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Abstract

We describe a natural coisometry from the Hilbert space of all Hilbert-Schmidt oper-
ators on a separable reproducing kernel Hilbert space (RKHS) H and onto the RKHS
G associated with the squared-modulus of the reproducing kernel of H. Through this
coisometry, trace-class integral operators defined by general measures and the repro-
ducing kernel of H are isometrically represented as potentials in G, and the quadrature
approximation of these operators is equivalent to the approximation of integral func-
tionals on G. We then discuss the extent to which the approximation of potentials in
RKHSs with squared-modulus kernels can be regarded as a differentiable surrogate
for the characterisation of low-rank approximation of integral operators.
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1 Introduction

Integral operators with positive-semidefinite (PSD) kernels play a central role in the
theory of reproducing kernel Hilbert spaces (RKHSs) and their applications; see for
instance [4, 5, 19,20, 26]. As an important instance, this class of operators encompasses
the PSD matrices.

Under suitable conditions, an integral operator defined by a PSD kernel K and a
measure (4 can be regarded as a Hilbert-Schmidt (HS) operator L, on the RKHS H
associated with K ; see e.g. [20-22]. Let G be the RKHS for which the squared-modulus
kernel | K |? is reproducing. Following [10], when the integral of the diagonal of K with
respect to the variation of y is finite, the HS operator L, on H can be isometrically
represented as the Riesz representation g, € G of the integral functional on G defined
by the measure 1, the conjugate of w. The operator L, is in this case trace-class,
and g, is the potential, or kernel embedding, of the measure u in the RKHS G. In
the Hilbert space HS(H) of all HS operators on H, the quadrature approximation of
trace-class integral operators with kernel K is hence equivalent to the approximation
of integral functionals on G. Considering another measure v and denoting by Bg the
closed unit ball of G, we more specifically have

ILu = Lollasy = 8n — 8vllg = sup fg(t)dlt(t) —/g(t)dV(t)

g€Bg

’

so that the map (u,v) + |[L, — Ly|las() corresponds to a generalised integral
probability metric, or maximum mean discrepancy (see e.g. [2, 15, 16, 24, 27]).

We give an overall description of the framework surrounding such an isometric
representation, and illustrate that it follows from the definition of a natural coisome-
try I' from HS(H) onto G; this coisometry maps self-adjoint operators to real-valued
functions, and PSD operators to nonnegative functions (Sect.2). Under adequate mea-
surability conditions on K and assuming that the diagonal of K is integrable with
respect to |u|, we show that L, always belongs to the initial space of I', and that
I'[L,] = g,- We then describe the equivalence between the quadrature approxima-
tion of integral operators with PSD kernels and the approximation of potentials in
RKHSs with squared-modulus kernels (Sect. 3).

For an approximate measure v, and denoting by H, the closure in H of the range
of L|,| (so that when v is finitely-supported, H, is fully characterised by the support
of v), we next investigate the extent to which the approximation of potentials in G
can be used as a differentiable surrogate for the characterisation of approximations of
L, of the form P,L,, L, P, or P,L, P,, with P, the orthogonal projection from H
onto H, (Sect.4). When the measure p is nonnegative, the operator L, admits the
decomposition L, = ¢ with ¢, the natural embedding of H in L*(w). The three
operators

*
whue

* .72 * .72 2 * . 2
LM.L(/,L)—>H, LMLM.L(M)—>L(M), and LMLMLM.H—>L(/L),

can then also be regarded as integral operators defined by the kernel K and the measure
W, and through the partial embedding t,, P, , a measure v characterises approximations
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of each of these operators. We study the properties of these approximations and further
illustrate the connections between the low-rank approximation of integral operators
with PSD kernels and the approximation of potentials in RKHSs with squared-modulus
kernels. We also describe the link between the considered framework and the low-rank
approximation of PSD matrices through column sampling (Sect.5). The presentation
ends with a concluding discussion (Sect. 6) and some technical results are gathered in
appendix (Appendix A). The approximation schemes considered in this note should
be apprehended from the the point of view of numerical strategies for discretisation
or dimension reduction; in practical applications, approximations will generally be
characterised by finitely-supported measures.

2 Framework, notations and basic properties

By default, all the Hilbert spaces considered in this note are complex; they are otherwise
explicitly referred to as real Hilbert spaces; we use a similar convention for vector
spaces. Inner products of complex Hilbert spaces are assumed to be linear with respect
to their right argument. For z € C, we denote by 7, |z| and 9(z) the conjugate, modulus
and real part of z, respectively, and i € C is the imaginary unit. By analogy, for a
complex-valued function f on a general set S, we denote by f and | f| the functions
defined as ?(s) = f(s) and | f|(s) = | f(s)|, s € S; we also use the notation |f|2 to
refer to the function s > | f(s)|.

For two Hilbert spaces H and F, we denote by A* the adjoint of a bounded linear
operator A : H — F. The map A is an isometry if A*A = idy, the identity operator
on H, and A is a coisometry if A* is an isometry (and so AA* = idF). A coisometry
A is a surjective partial isometry (that is, AA*A = A), and A*A is then the orthog-
onal projection from H onto the initial space Z(A) of A, with Z(A) the orthogonal
complement in H of the nullspace of A. We denote by null(A) the nullspace of A, and
by range(A) its range. Also, for a subset C of H, we denote by C# the orthogonal

complement of C in H, and by C" the closure of C in H.

2.1 RKHSs and Hilbert-Schmidt operators

Below, we introduce the various Hilbert spaces relevant to our study.

Underlying RKHS. Let 'H be a separable RKHS of complex-valued functions on a
general set 2", with reproducing kernel K : 2" x 2 — C; see e.g. [1, 17]. For
t € 4, letk; € H be defined as k;(x) = K(x,t), x € 2 . Forall h € H, we have
(ks | h)y¢ = h(t), where (.|.)7¢ stands for the inner product of H (this equality is often
referred to as the reproducing property); we denote by ||-||% the norm of H, and we
use a similar convention for the inner products and norms of all the Hilbert spaces
encountered in this note.

Hilbert-Schmidt space. Let HS(H) be the Hilbert space of all HS operators on H; see
e.g. [3,7]. For T € HS(H), we denote by T[h] € H the image of h € H through T,
and by T[h](x) the value of the function T'[h] at x € Z"; we use similar notations
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for all function-valued operators. For a and b € 'H, let T, , € HS(H) be the rank-one
operator given by

Taplhl =alb| )y, h € H;

we also set S = Tj .

Remark 2.1 An operator T € HS(H) always admits a singular value decomposition
(SVD) of the form T = ), ;0iT,; v, I € N, where {o;}ic1 € 22(D) is the set
of all strictly-positive singular values of 7', and where {u;};c1 and {v;};cr are two
orthonormal systems in H; the series converges in HS(H). <

Remark 2.2 Let H’' be the continuous dual of H. For h € H, let & € H’' be the
bounded linear functional such that &,(f) = (h| f)~, f € H. Endowed with the
inner product (& ¢|€x)3 = (h| f)3, the vector space H' is a Hilbert space, and the
Riesz map h — & is a bijective conjugate-linear isometry form H to H’' (we may
notice that &y, = o€y, o € C). The linear map densely defined as 7, 5 — a ® &, (see
Remark 2.1) is then a bijective isometry from the Hilbert space HS(H) to the tensor
Hilbert space H ® H'. <

Conjugate RKHS. Let H be the RKHS of complex-valued functions on .2~ associated
with the conjugate kernel K,with K (x, 1) = =K(x,t),xand? € % .Forallh € H,we
have i € H (thatis, the function 7 : x > h(x) is a vector of H), and the map h > his
a bijective conjugate-linear isometry from H to 7. We have k; (x) = K (x, 1) = k; (x),
and

(klki)gy = K (x, 1) = K (1, x) = (ke k) 7

We denote by W the bijective linear isometry from HS(H) to the tensor Hilbert
space H ® H, densely defined as W (7, ) =a ® b,a and b € H.

Remark 2.3 Following Remark 2.2, the linear map &, h is a bijective isometry
form H' to H. Further, the linear map _densely defined as a ® § > a ® bisa
bijective isometry form H ® H’ to H ® H; the composition of this isometry with the
bijective isometry from HS (H) to H ® H' discussed in Remark 2.2 yields the isometry
U : HS(H) — H ® H; see the diagram (5). <

Squared-kernel RKHS. The kernels K and K being PSD, by the Schur-product theo-
rem, so is the squared-modulus kernel |K |> = K K, with

|K|*(x,1) = K(x, DK (x, 1) = |K(x,1)|* = |k|*(x),xand 7 € L.

Let G be the RKHS of complex-valued functions on .2~ for which | K |? is reproducing
(G = H O H is the product of the two RKHSs H and H; see e.g. [1, 17]).

Following [17, Chapter 5], we denote by Ca : H® H — G the coisometry densely
defined as Ca(a ® E) = ab, a and b € H, where ab € G is the complex-valued
function on 2~ given by

(ab) () = a()b(x) = (ks *lab)g = (kx @ kxla @ D)y, x € 2.
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For Y € H ® H, we more generally have

CalT100) = (ke PICAIT g = (ke ® kx| ) g7 M

— HOH _
The initial space of Ca isZ(Ca) = spanciky ® kx|x € 27} ,the closure in HQH
of the linear space spanned by the simple tensors k, ® ky, x € 2.

Remark 2.4 From (1), for all x € 2", we have C}[|k, 2] = ky ® k. The linear space
spanc{ lky|?|x € 27} being dense in G (see for instance [17, Chapter 2]), we have
space span,{|k > have C,C} = idg, so that C is an isometry. <

2.2 Natural coisometry from HS(H) onto G

We can now define a natural coisometry from the Hilbert space HS(H) of all HS
operators on a RKHS 7, and onto the RKHS G associated with the squared-modulus
of the reproducing kernel of . The terminology natural is used to emphasise that the
considered construction does not depend on the choice of any specific basis.

Lemma 2.1 The linear map I' = CAWV : HS(H) — G is a coisometry, and its initial
space is

I(T) = spang (S x € 2] 70, )
in addition, for all T € HS(H), we have
CIT1(x) = (Sk, | TYasy = kel Tlkx )y = Tlkx](x), x € 2. 3)

Proof The linear isometry W being bijective, we have WW* = id,, 77, and so
[T" = C,VW*Cx = C,Cxr =1idg.
By definition of Ca and W, we have I'*[|k|?] = W*[k, ® ky| = Sk, x € X', s0
that (2) follows from the density of span{|ky I2|x € 27} in G (see Remark 2.4). The
reproducing property in G then gives
P[T](x) = (ke *IT[T g = (Sk, IT)uscry. T € HS(H).

We next observe that

(Tap|T)nscn) = (alT[b])y,a and b € 'H; 4)
indeed, as 7,0 = 0, equality (4) trivially holds for b = 0, and for b # 0, we have
(Tup| Tuscry = (Tap BN T 16134/ 1613, with Ty p[b] = allb|3,. Takinga = b = k,
in (4) gives (S, |T)us(H) = (kx|T [kx])¢ = T [kx](x), concluding the proof. O
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29 Page6of22 B. Gauthier

The following diagram summarises the construction of I" (the = symbol refers to
the two bijective linear isometries discussed in Remarks 2.2 and 2.3).

HS(H) r G

N v

=l \ % ©)
HOMH —=H QH

Through I', the HS operators on H belonging to Z(I") can be isometrically repre-
sented as functions in the RKHS G associated with the squared-modulus kernel | K 2.
In the framework of Remark 2.1, we may notice thatif 7 = )", ; 0; Ty, v, € HS(H),
then I'[T] = Y, .y oiu; ;.

Lemma 2.2 The following assertions hold:

1. if T € HS(H) is self-adjoint, then the function I'[T] is real-valued;
2. if T € HS(H) is PSD, then the function I'[T] is nonnegative;

3. if T e HS(H) is PSD and T'[T] = 0, then T = 0; and

4. if T € Z(T'), then T* € Z(I").

Proof Assertions 1 and 2 follow directly form (3). We assume that 7 € HS(H) is PSD,
and we consider a spectral expansion T = ) jerAjSp; of T, withAj > 0,¢; € Hand
I € N; observing that F[Sq,j] = |<pj|2, j € I, we obtain 3. To prove assertion 4, we
first observe that if g € G, then g € G (that is, the function g is a vector of G); the map
I" is indeed surjective, and if g = ['[T], T € HS(H), then g = ['[T*]. By linearity,
the real and imaginary parts of g are then also vectors of G, and so ||g|lg = I|gllg (see
for instance [17, Chapter 5]; see also Remark 2.6). Since I" is a partial isometry, for
T € HS(H), we have ||T |lgs(r) = IT'[T]llg, with equality if and only if T € Z(I");
as | T lusr) = IIT*lus(r), the result follows. O

Remark 2.5 The diagram (5) is also well-defined when the involved Hilbert spaces are

real. We in this case have Z(I") = spang{Sk, |x € & }HS(H) and the operators in Z(I")
are self-adjoint; also if 7% = —T, then '[T] = 0. By comparison, in the complex
case, if T* = —T, then the function I'[T] is pure-imaginary. <

Remark 2.6 The PSD kernel | K |? being real-valued, it is the reproducing kernel of a
real RKHS G of real-valued functions on 2". The decomposition G = Gr + iGr
holds, and Gg is the real-linear subspace of all real-valued functions in G. This
decomposition mirrors the decomposition HS(H) = HSr(H) + iHSgr(H), with
HSr(H) C HS(H) the real-linear subspace of all self-adjoint HS operators on H.
Also, the real convex cone HSﬁg (H) C HSr(H) of all PSD HS operators on H is gen-
erating in HSr (), and the real convex cone Qfg C Gr of all nonnegative functions
in G is generating in Gg. <

Remark 2.7 Let F be another separable RKHS of complex-valued functions on 27,
with reproducing kernel J : 2" x 2 — C. We denote by HS(F, H) the Hilbert
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space of all HS operators from ¥ to H, and let H © F be the product of the RKHSs
H and F, that is, the RKHS with kernel K'J. Following (5), we can more generally
define a natural coisometry from HS(F, H) onto H © F. <

3 Trace-class integral operators with PSD kernels

From Lemma 2.1, if T € HS(H) is of the form T = Z;Zl oy Sksj, withn € N,
sje Z andw; € C, then T € Z(I'). We in this case have

TIh(x) = Y wjk; () ks, M) = Y @K (x.s)h(sj).h e H.x € 2,
Jj=1 j=1

so that T can be regarded as an integral operator on H defined by the kernel K and
the finitely-supported measure Z’}: | @;ds;, with 8y the Dirac measure at x € 2. We
also have I'[T] = Z?:l wj|ksj|2, so that (I'[T]|g)g = Z?:] w;g(sj), g € G, and
I'[T] is thus the Riesz representation of the integral functional on G defined by the
measure 27:1 @j8s;. Under measurability conditions, this observation holds for all
trace-class integral operators on H defined by the reproducing kernel K of H and
general measures on 2, as illustrated below.

3.1 Integral operators and kernel embedding of measures

Let A be a o-algebra of subsets of 2. We consider the Borel o-algebra of C, and
make the following assumptions on K and the measurable space (2, A):

A.l forallr € 2, the function k; : 2  — C is measurable;

A.2 the diagonal of K is measurable.

We recall that K (1, 1) = ||k I3, = ISk, s = Illk:i*llg. 1 € 2.

Remark 3.1 The RKHSs H and G being separable, A.1 ensures that all the functions
in H and G are measurable; see for instance [25, Lemma 4.24]. Consequently, under
A.l, the maps t — k;, t — |kt|2 and t — Sy, t € &, are weakly-measurable, and
since the Hilbert spaces H, G and HS(H) are separable, by the Pettis measurability
theorem, these maps are also strongly-measurable (see e.g. [8, 28]). <

We denote by M, M, and Mc the set of all nonnegative, signed and complex
measures' on (2, A), and we set My = M U Mc (we have M, C M). Noticing
that K(z,¢) > 0,t € 2, from A.2, we define

T, = / K, t)d|u|(t) € Rso U {400}, u € Mp.
s

We next introduce the sets 71 (K), 7 (K) and 7¢(K) of all measures p in M, M,
and M such that 7, is finite, respectively; the inclusion 74 (K) C 7 (K) holds, and
we set Tp(K) = T(K) U T (K).

I we only consider finite complex measures, while signed measures may not be finite.
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29 Page8of22 B. Gauthier

Integral operators on H with kernel K . By assumption, for u € 7p(K), the integral
fﬁf ISk, lasHdl | (t) = 7, is finite, and the map ¢ +> Sy, is thus Bochner-integrable
with respect to  (Bochner integrability criterion, see e.g. [8, 28]; see also Remark 3.1).
We set

L,= / Sk, du(t) € HS(H).
X
From (4), for h € H and x € 2", we have

L [h)(x) = Tk, n I LpduscH) = /%(Tkx,hlSk,)HS(H)dM(t) = /g[ K (x,)h()du(t),

so that L, € HS(H) can be regarded as an integral operator on H defined by the
kernel K and the measure 1.

Remark 3.2 For i € Tp(K), the operator L, € HS(H) is the Riesz representation of
the bounded linear functional Z,, : HS(H) — C given by

Zu(T) = f%_(Sk,IT)HS(H)dﬁ(t), T € HS(R),

that is, Z,(T) = (L,|T)uascH); from the CS inequality in HS(?{), we in particular

have | Z,,(T)| < [ 1(Sk, I T)uscrldl el (1) < I T s cr) T
By boundedness of the linear evaluation map 7 + T [h] from HS(H) to 'H, we
obtain (see for instance [28, Chapter 5])

Ly[h] =/ Sk, [h1dp () =/ kih(t)du(t), h € 'H,
X P

with, from the CS inequality in H, f% lkell¢ 1A (@) IdI ] () < |IR]l3¢T,. We also have

(Lulhll fin = /x h(t) f(1)df(t), hand f € H, (6)
so that L[] is the Riesz representation of the bounded linear functional ®;_, on H,
with ©, 1 f = [ h(0) f()d@(2), f € H (and |, ()] < hllmll fllnTn). <
Lemma 3.1 Forall nu € Tr(K), the operator L, is trace-class.

Proof Let {h;};c1 be an orthonormal basis (ONB) of H, with I C N. Forall t € 2,
we have k, = Y, hihi(t), so that {h; ()}ier € €2(I) and Y, |hi(D* = K(t,1);
see e.g. [17, Chapter 2]. Let { f; };c1 be another ONB of H; from (6), and by monotone
convergence and the CS inequality in £2(I), we obtain
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D ALl | < ny | fi @11 (0)1d] ()

iel iel
= /%Z|fi(t)||hi(t)|d|ﬂ|(t) < /J VK@, )y K, H)d|p| ) = 14,
iel
so that trace(|L,,|) < 7, with |L,,| = (L% L,)"/* the modulus of L. o

Kernel embedding of measures in G. By assumption again, for u € 7p(K), the
integral fg |||k,|2||gd|u|(t) is finite, and the map ¢ — |k;|? is therefore Bochner-
integrable with respect to . We set

gu = / k(| 2du(r) € G.
A

We have (g,lg)g = fz g(®)du(r), g € G, so that g, is the Riesz representation of
the linear functional /, : G — C, with I,,(g) = f o &(1)dx(r); we may observe that
[1,,(g)| < llgllgTu, and that g, (x) = f% IK (x, 1)|*du(t), x € Z . The vector gu is
referred to as the kernel embedding, or potential, of the measure p in the RHKS G;
see for instance [6, 15, 24].

Theorem 3.1 Forall u € Tr(K), we have L, € I(I') and T'[L, ] = gp.

Proof From Lemma 2.1 and by definition of L, and g, for all T € HS(H), we have

(T* g ITYusHy = (gulT[T g = /y(SkJT)HS(H)dﬁ(f) = (Lu|T)us(H)»

so that I'*[g,] = L. O

Remark 3.3 Following Lemma 2.2, for a signed measure . € 7 (K), the function g,
is real-valued, and the operator L,, = I'*[g,] is self-adjoint. Also, for a nonnegative
measure i € 7, (K), the function g, is nonnegative, and the operator L, is PSD. We
may notice that Ls = S, x € 2. <

From Theorem 3.1, for u and v € 7p(K), the following equalities hold:

(LU|L/4>HS('H) = (gu|gu)g = /f |K(x, t)|2dﬂ(t)di(x)

- @)

=/ gu(x)dv(x) =/ gu(®)du(?),
s X

relating the evaluation of inner products in HS(H) between trace-class integral oper-
ators with kernel K to the integration of potentials in G.
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3.2 Quadrature approximation

Let Bg = {g € Glligllg < 1} be the closed unit ball of G. We set

fg(t)du«(t)—/ g()dv(r)
2 2

The map Mg defines a pseudometric on 7r (K ); for probability measures, such pseudo-
metrics are referred to as integral probability metrics, or maximum mean discrepancies;
see for instance [15, 16, 23, 24, 27].

The following Corollary 3.1 describes the equivalence between the quadrature
approximation of trace-class integral operators with PSD kernels and the approxi-
mation of integral functionals on RKHSs with squared-modulus kernels.

Mg (un, v) = sup ,uand v € Tp(K).

g€Bg

Corollary 3.1 For all u and v € Tp(K), we have ||L, — L, |lus¢x) = Mg (u, v).

Proof Form Theorem 3.1 and by linearity of I'*, we have I'*[g, — gv] = L, — L,.
Since I'* is an isometry, it follows that |L, — Ly|lgs) = €. — &vllg- The CS
inequality in G and the definition of g, and g, then give

/ g(t)dﬁ(t)—/ g(n)dv(r)

We conclude by observing that for all g € G, we have g € G and |g|lg = llgllg (see
the proof of Lemma 2.2), so that [lg, — gvllg = Mg (u, v). O

gy — gvllg = sup |(gu — gvlg)g| = sup
gE€Bg g€Bg

3.3 Further properties

In this section and in anticipation of the forthcoming developments, we discuss some
further properties verified by the integral operators considered in Theorem 3.1.

For u € 7T, (K), let L?(1) be the Hilbert space of all square-integrable functions
with respect to i. From the CS inequality in H, we have

f} h ()P dpu () = /J | (ke )20 dua(t) < 13T, b € H, ®)

so that the linear embedding ¢, : H — L%(1), with ¢ ,[1] the equivalence class of all
measurable functions p-almost everywhere equal to /, is bounded (see e.g. [26]).

Lemma3.2 Forall n € To(K), themap v, is HS and L, = UL,

Proof Let {h;}ic1 be an ONB of H, with T € N. As K(1,1) = Y [ ()"t € 2

(see e.g. [17]), from (6) and by monotone convergence, we have

D e lhillgag,y = D (Lalhillhiyy = / D @A) = T,

iel iel el
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so that ¢ M is HS. From (6), we also obtain

(Lulh)|f)7 = (LD 120 = (ot A1 f )3, hand f € H,

andso L, =1 o

P

For v € 7r(K), we by definition have |v| € 7,.(K) and vV € Tp(K); from (6), we
also have L} = Ly. The following relation (Lemma 3.3) holds between the range of
L, and the range of L.

Lemma 3.3 Forallv € Tp(K), we have range(L,,)H - range(L\,,\)H.

Proof From (6) and the CS inequality in L2(|v|), we obtain

|<Lv[h]|f>H}=U h(t) f()dv(t) s/ |hOI1f ®1d]v](2)
VA A

= ||L|u|[h]||L2(\v\)”L\y|[f]”L2(|p|)v hand f €H,

&)

where (8) ensures that the embedding L) is well-defined. From Lemma 3.2, we have
null(L,) = {h € H|t,[h] = 0}; inequality (9) then entails null(L,|) € null(Ly), and
sonull(Ly)+* C null(L,))**. Recalling that null(T*) = range(T)*", T € HS(H),

we conclude by noticing that LY = L, and LT‘V‘ =L, O

Lemma 3.4 illustrates that when the measure v is finitely-supported, the range of
L,y is fully characterised by the support of v.

Lemma3.4 Forv =Y "_,vid, withn € N,v; € C, v; # 0, and s; € %', we have
range(Ly|) = spanciky,, ..., kg, }.

Proof We have |v| = Y !_, |vild; € 7.(K), and Ly is PSD. From Lemma 3.2,
we obtain that null(L,,)) = {h € H|L|U|[/’l] =0} = ('_,{h € H|(ks;|h)3 = 0}, and
SO null(L|v|)J-H = spangi{ky,, ..., kg, }. Observing that L), is self-adjoint, the result
follows. m]

4 Measures and projection-based approximations
In this section, we illustrate the extent to which the the approximation of potentials in

G can be used as a surrogate for the characterisation of closed linear subspaces of H
for the approximation of L, € HS(H) through projections (see Remark 4.1).

4.1 Additional notations and general properties
For a closed linear subspace Hs of H, we denote by Pg the orthogonal projection

from H onto Hs. Endowed with the Hilbert structure of H, the vector space Hy is a
RKHS, and its reproducing kernel Kg verifies Kg(x, t) = Ps[k;](x), x andt € Z .
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Remark 4.1 The linear map T + PgT is the orthogonal projection from HS () onto
R(Hs) = {T € HS(H)|range(T) < Hg}, the closed linear subspace of HS(H)
of all operators with range included in Hg. Also, the linear map 7 + T Ps is the
orthogonal projection from HS(H) onto Z(Hg) = {T € HS(H)|range(T*) C Hs}.
The two orthogonal projections 7 + PsT and T +— T Ps commute, and their com-
position, that is, the linear map 7' +— PsT Ps, is the orthogonal projection from
HS(H) onto R(Hs) N Z(Hs). As (PsT)* = T* Pg, the orthogonal projections onto
R(Hs) and Z(Hg) are intrinsically related; for this reason, in what follows, we
mainly focus on approximations of the form PgT and PsT Ps. By orthogonality, for all
T € HS(H), we have

1T = PsTlfiscr) = 1T Ifis gy — IPsT sz and (10)
IT = PsT Pslifisae = 1T s — I1PST Pslifiscr- (11

with || PsT Pslluscx) < IPsT luscxy < IIT lus(x); in particular, if T is self-adjoint,
then so is PsT Ps. <

Lemma 4.1 Let Hs and Hpg be two closed linear subspaces of H, with Hg C Hs.
For all T € HS(H), we have

IPRT lascry < I1PsT lluscxy and |IPRT Prlluscry < II1PsT PslluscH)-
Proof We denote by H, the orthogonal complement of Hg in Hs. We then have

Ps = Pr + P, and (PRT|P.T)us(ry = (T PRIT Pe)us(ry = 0, T and T € HS(H).
We hence obtain || PST||%IS(H) = | PrT |}, + ||P6T||§S(H), and

IPST Pslifiscr) = | PRT Prlfis () + IPeT Pellfiscro)
+ I PRT Pellfigz¢) + 1 PeT Prlls 2o,

completing the proof. O

By boundedness of Pg, for u € 7r(K), we have PsL, = f% PsSi,du(t), and so

PsL,lh](x) = / Ks(x,H)h(t)du(t),h e H,x € Z'.
Z

The operator PsL,, € HS(H) can thus be regarded as an integral operator on H defined
by the kernel Kg and the measure w. Since Kg(t,1) < K(¢,1),t € 2", we may notice
that 7p(K) C Tr(Kys). We have

L, — PSLM||12_IS(H) = //% K(t,x)(K(x,1) — Kg(x, 1))du()di(x), and (12)

1L — PsLyPsllfs e = / /x K (x, 0 = [Ks(x, 1) Pdpu(6)dzz(x): (13)
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see (10), (11) and Lemma A.1 in Appendix A for a detailed computation (see also
Remark 4.2 for an alternative computation involving I").

Remark 4.2 Let Hy and Hy be two closed linear subspaces of H. For u € 7r(K) and
x € 2, we have

I[Py L, Pyl(x) = (ke|Py L, Pylkel)y = /x Ky(t, x)Ky (x, 1)du ().

From Theorem 3.1 and the properties of I, we then obtain

1Py Ly Pullgisrey = (T*TILLI Py Ly Py)uscry = (uITIPv Ly Pul)g.

For general subspaces Hy and Hy, the operator Py L, Py does not necessarily belong
to Z(I'); see Remark 4.3 for an example where this situation occurs. <

4.2 Projections defined by measures

Motivated by Lemmas 3.3 and 4.1, for v € Tp(K), we set H, = range(Lh,‘)H, and
we denote by P, the orthogonal projection from H onto H,,.

Lemma4.2 Forallv € Tg(K), we have L, = P,L,, = L,P, = P,L, P,.

Proof From Lemma 3.3, we have L, = P,L, and Ly = P,Ly. We then obtain
Ly=Li=(P,Ly)"=L,Py,andso L, = P,L,P,. O

For an initial operator L, with i € 7p(K), through the orthogonal projection P,
and in addition to L, an approximate measure v € 7r(K) also defines the approxi-
mations P,L,, L, P, or P,L, P, of L.

Lemma 4.3 Forall u and v € Tp(K), we have

1Ly = Lollfisrgy = 1w — PoLullfisrgy + 1Pv Ly — Lullfisey and — (14)
”L/L - Lu”]z-ls(H) = ”Lp, - PULMPV”IZLIS(H) + ”PVL;LPU - Lv”%{s(H)- (15)

Proof Using the notations of Remark 4.1, Lemma 4.2 reads L, € R(H,) N Z(H,).
Observing that L, — P, L, is orthogonal to R(H,) and that P,L, — L, € R(H,),
we obtain (14). In the same way, L, — P,L, P, is orthogonal to R(H,) N Z(H,),
and we have P,L, P, — L, € R(H,) N Z(H,), leading to (15). O

4.3 Error maps on sets of measures

In the framework of Sects.3.2 and 4.2, the characterisation of measures leading to
accurate approximations of an initial operator L,, u € 7p(K), relates to the min-
imisation of error maps measuring the accuracy of the approximations induced by a
measure v € Tp(K).
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Quadrature approximation. We define the error map D, : Tr(K) — Rxo, with

D) = Ly — Lullfisery = llgn — 8vlIg, v € Te(K).

Lemma4.4 For u € Tr(K), the map D, is convex on any convex set € C Tp(K).
For v and n € €, the directional derivative of D, at v along n — v is

1
lim —[Du(v+p( —v)) — Du(v)] = 2%((gv — gulgy — &)g)-
p—0t p

Proof For& = (1—p)v+pn,vandn € ¢, p € [0, 1], wehave g¢ = (1—-p)gv+pgy;
the convexity of D, on ¢ then follows from the convexity of the map g +— [|g,, — g ||é

on G. Next, the expansion of the squared norm |lg, — g — p(gy — gv)||é provides
the expected expression for the directional derivatives of D,,. O

Projection-based approximation. We denote by CE and CEP : Tp(K) — Rsp the
error maps defined as

Cr(v) = 1Ly = PyLyllgg g and C1P(v) = Ly — PyLu Pyl v € Te(K);

we may notice that C (v) = CX(|v|), X € {P, PP}.

Theorem 4.1 For u € 7r(K) and X € {P, PP}, the map Cff is convex on the real
convex cone T, (K), and for all v and n € T (K), we have

lim l[cfj(v +p(n —v)) = C(v)] € {00, 0}.

p—0t p

Proof For v,n € 7,.(K) and p € (0,1), weseté = v+ p(n —v) € 7.(K). The
three operators L, L, and L being PSD, independently of p € (0, 1), we have

null(Lg) = null(L,) Nnull(L;), and so Hg = H, + H,]H. The two maps
o CE(U +p(n— v)) and p C,};P(v +p(— v))
are therefore constant on the open interval (0, 1). From Lemma 4.1 and (10), noticing
that H, € He and H,) S He, we obtain C},(£) < C},(v) and C},(§) < C},(1); from
(11), we also get CEP(S) < CEP(U) and Cllzp(é) < CEP(n), concluding the proof. O
In view of Theorem 4.1, the maps CE and CEP are akin to piecewise-constant
functions. By contrast (see Lemma 4.4), the directional derivatives of the map D,, are

informative, in the sense that the landscape of D, can be explored through steepest
descents. From Remark 4.1 and Lemma 4.3, we have

Ch(v) < C;F(v) < Du(v), v € Tp(K), (16)
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L)

0y # vy
Fig. 1 Graphical representation of the maps D, and C PP as functions of the weight parameters character-
ising an approximate measure v € 74 (K). The measures u and v are supported by the same set of points
{x1,x2} € 27, and described by their weight parameters (w{, ) and (v, vp) € R2>0, respectively; the
red star represents the weight parameters of 1 = w8y, + @28y, . The presented graphs correspond to the
case w] = wy = 1, with K such that K(x, x1) = 1.225, K(x2, x2) = 0.894 and K (x1, x2) = 0.316.
In the graph of CEP , the point on the vertical axis indicates the value of the map at v = 0, and the bold
lines indicate the constant values taken by the map along the horizontal axes (and following Remark 4.3,
the graph of CEP is tangent to the graph of D, along the horizontal axes)

with C (1) = Dy (n) = 0and CJ(0) = D, (0) = || gy ||é (see also Remark 4.3). The
quadrature-approximation error map D,, may hence be regarded as a differentiable
relaxation of the projection-based-approximation error maps C/}: and CEP; see Fig. 1
for an illustration.

Remark4.3 For 1 € Tp(K) and s € 2, introducing c5, = gu(s)/|K(s,s)|2 if
K (s,s) > 0, and ¢5; = 0 otherwise, we have Ps L, Ps, = cs Si,. For K(s,s) =0,
we indeed have k; = 0, and so Ps, = 0, and for K (s, s) > 0,

K (x,s)h
Ps L, Ps[h](x) = L)(j) |K (s, )|*dp(t),h e Hand x € 2.
IK(s, 9> Jo
We obtain Ps, L, Ps, € Z(I') and C}¥ (8;) = Dy (cs,8,). 5 € 2. =

Remark 4.4 From a numerical standpoint, in view of (12) and (13), for v € 7p(K), the
evaluation of C /lj (v) or CEP(U) requires a suitable characterisation of the reproducing
kernel K, of H, (or equivalently, of the orthogonal projection P,); in practice, K,
is a priori unknown and needs to be computed from K and v (see Remark 4.5). In
comparison and in view of (7), the error map D, only involves the kernel K; the
projection-free nature of D, is of notable interest for numerical applications. <

Remark 4.5 Following Lemma 3.4, for a measure v supported by S = {sq, ..., Sp},
n € N, the reproducing kernel K, of H, can be expressed as

n
K,(x,1t) = Z K(x,s) jK(sj,t),xand t € 2,
ij=1

where s ; isthe i, j entry of the pseudoinverse (Moore-Penrose inverse) of the n x n
kernel matrix with i, j entry K (s;, s;). The worst-case time complexity of the eval-
uation of K, at M € N distinct locations in 2~ x 2" is thus O(n> + n>M). The
term O(n°) is related to the pseudoinversion of the kernel matrix defined by K and S,
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while the term O(n”M) corresponds to the evaluation, from this pseudoinverse and
the kernel K, of K,, at M different locations. <

5 Nonnegative measures and L2-embeddings

Following Sect.3.3, for u € 74 (K), the embedding L, H— L%(n) is HS. For
f e L*(w) and x € 27, we have

el LD = (kL) 20 = /% K (e, 0) f(0dp(o),
so that in addition to L, = th u € HS(H), the three operators

b L*(n) — H, by L*(n) — L*(n), and Lty - H — L*(w), (17)
can also be regarded as integral operators defined by the kernel K and the nonnegative
measure . These four interpretations are inherent to K, which characterises H, and
1, which characterises LZ(/L); see for instance [4, 19, 20, 22, 26] for illustrations. In
each case, the corresponding operator is HS, and we denote by HS (i, H), HS () and
HS(H, ;1) the Hilbert spaces of all HS operators from L2(u) to H, on L?(u1), and
from H to L?(u), respectively.

5.1 Partial L2-embeddings

For a closed linear subspace Hg C 'H, the embedding ¢, can be approximated by the
partial embedding v, Ps. For f € L*(u) and x € 2, we have

x| PsCELf 1 = {1, PsTRNf) 120) = fy Ks(x, 1) f(dp (),

L

so that PSL:‘L corresponds to an integral operator with kernel K. In the decomposi-
tion L, = 1,1, € HS(H), substituting each ¢, with ¢, Ps gives the approximation
PSL;L uPs discussed in Sect. 4. For the operators defined in (17), a similar substitution

yields the approximations
PSL:‘L € HS(u, H), LMPSLZ € HS(u), and LMP5LZLMPS € HS(H, w);

see also Remark 5.1. In what follows, we mainly focus on the approximations related to
HS(u, H) and HS(w); the case of HS(H, ©) is more briefly discussed in Remark 5.2.

Remark 5.1 In addition to PSLZL « Ps, the approximation of ¢, by ¢, Ps gives rise to
the approximations P5LZL . and LTLL u Ps of LZL u € HS(H) (see Sect.4). Similarly, for
LMLZLM € HS(H, p) and in addition to ¢, PSLZLM Py, the approximations L P5L:1LM and

Lyt Ps of vy, € HS(H, w) may be considered. In these approximations, the

substitution of ¢, with ¢, Pg is not applied invariably. <
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Lemma 5.1 Let Hg be a closed linear subspace of H. For i € T, (K), we have

1% — Pstt isqure = /f K, 1) — Ks(t, du(), and (18)
2
s — 0, Pt s = / /J K1) — KsCo, 0P du@du). (19)

Proof Let Hogs be the orthogonal complement of Hg in H; endowed with the Hilbert
structure of H, Hos is a RKHS, and Kos = K — K. For an ONB {4} c1 of H,
I C N, we have

2
15, = Pst Ifis ey = N Pos s,y = D /% | Posth 16| du(o);
Jjel

since Zjd |P05[hj](t)|2 = Kos(t,1),t € Z (see e.g. [17]), equality (18) follows
by monotone convergence. We also have

et = 1, Pst sy = e, Posth s = I1Pos Ly Poslifis (e
so that (19) follows from Lemma A.1 (we recall that L, = LZL - O

Remark 5.2 We consider four closed linear subspaces Hg, Hgs, Hy and Hy of H, and
let {h;} 1 be an ONB of H. For 4 € 7, (K), we have

(t,, PrU; L, Pslt, Putyt, Pv)uscH.

=[] ot PTG Kt Ko . D))

jel

(20)

with, form the CS inequality in £2(I) and in ,

/ / /Q/ S|Py 10| PsTh 1) || K r (s, 0] | Ko v, 0] di()dp0di) < 2.

jel

From (20) and Fubini’s theorem, we then for instance obtain

||LMLZLM - LMP5LZLMP5||%S(H,M) = ///9/ [K(t, HK (s, x)K(x, 1)
+Ks(t,)Ks(s, x)(Ks(x, 1) — 2K (x, t))]dM(S)du(t)du(x),

* * _ * 2
where we should observe that (¢, ¢t |t, Pst ¢, Ps)uscH.u) = It PS‘/A‘/L”HS(H,;L)‘ <

The following inequality (Lemma 5.2) holds between the approximations in HS (1)
and HS(H) defined by a subspace Hyg. We recall that [[¢,,c5, llHs) = 14, Ins(H)s
and that [|cj,¢, — PstzllLHHS(H) < g, — PSLZLMPS”HS(H) (see Remark 4.1).
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Lemma 5.2 Let Hg be a closed linear subspace of H. For all i € T, (K), we have

et = 4 Pst sy < N5at = Pstit s cry-

Proof We have ”LMLZ — L,LLPSLTL”HS(M) = ||POSL;LP0S||HS(H)’ with Ppg = idy —Ps.
The operators PosL, Pos and PysL, Ps being orthogonal in HS(H), we obtain

1 Pos Ly (Pos + P$)lIfis(gy = I1Pos Ly Pos iz + 11 Pos L Ps s o
and so [l¢, 0 — ¢, Pst lasy < e, — Psuit, lascr)- O
5.2 Trace and Frobenius error maps

Following Sect. 4.3 and considering subspaces of H defined by measures, we introduce
the error maps Cg and CE : Tp(K) — R, with

Chv) =, — Pvt;‘;nglsww and Cf,(v) = [l — 1, Pot’s sy v € TR(K).

The notations Clt{ and CE are motivated by the relation between these maps and the
trace and Frobenius norms; see Sect.5.3. As observed for CE and CEP, we may notice
that CX(v) = CX(Jv]), X € {tr, F}

Theorem 5.1 For u € T (K), the statement of Theorem 4.1 also holds for the maps
Cg and CE; that is, these two maps are convex on the real convex cone T4 (K), and
their directional derivatives take values in the set {—o0, 0}.

Proof We follow the same reasoning as in the proof of Theorem 4.1. For two measures
vand n € 74 (K) and for p € (0, 1), weseté = v+ p(n —v) € 7.(K). We then
have He = H, + HnH independently of p € (0, 1). We conclude by combining the
inclusions H, € Hg and H, € He with the inequalities provided in Lemma A.2
(Appendix A). O

As illustrated by Lemma 5.1 and Theorem 5.1, and as already observed for the
error maps C}: and CEP, the error maps Cg and CE are akin to piecewise-constant
functions, and their evaluation requires a suitable characterisation of the kernel of
subspaces of H. For u € 7,(K), the error maps cX, X e {tr, F, P, PP} can be
regarded as alternative ways to asses the accuracy of the approximation of ¢, by ¢, Py,
v € Tp(K). From the relation between the error maps D, and cX, X e {P,PP}
(see Lemma 4.3) the approximation of potentials in G can hence more generally be
regarded as a differentiable and projection-free surrogate for the characterisation of
accurate partial embeddings. From Lemma 5.2, we may notice that CE(\)) < CE(U),
v € Tr(K), extending the sequence of inequalities (16).

Remark 5.3 Let v € Tc(K) be a complex measure with real and imaginary parts
v, and v; € T(K). For u € 7T(K), the three operators L, L,, and L,, are self-
adjoint; we thus have ||L, — LV”%{S(H) = ||IL, — LMI%S(H) + ”LwH%IS(H)’ and
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so D, (v;) < Dy (v). Hence, when L, is self-adjoint, the search of an approximate
measure v for the approximation of L, by L, can be restricted to 7 (K). <

5.3 Column sampling for PSD-matrix approximation

Let Kbea N x N PSD matrix, with N € N; we denote by [N] the set of all integers
between 1 and N. For a subset I C [N] the Nystrém approximation® of K induced by
I is the N x N PSD matrix

K(I) =K. ;(K;. 'K, 1)

where K, ; is the matrix defined by the columns of K with index in /, and where
(K7, N is the pseudoinverse of the principal submatrix of K defined by I (and K; ,
consists of rows of K); see e.g. [9, 11, 14, 18].

For i and j € [N], the i, j entry of K may be regarded as the value K (i, j) of
a PSD kernel K defined on the discrete set 2" = [N]. The j-th column of K then
corresponds to the function k; € H, j € 2, and the subset / defines the closed
linear subspace H; = spang{k;|j € I} € H; in particular, the 7, j entry of K(I ) is
K;(i, j), with K; the reproducing kernel of H; (see e.g. [17], and Remark 4.5).

Introducing p© = ZlN: 1 6i, the Hilbert space Lz(,u) can be identified with the
Euclidean space CN; following Sect.5.2, we then observe that

e the trace norm | K — IA((I)||tr corresponds to (18), and
e the squared Frobenius norm | K — K(/) ||12: corresponds to (19).

The column-sampling problem for the Nystrom approximation of a PSD matrix K,
that is, the search of a subset I/ € [N]leading to an accurate approximation K(I) of K,
is thus a special instance of the general framework discussed in Sect. 5.1. In particular,
the support of an approximate measure v on 2 = [N] defines a subset of columns
of K, and the approximation of potentials in the RKHS G may be used as surrogate
for the characterisation of such measures. In the discrete setting, G corresponds to the
RKHS defined by the N x N PSD matrix S with i, j entry |K;, j|2 (that is, S is the

element-wise product between K and K, the conjugate of K).

6 Concluding discussion

We described the overall framework surrounding the isometric representation of inte-
gral operators with PSD kernels as potentials, and illustrated the equivalence between
the quadrature approximation of such integral operators and the approximation of inte-
gral functionals on RKHSs with squared-modulus kernels. Through subspaces defined
by measures and partial L?-embeddings, we also discussed the extent to which the
approximation of potentials in RKHSs with squared-modulus kernels can be used as

2 In the machine-learning literature, Nystrom approximation refers to the low-rank approximation of PSD
matrices through column sampling; although related, this terminology should not to be confused with the
quadrature method for the approximation of integral equations.
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a differentiable surrogate for the characterisation of projection-based approximation
of integral operators with PSD kernels.

The link between integral-operator approximation and potential approximation
may be leveraged to design sampling strategies for low-rank approximation (where
approximations are characterised by sparse finitely-supported measures). The direct
minimisation of D, under sparsity-inducing constraints is for instance considered in
[10], while the possibility to locally optimised the support of approximate measures
using particle-flow techniques is studied in [13]. Sequential approaches, where support
points are added one-at-a-time on the basis of information provided by the directional
derivatives of D, are investigated in [12]. The present work aims at supporting this
type of approaches by strengthening their theoretical underpinning.
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A Technical results

Lemma A.1 Let Hy and Hy be two closed linear subspaces of H. For all u € Tr(K),
we have

1Py Ly Pylifisy = / /jg Ky (t,x)Ky (6, Ddp()da ).
Proof We consider an ONB {/;};e1 of H, I € N. From (6), we have

1Py L Pullfisrey = 2 (L Pulhill Py Ly Pulhjl)a
jel

-y / fg/ Pulh 1 PoTh 0O Ky (x. () dFE ().
jel e
22)

As Zjd Pylhjlt)Pylh;l(x) = Ky(t,x), x and t € 2 (see e.g. [17]), and since
Ky(t,t) < K(t,t)and Ky (t,t) < K(, t), from the CS inequality in %) and in H,
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we obtain

/fy S| Pulh O Pulh 10| | Ky (r, 0]dlal il () < 72

jel
the result then follows form (22) and Fubini’s theorem. O

LemmaA.2 Let Hg and Hpg be two closed linear subspaces of 'H; we assume that
Hg < 7‘[*5. For alliL € 7,.(K), we*have ||L:i : PSLZ”HS(M,H) < ||LZ — PRLZ”HS(M,H)
and ”L/LLM - tMPSLM”HS(/L) S ”LII.L/L - LMPRLM”HS([L)'

Proof We denote by H, the orthogonal complement of Hg in Hg. Noticing that

Ps = Pr + P, and that (LTL — PRL;|P9LZ)HS(M’H) = ||P€‘;”12LIS(H,H)’ we obtain

* * 12 TS * 2 * 12
16 = Pstplltas ey = Nt — PrU s ) — IPety s .-

Denoting by Ho s and Hog the orthogonal complements of H g and H g in H, respec-
tively, we have Hos € Hog; Lemma 4.1 then gives

llt,, Posty sy = Il Pos Ly Posliuscry < 1 PorLyPorllascry = llt, Porty IHS ()

completing the proof. O
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