
Positivity (2022) 26:7
https://doi.org/10.1007/s11117-022-00892-3 Positivity

On the class of b-weakly compact operators

Hamadi Baklouti1 ·Mohamed Hajji2 · Radhouene Moulahi1

Received: 30 August 2021 / Accepted: 3 December 2021 / Published online: 11 February 2022
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract
We study the b-weakly compact operators using the Banach-Saks sets. More precisely,
we will establish that an operator T from a Banach lattice E into a Banach space Y is
b-weakly compact if and only if T carries b-order bounded subsets of E onto Banach-
Saks subsets ofY . Nextwe give a sequential characterization of these operatorswithout
requiring the sequences to be disjoint. Also, we describe the relationships between b-
weakly compact, and b-L-weakly compact operators.

Keywords Positive operator · Banach-Saks set · Banach lattice · b-weakly compact
operator
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1 Introduction

The class of b-weakly compact operators were introduced by S. Alpay, B. Altin and
C. Tonyali in [3]. Since then, this concept has been studied by many authors; see, for
instance, [2, 4, 6]. Recall that an operator T from a Banach lattice E to a Banach space
X is said b-weakly compact whenever T carries each b-order bounded subset of E
into a relatively weakly compact subset of X .A subset B of E is said b-order bounded
if it is order bounded in E

′′
(the topological bidual of E). It is not difficult to check

that an order bounded subset of E is b-order bounded. However, the unit ball of c0 is
b-order bounded but not order bounded. Note that each weakly compact operator T
is b-weakly compact, but the converse is not always true. In fact, the identity operator
I dL1[0,1] : L1[0, 1] −→ L1[0, 1] is b-weakly compact, but not weakly compact (see
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Example 2.6 (a) in [3]). Some characterization of b-weakly compact operators are
given by Alpay et al ([3], Proposition 2.8) and B. Altin ([4], Proposition 1). More
precisely, if T is a bounded operator from a Banach lattice E into a Banach space X ,
the following assertions are equivalent:

• T is b-weakly compact.
• lim

n
‖T xn‖ = 0 for every b-order bounded disjoint sequence (xn)n∈N of E

• (T xn)n∈N is norm convergent for every positive increasing sequence (xn)n∈N of
the closed unit ball BE of E .

The main aim of the present paper is studying b-weakly compact operators using the
Banach-Saks sets. In Sect. 2 we introduce some basic definitions and facts concerning
Banach-Saks and b-order bounded sets. In particular, we prove that the notions of an
L-weakly compact and a Banach-Saks set coincide for intervals. In Sect. 3 we present
some characterizations of the b-weakly compact operators. Mainly, we prove that an
operator T from a Banach lattice E into a Banach space Y is b-weakly compact if
and only if T carries b-order bounded subsets of E onto Banach-Saks subsets of Y
if and only if limn ‖T xn‖ = 0 for every b−order bounded sequence (xn)n∈N of E+
satisfying that the sequence of arithmetic means

( 1
n

∑n
k=1 xk

)
n converge in norm to

zero (Theorems 3.3 and 3.6). In Sect. 4, we establish some relationships between the
notions of a b-weakly compact, and a b-L-weakly compact operator. In particular,
we prove that these two notions coincide for positive operators between two Banach
lattices E and F such that F has an order continuous norm.

We refer the reader to [1, 16] for any unexplained terms from the theory of Banach
lattices and operators.

2 Banach-Saks and b-order bounded sets

A Banach lattice is a Banach space (E, ||.||) such that E is a Riesz space and its
norm satisfies the following property: For each x, y ∈ E such that |x | ≤ |y|, we have
||x || ≤ ||y||. Note that the topological dual E ′, endowed with the dual norm and the
dual order is a Banach lattice. The maximum, respectively the minimum of the set
{xi , 1 ≤ i ≤ n} is denoted by ∨n

i=1xi , respectively ∧n
i=1xi . A net (uα) in a Banach

lattice is said to be disjoint whenever |uα| ∧ |uβ | = 0 holds for α 	= β.

Recall from [15] that a subset A of a Banach space X is called Banach-Saks if each
bounded sequence (xn)n∈N of A has a subsequence (yn)n∈N whose arithmetic means
converge in norm. That is, there exists y ∈ E such that:

lim
n→∞ ‖1

n

n∑

k=1

yk − y‖ = 0.

In relying uponProposition 2.3 in [15], aBanach-Saks set isweakly relatively compact.
The converse statement is in general not true [7]. We have the following result.

Lemma 2.1 Let (hn)n∈N be a b-order bounded disjoint sequence of a Banach lattice
E . Then limn ‖ 1

n

∑n
k=1 hk‖ = 0.
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Proof Let (hn)n∈N be a disjoint sequence of E such that 0 ≤ hn ≤ x ′′ holds for all
n ∈ N and for some x ′′ ∈ E

′′
. Observe that 0 ≤ ∨m

i=1hi = ∑m
i=1 hi ≤ x ′′ for all

m ∈ N. Therefore, 0 ≤ 1
n

∑n
i=1 hi ≤ x ′′

n for all n ∈ N, which implies that

‖1
n

n∑

i=1

hi‖ ≤ ‖x ′′‖
n

→ 0.

��
Recall that a Banach lattice E is said to be order continuous if limα ‖xα‖ = 0 for

every decreasing net (xα)α in E such that inf(xα) = 0. Let E be an order continuous
Banach lattice, an element e ∈ E is said to be a weak unit if for h ∈ E, e ∧ h = 0
implies h = 0. The set of all positive vectors of E is denoted by E+. The ideal
generated by a vector x ∈ E is denoted by Ex and is given by

Ex = {y ∈ E; ∃ λ > 0 with |y| ≤ λ|x |}.

Recall from ([16], Definition 3.6.1) that A bounded subset S of E is said to be L-
weakly compact , if ‖xn‖ −→ 0 for every disjoint sequence (xn)n in the solid hull of
S. The solid hull of S is given by

Sol(S) = {x ∈ E : |x | ≤ |a| for some a ∈ S}.

The maximal closed ideal in E on which the induced norm is order continuous is
denoted by Ea . A Grothendieck type characterization of L-weakly compact sets is
expressed as follows.

Theorem 2.2 (Proposition 3.6.2 in [16]) Let A be a non-empty bounded subset of E .

The following assertions are equivalent:

(1) A is L-weakly compact.
(2) For each ε > 0 there exists some u ∈ (Ea)+ such that A ⊂ [−u, u]+ εBE , where

BE is the closed unit ball of E .

The notions of L-weakly compact and Banach-Saks sets coincide for intervals. The
details follow.

Theorem 2.3 Let E be a Banach lattice, and let b ∈ E+. Then [−b, b] is L-weakly
compact if and only if it is Banach-Saks.

Proof Let b ∈ E+ be such that [−b, b] is L-weakly compact. Since [−b, b] ⊆ Ea and
Ea is a Banach lattice with order continuos norm (where Ea is the maximal closed
ideal in E on which the induced norm is order continuous), we conclude from Lemma
2.3 in [12] that [−b, b] is a Banach-Saks in Ea . So, [−b, b] is a Banach-Saks set in
E .

Conversely, if [−b, b] is Banach-Saks, it follows from Proposition 2.3 in [15], that
[−b, b] is weakly compact, so by Corollary 5.54 in [1], [−b, b] is L−weakly compact.

��
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Note that Theorem 2.3 is not true for arbitrary order bounded subsets. Indeed, if (en)
denotes the sequence of the basic unit vectors of l∞, then (en) is an order bounded
Banach-Saks set of l∞ but not L-weakly compact.

A Banach lattice E is said to be a Kantorovich-Banach space (or briefly a KB-
space) whenever every increasing norm bounded sequence of E+ is norm convergent
([1], Definition 4.58). For instance, each reflexive Banach lattice is a KB-space ( [1],
Theorem 4.70). Also, for 1 < p < ∞ the space L p[0, 1] is an example of a K B-space
([5], Proposition 2.1).

Recall from ([1], p. 52) that an ideal I of E is called a σ -ideal whenever for every
sequence (xn)n∈N of I , if sup(xn) = x in E , then x ∈ I .

Theorem 2.4 Let E be a Banach lattice, then the following statements are equivalent:

(1) E is a σ -ideal of E ′′.
(2) E is KB-space.
(3) Every b-order bounded subset A of E has the Banach-Saks property.
(4) Every b-order bounded subset A of E is relatively weakly compact.

Proof (1) �⇒ (2) Let (xn) be a norm bounded sequence in E satisfying 0 ≤ xn ↑.
Then 0 ≤ xn ↑ x ′′ holds in E ′′ for some x ′′ (see page 232 in [1]). By hypothesis,
x ′′ ∈ E . Since E is an ideal in E ′′, it has an order continuous norm (see Theorem
4.9 in [1]). So, by Theorem 2.4.2 iii) of [16], (xn) is convergent. Thus E is KB-
space.
(2) �⇒ (3) Let A be a b-order bounded subset of E . By Proposition 2.1 in [3], A
is order bounded, so there exists b ∈ E+ such that A ⊆ [−b, b]. The rest of the
proof follows from Theorem 2.4.2 in [16] and Theorem 2.3.
(3) �⇒ (4) Follows immediately from Proposition 2.3 in [15].
(4) �⇒ (1) Relying on our hypothesis we have I : E → E is b-weakly compact.
Hence, we deduce fromProposition 2.10 in [3] that E is a KB-space, which implies
that E is a band of E ′′ ([1], Theorem 4.60). In particular E is a σ -ideal of E ′′.

��
Notice that the equivalence (2) , (4) of Theorem 2.4 is exactly Proposition 2.10 of

[3].

3 Some characterizations of b-weakly compact operators

The main objective of this section is to characterize the b-weakly compact operators.
For this, we need to fix some notations and recall some definitions.

Recall from [11] that an operator T between a Banach lattice E and a Banach space
Y is said to be order weakly compact if T ([−x, x]) is relatively weakly compact for
every positive element x ∈ E . Order weakly compact operators are characterized as
follows.

Theorem 3.1 ([16], Theorem 3.4.6) Suppose that T is a bounded operator from a
Banach lattice E into a Banach space Y . Then there exist a Banach lattice G, a lattice
homomorphism φ : E → G, and an operator R : G → Y with T = Rφ such that G
has order continuous norm if and only if T is order weakly compact.
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A Grothendieck type characterization of the Banach-Saks sets is the next.

Lemma 3.2 A subset B of a Banach space X is Banach-Saks if and only if for each
ε > 0 there exists a Banach-Saks subset S of X such that

B ⊂ S + εBX .

Proof If B is Banach-Saks, and ε > 0, then B ⊂ B + εBX .

Conversely, let (xn)n∈N be a bounded sequence of B and let ε > 0. From our hypoth-
esis, there exists a Banach-Saks set S such that {xn, n ∈ N} ⊂ S + εBX , and hence
xn = yn + εzn, where (yn) ⊂ S and (zn) ⊂ BX . Without loss of generality we can
assume that the sequence ( 1n

∑n
k=1 yk)n converges in norm to some y ∈ X . Then,

there exists N0 ∈ N such that for all n ≥ N0 we have

||
(
1

n

n∑

k=1

yk

)

− y|| ≤ ε.

Let n ≥ N0, then

||
(
1

n

n∑

k=1

xk

)

− y|| = ||
[
1

n

n∑

k=1

(yk + εzk)

]

− y ||

≤ ||
(
1

n

n∑

k=1

yk

)

− y || + ε

n
||

n∑

k=1

zk ||

≤ ||
(
1

n

n∑

k=1

yk

)

− y || + ε

n

n∑

k=1

||zk ||

≤ ε + ε = 2ε.

Consequently, the sequence
( 1
n

∑n
k=1 xk

)
n∈N converges in norm to y. ��

From Proposition 2.8 in [3], T is b-weakly compact if and only if (T xn)n is norm
convergent to zero for every b-order bounded disjoint sequence (xn)n∈N of E+. Our
next theorem characterizes the b-weakly compact operators using the Banach-Saks
sets.

Theorem 3.3 Let E be a Banach lattice and Y a Banach space. If T : E → Y is a
bounded operator, then the following assertions are equivalent:

(1) T is b-weakly compact.
(2) T carries b-order bounded subsets of E onto Banach-Saks subsets of Y .

Proof (2) �⇒ (1) According to ( [15], Proposition 2.3), every Banach-Saks set
is relatively weakly-compact. This leads up to the result.
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(1) �⇒ (2)Let B be a b-order bounded subset of E .Since B+ := {x+, x ∈ B} and
B− := {x−, x ∈ B} are both b-order bounded subsets of E+ and B ⊂ B+ − B−,

it is enough to show that T (A) is a Banach-Saks subset of Y for each b-order
bounded subset A of E+.

For this, let A be a b-order bounded subset of E+. If (wn) is a disjoint sequence in
the solid hull of A, then (wn)n is also b-order bounded, and therefore limn ‖Twn‖ = 0
([3], Proposition 2.8). Now, let ε > 0 be fixed. By Theorem 4.36 in [1], there exists
some uε ∈ E+ such that ‖T [(x − uε)

+]‖ < ε, for all x ∈ A. Using the equality
x = x ∧ uε + (x − uε)

+, we see that T x ∈ T ([−uε, uε]) + εBY , and hence T (A) ⊆
T ([−uε, uε]) + εBY . According to Lemma 3.2 it remains to show that T [−uε, uε] is
Banach-Saks.

Since T is b-weakly compact, in particular it is order weakly compact, it follows
from Theorem 3.1 that there exist an order continuous Banach lattice G, a lattice
homomorphism φ : E −→ G and a bounded operator R : G −→ Y , with T = Rφ.

Clearly, φ[−uε, uε] is an order bounded subset of G. From the order continuity of G,

it follows that φ[−uε, uε] is L- weakly compact ([1], Theorem 4.14). Therefore, by
Lemma 2.3 in [12], φ[−uε, uε] is Banach-Saks. Since R is bounded, it is easy to see
that T [−uε, uε] is likewise Banach-Saks, and the proof is concluded. ��

If E is an order continuous Banach lattice which has a weak unit, then there exist
a probability space (�,�,μ), an order ideal I of L1(�,�,μ), a lattice norm ‖ . ‖I
on I and an order isometry j from E onto (I ,‖ . ‖I ) such that the canonical inclusion
from I into L1(�,�,μ) is continuous with ‖ f ‖1 ≤ ‖ f ‖I (see Theorem 1.b.14 in
[14]). This implies that j is continuous as an operator from E into L1(�,�,μ). Note
that a separable subspace X of an order continuous Banach lattice E is included in
some closed order ideal Y of E with a weak unit (see Proposition 1.a.9 in [14]). Thus,
EX ( the closed ideal generated by X ) has a weak unit. An operator T : E → X is
M−weakly compact if for every bounded disjoint sequence (wn)wehave ‖Twn‖ → 0
( [16]).

At this state of analysis we need this following result.

Theorem 3.4 (Theorem 1.2.8 in [17]) Let (xn)n be a normalized sequence of a Banach
lattice E with order continuous norm. Then,

(1) either (‖xn‖L1) is bounded away from zero,
(2) or there exist a subsequence (xnk ) and a disjoint sequence (zk) ⊂ E such that

‖zk − xnk‖ −→ 0.

To continue our discussion, we need the next Lemma:

Lemma 3.5 Let Y be a Banach space and E be a Banach lattices such that E ′ has an
order continuous norm. For every bounded linear operator T : E → Y the following
assertions are equivalent.

(1) T is M−weakly compact.
(2) ‖T xn‖ → 0 as n → +∞ for every bounded sequence (xn) of E+ satisfying

xn → 0 in σ(E, E ′) as n → +∞.
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Proof (1) ⇒ (2) Suppose that T is M−weakly compact. Then there exist a reflexive
Banach lattice G, an M−weakly compact lattice homomorphism φ : E −→ G and an
M−weakly compact operator R : G −→ Y with T = Rφ (see Exercice 10 page 338
in [1]). Now let (xn) be a bounded sequence of E+ satisfying xn → 0 in σ(E, E ′)
as n → +∞, so that φxn → 0 in σ(G,G ′) as n → +∞. Since V := [φxn], the
closure of the subspace spanned by the vectors (φxn)n, is a separable subspace of
G, it follows from Proposition 1.a.9 in [14] that EV is an order ideal with a weak
order unit. By applying ([14], Theorem 1.b.14), we infer that EV can be represented
as a dense order ideal of L1(�,�,μ) for some probability measure μ, such that the
formal inclusion

i : EV ↪→ L1(�,�,μ)

is continuous. It follows that (i(φxn))n converges weakly to 0 in L1(�,�,μ). Since
L1(�,�,μ) has the positive schur property, limn ‖i(φxn)‖1 = 0. Now, let (yn) be an
arbitrary subsequence of (xn). Since limn ‖i(φyn)‖1 = 0, it follows from Theorem
3.4 that

(1) either ‖φyn‖1 ≥ γ ‖φyn‖ for some γ > 0,

(2) or there is a subsequence (zn)n∈N of (yn) and a disjoint sequence (wn) in the solid
hull of (φzn) such that ‖φzn − wn‖ −→ 0.

Assume first that (1) is satisfied, then (‖φyn‖) and hence (‖T yn‖) converges to 0.
Next, suppose that (2) is satisfied. Since ‖φzn − wn‖ → 0, so ‖T zn − Rwn‖ → 0.
On the other hand, since the disjoint sequence (wn) is bounded and R is M−weakly
compact, then lim ‖Rwn‖ = 0, which implies lim ‖T zn‖ = 0. Thus, we have shown
that every subsequence of (T xn) has a subsequence that is norm convergent to zero.
This leads up to lim ‖T xn‖ = 0, which concludes the proof.

(2) ⇒ (1) This assertion follows from Theorem 2.4.14 in [16].
��

Let E be a Banach lattice, x ′′ ∈ E ′′, and let Ix ′′ be the principal ideal generated
by x ′′ in E ′′. By Theorem 4.21 in [1] the ideal Yx ′′ = E ∩ Ix ′′ under the norm ‖.‖∞
defined by

‖x‖∞ = inf{λ > 0; |x | ≤ λ|x ′′|}; x ∈ Yx ′′ ,

is an AM-space.
The next result gives a sequential characterization of b-weakly compact operators

in the spirit of ([3], Proposition 2.8) without requiring the sequences to be disjoint.

Theorem 3.6 Let E be a Banach lattice and Y a Banach space. If T : E → Y is a
bounded operator, then the following assertions are equivalent:

(1) T is b-weakly compact.
(2) ‖T xn‖ → 0 as n → +∞ for every b-order bounded sequence (xn) of E+ satisfy-

ing 0 ≤ xn ≤ x ′′ for all n ∈ N and xn → 0 in σ(Yx ′′ ,Y ′
x ′′) as n → +∞ for some

x ′′ ∈ E ′′.

123



7 Page 8 of 10 H. Baklouti et al.

Proof (1) ⇒ (2) Let (xn) be a bounded sequence of E+ satisfying 0 ≤ xn ≤ x ′′
for all n ∈ N and xn → 0 in σ(Yx ′′ ,Y ′

x ′′) as n → +∞ for some x ′′ ∈ E ′′. Let Tx ′′
be the restriction of the operator T to Yx ′′ . Since T is b-weakly compact, then Tx ′′ is
weakly compact. Thus, by Theorem 5.62 in [1], Tx ′′ is M−weakly compact. Since
Y ′
x ′′ has an order continuous norm, it follows from Lemma 3.5 that ‖T xn‖ → 0.

(2) ⇒ (1) Let (wn)n be a disjoint sequence of E satisfying 0 ≤ wn ≤ x ′′ for
all n ∈ N for some x ′′ ∈ E ′′. Since (wn) is an order bounded sequence of Ix ′′
(the principal ideal generated by x ′′ in E ′′ under the norm ‖.‖∞), then wn → 0
in σ(Ix ′′ , I ′

x ′′) as n → +∞ (see Lemma 2.1), an so ‖Twn‖ → 0 as n → +∞.

Consequently, by Proposition 2.8 in [3], T is b-weakly compact.
��

Theorem 3.7 Let E be a Banach lattice and Y be a Banach space. If T : E → Y is a
bounded operator, then the following assertions are equivalent:

(1) T is b-weakly compact.
(2) There is no b-order bounded disjoint sequence of unit vectors (wn) in E such that

the restriction of T to the subspace [wn] is an isomorphism.
Proof (1) �⇒ (2) Let (wn)n be a b-order bounded disjoint sequence of unit

vectors in E . Suppose that T|[wn ] is an isomorphism. Since T is b-weakly compact,
it follows from Proposition 2.8 in [3] that lim

n
‖Twn‖ = 0, and so lim

n
‖wn‖ = 0.

This clearly leads to a contradiction.
(2) �⇒ (1) Suppose that T is not b-weakly compact. Again by Proposition 2.8
in [3] there is a positive b-order bounded disjoint sequence (wn) of unit vectors in
E such that ‖Twn‖ > 1 for all n ∈ N. Now, observe that there is some x ′′ ∈ E

′′
,

such that

0 ≤
n∑

i=1

wi = ∨n
i=1wi ≤ x ′′,

and therefore ‖
n∑

i=1
wi‖ ≤ ‖x ′′‖. The rest of the proof follows from Proposition

2.3.13 in [16].
��

Recall that an operator T between a Banach lattice E and a Banach space Y is said
to be disjointly strictly singular if, there is no disjoint sequence of non null vectors
(xn)n in E such that the restriction of T to the subspace [xn] spanned by the vectors
(xn)n is an isomorphism [13].

Corollary 3.8 Let E be a Banach lattice and X a Banach space. Then every disjointly
strictly singular operator T : E → X is b-weakly compact.

4 Relationships with b-L-weakly compact operators

The class of b-L-weakly compact operators was introduced byD. Lhaimer et al in their
paper [9]. An operator T between two Banach lattices E and F is called b-L-weakly
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compactif it maps b-order bounded subsets of E into L-weakly compact subsets of F .

The notions of b-weakly compact and b-L-weakly compact operators may coincide.
The next result provides a condition for this to happen.

Theorem 4.1 Let E and F be Banach lattices such that F has an order continuous
norm. If T : E → F is a positive operator, then the following assertions are equiva-
lent:

(1) T is b-weakly compact.
(2) T carries b-order bounded subsets of E onto Banach-Saks subsets of F .

(3) T is b-L-weakly compact.

Proof (1) ⇔ (2) : See Theorem 3.3.
(3) ⇒ (1)According to ( [16], Proposition 3.6.5), every L-weakly compact subset
of a Banach lattice is relatively weakly compact. This yields the result.

It remains to show that (1) �⇒ (3).
For this, let A be a b-order bounded subset of E, and let ε be given. Arguing as in

the proof of Theorem 3.3, we see that

T A ⊆ T [−u, u] + εBF ,

for some u ∈ E+. Since T is positive, T [−u, u] ⊆ [−Tu, Tu]. Consequently,

T A ⊆ [−Tu, Tu] + εBF .

Now taking into account the facts that Tu ∈ F = Fa, we conclude that T A is
L−weakly compact (by Theorem 2.2). Thus T is b − L−weakly compact. ��
Next, we provide a Grothendieck type characterization of the L-weakly compact sets.

Lemma 4.2 A subset B of a Banach lattice E is L-weakly compact if and only if for
each ε > 0 there exist an L-weakly compact subset L of E satisfying

B ⊂ L + εBE .

Proof If B is L-weakly compact, then B ⊂ B + εBX for all ε > 0.
Conversely, let B be a subset of Banach lattice E such that for each ε > 0, there

exists an L−weakly compact subset L of E satisfying B ⊆ L + εBE . By Theorem
2.2, we have L ⊆ [−u, u]+εBE . for some u ∈ (Ea)+.Consequently, B ⊆ [−u, u]+
2εBE , and by applying Theorem 2.2 once more, we conclude that B is L−weakly
compact. ��

Recall from [10] that an operator T from a Banach lattice E into a Banach lattice F
is called order L-weakly compact whenever T [0, x] is an L-weakly compact subset
of F for each x ∈ E+.

Theorem 4.3 Let E and F be two Banach lattices. If T : E → F is a bounded
operator, then the following assertions are equivalent:

123
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(1) T is b-L-weakly compact.
(2) T is both order L-weakly compact and b-weakly compact.

Proof (1) �⇒ (2) Let T be a b-L-weakly compact operator. According to ([16],
Proposition 3.6.5), every L-weakly compact subset of F is relatively weakly com-
pact. Then T is b-weakly compact. On the other hand, since [0, x] is b-order
bounded for each x ∈ E+, it follows that T is order L-weakly compact.
(2) �⇒ (1) Let A be a b-order bounded set of E, and let ε > 0. Arguing as in the
proof of Theorem 3.3 , we see that there exists some uε ∈ E+ such that

T (A) ⊂ T [−uε, uε] + εBF .

Since T is order L-weakly compact, T [−uε, uε] is L-weakly compact subset of
F . The rest of the proof follows from Lemma 4.2.

��
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