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Abstract
We present approximate solutions for the robust semi-infinite multi-objective convex
symmetric cone programming problem. By using the robust optimization approach,
we establish an approximate optimality theorem and approximate duality theorems
for approximate solutions in convex symmetric cone optimization problem involving
infinitely many constraints to be satisfied and multiple objectives to be optimized
simultaneously under the robust characteristic cone constraint qualification. We also
give an example to illustrate the obtained results in an important special case, namely
the robust semi-infinite multi-objective convex second-order cone program.

Keywords Robust symmetric cone optimization · Semi-infinite programming ·
Multi-objective programming · Approximate optimality conditions · Approximate
duality theorems

Mathematics Subject Classification 90C20 · 90C25 · 90C29 · 90C34 · 90C46

1 Introduction

Robust optimization [1–4] has become a very active methodological approach that
is established to deal with optimization problems under uncertainty. The uncertainty
means that the entering parameters of those problems are not acknowledged pre-
cisely on the time while an answer must be determined. In recent years, many authors
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have established approximate optimality conditions and duality theorems for approx-
imate solutions (ε-solutions) for different classes of optimization problems [5–21].
More specifically, Jeyakumar and Li established strong duality for robust semidefi-
nite linear programming [8], Lee and Jiao established quasi approximate solutions for
robust convex programming [9], Lee and Lee established approximate solutions for
robust convex programming [11], robust fractional programming [12], robust convex
semidefinite programming [14], and robust semi-infinite programming [15]. Lee and
Lee also establishedoptimality conditions andduality theorems for robust semi-infinite
multi-objective programming [13].

Convex symmetric cone optimization [22–26] problems are a class of convex opti-
mization problems in which we minimize a convex function over the intersection of
an affine set with the Cartesian product of symmetric cones. Well-known examples of
symmetric cones are the nonnegative orthant cone, the second-order cone, the cone
of symmetric positive semidefinite matrices, the cone of complex hermitian positive
semidefinite matrices, and the cone of quaternion Hermitian positive semidefinite
matrices. Therefore, well-studied special cases of symmetric programming are linear
programming, second-order cone programming [27–30] and semidefinite program-
ming [31–33]. Other special cases are optimization problems over complex Hermitian
positive semidefinite matrices, and optimization problems over quaternion Hermitian
positive semidefinite matrices [22, 23, 25].

To illustrate the modeling potential of conic programming and the extensive appli-
cability of symmetric cone programming, we mention that all convex programming
problems can be formulated as conic programs [34], and that almost all real-world
applications of conic programming are associated with symmetric cones [27, 28, 31,
32, 34]. There is a strong relationship between symmetric cone programming and
Euclidean Jordan algebras. When we optimize over symmetric cones, the importance
of Euclidean Jordan algebras stems from the fact that a cone is symmetric if and only
if it is the cone of squares of some Euclidean Jordan algebra. Some Jordan algebraic
notations, are listed in Table 1. These notations will be used in the sequel. Readers who
are unfamiliar with the theory of Jordan algebra are encouraged to read [22, Section
2].

Despite the genuine need for establishing an approximate optimality theorem and
approximate duality theorems for convex symmetric cone programming problems,
there are no symmetric conicity analogs of these approximate theorems. Inspired by
this gap in the literature, in this paper, we establish ε-solutions for the robust convex
symmetric cone programming problem. Our setting is general in the sense that our
convex symmetric cone optimization problem involves infinitely many constraints
and multiple objective functions. That is, we establish an ε-optimality theorem and
ε-duality theorems for robust semi-infinite multi-objective convex symmetric cone
programming. We also apply our results to an important special case, namely the
robust semi-infinite multi-objective convex second-order cone program.
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Table 1 Some Jordan algebraic notations will be used throughout the paper

Notation Denotation

J n Euclidean Jordan algebra with dimension n (we drop n if it is
known from the context)

rank(J ) The rank of J
e The identity element of J
x ◦ y The Jordan product that maps (x, y) from J × J to J
x2 x ◦ x (in general, for n ≥ 2, xn := xn−1 ◦ x)

KJ The cone of squares of a Euclidean Jordan algebra J defined as
KJ := {x2 : x ∈ J }

int KJ The interior of the cone KJ
λ1, . . . , λr The eigenvalues of an element x in a rank-r algebra J (the roots of

its characteristic polynomial)

trace(x) The trace of an element x in J
(
trace(x) :=

√∑r
i=1 λi

)

x • y The Frobenius inner product of x, y ∈ J defined as
x • y := trace(x ◦ y)

‖x‖ The Frobenius norm of an element

x ∈ J
(

‖x‖ := √
x • y =

√∑r
i=1 λ2i

)

x �KJ 0 (x �KJ 0) x is an element in KJ (int KJ )

We also write x � 0 (x � 0) if J is known from the context

y 	KJ x (y ≺KJ x) Same as x �KJ y (x �KJ y)

The semi-infinite multi-objective symmetric programming problem is defined as

(SIMSP)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

min

(
f1(x), f2(x), . . . , fK (x)

)

s.t. a(t)
0 +

m∑
i=1

xia
(t)
i � 0, t ∈ T ,

where x ∈ R
m , fk : R

m → R, k = 1, . . . , K , for a(t)
i ∈ J for i = 0, 1, . . . ,m, t ∈

T , J is a Jordan algebra with dimension n and rank r , and T is an arbitrary index set
that can be infinite.

The semi-infinite multi-objective symmetric programming problem with uncertain
data in the constraints is defined as

(USIMSP)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min

(
f1(x), f2(x), . . . , fK (x)

)

s.t. a(t)
0 +

m∑
i=1

xia
(t)
i � 0, t ∈ T ,
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where, for each i = 0, 1, . . . ,m and t ∈ T , the element a(t)
i belongs to an uncertainty

set V(t)
i ⊆ J .

The robust counterpart of USIMSP is defined as

(RSIMSP)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

min

(
f1(x), f2(x), . . . , fK (x)

)

s.t. a(t)
0 +

m∑
i=1

xia
(t)
i � 0, ∀a(t)

i ∈ V(t)
i , i = 0, 1, . . . ,m, t ∈ T .

Hence, the robust feasible set FP of RSIMSP is given as

FP =
{
x ∈ R

m : a(t)
0 + ∑m

i=1 xia
(t)
i � 0, ∀a(t)

i ∈ V(t)
i , t ∈ T , i ∈ I

}
,

where I := {0, 1, 2, . . . ,m}. We make the following assumptions throughout this
paper.

Assumption 1.1 For each t ∈ T and i ∈ I , V(t)
i ⊆ J is compact and convex.

Assumption 1.2 The robust feasiblity set FP has a nonempty interior.

Assumption 1.1 is necessary to give a characterization and prove properties of the
robust characteristic cone which will be given in the next section. Assumption 1.2 is
called the Slater condition and is necessary to prove and apply the robust version of
Farkas’ lemma.

We use R
n+ := {(x1, . . . , xn) ∈ R

n : xi ≥ 0, i = 1, . . . , n} to denote the nth
dimensional nonnegative orthant cone of R

n . Its interior, int R
n+ := {(x1, . . . , xn) ∈

R
n : xi > 0, i = 1, . . . , n}, is denoted by R

n++. Let ε = (ε1, . . . , εk) ∈ R
K+ ,

we say that x̄ ∈ FP is an ε-solution of RSIMSP if for any x ∈ FP we have that
fk(x) ≥ fk(x̄) − εk for each k = 1, . . . , K . Our focus in this paper is to present the
approximate solutions (ε-solutions) for RSIMSP.

The next pages of the paper are structured as follows: Sect. 2 defines the robust
characteristic cone and proves its convexity. The ε-optimality condition theorem and
the ε-duality theorems for robust semi-infinite multi-objective symmetric program-
ming are established in Sects. 3 and 4, respectively. In Sect. 5, we apply our results
to an important special case, robust semi-infinite multi-objective second-order cone
program.

2 The robust characteristic cone

In this section, we define the robust characteristic cone for our setting and and prove
that it is closed and convex. First, we present some preliminaries.

Let R̄ := [−∞,+∞] and f : R
n → R̄ be a function. We say f is proper if for

all x ∈ R
n, f (x) > −∞ and there exists x0 ∈ R

n such that f (x0) ∈ R. A proper
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function f is said to be convex if for all μ ∈ [0, 1], we have

f ((1 − μ)x + μy) ≤ (1 − μ) f (x) + μ f (y)

for all x, y ∈ R
n . The domain of f is defined to be the set dom f := {x ∈

R
n : f (x) < +∞}. The epigraph of f is defined to be the set epi f :=

{(x, r) ∈ R
n × R : f (x) ≤ r}.

The subdifferential of f at x ∈ R
n is defined as

∂ f (x) =
{ {x� ∈ R

n : 〈x�, y − x〉 ≤ f (y) − f (x), ∀y ∈ R
n}, if x ∈ dom f ,

∅, otherwise.

In general, for any ε ≥ 0 , the ε-subdifferential of f at x ∈ R
n is defined by

∂ε f (x) =
{ {x� ∈ R

n : 〈x�, y − x〉 ≤ f (y) − f (x) + ε, ∀y ∈ R
n}, if x ∈ dom f ,

∅, otherwise.

A function f is said to be a lower semi-continuous function if lim infy→x f (y) ≥
f (x) for all x ∈ R

n . The conjugate function of any proper convex function g on R
n

is the function g� : R
n → R ∪ {+∞} defined as

g�(x�) = sup
{〈x�, x〉 − g(x) : x ∈ R

n}

for any x� ∈ R
n . The following proposition is due to Jeyakumar et al. [35].

Proposition 2.1 Let f , g : R
n → R∪{+∞} be proper lower semicontinuous convex

functions. If one of the functions f and g is continuous, then

epi ( f + g)� = epi f � + epi g�.

For a given set A ⊂ R
n , we write cl A and co A to denote the closure of A and the

convex hull generated by A, respectively. The indicator function δA is defined as

δA(x) =
{
0, x ∈ A,

+∞, otherwise.

In convex programming, a constrained minimization problem over a closed convex
subset C of R

n can be reformulated as an unconstrained minimization problem by
replacing its objective function, say f , with the function ( f + δC )(x). The following
proposition is due to Hiriart-Urruty and Lemarechal [36].

Proposition 2.2 Let f : R
n → R be a convex function, C be a closed convex subset

of R
n, and ε ≥ 0. Then

∂ε( f + δC )(x̄) =
⋃

ε0≥0, ε1≥0,
ε0+ε1=ε

{
∂ε0 f (x̄) + ∂ε1δC (x̄)

}
.
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We have also the following proposition [37, 38].

Proposition 2.3 Let I is an arbitrary index set, and gi : R
n → R ∪ {∞} be a proper

lower semicontinuous convex function for i ∈ I . Assume that there exists x0 ∈ R
n

such that supi∈I gi (x0) ≤ +∞. Then

epi

(
sup
i∈I

gi

)�

= cl

(
co

⋃
i∈I

epi g�
i

)
.

Let D be the robust characteristic cone defined as

D :=
⋃

a(t)
i ∈V(t)

i , i∈I , t∈T{∑
t∈T

(
z(t) • a(t)

1 , . . . , z(t) • a(t)
m , −z(t) • a(t)

0 − r (t)
)

: z(t) � 0, r (t) ≥ 0

}
.

The following lemma shows that D is indeed a cone in R
m+1 under Assumption 1.1.

Lemma 2.1 The set D ⊂ R
m+1 is a cone.

Proof It s clear that 0 ∈ D. To prove the desired result, we need to show that for
each x ∈ D and λ ∈ R++, we have λx ∈ D. Since x ∈ D, there exist ai =
(a(t)

i )t∈T , i ∈ I , z = (z(t))t∈T , and r ∈ R
(T )
+ , where a(t)

i ∈ V(t)
i and z(t) � 0,

for all t ∈ T and i ∈ I , such that xi = ∑
t∈T (z(t) • a(t)

i ) for i = 1, . . . ,m, and

xm+1 = −∑
t∈T (z(t) • a(t)

0 + r (t)). It follows that λxi = ∑
t∈T (λz(t) • a(t)

i ) and

λxm+1 = −∑
t∈T (λz(t) • a(t)

0 + r̄). Note that λr (t) ≥ 0, and that λz(t) � 0 because
KJ is a cone. Thus, λx ∈ D. ��

The following lemma is due to [21, Lemma 4.2].

Proposition 2.4 Let ε ∈ R+, then x̄ is an ε-solution of RSIMSP if

K∑
k=1

fk(x) ≥
K∑

k=1

fk(x̄) − ε

for any x ∈ FP ∩ {x ∈ R
m : fk(x) ≥ fk(x̄), k = 1, . . . , K }.

We say that RSIMSP satisfies the convexity condition if for every t ∈ T we have

V(t)
i =

⎧⎨
⎩a(t)

0 +
l∑

j=1

u(t)
i j
a(t)
j :

(
u(t)
i1

, u(t)
i2

, . . . , u(t)
il

)
∈ U (t)

i

⎫⎬
⎭ ,

whereU (t)
i is compact convex subset of R

l , a(t)
0 ∈ J and a(t)

j � 0, for each t ∈ T , i ∈
I , and j = 1, 2, . . . , l. We point out that if the above convexity condition holds, then
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the uncertainty sets V t
i includes the box uncertainty sets of linear programming and

the spectrahedral uncertainty sets of semidefinite programming as special cases.
The closeness and convexity of the robust characteristic cone D are necessary for

the robust characteristic cone constraint qualification to hold. The following lemma
proves the convexity of D under the convexity condition of RSIMSP (see also [39,
Proposition 1]).

Lemma 2.2 If RSIMSP satisfies the convexity condition, the robust characteristic cone
D is convex.

Proof Let x, y ∈ D and let λ ∈ [0, 1]. We want to show that λx + (1 − λ)y ∈ D.
From the definition of D, there exist hi = (h(t)

i )t∈T , ci = (c(t)
i )t∈T , i ∈ I , b =

(b(t))t∈T , n = (n(t))t∈T , and r , s ∈ R
(T )
+ , where h(t)

i , c(t)
i ∈ Vt , and b(t), n(t) � 0, for

i ∈ I , t ∈ T , such that

xi =
∑
t∈T

(
b(t) • h(t)

i

)
, i ∈ I − {0}, xm+1 = −

∑
t∈T

(
b(t) • h(t)

0 + r (t)
)

,

yi =
∑
t∈T

(
n(t) • c(t)

i

)
, i ∈ I − {0}, ym+1 = −

∑
t∈T

(
n(t) • c(t)

0 + s(t)
)

.

Sinceh(t)
i , c(t)

i ∈ Vt , there exist (u
(t)
i1

, u(t)
i2

, . . . , u(t)
il

) ∈ U (t)
i and (v

(t)
i1

, v
(t)
i2

, . . . , v
(t)
il

)

∈ U (t)
i such that, for each i ∈ I , we have

h(t)
i = a(t)

0 +
l∑

j=1

u(t)
i j
a(t)
j , and c(t)

i = a(t)
0 +

l∑
j=1

v
(t)
i j
a(t)
j .

Fixing an i ∈ I − {0}, we have that

λxi + (1 − λ)yi = λ
∑
t∈T

(
b(t) • h(t)

i

)
+ (1 − λ)

∑
t∈T

(
n(t) • c(t)

i

)

=
∑
t∈T

⎛
⎝λ b(t) •

⎛
⎝a(t)

0 +
l∑

j=1

u(t)
i j
a(t)
j

⎞
⎠ + (1 − λ) n(t)

•
⎛
⎝a(t)

0 +
l∑

j=1

v
(t)
i j
a(t)
j

⎞
⎠
⎞
⎠

=
∑
t∈T

⎛
⎝a(0)

j •
(
λb(t) + (1 − λ)n(t)

)

+
l∑

j=1

(
λu(t)

i j
b(t) • a(t)

j + (1 − λ)v
(t)
i j

n(t) • a(t)
j

)
⎞
⎠ .
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For i ∈ I , t ∈ T and j = 1, 2, . . . , l, we define w
(t)
i j

as

w
(t)
i j

=

⎧⎪⎪⎨
⎪⎪⎩

λu(t)
i j

b(t) • a(t)
j + (1 − λ)v

(t)
i j

n(t) • a(t)
j(

λb(t) + (1 − λ)n(t)
) • a(t)

j

, if
(
λb(t) + (1 − λ)n(t)

) • a(t)
j �= 0,

u(t)
i j

, if
(
λb(t) + (1 − λ)n(t)

) • a(t)
j = 0.

By the convexity of U (t)
i , it is clear that (w

(t)
i1

, w
(t)
i2

, . . . , w
(t)
il

) ∈ U (t)
i for i ∈ I . In

addition, for each i ∈ I − {0}, t ∈ T and j = 1, 2, . . . , l, we have that

w
(t)
i j

(
λb(t) + (1 − λ)n(t)

)
• a(t)

j = u(t)
i j

(
λb(t) • a(t)

j

)
+ v

(t)
i j

(
(1 − λ)n(t) • a(t)

j

)
.

(1)

Note that if (λb(t) + (1 − λ)n(t)) • a(t)
j �= 0, the equality in (1) follows trivially. If

(λb(t) + (1 − λ)n(t)) • a(t)
j = 0, then λb(t) • a(t)

j = (1 − λ)n(t) • a(t)
j = 0 because

b(t), n(t), a(t)
j � 0, for all i ∈ I − {0}, t ∈ T and j = 1, 2, . . . , l, and hence the

equality in (1) follows in this case as well. It follows immediately that

λxi + (1 − λ)yi =
∑
t∈T

⎛
⎝(

λb(t) + (1 − λ)n(t)
)

• a(t)
0 +

l∑
j=1

(
w

(t)
i j

(
λb(t) + (1 − λ)n(t)

)
• a(t)

j

)
⎞
⎠

=
∑
t∈T

⎛
⎝(

λb(t) + (1 − λ)n(t)
)

•
⎛
⎝a(t)

0 +
l∑

j=1

w
(t)
i j
a(t)
j

⎞
⎠
⎞
⎠ ,

for i ∈ I − {0}. Similarly it is also seen that

λxm+1 + (1 − λ)ym+1 = −
∑
t∈T

⎛
⎝(

λb(t) + (1 − λ)n(t)
)

•
⎛
⎝a(t)

0 +
l∑

j=1

w
(t)
0 j
a(t)
j

⎞
⎠

+
(
λr (t) + (1 − λ)s(t)

))
.

Note thatλr (t)+(1−λ)s(t) ≥ 0,λb(t)+(1−λ)n(t) � 0, and (w
(t)
i1

, w
(t)
i2

, . . . , w
(t)
il

) ∈
U (t)
i , for each i ∈ I and t ∈ T . This implies that λx + (1 − λ)y ∈ D, and therefore

D is convex. The proof is complete. ��
The following lemma proves the closeness of D under Assumptions 1.1 and 1.2

(see also [8, Corollary 2.1]).

Lemma 2.3 If the Slater condition holds, the robust characteristic cone D is closed.

Proof Let {x(k)}∞k=1 := {(x1(k), x2(k), . . . , xm+1(k))}∞k=1 be a sequence in D that is
convergent to the point x := (x1, x2, . . . , xm+1) ∈ R

m+1. To show thatD is closed, we
want to show that x ∈ D. From the definition ofD, there existai (k) = (a(t)

i (k))t∈T , i ∈

123
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I , z(k) = (z(t)(k))t∈T , and r(k) ∈ R
(T )
+ , where a(t)

i (k) ∈ V(t)
i and z(t)(k) � 0, for all

t ∈ T and i ∈ I , such that

xi (k) =
∑
t∈T

(
z(t)(k) • a(t)

i (k)
)

, i = 1, 2, . . . ,m, (2)

and

xm+1(k) = −
∑
t∈T

(
z(t)(k) • a(t)

0 (k) + r (t)(k)
)

. (3)

Based on Assumption 1.1, the sequence {a(t)
i (k)}∞k=1 has a convergent subsequence.

Therefore, after passing to a convergent subsequence, if necessary, wemay assume that
a(t)
i (k) → a(t)

i ∈ V(t)
i . Now, we show that {‖(z(t)(k)‖} is a bounded sequence by con-

tradiction. Suppose on the contrary that ‖(z(t)(k)‖ → +∞. Then, z(t)(k)/‖z(t)(k)‖ →
z(t) ∈ KJ −{0}. Dividing both sides of (2) and (3) by ‖z(t)(k)‖ and applying the limit,
we obtain

∑
t∈T

(
z(t) • a(t)

i

)
= 0, i = 1, 2, . . . ,m, and −

∑
t∈T

(
z(t) • a(t)

0

)

=
∑
t∈T

lim
k→∞

r (t)(k)

‖z(t)(k)‖ ≥ 0.

Based on Assumption 1.2, there exists x (0) ∈ R
m such that a(t)

0 + ∑m
i=1 x

(0)
i a(t)

i � 0,

for all a(t)
i ∈ V(t)

i , and

z(t) •
(
a(t)
0 +

m∑
i=1

x (0)
i a(t)

i

)
= z(t) • a(t)

0 +
m∑
i=1

x (0)
i

(
z(t) • a(t)

i

)
≤ 0.

This is on one side of the coin, but on the other side, since z(t) ∈ KJ − {0}, we
have z(t) • (a(t)

0 + ∑m
i=1 x

(0)
i a(t)

i ) > 0, which is a contradiction. Hence, the sequence
{‖z(t)(k)‖}∞k=1 is bounded. From (3), the sequence {r (t)(k)}∞k=1 is also bounded. There-
fore, after passing to a subsequence, if necessary, we can assume that z(t)(k) → z̄(t)

and r (t)(k) → r̄ (t). By applying the limit in (2) and (3), we have

xi =
∑
t∈T

(
z̄(t) • a(t)

i

)
, i = 1, 2, . . . ,m, and xm+1 = −

∑
t∈T

(
z̄(t) • a(t)

0 + r̄ (t)
)

.

Thus, x ∈ D. This completes the proof. ��
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3 �-Optimality theorem

In this section, we establish the ε-optimality theorem for our problem. First, we prove
two intermediate lemmas. The next lemma is the robust version of Farkas’ lemma for
our setting, and is based on Assumptions 1.2 and 1.1.

Lemma 3.1 Let (ck, αk) ∈ R
m × R for k = 1, . . . , K, then

FP ⊂ {
x ∈ R

m : 〈ck, x〉 ≥ αk, k = 1, . . . , K
} ⇐⇒

K∑
K=1

(ck, αk) ∈ cl co D.

Proof Assume that FP ⊂ {x ∈ R
m : 〈ck, x〉 ≥ αk, k = 1, . . . , K }, and let φk(x) =

〈ck, x〉 − αk for k = 1, 2, . . . , K . Then FP ⊂ {x ∈ R
m : φk(x) ≥ 0, k = 1, . . . , K }.

It follows that
∑K

k=1 φk(x) + δFP (x) ≥ 0 for all x ∈ R
m . Note that φk is continuous

for k = 1, 2, . . . , K . Therefore, using Proposition 2.1, we have

(0, 0) ∈ epi

(
K∑

k=1

φk + δFP

)�

=
K∑

k=1

epi φ�
k + epi δ�

FP

=
K∑

k=1

(ck, αk) + {0} × R+ + epi δ�
FP .

Thus,

K∑
k=1

(ck, αk) ∈ −epi δ�
FP − {0} × R+. (4)

The desired result is obtained by showing that
∑K

k=1(ck, αk) ∈ cl co D. To prove this,
in light of (4), it is enough to show that epi δ�

FP = −cl co D.

Note that, for each z(t) � 0, a(t)
i ∈ V(t)

i , i ∈ I , t ∈ T and ξ ∈ R
m , we have

(
− z(t) • a(t)

0 −
〈
· ,

(
z(t) • a(t)

1 , . . . , z(t) • a(t)
m

) 〉)�

(ξ)

= sup
x∈Rm

{
〈ξ, x〉 −

(
−z(t) • a(t)

0 −
〈
x,

(
z(t) • a(t)

1 , . . . , z(t) • a(t)
m

)〉)}

= sup
x∈Rm

{
m∑
i=1

ξi xi +
m∑
i=1

(
xi z

(t) • a(t)
i

)}
+ z(t) • a(t)

0

= sup
x∈Rm

{
m∑
i=1

(
xi

(
ξi + z(t) • a(t)

i

))}
+ z(t) • a(t)

0

=
{
z(t) • a(t)

i , if ξi = −z(t) • a(t)
i , i = 1, . . . ,m,

+∞, otherwise.
(5)
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Note also that, for any x ∈ R
m , we have

δFP (x) = sup
a(t)
i ∈V(t)

i , i∈I ,
z(t)�0, t∈T

(
−z(t) •

(
a(t)
0 +

m∑
i=1

xia
(t)
i

))
.

It follows that

epi δ�
FP = epi

⎛
⎜⎜⎜⎝ sup

a(t)
i ∈V(t)

i , i∈I ,
z(t)∈ �0, t∈T

∑
t∈T

(
− z(t) • a(t)

0 −
〈
· ,

(
z(t) • a(t)

1 , . . . , z(t) • a(t)
m

)〉)
⎞
⎟⎟⎟⎠

�

= cl

⎛
⎜⎜⎜⎜⎝
co

⋃

a(t)
i ∈V(t)

i , i∈I ,
z(t)�0, t∈T

epi
∑
t∈T

(
− z(t) • a(t)

0 −
〈
· ,

(
z(t) • a(t)

1 , . . . , z(t) • a(t)
m

)〉)�

⎞
⎟⎟⎟⎟⎠

cl

⎛
⎜⎜⎜⎝co

⋃

a(t)
i ∈V(t)

i , i∈I , t∈T

{∑
t∈T

(
− z(t) • a(t)

1 , . . . , −z(t) • a(t)
m , z(t) • a(t)

0 + r

)
:

z(t) � 0, r (t) ≥ 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎞
⎟⎟⎟⎠ = −cl co D,

where the second equality follows from Propositions 2.1 and 2.3 and the third equality
follows from (5). The proof is complete. ��

The following lemma is also based on Assumption 1.1.

Lemma 3.2 Let x̄ ∈ FP and ε ≥ 0. Let also fk : R
m → R be a convex function

for k = 1, 2, . . . , K. Then x̄ is an ε-solution of RSIMSP if and only if for each
k = 1, 2, . . . , K and t ∈ T , there exist εk, εt ≥ 0 and ξk ∈ ∂εk fk(x̄) such that∑K

k=1 εk + ∑
t∈T εt = ε and

(
K∑

k=1

ξk,

〈
K∑

k=1

ξk, x̄

〉
−

∑
t∈T

εt

)
∈ cl co D.

Proof Assume that x̄ is an ε-solution of RSIMSP, where ε ≥ 0. Then, for any x ∈
FP ,

∑K
k=1 fk(x) ≥ ∑K

k=1 fk(x̄) − ε. It follows that, for any x ∈ R
m , we have

K∑
k=1

fk(x) + δFP (x) ≥
K∑

k=1

fk(x̄) + δFP (x̄) − ε.
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Then, according to the definition of ε-subdifferentiability, we deduce that 0 ∈
∂ε(

∑K
k=1 fk + δFP )(x̄), which in view of Proposition 2.2 is equivalent to

0 ∈
K∑

k=1

∂εk fk(x̄) +
∑
t∈T

∂εt δFP (x̄).

Therefore, for each k = 1, . . . , K and t ∈ T , there exist εk, εt ≥ 0, ξk ∈ ∂εk fk(x̄),
and −ξt ∈ ∂εt δFP (x̄) such that

k∑
k=1

εk +
∑
t∈T

εt = ε and
k∑

k=1

ξk −
∑
t∈T

ξt = 0.

Equivalently, for each k = 1, . . . , K and t ∈ T , there exist εk, εt ≥ 0 and ξk ∈
∂εk fk(x̄) such that 〈ξk, x〉 ≥ 〈ξk, x̄〉 − εt for any x ∈ FP and t ∈ T , and hence

〈
K∑

k=1

ξk, x

〉
≥

〈
K∑

k=1

ξk, x̄

〉
−

∑
t∈T

εt

for any x ∈ FP . By Lemma 3.1, we conclude that for each k = 1, . . . , K and t ∈ T ,
there exist εk, εt ≥ 0 and ξk ∈ ∂εk δFP (x̄) such that

(
K∑

k=1

ξk,

〈
K∑

k=1

ξk, x̄

〉
−

∑
t∈T

εt

)
∈ cl co D.

The proof is complete. ��
In light of Lemmas 3.1 and 3.2, we can obtain the ε-optimality theorem under the

robust characteristic cone constraint qualification.

Theorem 3.1 (Approximate optimality theorem) Consider the RSIMSP problem, and
let x̄ ∈ FP . Then x̄ is an ε-solution of RSIMSP if and only if there exist (εt )t∈T ∈
R

(T )
+ , εk ∈ R+, ξk ∈ ∂εk fk(x̄), k = 1, 2, . . . , K, āi = (ā(t)

i )t∈T , i ∈ I , and z̄ =
(z̄(t))t∈T , where ā(t)

i ∈ V(t)
i and z̄(t) � 0, for all t ∈ T and i ∈ I , such that

∑K
k=1 εk +∑

t∈T εt = ε, and

K∑
k=1

ξk =
∑
t∈T

(
z̄(t) • ā(t)

1 , z̄(t) • ā(t)
2 , . . . , z̄(t) • ā(t)

m

)
, (6)

∑
t∈T

εt ≥
∑
t∈T

(
z̄(t) •

(
ā(t)
0 +

m∑
i=1

x̄i ā
(t)
i

))
≥ 0. (7)
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Proof Assume that x̄ is an ε-solution of RSIMSP, where ε ≥ 0. By Lemma 3.2, for
each t ∈ T and k = 1, 2, . . . , K , there exist εk, εt ≥ 0 and ξk ∈ ∂εk fk(x̄) such that∑K

k=1 εk + ∑
t∈T εt = ε and

(
K∑

k=1

ξk,

〈
K∑

k=1

ξk, x̄

〉
−

∑
t∈T

εt

)
∈

⋃

a(t)
i ∈V(t)

i , i∈I , t∈T

×
{∑
t∈T

(
z(t) • a(t)

1 , . . . , z(t) • a(t)
m , −z(t) • a(t)

0 − r

)
: z(t) � 0, r (t) ≥ 0

}
.

It follows that

K∑
k=1

ξk =
∑
t∈T

(
z̄(t) • ā(t)

1 , z̄(t) • ā(t)
2 , . . . , z̄(t) • ā(t)

m

)
,

〈
K∑

k=1

ξk, x̄

〉
−

∑
t∈T

εt = −
∑
t∈T

(
z̄(t) • ā(t)

0 + r̄ (t)
)

,

for some (r̄ (t))t∈T ∈ R
(T )
+ , āi = (ā(t)

i )t∈T , i ∈ I , and z̄ = (z̄(t))t∈T , with ā(t)
i ∈ V(t)

i
and z̄(t) � 0, for all t ∈ T and i ∈ I .

By combining (3) and (3), we get

∑
t∈T

εt ≥
∑
t∈T

(
εt − r̄ (t)

)
=

∑
t∈T

(
z̄(t) • ā(t)

0

)
+

〈
K∑

k=1

ξk, x̄

〉

=
∑
t∈T

(
z̄(t) •

(
ā(t)
0 +

m∑
i=1

x̄i ā
(t)
i

))
≥ 0.

This proves the first direction.
For the second, assume that there exist (εt )t∈T ∈ R

(T )
+ , εk ∈ R+, ξk ∈ ∂εk fk(x̄),

k = 1, 2, . . . , K , āi = (ā(t)
i )t∈T , i ∈ I , and z̄ = (z̄(t))t∈T , where ā(t)

i ∈ V(t)
i and

z̄(t) � 0, for all t ∈ T and i ∈ I , such that the equality
∑K

k=1 εk +∑
t∈T εt = ε holds,

and that (6) and (7) hold. By the definition of the ε-subdifferentiality of f , for any
x ∈ R

m , we have that

K∑
k=1

fk(x) −
K∑

k=1

fk(x̄) ≥
〈

K∑
k=1

ξk, x − x̄

〉
−

K∑
k=1

εk

=
〈∑
t∈T

(
z̄(t) • ā(t)

1 , . . . , z̄(t) • ā(t)
m

)
, x − x̄

〉
−

K∑
k=1

εk
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=
∑
t∈T

(
z̄(t) •

(
m∑
i=1

xi ā
(t)
i

)
− z̄(t) •

(
m∑
i=1

x̄i ā
(t)
i

))
−

K∑
k=1

εk

≥
∑
t∈T

(
z̄(t) •

(
ā(t)
0 +

m∑
i=1

x̄i ā
(t)
i

))
−

K∑
k=1

εk −
∑
t∈T

εt

=
∑
t∈T

(
z̄(t) •

(
ā(t)
0 +

m∑
i=1

x̄i ā
(t)
i

))
− ε ≥ − ε,

where the first equality is obtained from (6), the second and third inequalities follow
from (7). Therefore,

∑K
k=1 fk(x) ≥ ∑K

k=1 fk(x̄) − ε, for any x ∈ FP . Thus, from
Proposition 2.4, x̄ is an ε-solution of RSIMSP. This proves the second direction. The
result is established. ��

Inmulti-objective optimization problems, a solution is called Pareto optimal if none
of the objective values can be improved without degrading some of the other objective
values. The following remark is an immediate corollary of Theorem 3.1.

Remark 3.1 If the vectors (εt )t∈T ∈ R
(T )
+ and (εk)1≤k≤K ∈ R

K+ in Theorem 3.1 tend
to the null vector, we obtain (exact) optimality conditions for Pareto solutions.

4 �-Duality theorems

The (Wolfe-type) dual problem associated with the RSIMSP problem is the problem

(RSIMSD)⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

(
f1(y) −

∑
t∈T

(
z(t) •

(
a(t)
0 +

m∑
i=1

yia
(t)
i

))
, . . . , fK (y)

−
∑
t∈T

(
z(t) •

(
a(t)
0 +

m∑
i=1

yia
(t)
i

)))

s.t. 0 ∈
K∑

k=1

∂εk fk(y) −
∑
t∈T

(
z(t) • a(t)

1 , z(t) • a(t)
2 , . . . , z(t) • a(t)

m

)
,

K∑
k=1

εk ≤ ε, εk ≥ 0, z(t) � 0, a(t)
i ∈ V(t)

i , t ∈ T , i ∈ I , k = 1, 2, . . . , K .

Note that RSIMSD has the feasibility set

FD :=
{

(y, a0, . . . , am, z) : ai =
(
a(t)
i

)
t∈T , z =

(
z(t)

)
t∈T , 0 ∈

K∑
k=1

∂εk fk(y)

−
∑
t∈T

(
z(t) • a(t)

1 , . . . , z(t) • a(t)
m

)
,
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K∑
k=1

εk ≤ ε, εk ≥ 0, y ∈ R
m, a(t)

i ∈ V(t)
i , z(t) � 0,

t ∈ T , i ∈ I , k = 1, 2, . . . , K

}
.

Let ε ≥ 0. The point (x̄, ā0, . . . , ām, z̄) is called an ε-solution of RSIMSD if for
any (y, a0, . . . , am, z) ∈ FD we have

K∑
k=1

fk(x̄) −
∑
t∈T

(
z̄(t) •

(
ā(t)
0 +

m∑
i=1

x̄i ā
(t)
i

))

≥
K∑

k=1

fk(y) −
∑
t∈T

(
z(t) •

(
a(t)
0 +

m∑
i=1

yia
(t)
i

))
− ε.

Now, we are ready to establish the ε-weak duality theorem, which holds between
the RSIMSP problem and its dual, the RSIMSD problem.

Theorem 4.1 (Approximate weak duality theorem) For any feasible solution x of
RSIMSP and any feasible solution (y, a0, a1, . . . , am, z) of RSIMSD, we have

K∑
k=1

fk(x) ≥
K∑

k=1

fk(y) −
∑
t∈T

(
z(t) •

(
a(t)
0 +

m∑
i=1

yia
(t)
i

))
− ε.

Proof Let x and (y, a0, a1, . . . , am, z) be feasible solutions of RSIMSP and RSIMSD,
respectively. Then ai = (a(t)

i )t∈T and z = (z(t))t∈T , where a(t)
i ∈ V(t)

i and z(t) � 0,

for all t ∈ T and i ∈ I , and the inequality
∑

t∈T (z(t) • (a(t)
0 + ∑m

i=1 xia
(t)
i )) ≥ 0

holds. It follows that, for each k = 1, 2, . . . , K , there exist εk ≥ 0, ξk ∈ ∂εk fk(x)

such that
∑K

k=1 ξk = ∑
t∈T

(
z(t) • a(t)

1 , z(t) • a(t)
2 , . . . , z(t) • a(t)

m

)
and

∑K
k=1 εk ≤ ε.

Then, by the definition of the ε-subdifferentiability, we have that

K∑
k=1

fk(x) −
(

K∑
k=1

fk(y) −
∑
t∈T

(
z(t) •

(
a(t)
0 +

m∑
i=1

yia
(t)
i

)))

≥
〈

K∑
k=1

ξk, x − y

〉
−

K∑
k=1

εk +
∑
t∈T

(
z(t) •

(
a(t)
0 +

m∑
i=1

yia
(t)
i

))

=
〈∑
t∈T

(
z(t) • a(t)

1 , z(t) • a(t)
2 , . . . , z(t) • a(t)

m

)
, x − y

〉
−

K∑
k=1

εk

+
∑
t∈T

(
z(t) •

(
a(t)
0 +

m∑
i=1

yia
(t)
i

))
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=
∑
t∈T

(
z(t) •

(
a(t)
0 +

m∑
i=1

xia
(t)
i

))
−

K∑
k=1

εk

≥ −
K∑

k=1

εk ≥ − ε.

The proof is complete. ��
Now, we state and prove the ε-strong duality, which holds theorem between

RSIMSP and RSIMSD under the robust characteristic cone constraint qualification.

Theorem 4.2 (Approximate strong duality theorem) Assume that the robust charac-
teristic cone D is closed and convex. If x̄ is an ε-solution of RSIMSP, then there exist
ai = (a(t)

i )t∈T , i ∈ I , and z = (z(t))t∈T , where a(t)
i ∈ V(t)

i and z(t) � 0, for all t ∈ T
and i ∈ I , such that (x̄, ā0, ā1, . . . , ām, z̄) is a 2ε-solution of RSIMSD.

Proof Let x̄ be an ε-solution of RSIMSP, then by using Theorem 3.1, there exist
(εt )t∈T ∈ R

(T )
+ , εk ∈ R+, ξk ∈ ∂εk fk(x̄), k = 1, 2, . . . , K , āi = (ā(t)

i )t∈T , i ∈ I , and

z̄ = (z̄(t))t∈T , where ā(t)
i ∈ V(t)

i and z̄(t) � 0, for all t ∈ T and i ∈ I , such that

K∑
k=1

εk +
∑
t∈T

εt = ε,

K∑
k=1

ξk =
∑
t∈T

(
z̄(t) • ā(t)

1 , z̄(t) • ā(t)
2 , . . . , z̄(t) • ā(t)

m

)
,

and
∑
t∈T

εt ≥
∑
t∈T

(
z̄(t) •

(
ā(t)
0 +

m∑
i=1

x̄i ā
(t)
i

))
≥ 0.

Therefore, the point (x̄, ā0, ā1, . . . , ām, z̄) is a feasible solution for RSIMSD. Then,
using Theorem 4.1, for any feasible solution (y, a0, a1, . . . , am, z) of RSIMSD, we
have that

K∑
k=1

fk(x̄) −
∑
t∈T

(
z̄(t) •

(
ā(t)
0 +

m∑
i=1

x̄i ā
(t)

))

−
(

K∑
k=1

fk(y) −
∑
t∈T

(
z(t) •

(
a(t)
0 +

m∑
i=1

yia
(t)
i

)))

≥ −ε −
∑
t∈T

(
z̄(t) •

(
ā(t)
0 +

m∑
i=1

x̄i ā
(t)
i

))

≥ −ε −
∑
t∈T

εt

= −ε − ε +
K∑

k=1

εk ≥ − 2ε.

This means that (x̄, ā0, ā1, . . . , ām, z̄) is a 2ε-solution of RSIMSD. ��
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Now, we give the ε-strong duality between RSIMSP and RSIMSD under the Slater
condition and the weakened robust characteristic cone constraint qualification.

Corollary 4.1 Assume that the robust Slater condition holds and that the robust
characteristic cone D is convex. If x̄ is an ε-solution of RSIMSP, then there exist
ai = (a(t)

i )t∈T , i ∈ I , and z = (z(t))t∈T , where a(t)
i ∈ V(t)

i and z(t) � 0, for all t ∈ T
and i ∈ I , such that (x̄, ā0, ā1, . . . , ām, z̄) is a 2ε-solution of RSIMSD.

Proof By Lemma 2.3, the robust characteristic cone D is closed. The result immedi-
ately follows from Theorem 4.2. ��

In the remaining part of this paper, we shall demonstrate in an example that the
approximate weak and strong duality of a second-order cone program hold true even
though the Slater condition fails.

5 An illustrative example

Throughout this section, we use “,” for adjoining vectors and matrices in a row, and
use “;” for adjoining them in a column. So, for example, if a, and b are vectors, then
(aT, bT)T = (a; b).

Let En be the n-dimensional real vector spaceR×R
n−1 whose elements are indexed

from 0. For each vector x ∈ En , we write x̄ for the sub-vector consisting of entries 1
through n − 1; therefore x = (x0; x̄).

The nth-dimensional second-order cone (also known as the quadratic or Lorentz
cone) is defined as

En+ :=
{
(x0; x̄) ∈ R × R

n−1 : x0 ≥ ‖x̄‖
}

,

where ‖ · ‖ denotes the Euclidean norm.

The cone En+ is closed, pointed (i.e., it does not contain a pair of opposite nonzero
vectors) and convex with nonempty interior in R

n . It is also known that En+ is self-dual
(i.e., it equals its dual cone), and homogeneous (i.e., its automorphism group acts
transitively on its interior). Therfore, the cone En+ is symmetric [22, 27]. The graph to
the right shows the 3rd-dimensional second-order cone E3+.

Table 2 lists some notions from the Euclidean Jordan algebra associated with the
second-order cone.
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Table 2 Some notions associated with the Jordan algebra of the second-order cone

Notion Definition

Euclidean Jordan algebra En :=
{
(x0; x̄) : x0 ∈ R, x̄ ∈ R

n−1
}

Identity vector e := (1; 0) ∈ En

Jordan product ◦ : En × En → En x ◦ y :=
(
xTy; x0 ȳ + y0 x̄

)

Square of x x2 := x ◦ x =
(
‖x‖2; 2x0 x̄

)

Cone of squares KEn :=
{
x2 : x ∈ En

}
= En+

Frobenius inner product • : En × En → R x • y := xTy

Frobenius norm ‖x‖ := √
x • x =

√
xTx

In this section, we consider the robust semi-infinite multi-objective convex second-
order cone programming problem:

(RSIMSOCP)

⎧⎪⎪⎨
⎪⎪⎩

min
(
x1 + x22 ; x1

)

s.t. a(t)
0 + x1a

(t)
1 + x2a

(t)
2 � 0, t ∈ [0, 1],

a(t)
i ∈ V(t)

i ⊆ E3, t ∈ [0, 1], i = 0, 1, 2,

where V(t)
0 ,V(t)

1 and V(t)
2 , t ∈ [0, 1], are the uncertainty subsets:

V(t)
0 :=

{(
u(t)
0 ; 0; u(t)

0

)
: u(t)

0 ∈ [−t, 0]
}

,

V(t)
1 :=

{(
1; u(t)

1 ; 1
)

: u(t)
1 ∈ [−t, t]

}
,

V(t)
2 :=

{(
u(t)
2 ; 0; u(t)

2

)
: u(t)

2 = t
}

.

Now, for any t ∈ [0, 1], we have

a(t)
0 + x1a

(t)
1 + x2a

(t)
2 =

⎡
⎢⎣
u(t)
0 + x1 + x2u

(t)
2

x1u
(t)
1

u(t)
0 + x1 + x2u

(t)
2

⎤
⎥⎦ .

One can see that FP = {(x1; x2) : x1 = 0, x2 ≥ 1} is the set of all robust feasible
solutions of RSIMSOCP. Let ε ≥ 0, then SFP = {(0; x2) : 1 ≤ x2 ≤ √

1 + ε} is the
set of all ε-solutions of RSIMSOCP.

The robust characteristic cone is

D =
⋃

a(t)
i ∈V(t)

i ,i=0,1,2, t∈T

{∑
t∈T

(
z(t)

T
a(t)
1 ; z(t)Ta(t)

2 ; −z(t)
T
a(t)
0 − r (t)

)
: z(t) ∈ E3+, r (t) ≥ 0

}
.
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Note that z(t) ∈ E3+ means that z(t)0 ≥
∥∥∥(z(t)1 ; z(t)2 )

∥∥∥ = ((z(t)1 )2 + (z(t)2 )2)1/2. It follows

that

D =
⋃

u(t)
0 ∈[−t,0], u(t)

2 =t,

u(t)
1 ∈[−t,t], t∈T

{ ∑
t∈T

(
z(t)0 + z(t)1 u(t)

1 + z(t)2 ;
(
z(t)0 + z(t)2

)
u(t)
2 ;

−
(
z(t)0 + z(t)2

)
u(t)
0 − r (t)

)
: z(t)0 ≥

√(
z(t)1

)2 +
(
z(t)2

)2
, r (t) ≥ 0

}
,

which is the set R × R+ × R, hence D is closed and convex.
It is clear that a(t)

0 + x1a
(t)
1 + x2a

(t)
2 is on the boundary of the second-order cone

for any (x1; x2) ∈ FP , hence the robust Slater condition fails.
We now formulate theWolf dual problem, RSIMSOCD, of RSIMSOCP as follows

(RSIMSOCD)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

(
y1 + y22 −

∑
t∈T

(
z(t)

T
(
a(t)
0 + y1a

(t)
1 + y2a

(t)
2

))
,

y1 −
∑
t∈T

(
z(t)

T
(
a(t)
0 + y1a

(t)
1 + y2a

(t)
2

)))

s.t. 0 ∈ ∂ε1 f1(y) + ∂ε2 f2(y) −
∑
t∈T

(
z(t)

T
a(t)
1 , z(t)

T
a(t)
2

)
,

ε1 + ε2 ≤ ε, ε1 ≥ 0, ε2 ≥ 0, z(t) ∈ E3+, a(t)
i ∈ V(t)

i , t ∈ T , i = 0, 1, 2.

Let U = [−t, 0] × [−t, t] × {t}. Then the feasible set FD is

FD =
{(

y1, y2, a
(t)
0 , a(t)

1 , a(t)
2 , z(t)

)
∈ R

2 × U × E3+ : (0, 0) ∈ ∂ε1 f1(y1, y2) + ∂ε2 f2(y1, y2)

−
∑
t∈T

(
z(t)

T
a(t)
1 + z(t)

T
a(t)
2

)
,

ε1 + ε2 ≤ ε, ε1 ≥ 0, ε2 ≥ 0, a(t)
i ∈ V(t)

i , t ∈ T , i = 0, 1, 2

}

=
{(

y1, y2, a
(t)
0 , a(t)

1 , a(t)
2 , z(t)

)
∈ R

2 × U × E3+ : (0, 0) ∈ {2}
× [

2y2 − 2
√

ε1 + ε2, 2y2 + 2
√

ε1 + ε2
]

−
∑
t∈T

((
z(t)0 + z(t)1 u(t)

1 + z(t)2

)
;
(
z(t)0 + z(t)2

)
u(t)
2

)
, ε1 + ε2 ≤ ε, ε1 ≥ 0,

ε2 ≥ 0, a(t)
i ∈ V(t)

i , t ∈ T , i = 0, 1, 2

}

=
{(

y1, y2, a
(t)
0 , a(t)

1 , a(t)
2 , z(t)

)
∈ R

2 × U × E3+ : 2y2 − 2
√

ε1 + ε2

≤
∑
t∈T

(
z(t)0 + z(t)2

)
u(t)
2 ≤ 2y2 + 2

√
ε1 + ε2,

∑
t∈T

(
z(t)0 + z(t)1 u(t)

1 + z(t)2

)
= 2, ε1 + ε2 ≤ ε, ε1 ≥ 0, ε2 ≥ 0, a(t)

i ∈ V(t)
i , t ∈ T , i = 0, 1, 2

}
.
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Then, for any (x1, x2) ∈ FP and any (y1, y2, a
(t)
0 , at1, a

(t)
2 , z(t)) ∈ FD, we have,

with x1 = 0 and x2 ≥ y2, that

f1(x1, x2) + f2(x1, x2) −
(
f1(y1, y2) + f2(y1, y2) −

∑
t∈T

(
z(t)

T (
a(t)
0 + y1a

(t)
1 + y2a

(t)
2

)))

= x22 − y1 − y22 − y1 +
∑
t∈T

((
z(t)0 + z(t)2

)
u(t)
0 +

(
z(t)0 + z(t)1 u(t)

1 + z(t)2

)
y1 +

(
z(t)0 + z(t)2

)
u(t)
2 y2

)

≥ (
2y2 + 2

√
ε1 + ε2

)
(x2 − y2) − ε1 +

(
−2 +

∑
t∈T

(
z(t)0 + z(t)1 u(t)

1 + z(t)2

))
y1 − ε2

+
∑
t∈T

((
z(t)0 + z(t)2

)
u(t)
0 +

(
z(t)0 + z(t)2

)
u(t)
2 y2)

)

≥
∑
t∈T

(
z(t)0 + z(t)2

)
u(t)
2 (x2 − y2) − ε1 − ε2 +

∑
t∈T

((
z(t)0 + z(t)2

)
u(t)
0 +

(
z(t)0 + z(t)2

)
u(t)
2 y2

)

=
∑
t∈T

(
z(t)0 + z(t)2

) (
u(t)
2 x2 + u(t)

0

)
− ε1 − ε2

=
∑
t∈T

(
z(t)

T (
a(t)
0 + 0.a(t)

1 + x2a
(t)
2

))
− ε1 − ε2

≥ −ε1 − ε2 ≥ − ε.

Also, for any (x1, x2) ∈ FP and any (y1, y2, a
(t)
0 , at1, a

(t)
2 , z(t)) ∈ FD, we have, with

x1 = 0 and x2 < y2, that

f1(x1, x2) + f2(x1, x2) −
(
f1(y1, y2) + f2(y1, y2) −

∑
t∈T

(
z(t)

T (
a(t)
0 + y1a

(t)
1 + y2a

(t)
2

)))

= x22 − y1 − y22 − y1 +
∑
t∈T

((
z(t)0 + z(t)2

)
u(t)
0 +

(
z(t)0 + z(t)1 u(t)

1 + z(t)2

)
y1 +

(
z(t)0 + z(t)2

)
u(t)
2 y2

)

≥ (
2y2 − 2

√
ε1 + ε2

)
(x2 − y2) − ε1 +

(
−2 +

∑
t∈T

(
z(t)0 + z(t)1 u(t)

1 + z(t)2

))
y1 − ε2

+
∑
t∈T

((
z(t)0 + z(t)2

)
u(t)
0 +

(
z(t)0 + z(t)2

)
u(t)
2 y2

))

≥
∑
t∈T

(
z(t)0 + z(t)2

)
u(t)
2 (x2 − y2) − ε1 − ε2 +

∑
t∈T

((
z(t)0 + z(t)2

)
u(t)
0 +

(
z(t)0 + z(t)2

)
u(t)
2 y2

)

=
∑
t∈T

(
z(t)0 + z(t)2

) (
u(t)
2 x2 + u(t)

0

)
− ε1 − ε2

=
∑
t∈T

(
z(t)

T (
a(t)
0 + 0.a(t)

1 + x2a
(t)
2

))
− ε1 − ε2

≥ −ε1 − ε2 ≥ − ε.

This implies that for any (x1, x2) ∈ FP and any (y1, y2, a
(t)
0 , at1, a

(t)
2 , z(t)) ∈ FD, we

have

f1(x1, x2) + f2(x1, x2) −
(
f1(y1, y2) + f2(y1, y2) −

∑
t∈T

(
z(t)

T (
a(t)
0 + y1a

(t)
1 + y2a

(t)
2

)))
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≥ −ε. (8)

Therefore, the approximate weak duality theorem (Theorem 4.1) holds.
For the strong duality, let (x̄1, x̄2) = (0,

√
1 + ε) ∈ SFP , ε1+ε2 = (

√
1 + ε−1)2.

Let also

z̄(t) =
⎡
⎣
2
√
1 + ε − 2

√
ε1 + ε2

0
0

⎤
⎦ , ā(t)

0 =
⎡
⎣

−1
0

−1

⎤
⎦ , ā(t)

1 =
⎡
⎣

1
−1
1

⎤
⎦ , and

ā(t)
2 =

⎡
⎣
1
0
1

⎤
⎦ , t ∈ T .

One can see that (x̄1, x̄2, ā
(t)
0 , āt1, ā

(t)
2 , z̄(t)) ∈ FD for t ∈ T . Furthermore, for any

(y1, y2, a
(t)
0 , at1, a

(t)
2 , z(t)) ∈ FD, we have that

f1(x̄1, x̄2) + f2(x̄1, x̄2) −
∑
t∈T

(
z̄(t)

T
(
ā(t)
0 + x̄1ā

(t)
1 + x̄2ā

(t)
2

))

− f1(y1, y2) − f2(y1, y2) +
∑
t∈T

(
z(t)

T
(
a(t)
0 + y1a

(t)
1 + y2a

(t)
2 )

))

≥ −ε −
∑
t∈T

(
z̄(t)

T
(
ā(t)
0 + x̄1ā

(t)
1 + x̄2ā

(t)
2

))

= −ε − (
2
√
1 + ε − 2

√
ε1 + ε2

)( − 1 + √
1 + ε

)

= −ε −
((√

1 + ε − √
ε1 + ε2 − 1

)2 − ε1 − ε2 + ε

)

= −ε + ε1 + ε2 − ε ≥ − 2ε,

where we used (8) to obtain the first inequality. Thus, the approximate strong duality
theorem (Theorem 4.2) also holds.

Acknowledgements The authors thankYifanDou from theOhioStateUniversity for reading themanuscript
and pointing out misprints. The authors also thank the two anonymous expert referees for their valuable
suggestions from which the paper has benefited.

References

1. Ben-Tal, A., Ghaoui, L.E., Nemirovski, A.: Robustness, in Handbook on Semidefinite Programming.
Kluwer, New York (2000)

2. Ben-Tal, A., Ghaoui, L.E., Nemirovski, A.: Robust Optimzation. Princeton University Press, Princeton
(2009)

3. Bertsimas, D., Pachamanova, D., Sim, M.: Robust linear optimization under general norms. Oper. Res.
Lett. 32, 510–516 (2004)

4. Goldfarb, D., Iyengar, G.: Robust convex quadratically constrained programs. Math. Program. 97,
495–515 (2003)

123



86 Page 22 of 23 B. Alzalg, A. A. Oulha

5. Govil, M.G., Mehra, A.: ε-Optimality for multi-objective programming on a Banach space. Eur. J.
Oper. Res. 157, 106–112 (2004)

6. Gutiérrez, C., Jiménez, B., Novo, V.: Multiplier rules and saddle-point theorems for Helbig’s approx-
imate solutions in convex Pareto problems. J. Glob. Optim. 32, 367–383 (2005)

7. Hamel, A.: An ε-Lagrangemultiplier rule for amathematical programming problem onBanach spaces.
Optimization 49, 137–149 (2001)

8. Jeyakumar, V., Li, G.Y.: Strong duality in robust semi-definite linear programming under data uncer-
tainty. Optimization 63, 713–733 (2014)

9. Lee, J.H., Jiao, L.G.: On quasi ε-solution for robust convex optimization problems. Optim. Lett. 11,
1609–1622 (2017)

10. Lee, J.H., Lee, G.M.: ε-Duality theorems for convex semidefinite optimization problems with conic
constraints. J. Inequal. Appl. 2010, 363012 (2010)

11. Lee, J.H., Lee, G.M.: On ε-solutions for convex optimization problemswith uncertainty data. Positivity
16, 509–526 (2012)

12. Lee, J.H., Lee, G.M.: On ε-solutions for robust fractional optimization problems. J. Inequal. Appl.
2014, 501 (2014)

13. Lee, J.H., Lee, G.M.: On optimality conditions and duality theorems for robust semi-infinite multi-
objective optimization problems. Ann. Oper. Res. 269, 419–438 (2018)

14. Lee, J.H., Lee, G.M.: On approximate solutions for robust convex semidefinite optimization problems.
Positivity 22, 419–438 (2018)

15. Lee, J.H., Lee, G.M.: On ε-solutions for robust semi-infinite optimization problems. Positivity 23,
651–669 (2019)

16. Liu, J.C.: ε-Duality theorem of nondifferentiable nonconvex multi-objective programming. J. Optim.
Theory Appl. 69, 153–167 (1991)

17. Liu, J.C.: ε-Pareto optimality for nondifferentiable multi-objective programming via penalty function.
J. Math. Anal. Appl. 198, 248–261 (1996)

18. Arutyunov, A., Polyak, B.T., Mordukhovich, B.S.: Variational analysis and generalized differentiation
I. Basic theory, II. Applications. Autom. Remote Control 70, 1086–1087 (2009)

19. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory, II. Appli-
cations. Springer, Berlin (2006)

20. Strodiot, J.J., Nguyen, V.H., Heukemes, N.: ε-Optimal solutions in nondifferentiable convex program-
ming and some related question. Math. Program. 25, 307–328 (1983)

21. Yokoyama, K.: Epsilon approximate solutions for multi-objective programming problems. J. Math.
Anal. Appl. 203, 142–149 (1996)

22. Schmieta, S., Alizadeh, F.: Extension of primal-dual interior point algorithms to symmetric cones.
Math. Program. Ser. A 96, 409–438 (2003)

23. Schmieta, S.H., Alizadeh, F.: Associative and Jordan algebras, and polynomial time interior point
algorithms for symmetric cones. Math. Oper. Res. 26(3), 543–564 (2001)

24. Alzalg, B.: A primal-dual interior-point method based on various selections of displacement step for
symmetric optimization. Comput. Optim. Appl. 72, 363–390 (2019)

25. Alzalg, B., Ariyawansa, K.A.: Logarithmic barrier decomposition-based interior point methods for
stochastic symmetric programming. J. Math. Anal. Appl. 409, 973–995 (2014)

26. Alzalg, B.: Combinatorial and Algorithmic Mathematics: From Foundation to Optimization, 1st edn.
Kindle Direct Publishing, Seattle, WA (2022)

27. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. Ser. B 95, 3–51 (2003)
28. Alzalg, B.: Stochastic second-order cone programming: application models. Appl. Math. Model. 36,

5122–5134 (2012)
29. Alzalg, B., Badarneh, K., Ababneh, A.: Infeasible interior-point algorithm for stochastic second-order

cone optimization. J. Optim. Theory Appl. 181, 324–346 (2019)
30. Alzalg, B.: A logarithmic barrier interior-point method based on majorant functions for second-order

cone programming. Optim. Lett. 14, 729–746 (2020)
31. Todd, M.J.: Semidefinite optimization. Acta Numer. 10, 515–560 (2001)
32. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38, 49–95 (1996)
33. Ariyawansa, K., Zhu, Y.: A class of polynomial volumetric barrier decomposition algorithms for

stochastic semidefinite programming. Math. Comput. 80, 1639–1661 (2019)
34. Nesterov, Yu.E., Nemirovskii, A.S.: Conic formulation of a convex programming problem and duality.

Optim. Methods Softw. 1, 95–115 (1992)

123



On approximate solutions for robust semi-infinite… Page 23 of 23 86

35. Jeyakumar, V., Lee, G.M., Dinh, N.: Characterization of solution sets of convex vector minimization
problems. Eur. J. Oper. Res. 174, 1380–1395 (2006)

36. Hiriart-Urruty, J.B., Lemarechal, C.: Convex Analysis and Minimization Algorithms, vol. I and II.
Springer, Berlin (1993)

37. Jeyakumar, V., Lee, G.M., Dinh, N.: New sequential Lagrange multiplier conditions characterizing
optimality without constraint qualification for convex programs. SIAM J. Optim. 14, 534–547 (2003)

38. Li, C., Ng, K.F., Pong, T.K.: Constraint qualifications for convex inequality systems with applications
in constrainted optimization. SIAM. J. Optim. 19, 163–187 (2008)

39. Goberna, M.A., Jeyakumar, V., Li, G., López, M.A.: Robust linear semi-infinite programming duality
under uncertainty. Math. Program. 139(1–2), 185–203 (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	On approximate solutions for robust semi-infinite multi-objective convex symmetric cone optimization
	Abstract
	1 Introduction
	2 The robust characteristic cone
	3 ε-Optimality theorem
	4 ε-Duality theorems
	5 An illustrative example
	Acknowledgements
	References




