ∈ F+, then
(e, 0) , ( f , f ) ∈ G, from where (e ∧ f , 0) = (e, 0) ∧ ( f , f ) ∈ G, thus f ∧ e ∈ E . ��

The intersection of sublattices/solids/ideals is a sublattice/solid/ideal. The intersec-
tion of all ideals that contain G ⊂ F will be denoted by I (G); we call G majorizing if
I (G) = F . A principal ideal is an ideal of the form Ie := I ({e}) = ⋃

α≥0 α [−e, e]
– the smallest ideal that contains e ∈ F+. According to Krein-Kakutani Theorem (see
[13, Theorem 45.3]), if F is Archimedean, for every e there is a compact Hausdorff
space Ke such that Ie is vector lattice isomorphic to a norm dense sublattice of C (Ke);
in this case we will call Ke the Krein-Kakutani spectrum of e. If F = Ie, we will
call e a strong unit of F . If Ie is isomorphic to C (Ke), for every e ∈ F+, we call F
uniformly complete. Note that this condition is equivalent to the fact that every Ie is a
Banach space with respect to the Minkowski functional ‖ · ‖e of [−e, e]. We will call
L ⊂ F uniformly closed if L ∩ Ie is ‖ · ‖e-closed in Ie, for every e ∈ F+.

Note that an ideal of a vector lattice is not an ideal of the underlying lattice (unless
F = {0}). We will denote the set of the vector lattice ideals of F by IF , and the set of
the lattice ideals of F+ by JF+ . Clearly, both of these sets are complete lattices with
respect to the inclusion, since the intersection of any collection of ideals is an ideal;
the maximum and minimum of IF are F and {0}, respectively, while for JF+ these
roles are played by F+ and {0}. Clearly, E → E+ is a map from IF into JF+ , which
respects the intersection, and we will now investigate some of its properties.

Proposition 1.5 If E, H ∈ IF , then E ∨IF H = E + H with E+ ∨JF+ H+ =
E+ ∨ H+ = E+ + H+ = (E + H)+. Moreover, if J ⊂ IF , then

∨

IF
J =+J := { f1 + ... + fn, fk ∈ Ek ∈ J } ,

and
(∨

IF
J

)

+
=+

J∈J
J+ =

∨

J∈J
J+ =

∨

JF+
{J+, J ∈ J } .

Proof First, since E, H are solid, so is E + H and (E + H)+ = E+ + H+. Hence,
according to Proposition 1.4, E + H ∈ IF , and it is clear that E ∨IF H = E + H .
Next, E+ + H+ = (E + H)+ ∈ IF+ with e∨ h ≤ e+ h ≤ 2 (e ∨ h), for any e ∈ E+
and h ∈ H+, yield E+ ∨JF+ H+ = E+ ∨ H+ = E+ + H+.

It now follows that the claims are true for any finite collection of ideals. The general
case now also follows because e.g.

∨
IF

J and+J are both the union of the directed
family of

∨
IF

J ′ = +J ′, over all finite J ′ ⊂ J . ��
Corollary 1.6 The map E → E+ is a lattice homomorphism from IF into JF+ , which
preserves arbitrary joins and meets, and has a left inverse. Hence, IF embeds as a
regular sublattice of JF+ , and so is infinite-join distributive.
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Recall that e, f ∈ F are called disjoint (denoted e⊥ f ) if |e| ∧ | f | = 0. Note that
disjoint e, f are not disjoint in the underlying lattice of F (unless F = {0}), since
the latter has no minimal element. However, for e, f ∈ F+ vector-lattice-disjointness
in F is equivalent to lattice-disjointness in F+. We also have the following relation
between the two concepts.

Proposition 1.7 (i) The correspondence f → I f is a homomorphism from F+ into
IF . In particular, it preserves disjointness.

(ii) If G, H ⊂ F+, then I (G) ∩ I (H) = I ({g ∧ h, g ∈ G, h ∈ H}).
Proof (i) follows from the easily established identities Ie∨ f = Ie + I f and Ie∧ f =
Ie ∩ I f . (ii) follows from infinite-join distributivity of IF , the fact that I (G) =∨

IF

{
Ig, g ∈ G

}
, and (i). ��

We will discuss infinite-meet distributivity of IF later in the article. An ideal of
a vector lattice which contains the supremum of any of its subsets is called a band.
Intersection of any collection of bands is a band, and so the set BF of all bands of
F is a complete lattice with respect to the inclusion. For any G ⊂ F its disjoint
complement Gd is a band, and conversely, if F is Archimedean, then E ⊂ F is a
band if and only if E = Edd . In fact, Gdd is the band generated by G ⊂ F (see [2,
Theorem 1.39]). If E ⊂ F is a sublattice and G ⊂ E , then Gd

E denotes the disjoint
complement of G with respect to the vector lattice structure of E , i.e. Gd

E = Gd ∩ E .

Note that Gdd
E := (

Gd
E

)d
E is not necessarily equal to Gdd ∩ E (see [4, Proposition 2.3

and Corollary 3.14] for more details). It turns out that the disjoint complement is the
pseudo-complementation in the lattice IF .
Corollary 1.8 For E, H ∈ IF the following conditions are equivalent:

(i) E, H are disjoint as elements of IF;
(ii) E ∩ H = {0};
(iii) e⊥h, for all e ∈ E, h ∈ H;
(iv) e ∧ h = 0, for all e ∈ E+, h ∈ H+.

Furthermore, for every H ∈ IF we have Hd = H∗
IF

.

Proof (i)⇔(ii) follows from the fact that ∧IF = ∩.
If E ∩H = {0} and e ∈ E+, h ∈ H+, then e∧h ∈ E ∩H , from where e∧h = 0. If

e ∧ h = 0, for all e ∈ E+, h ∈ H+, and e ∈ E , h ∈ H , then |e| ∈ E+, |h| ∈ H+, and
so |e| ∧ |h| = 0, hence e⊥h. Finally, if e⊥h, for all e ∈ E , h ∈ H , and g ∈ E ∩ H ,
then g⊥g, and so g = 0. The last claim follows from the equivalences. ��

An ideal H ⊂ F is called a projection band if F = H + Hd (and so there is
a projection P : F → H , which is a homomorphism). It is well-known (see [2,
Theorem 1.41]) that H is a projection band if and only if

∨
(H ∩ [0, f ]) exists in H ,

for every f ∈ F+. It is easy to see that every projection band is in fact a band, and F
is said to have the projection property (PP) if the converse is also true. We will also
say that F has the principal projection property (PPP) if {e}dd is a projection band,
for every e ∈ F . This is equivalent to the fact that {e}d is a projection band, for every
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e ∈ F . Similarly, we will say that F has σ -PP if every countably generated band is
a projection band (which is equivalent to the fact that the disjoint complement of any
sequence is a projection band).

Corollary 1.9 If F is Archimedean, then bands are the pseudo-complemented elements
of IF; they form a Boolean algebra, which is a meet-closed subset of IF . Projection
bands are the complemented elements of IF; they form a Boolean algebra, which is a
sublattice of IF .
Remark 1.10 It is also well-known that H ∈ IF is prime if and only if it is join-
irreducible element of IF (in fact, in [13] it is taken as the definition). For a recent
study of the properties of prime ideals of a vector lattice see e.g. [12]. Note that
an ideal is maximal if and only if it is simultaneously prime and uniformly closed.
Since both maximality and primeness are “horizontal” properties, it is natural to ask
whether the same is true about uniform closeness, i.e. is it possible to find an intrinsic
description of the subset of IF , which consists of uniformly closed ideals. Since these
are precisely the ideals which produce Archimedean quotients (see [13, Theorem
60.2]), this question is equivalent to the following:

Question 1.11 Is it possible to ascertain whether F is Archimedean in terms of IF?
Corollary 1.12 (i) If E and J are ideals in F, then (E ∩ J )dE = E∩ Jd , (E ∩ J )ddE =

E ∩ Jdd and Edd ∩ Jdd = (E ∩ J )dd .
(ii) If G, H ⊂ F+, then Gdd ∩ I (H) = {g ∧ h, g ∈ G, h ∈ H}ddI (H), and

Gdd ∩ Hdd = {g ∧ h, g ∈ G, h ∈ H}dd . Also, {g ∧ h, g ∈ G, h ∈ H}d =
(
Gdd ∩ Hdd

)d = Gd ∨BF Hd .

Proof (i) follows from Glivenko Theorem. (ii) follows from combining (i) with part
(ii) of Proposition 1.7. ��

It follows that F has PP if and only if inIF pseudo-complements are complemented.
PPP (σ -PP) is equivalent to the fact that pseudo-complements of the principal (count-
ably generated) ideals are complemented. It can be easily deduced from Corollary
1.12 that all these properties are inherited by ideals.

Recall that a sublattice E ⊂ F is called order dense if E ∩ (0, f ] �= ∅, for
every f ∈ F+\ {0}. If F is Archimedean, this condition is equivalent to the fact that
f = ∨

(E ∩ [0, f ]), for every f ∈ F+ (see [2, Theorem 1.34]).

2 Sublattices of C (X)

Everywhere in this section X is a Tychonoff topological space. We denote the space
of all continuous functions on X by C (X). This space is a vector lattice with respect
to the pointwise operations, and so it is a sublattice of the vector lattice F (X) of all
real-valued functions on X . It is easy to see that these lattices are Archimedean. The
interval [ f , g], where f , g ∈ F (X) will be meant in C (X) as a sublattice of F (X),
i.e. all continuous functions between (not necessarily continuous) f and g.
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We will denote the function which is identically 0 on X by O, while 1A is the
indicator of A ⊂ X , i.e. the function whose value is 1 on A and 0 on X\A; we also
put 1 = 1X .

The space C (X) is by default endowed with the compact-open topology. Recall
that a sublattice E ⊂ C (X) is dense if and only if it strictly separates points, i.e. if
for any distinct x, y ∈ X there is f ∈ E such that f (x) = 1 and f (y) = 0 (see
e.g. [6]). Let Cb (X) stand for the Banach lattice of all bounded continuous functions
on X endowed with the supremum norm ‖ · ‖. If f : X → R and A ⊂ X , define
‖ f ‖A = ∨

x∈A | f (x)|.

2.1 Urysohn lemmas

By definition of the Tychonoff space, for every open U ⊂ X and x ∈ U , there is
f ∈ [

1{x},1U
]
. Moreover, if K ⊂ U is compact, or if X is normal and K is closed,

Tietze-Urysohn theorem guarantees that there is f ∈ [1K ,1U ] (see [8, theorems 2.1.8
and 3.1.7]). Also, if K = U , then 1K ∈ Cb (X).

Proposition 2.1 (Norm-dense Urysohn lemma) Let E be a dense sublattice of Cb (X),
let U be an open neighborhood of a compact set K and let f ∈ E+. Then, there is
e ∈ E ∩ [O, f ] which coincides with f on K and vanishes outside of U (or vice
versa). If additionally X is normal, or K = U, then K can be assumed to be merely
closed.

Proof Without loss of generality wemay assume thatO ≤ f ≤ 1. There is h ∈ Cb (X)

which vanishes outside U and equals 3 on K . Since E is dense, there is g′ ∈ E such
that ‖h − g′‖ ≤ 1. Then, g′∣∣

K ≥ 2 and g′∣∣
K\U ≤ 1. Similarly, there is g′′ ∈ E

such that g′′∣∣
K ≤ 1 and g′′∣∣

K\U ≥ 2. Take g = (
g′ − g′′)+; we have g|K ≥ 1 and

g|K\U ≡ 0, and so e = f ∧ g satisfies the requirements. ��
Since the set of the restrictions of elements of a dense sublattice of C (X) to a

compact set K ⊂ X forms a dense sublattice of C (K ) = Cb (K ), we get the following
result.

Corollary 2.2 Let E be a dense sublattice of C (X), let K , L ⊂ X be compact and
disjoint, and let f ∈ E. Then, there is e ∈ E which coincides with f on K and
vanishes on L.

Let us consider a similar characterization for order dense sublattices of C (X). It was
proven in [4, Proposition 5.3] that E is order dense if and only if E ∩ (O,1U ] �= ∅,
for every nonempty open U ⊂ X . Note that Cb (X) is order dense in C (X).

Proposition 2.3 (Order dense Urysohn lemma)Let E be a sublattice of C (X). Then:

(i) If E is order dense, then for every f ∈ E+ and every nonempty open U there is
an nonempty open V ⊂ U and e ∈ E ∩ [O, f ] which vanishes outside of U and
coincides with f on V .

(ii) If 1 ∈ E, then E is order dense if and only if for every nonempty open U there is
an nonempty open V ⊂ U such that E ∩ [

1V ,1U
] �= ∅.
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Proof (i): Let f ∈ E+ and let U ⊂ X be open and nonempty. By restricting U if
necessary, we may assume that f is bounded on U . Since E is order dense, there is
g ∈ E ∩ (O,1U ]. In particular, g vanishes outside of U . There is δ > 0 such that
V = g−1 (δ,+∞) �= ∅. Then, e = ‖ f ‖U

δ
g ∧ f ∈ E vanishes outside of U and

coincides with f on V .

Sufficiency in (ii) immediately follows from the characterization of order density
quoted above, while necessity follows from (i) for f = 1. ��

We will call X almost locally compact if the set of all points of X that have a
compact neighborhood is dense.

Proposition 2.4 Let E be a sublattice of C (X). If E ⊂ Cb (X) or if X is almost locally
compact, then E is order dense if and only if for every nonempty open U there is
f ∈ E\ {O} which vanishes outside of U.

Proof Necessity is clear, while sufficiency in the case of E ⊂ Cb (X) easily follows
from the characterization of order density quoted before Proposition 2.3.

Assume that X is almost locally compact. Let C00 (X) be the set of all continu-
ous functions on X which vanish outside of a compact set. Clearly, E ∩ C00 (X) ⊂
C00 (X) ⊂ Cb (X). Any nonempty open U contains a nonempty open relatively com-
pact V , and there is f ∈ E\ {O} which vanishes outside of V , and so is an element
of E ∩ C00 (X). Hence, E ∩ C00 (X) is order dense, from where E is order dense as
well. ��

2.2 Ideals in sublattices of C (X)

For any f : X → R define ker f = f −1 (0) and supp f = X\ ker f . A set is
called a cozero set if it is of the form supp f , where f ∈ C (X). For G ⊂ C (X) define
ker G = ⋂

g∈G ker g, which is closed, and suppG = ⋃
g∈G suppg = X\ ker G, which

is an open set. Note that if E ⊂ C (X) is dense, then suppE = X .

Lemma 2.5 Let E be a sublattice of C (X) and let K ⊂ suppE be compact. Then,
there is e ∈ E such that e ≥ 1K .

Proof For every x ∈ K there is ex ∈ E such that ex (x) > 1, and so e−1
x (1,+∞) is

an open neighborhood of x . As K is compact, there are ex1 , . . . , exn ∈ E , such that
K ⊂ ⋃n

k=1 e
−1
xk (1,+∞) = e−1 (1,+∞), where e = ∨n

k=1

∣
∣exk

∣
∣ ∈ E . ��

If E is a sublattice of C (X), and A ⊂ X , define E (A) = { f ∈ E, supp f ⊂ A}.
Clearly, E (A) is an ideal in E . Since elements of E are continuous, it follows that
E (A) = E (intA). If B ⊂ X , then E (A ∩ B) = E (A) ∩ E (B), and if A ⊂ B,
then E (A) ⊂ E (B). In the case when E = C (X), we will use the notation C (X; A)

for E (A), so that for a general E we have E (A) = C (X; A) ∩ E . Recall that any
closed ideal in C (X) is of the form C (X;U ), for a unique open U , and moreover,
I (G) = C (X; suppG), for anyG ⊂ C (X) (see e.g. [6]; note that suppI (G) ⊃ suppG,
but since I (G) ⊂ C (X; suppG), we have suppI (G) = suppG). Let us extend this to
the ideals in sublattices of C (X). In what follows these sublattices are endowed with
the compact-open topology inherited from C (X).
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Proposition 2.6 Let E ⊂ C (X) be a dense sublattice.

(i) If J is an ideal in E, then J
C(X) = C (X; suppJ ) and J

E = E (suppJ ).
(ii) Every closed ideal of E is of the form E (U ), for some open U ⊂ X.
(iii) U → E (U ) is a meet-preserving map from the lattice of open subsets of X onto

the lattice of the closed ideals of E.
(iv) If J is an ideal in E and K is a compact subset of suppJ , then E (K ) ⊂ J . In

particular, if suppJ is compact (and so clopen), then J = E (suppJ ) and is a
principal ideal.

Proof (i): Let U = suppJ . Clearly, J
C(X) ⊂ C (X;U ). If x, y ∈ U are distinct, take

f ∈ J+ with f (x) > 0. Since E is dense, there is e ∈ E+ with e (x) > 0 and
e (y) = 0. Then, e ∧ f ∈ J strictly separates x from y. Since x, y were arbitrary,

J
C(X) = C (X;U ). Thus, J

E = J
C(X) ∩ E = C (X;U ) ∩ E = E (U ).

(ii) follows from (i), since if J is closed in E , then J = J
E = E (suppJ ). (iii)

follows from (ii).

(iv): From Lemma 2.5, one can find e ∈ J such that e ≥ 1K . Then, if f ∈ E is such
that supp f ⊂ K , it follows that | f | ≤ ‖ f ‖e, and so f ∈ J . The last claim follows
from combining the first claim with Lemma 2.5. ��

Part (iii) of Proposition 2.6 motivates the following question.

Question 2.7 For which E is it true that U → E (U ) is join-preserving into IE , i.e.
E (U ) + E (V ) = E (U ∪ V ), for any open U , V ⊂ X?

Wewill later consider a class of E’s forwhich this correspondence is join-preserving
into the lattice of closed ideals in E . Consider the case when E = C (X).

Proposition 2.8 X is normal if and only if C (X;U ) + C (X; V ) = C (X;U ∪ V ), for
any open U , V ⊂ X, and if and only if C (X;U ) + C (X; V ) = C (X), for any open
U , V ⊂ X such that U ∪ V = X.

Proof Let X be normal, let U , V ⊂ X be open, and let A := X\U and B := X\V ,
which are closed. Let f ∈ C (X;U ∪ V ). Define h : A ∪ B → R by h (x) = f (x),
if x ∈ A, and h (x) = 0, if x ∈ B. Note that f vanishes on A ∩ B and so h is
well-defined and continuous. Hence, by Tietze-Urysohn theorem it can be extended
to a continuous function on X (which we also denote h). It follows that h ∈ C (X; V ),
while f − h ∈ C (X;U ).

Conversely, assume that A, B ⊂ X are closed and disjoint. Let U := X\A and
V := X\B, which are open andU∪V = X . Then,1 ∈ C (X) = C (X;U )+C (X; V ),
hence there is f ≥ O which vanishes on A and g ≥ O that vanishes on B such that
f + g = 1. Then, f −1

[
0, 1

2

)
and g−1

[
0, 1

2

)
are disjoint neighborhoods of A and B,

respectively. Thus, X is normal. ��
Remark 2.9 Analogously, X is normal if and only if Cb (X;U ) + Cb (X; V ) =
Cb (X;U ∪ V ), for any open U , V ⊂ X , and if and only if Cb (X;U ) + Cb (X; V ) =
Cb (X), for any open U , V ⊂ X such that U ∪ V = X . However, it is not always

123



Characterizations of the projection bands and some order… Page 11 of 21 35

true that if E is a dense sublattice of C (K ), where K is compact and Hausdorff and
U , V ⊂ K are open, then E (U ∪ V ) = E (U )+E (V ). Let E be a subset of C [−1, 1]
that consists of functions which are even in a neighborhood of 0. It is easy to verify
that E is a dense sublattice of C [−1, 1], but f defined by f (t) = |t | belongs to
E ([−1, 0) ∪ (0, 1]), but cannot be decomposed into a sum of elements of E ([−1, 0))
and E ((0, 1]).

2.3 Urysohn sublattices

We will call a sublattice E ⊂ C (X) an Urysohn sublattice if for every open neigh-
borhood U of x ∈ X there is f ∈ E (U ) with f (x) = 1 (and in particular E is dense
in C (X)). In other words, E is Urysohn if suppE (U ) = U , for any open set U ⊂ X .
Clearly, C (X) itself is Urysohn. According to the norm-dense Urysohn Lemma, every
norm-dense sublattice of Cb (X) is Urysohn. Using the samemethod one can show that
if X is locally compact, then any dense sublattice of C0 (X) (e.g. C00 (X)) is Urysohn.
The next result is proven by applying Lemma 2.5 to E (U ).

Lemma 2.10 Let E be an Urysohn sublattice of C (X) and let U ⊂ X be an open
neighborhood of a compact K ⊂ X. Then, there is e ∈ E (U ) such that e ≥ 1K .

For Urysohn sublattice E we have that suppE (A) = intA, for any A ⊂ X , and so
E (A) ⊂ E (B) ⇔ intA ⊂ intB, for any A, B ⊂ X . Therefore, the correspondence
U → E (U ) is an order isomorphism between the set of open subsets of X and the
set of the closed ideals in E . In particular, for any open U , V ⊂ X we have that
supp (E (U ) + E (V )) = U ∪ V . It follows that E (U ∪ V ) = E (U ) + E (V ). This
isomorphism may still not be join-preserving, when considered as a map into IE ,
because it is possible that E (U ∪ V ) �= E (U ) + E (V ), for some open U , V ⊂ X
(see Remark 2.9). Hence, the Question 2.11 for Urysohn lattices can be restated as
follows.

Question 2.11 ForwhichUrysohn sublattices E is the sumof two closed ideals closed?

According to Proposition 2.8, the sum of closed ideals in C (X) is closed if and only
if X is normal. Let us investigate a weaker property.

Proposition 2.12 Let E ⊂ C (X) be a sublattice with suppE = X. Let U , V ⊂ X be
open. If E = E (U ) + E (V ), then U ∪ V = X. The converse holds in each of the
following cases:

(i) E is dense in C (X) and U , V are co-compact (i.e. have compact complements);
(ii) E is Urysohn and either U or V is co-compact;
(iii) X is normal and either E = C (X) or E is dense in Cb (X);
(iv) U ∩ V = ∅ (and so U , V are clopen) and either E = C (X) or E is dense in

Cb (X).

Proof If x /∈ U ∪V , then E (U ) , E (V ) ⊂ E (X\ {x}), from where E (U )+ E (V ) ⊂
E (X\ {x}) � E .
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Now assume that U ∪ V = X . We will prove that E = E (U ) + E (V ) in each of
the cases.

(i): If K = X\U and L = X\V are compact, then K ∩ L = ∅, and so from
Corollary 2.2, there is e ∈ E that vanishes on K (and so e ∈ E (U )), and coincides
with f on L (and so f − e ∈ E (V )).

(ii): If L = X\V is compact, then U is an open neighborhood of L . According to
Lemma 2.10 there is e ∈ E (U ) such that e ≥ 1L . If f ∈ E+, then g = ‖ f ‖Le∧ f ∈
E (U ), and coincides with f on L (and so f − g ∈ E (V )).

(iii) and (iv) follow from Proposition 2.8 and the norm-dense Urysohn Lemma. ��
Remark 2.13 A reformulation of (ii) is that if E is an Urysohn sublattice of C (X) and
U ⊂ X is an open neighborhood of a compact K ⊂ X , for every f ∈ E+ there is
e ∈ E ∩ [O, f ] which coincides with f on K and vanishes outside of U (or vice
versa). This is yet another version of the Urysohn lemma for sublattices.

Corollary 2.14 If E ⊂ C (X) is an Urysohn sublattice, H ⊂ E is an ideal such
that suppH is locally compact, K ⊂ suppH is compact and f ∈ E, there is h ∈
H ∩ [− f , f ] which coincides with f on K .

Proof LetU be an open neighborhood of K such thatU is a compact subset of suppH .
Let e ∈ E be produced byRemark 2.13 for E, f , K ,U . Then, suppe ⊂ U is a compact
subset of suppH . Hence, e ∈ H , by virtue of part (iv) of Proposition 2.6. ��

It is clear that if J is a countably generated ideal in a sublattice E of C (X), then
suppJ is a cozero set. If f ∈ C0 (X), then supp f is a locally compact σ -compact set.
Using Urysohn lemma one can get a partial converse to these two observations.

Lemma 2.15 Let E ⊂ C (X) be a Urysohn sublattice and let J be an ideal in E. If
suppJ is a locally compact σ -compact set, there is a countable G ⊂ J , such that
suppJ = suppG.

Proof There is a sequence (Vn)n∈N of open relatively compact sets that add up to suppJ
and such that Vn ⊂ Vn+1, for every n ∈ N. For every n ∈ N, since Vn+1 is an open
neighborhood of a compact set Vn , from Lemma 2.10 there is fn ∈ E (Vn+1), which
does not vanish on Vn ; since supp fn ⊂ Vn+1, it follows from part (iv) of Proposition
2.6 that fn ∈ J . Letting G = { fn}n∈N we have suppG = suppJ . ��

It is easy to see that { f }d = C (X; ker f ), for any f ∈ C (X), and if G ⊂ C (X),
then Gd = ⋂

g∈G {g}d = C (X; ker G). Hence, if E is a sublattice of C (X), we

have Gd
E = E (ker G). If E is an Urysohn sublattice, and A ⊂ X , then E (A)dE =

E (X\intA) = E
(
X\intA)

, from where

E (A)ddE = E (X\int (X\intA)) = E
(
intA

)
,

as well as Gdd
E = E

(
suppG

)
, for G ⊂ E .
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Proposition 2.16 Let E be a Urysohn sublattice of C (X), and A ⊂ X. Then:

(i) E (A) is a band in E if and only if intA = intintA, i.e. intA is regularly open.
(ii) If E (A) is a projection band in E, then intA is clopen. The converse holds if intA

is compact or co-compact or E = C (X), or is a dense sublattice of Cb (X).

Proof (i) follows from E (A)ddE = E
(
intA

)
, and the fact that for Urysohn sublattices

E (A) = E (B) ⇔ intA = intB, for any A, B ⊂ X .
(ii): E (A) is a projection band in E if andonly if E = E (A)+E (A)dE = E (intA)+

E
(
X\intA)

, which according to Proposition 2.12 implies X = intA ∪ X\intA, or
clopeness of intA. From the same proposition E = E (intA) + E

(
X\intA)

also
follows from clopeness of intA under the declared additional assumptions. ��

2.4 Miscellaneous results about sublattices of C (X)

The following result shows that usually C (X) has a large supply of non-closed ideals.

Proposition 2.17 Let f ∈ C (X). If I f is closed, then supp f is clopen. Conversely, if
supp f is compact, then I f = C (X; supp f ) is a projection band (and so closed).

Proof The converse clause follows immediately from part (iv) of Proposition 2.6. Let
us prove the main claim. We have that I f = C (X;U ), where U = supp f , which is
open. Assume that C (X;U ) ⊂ I f . Since

√| f | ∈ C (X;U ) there is s > 0 such that√| f | ≤ s | f |. Hence, if x ∈ U , then s
√| f (x)| ≥ 1, and so U = | f |−1

[
1
s2

,+∞
)
is

closed. ��
We proceed with a characterization of the order dense ideals in sublattices of C (X).

Proposition 2.18 Let E ⊂ C (X) be a sublattice. Then:

(i) If H is an ideal in E such that suppH is dense in suppE, then H is order dense
in E.

(ii) If E is regular, and H is an order dense ideal in E, then suppH is dense in suppE.
(iii) If E is not regular, and either E ⊂ Cb (X) or X is almost locally compact, then

there is an order dense ideal H of E such that suppH is not dense in suppE.

Proof (i): Assume that suppH is dense in suppE , and let e ∈ E+\ {O}. Then, suppe∩
suppH �= ∅, and so there is h ∈ H+ such that suppe∩ supph �= ∅. Then g = e∧ h ∈
(O, e] ∩ H , and so H is order dense in E .

It was proven in [4, Proposition 5.3] that E is regular if and only if
∧

E

{
f ∈ E,

f ≥ 1U
} �= O (this includes this set being empty, or having no infimum), for every

nonempty open U ⊂ X .

(ii): Assume that suppH is not dense in suppE , so that U := suppE\suppH �= ∅.
Let f ∈ E+ be such that supp f ∩ U �= ∅. By scaling f if needed we may assume
that f ≥ 1V , where V is an nonempty open subset of supp f ∩ U . Since H is order
dense, it follows that

∨
E ( f ∧ H) = f , or equivalently,

∧
E ( f − H)+ = O. On

the other hand, since every element of H vanishes on U (and hence on V ), it follows
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that ( f − H)+ ⊂ {g ∈ E, g ≥ 1V }, and so by the result quoted above, the infimum
cannot be O. Thus, we have reached a contradiction.

(iii): If E is not regular, there is a nonempty open U ⊂ X such that∧
E {g ∈ E, g ≥ 1U } = O; in particular the set is nonempty, and so U ⊂ suppE . If

E ⊂ Cb (X), every element of E is bounded onU . Let us show that H := E
(
X\U)

is
order dense in E . Let f ∈ E+; we may assume that ‖ f ‖ ≤ 1. Therefore, if g ∈ E is
such that g ≥ 1U , then ( f − g)+ vanishes on U , hence on U , and so ( f − g)+ ∈ H .
It is now possible to deduce that

∧
E ( f − H)+ = O.

If X is almost locally compact, there is an nonempty open V ⊂ U , such that V is
compact. Then, every element of E is bounded on V , and using the same arguments
as in the first case, one can then show that H := E

(
X\V )

is order dense in E . ��
Question 2.19 Can the additional assumptions be removed from part (iii)? In other
words, does the converse to (ii) hold?

The following lemma is inspired by [1], [3] and [17] and will come very handy
later. We will call it the ABVG Lemma.

Lemma 2.20 Let K be compact Hausdorff, let F ⊂ C (K ) be a dense sublattice and let
H ⊂ F be the ideal generated by an increasing sequence (hn)n∈N. For every f ∈ F+,
there is a sequence ( fn)n∈N ⊂ H+ with gn := ∑n

k=1 fk such that:

• fn⊥ fm, for |m − n| > 1;
• f − gn⊥ fm, for every m < n;
• 0 ≤ f − gn ≤ ( f − hn)+ + 1

n1, for every n ∈ N;
• If g ≥ gn, for every n ∈ N, then ( f − g)+ ⊥H.

Proof Define Kn = h−1
n

[ 1
n ,+∞)

, so that Kn ⊂ h−1
n

(
1

n+1 ,+∞
)

⊂ h−1
n+1

(
1

n+1 ,+∞
)

⊂ intKn+1 and
⋃

n∈N Kn = supp H . Also, let K0 = ∅ and define g0 = O. From
Corollary 2.14, for every n ∈ N there is fn ∈ H ∩ [

O, f − gn−1
]
, which coincides

with f −gn−1 on Kn and vanishes outside of intKn+1. It then follows that gn coincides
with f on Kn , and so supp fn ⊂ Kn+1\Kn−1. Hence, fn⊥ fm , for |m − n| > 1, and
0 ≤ f − gn⊥ fm , for every m < n.

Now f (x) > gn (x) implies x /∈ Kn , hence hn (x) < 1
n , therefore f (x) −

gn (x) ≤ f (x) ≤ ( f (x) − hn (x))+ + 1
n . If g ≥ gn and x ∈ supp ( f − g)+, then

f (x) > gn (x), hence x /∈ Kn , for every n ∈ N; it follows that x /∈ suppH , and so
( f − g)+ ⊥H . ��
Remark 2.21 Note that the result is true if K is merely locally compact and F ⊂ C (K )

is a Urysohn sublattice.

3 Projection bands in vector lattices

In this section we prove some criterions for an ideal in a vector lattice to be a projection
band.
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3.1 Locality of projection bands

Everywhere in this section F is a vector lattice. Let us show that an ideal is a projection
band if and only if it is locally a projection band.

Proposition 3.1 If H ∈ IF and g ∈ F, then H ∩ Ig is a projection band in Ig if and
only if Ig∩H+ Ig∩Hd = Ig, and if and only if g ∈ H+Hd. Hence, H is a projection
band if and only if H ∩ Ig is a projection band in Ig, for every g ∈ G, where G ⊂ F
is such that G ∪ H is majorizing.

Proof It follows from part (i) of Corollary 1.12 that
(
Ig ∩ H

)d
Ig

= Ig ∩ Hd . Hence,

H ∩ Ig is a projection band in Ig if and only if Ig ∩ H + Ig ∩ Hd = Ig . Clearly,
these conditions imply that g ∈ H + Hd . On the other hand, if g ∈ H + Hd , then
H + Hd is an ideal that contains g, hence contains Ig , and so Ig ∩ H + Ig ∩ Hd =
Ig ∩ (

H + Hd
) = Ig . ��

Corollary 3.2 Assume that F is Archimedean, and let E be an order dense andmajoriz-
ing sublattice of F. Let H ⊂ F be an ideal such that G = E ∩ H is a projection band
in E. Then, H is a projection band in F.

Proof First, Hd ∩ E ⊂ Gd
E . On the other hand, if e ∈ Gd

E and h ∈ H+, then as
E is order dense, h = ∨

(E ∩ [0, h]) = ∨
(G ∩ [0, h]). Since G ∩ [0, h]⊥e, we

conclude e⊥h, and thus Gd
E = Hd ∩ E . As G is a projection band in E , we have

E = G + Gd
E = H ∩ E + Hd ∩ E ⊂ H + Hd . Since E is majorizing, and H + Hd

is an ideal that contains E , it follows that F = H + Hd . ��
Recall that a sublattice E ⊂ F is super order dense if for every f ∈ F+ there is a

countableG ⊂ E such that f = ∨
G. The following is easy to deduce fromCorollary

3.2.

Corollary 3.3 If an Archimedean vector lattice has a (super) order dense and majoriz-
ing (σ -)PP sublattice, it also has (σ -)PP.

It makes sense to consider the PPP-part of a vector lattice.

Corollary 3.4 {h ∈ F, Ih has PPP} is an ideal in F, which has PPP. Same for PP and
σ -PP.

Proof We will only deal with PPP. Let H be the set in the claim. If h ∈ H and
| f | ≤ |h|, then I f is an ideal of Ih , which has PPP, from where I f also has PPP, and
so f ∈ H . If g, h ∈ H+ and f ∈ Ig+h , from Corollary 1.12 we have that

{ f }dIg+h
∩ Ig = { f }d ∩ Ig+h ∩ Ig = { f }d ∩ Ig = (

I f ∩ Ig
)d
Ig

= ( f ∧ g)dIg

is a projection band in Ig . Similarly, { f }dIg+h
∩ Ih is a projection band in Ih . Since

{g, h} is a majorizing set in Ig+h , by virtue of Proposition 3.1 we conclude that { f }dIg+h
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is a projection band in Ig+h . Hence, g + h ∈ H , and so from Proposition 1.4 H is an
ideal.

If E is a principal band in H , it follows from part (ii) of Corollary 1.12 that E ∩ Ig
is a principal (and hence projection) band in Ig , for every g ∈ H+. Hence, according
to Proposition 3.1, E is a projection band in H , and so H has PPP. ��
Remark 3.5 Note that H := {h ∈ F, Ih has PP} is not necessarily a band. Indeed, c0
is an order complete order dense ideal of c. If H was always a band, it would have
to contain c0, hence be equal to c. However, c does not have PPP. This can be seen
directly, or using Theorem 3.14 below, after noticing that 2N is a cozero subset of the
one point compactification N∞ of N, whose closure is not open.

Theorem 3.6 If F is Archimedean, an ideal H is a projection band if and only if IF
is infinite-meet distributive at H, i.e.

⋂
J∈J (H + J ) ⊂ H + ⋂J , for any J ⊂ IF .

Proof Assume that H is a projection band with the projection P and let 0 ≤ f ∈⋂
J∈J (H + J ). Then, for every J ∈ J there are gJ ∈ J+ and hJ ∈ H+ such that

gJ + hJ = f . Therefore, {hJ , J ∈ J } ⊂ [0, f ] ∩ H , and so hJ ≤ P f , for every
J ∈ J ; hence, 0 ≤ f − P f ≤ f − hJ = gJ ∈ J , from where f − P f ∈ ⋂J . Thus,
f ∈ H + ⋂J .

To prove the converse, it is enough to show that H ∩ I f is a projection band in
I f , for every f ∈ F . Since H is an ideal in F , and every ideal of I f is an ideal in
F , we may assume that F is a dense sublattice of C (K ), for some compact K , which
contains 1. LetU := suppH . For every x ∈ U , apply the norm-dense Urysohn lemma
to {x} ,U ,1, and obtain gx ∈ F+ which vanishes at x and such that gx |K\U ≡ 2.
Then M = g−1

x [0, 1] is a compact subset of U , and so applying Remark 2.13 to H
and 1, find h ∈ H such that h|M ≡ 1. It follows that gx +h ≥ 1, and so H + Igx = F .
Therefore,

⋂
x∈U

(
H + Igx

) = F , but on the other hand, E = ⋂
x∈U Igx consist of

functions that vanish on U . Thus, H⊥E and F = H + E , and so H is a projection
band. ��

Clearly, Archimedean property was not used in the proof of necessity.

Question 3.7 Is Archimedean property in Theorem 3.6 superfluous?

3.2 Projection bands and order bounded sets

Everywhere in this subsection F is an Archimedean vector lattice. The following is a
direct consequence of Lemma 2.20 and Krein-Kakutani theorem. We will call it the
abstract ABVG Lemma.

Lemma 3.8 (ABVG) Let f ∈ F+ and let H ⊂ F be the ideal generated by an increas-
ing sequence (hn)n∈N. Then, there is a sequence ( fn)n∈N ⊂ H+ with gn := ∑n

k=1 fk
such that:

• fn⊥ fm, for |m − n| > 1;
• f − gn⊥ fm, for every m < n;
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• 0 ≤ f − gn ≤ ( f − hn)+ + 1
n f , for every n ∈ N;

• If g ≥ gn, for every n ∈ N, then ( f − g)+ ⊥H.

Remark 3.9 Note that every ideal which is generated by a countable set is generated
by an increasing sequence.

Theorem 3.10 For an ideal H ⊂ F the following conditions are equivalent:

(i) H is a projection band;
(ii) Every G ⊂ H+, which is order bounded in F, is order bounded in H;
(iii) Every disjoint G ⊂ H+, which is order bounded in F, is order bounded in H;
(iv) There is an ideal E ⊂ H which is order dense in H, and such that every disjoint

G ⊂ E+, which is order bounded in F, is order bounded in H.

Moreover, if H contains a countably generated order dense ideal E ⊂ H such that
every countable disjoint G ⊂ E+, which is order bounded in F, is order bounded in
H, then H is a projection band.

Proof (i)⇒(ii): If P is the band projection corresponding to H , and G ⊂ H+ is such
that there is f ∈ F+ with G ⊂ [0, f ], then g = Pg ≤ P f ∈ H , for every g ∈ G.
Hence, G ⊂ [0, P f ], and so G is order bounded in H . (ii)⇒(iii)⇒(iv) are trivial.

(iv)⇒(i): Let f ∈ F+ and let G ⊂ E+ be a maximal disjoint set. For every g ∈ G
applyABVGLemma to f and Ig , and get

(
f gn

)
n∈N ⊂ Ig∩[0, f ] ⊂ E∩[0, f ] such that

any upper bound h of the partial sums of this sequence satisfies ( f − h)+ ⊥Ig . Note
that

{
f g2n−1, n ∈ N, g ∈ G

}
and

{
f g2n, n ∈ N, g ∈ G

}
are disjoint order bounded

(by f ) subsets of E , and so by assumption there are upper bounds h1 and h2 of these
sets in H . Then, h = h1 + h2 ∈ H is upper bound of the partial sums of the sequence(
f gn

)
n∈N, from where ( f − h)+ ⊥Ig , hence ( f − h)+ ⊥g, for every g ∈ G. Since G

was maximal disjoint, it follows that f − f ∧ h = ( f − h)+ ∈ Ed = Hd . On the
other hand, as H is an ideal, f ∧ h ∈ H , and so f ∈ H + Hd . Since f was arbitrary,
we conclude that H is a projection band.

For the last claim assume that E is generated by an increasing sequence (en)n∈N,
then repeat the proof of (iv)⇒(i) for the sequence ( fn)n∈N, produced by ABVG
Lemma. ��

A vector lattice is called disjointly (σ -)complete if any (countable) disjoint order
bounded set has a supremum. The second claim in the following result is from [17].

Corollary 3.11 An Archimedean vector lattice F has (σ -)PP if and only if for any
(countable) order bounded disjoint set G there is g ∈ Gdd such that G ≤ g. In
particular, disjoint (σ -)completeness implies (σ -)PP.

Proof Necessity is clear. Conversely, if H is a (countably generated) band in F , and
G ⊂ H is an order bounded (countable) disjoint set, then it is order bounded in
Gdd ⊂ H . Hence, according to Theorem 3.10, H is a projection band. ��

Recall that a Tychonoff space X is called extremally (basically) disconnected if the
closure of an open (cozero) set is open. In the following theorem (i)⇔(ii) is due to
Nakano ( [15]), (i)⇔(iii) is due to Luxemburg and Zaanen ( [13]) and Veksler ( [16]),
and (i)⇔(vi) is due to Veksler and Geiler ( [17]).

123



35 Page 18 of 21 E. Bilokopytov

Theorem 3.12 For a compact Hausdorff K the following conditions are equivalent:

(i) K is extremally disconnected;
(ii) C (K ) is order complete;
(iii) C (K ) has PP;
(iv) Every dense sublattice of C (K ) has PP;
(v) C (K ) contains a dense sublattice with PP;
(vi) C (K ) contains a dense disjointly order complete sublattice.

Proof First, (iv)⇒(iii)⇒(v) and (ii)⇒(vi) are trivial, while (vi)⇒(v) follows from
Corollary 3.11. We will not prove (i)⇒(ii) here, referring to e.g. [13, Theorem 43.8].

(i)⇒(iv): Let E be a dense sublattice. Every band in E is of the form E (A), where
A is closed. Then, intA is clopen, and so E (A) = E (intA) is a projection band,
according to part (ii) of Proposition 2.16.

(v)⇒(i): Let E be a dense PP sublattice of C (K ). If A ⊂ K is closed, then E (A)

is a band, therefore a projection band, from where intA is clopen. ��
Remark 3.13 In order to adapt Theorem 3.12 to the case when K is not necessarily
compact “dense sublattice of C (K )” should be replaced with “dense sublattice of
Cb (K )” in (iii), and with “Urysohn sublattice of C (K )” in (iv) and (v).

Attributions in the following theorem mirror those in the preceding one.

Theorem 3.14 For a compact Hausdorff K the following conditions are equivalent:

(i) K is basically disconnected;
(ii) C (K ) is σ -complete;
(iii) C (K ) has PPP;
(iv) Every dense sublattice of C (K ) has σ -PP;
(v) C (K ) contains a dense disjointly σ -order complete sublattice;
(vi) C (K ) contains a dense sublattice with σ -PP.

Proof First, (iv)⇒(iii), (iv)⇒(vi) and (ii)⇒(v) are trivial; while (v)⇒(vi) follows
from Corollary 3.11. Again, we refer to [13, Theorem 43.11] for (i)⇒(ii).

(iii)⇒(i): Let U ⊂ X be a cozero set. There is f ∈ C (K ) such that U = supp f .
Due to PPP we have that { f }dE = C (

K ; K\U)
is a projection band, from where U is

clopen.

(i)⇒(iv): Let E ⊂ C (K ) be a dense sublattice, and H is a countably generated
band in E . That is, H = Gdd

E , where G ⊂ E is countable. Hence, U := suppG is a
cozero set and such that H = E

(
U

)
. Since K is basically disconnected, U is clopen,

and so from part (ii) of Proposition 2.16, H is a projection band.

(vi)⇒(i): Let U be a cozero set. From Lemma 2.15, there is a countably generated
ideal H of E such that U = suppH . Due to σ -PP we have that Hd is a projection
band, and so X\U = suppHd is clopen, according to part (ii) of Proposition 2.16. ��
Remark 3.15 It was also proven in [4, Corollary 5.8] that a compact Hausdorff K is
totally disconnected (i.e. contains no connected subsets with more than one point) if
and only if C (K ) contains a dense sublattice with PPP.
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Corollary 3.16 F has PP (σ -PP) if and only if Krein-Kakutani spectrum of each of its
elements is extremally (basically) disconnected.

We now obtain the well-known result by Luxemburg and Zaanen (see [13]).

Corollary 3.17 An Archimedean vector lattice is (σ -)order complete if and only if it is
PP (resp. PPP) and uniformly complete.

3.3 About self-majorizing elements

In this subsection we use some of the results about sublattices of C (X) to discuss self-
majorizing elements of vector lattices. The material here complements and refines
[18, Section 3.4]. Everywhere in the subsection F is an Archimedean vector lattice.
Recall that e ∈ F+ is self-majorizing if for every f ∈ F+ there is r > 0 such that
f ∧ne ≤ re, for every n ∈ N. The following well-known characterization is provided
for reader’s convenience.

Proposition 3.18 e is self-majorizing if and only if Ie is a projection band.

Proof If Ie is a projection band, for every f ∈ F+ there is a projection Ie � h :=
P f = ∨

([0, f ] ∩ Ie). Therefore, for every n ∈ N we have f ∧ ne ≤ h ≤ ‖h‖ee.
Hence, e is self-majorizing.

If e is self-majorizing, and f ≥ 0, there is r > 0 such that f ∧ ne ≤ re, for every
n ∈ N, fromwhere f ∧ne = f ∧re, for everyn ≥ r . Thus, Ie � f ∧re = ∨

n∈N f ∧ne,
and so Ie is a projection band. ��
Proposition 3.19 If F is uniformly complete, then for a countably generated ideal
I ⊂ F the following conditions are equivalent:

(i) I is uniformly closed;
(ii) I is a band;
(iii) I is a projection band.

Proof First, every projection band is a band, and in turn every band is uniformly closed.
Assume that I = I

({hn}n∈N
)
is uniformly closed, for {hn}n∈N ⊂ F+. According to

Proposition 3.1, it is enough to show that H = I
({hn}n∈N

) ∩ I f = I
({ f ∧ hn}n∈N

)

is a projection band in I f , for every f ≥ 0 (equality is by part (ii) of Corollary
1.12). Since F is uniformly complete, I f is isomorphic to C (K ), for some compact
Hausdorff K . Hence, H is a closed countably generated ideal in a Banach lattice, and
so is a principal ideal. Since according to Proposition 2.17 a closed principal ideal in
C (K ) must be a projection band, the result follows. ��
Corollary 3.20 If F is uniformly complete, then e ∈ F+ is self-majorising if and only
if Ie is a projection band, if and only if Ie is a band, and if and only if Ie is uniformly
closed.

Remark 3.21 Note that under PPP, the third condition is also equivalent to the first
two. However, this is not true in general. Let F be the space of all piecewise affine
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functions on [−1, 1]. One can show that Ie = F (suppe), for every e ∈ F . Let e be
defined by e (t) = t+. Since suppe = (0, 1], which is regularly open but not clopen,
Ie is a band, but not a projection band. Taking e to be the identity function shows that
the last implication is also non-reversible in general.
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