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Abstract
We focus on two topics that are related to moduli of elements in partially ordered
vector spaces. First, we relate operators that preserve moduli to generalized notions
of lattice homomorphisms, such as Riesz homomorphisms, Riesz* homomorphisms,
and positive disjointness preserving operators.We also consider completeRiesz homo-
morphisms, which generalize order continuous lattice homomorphisms. Second, we
characterize elements with a modulus by means of disjoint elements and apply this
result to obtain moduli of functionals and operators in various settings. On spaces of
continuous functions, we identify those differences of Riesz* homomorphisms that
have a modulus. Many of our results for pre-Riesz spaces of continuous functions lead
to results on order unit spaces, where the functional representation is used.

Keywords Complete Riesz homomorphism · Disjoint elements · Disjointness
preserving operator · Functional representation ·Modulus · Order unit space ·
Partially ordered vector space · Pre-Riesz space · Riesz homomorphism

Mathematics Subject Classification 06F20 · 47B60

1 Introduction

One of the important features of the lattice structure in a vector lattice is that every
element x has a modulus |x |. In a partially ordered vector space that is not a lattice,
some elements do have a modulus and some do not. As a first theme in this paper,
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we study operators that preserve moduli, and related notions of homomorphisms. The
second theme is to characterize the elements in a pre-Riesz space that have a modulus.

In vector lattices, Riesz homomorphisms are the linear operators that preserve
moduli. Various generalizations to partially ordered vector spaces have been studied,
such as Riesz* homomorphisms [10] and Riesz homomorphisms [5]. Complete Riesz
homomorphisms [5] generalize the notion of order continuous Riesz homomorphisms
on vector lattices. These notions of homomorphisms in partially ordered vector spaces
are defined by means of relations of sets of upper bounds. Furthermore, one consid-
ers operators that preserve moduli or disjointness. We establish new properties and
relations between these classes of homomorphisms.

Concerning the second theme, it is difficult, in general, to determinewhich elements
have a modulus, in particular in spaces of operators. For operators between vector
lattices, the modulus of an operator is known to be given by the Riesz-Kantorovich
formula only in specific cases. We characterize elements with a modulus in pre-Riesz
spaces. Hereby, we use vector lattice covers of pre-Riesz spaces. In particular, we
consider moduli of functionals and certain instances of operators on order unit spaces.

A large part of the paper deals with pre-Riesz spaces of continuous functions. These
results can be applied to order unit spaces by means of their functional representa-
tions. More precisely, we consider an order unit space (X , K , u) and its functional
representation � : X → C(�), where � consists of the extreme points of the set of
positive linear functionals ϕ : X → R with ϕ(u) = 1, and where we consider the
weak-∗ topology on the dual of X . Hayes [11, Corollary 1] has established that the
elements of � are exactly the nonzero Riesz homomorphisms on X scaled to be one
at u, and it is due to van Haandel [10, Theorem 5.10(iii)] that � consists of the scaled
nonzero Riesz* homomorphisms. So far, it has been unknown which elements of �

are complete Riesz homomorphisms.
The first theme (homomorphisms) is investigated in the Sects. 3–6 and 8, whereas

the second theme (existence of moduli) is considered in the Sects. 7 and 9. Note
that the discussions of the two themes are not strictly separated, as the themes are
interrelated. The necessary preliminaries are listed in Sect. 2. In Sect. 3, we prove
some new properties of the van Haandel extension of Riesz* homomorphisms, and
Sect. 4 is devoted to basic properties of Riesz* homomorphisms and complete Riesz
homomorphisms on order unit spaces. In Sect. 5, we show that the scaled nonzero
complete Riesz homomorphisms from X toR are theϕ ∈ � forwhich {ϕ} is open in�,
see Proposition 24 below. On pre-Riesz spaces, every complete Riesz homomorphism
is an order continuous Riesz homomorphism [9, Proposition 2.3.20]. Example 26
below shows that the converse is not true even for functionals.

Our results on relations of homomorphisms (Sects. 6 and 8) are summarized in the
following scheme.
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o-continuous Riesz homomorphism ⇒ (�) Riesz homomorphism
�⇓ ⇑ ⇓ ⇑ (� = �)

complete Riesz homomorphism
(� discrete)⇐






 Riesz* homomorphism

⇓ ⇑ (SD)

positive disjointness
preserving operator

In Sect. 6, we show that if � = �, that is, every Riesz* homomorphism from X to
R is a Riesz homomorphism, then every Riesz* homomorphism from X to Y is a Riesz
homomorphism, where Y is an arbitrary order unit space. Similarly, if � is discrete,
i.e., every Riesz* homomorphism from X into R is a complete Riesz homomorphism,
then every Riesz* homomorphism from X to Y is a complete Riesz homomorphism,
see Theorem 29 below.

In Riesz spaces, an operator is a Riesz homomorphism if and only if it is a positive
disjointness preserving operator. In pre-Riesz spaces, every Riesz* homomorphism is
positive anddisjointness preserving [9, Theorem5.1.12], and the converse is not true, in
general [13, Example 2.29]. In Sect. 8, we provide sufficient conditions on the domain
such that every positive disjointness preserving operator is a Riesz* homomorphism.
More precisely, if P is a nonempty compact Hausdorff space and X is an order dense
subspace of C(P) such that the points of P are separated by disjoint elements of X
(condition (SD)), we show that every positive disjointness preserving operator from
X into an appropriate range space is a Riesz* homomorphism, see Theorem 49 below.
A similar result for order unit spaces follows in Corollary 51.

Concerning the second theme, in Sect. 7, we show that an element x of a pre-Riesz
space X has a modulus if and only if |i(x)| ∈ i[X ], where i : X → Y embeds into
a vector lattice cover Y of X , see Theorem 35(ii) below. We also relate the modulus
to disjointness and show that the existence of |x | is equivalent to the existence of two
positive disjoint elements a and b in X with x = a−b, see Lemma 34. Consequently,
an operator preserves moduli if and only if it is disjointness preserving on the positive
elements, see Proposition 39. In Sect. 9, we apply these results to functionals and
operators. For some specific cases, we calculate the set of operators with modulus.
For instance, we identify the differences of Riesz* homomorphisms on certain pre-
Riesz spaces of continuous functions that have a modulus, see Proposition 60 and
Theorem 63. This leads to a discussion on the disjointness of Riesz* homomorphisms
in operator spaces.

2 Preliminaries

Let X be a real vector space containing a cone K , i.e., K is convex, λK ⊆ K for
every λ ≥ 0, and K ∩ (−K ) = {0}. The cone K induces a partial order ≤ in X by
x ≤ y if y − x ∈ K . We call (X , K ) a partially ordered vector space. We mostly
assume that (X , K ) is directed, meaning that X = K − K . The space (X , K ) is called
Archimedean if, for every x, y ∈ X with nx ≤ y for all n ∈ N, we have x ≤ 0. A
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linear subspace D of X is order dense in X if, for every x ∈ X , we have

x = inf{d ∈ D; d ≥ x}.

The concept of order denseness originated in [5, p. 360]. A linear map i : X → Y ,
where X and Y are partially ordered vector spaces, is called bipositive if for every
x ∈ X , x ≥ 0 is equivalent to i(x) ≥ 0.

A partially ordered vector space X is called a pre-Riesz space if there is a Riesz
space Y and a bipositive linear map i : X → Y such that i[X ] is order dense in Y .
We call (Y , i) a vector lattice cover of X . An intrinsic definition of pre-Riesz spaces
is given by van Haandel in [10], see also [9, Section 2.2]. Note that every directed
Archimedean partially ordered vector space is pre-Riesz, and that every pre-Riesz
space is directed, see, e.g., [9, Proposition 2.2.3]. Clearly, every Riesz space is pre-
Riesz. For standard notations in Riesz spaces, see [2]. If (Y , i) is a vector lattice cover
of a pre-Riesz space X such that no proper Riesz subspace of Y contains i[X ], then
we call (Y , i) a Riesz completion of X . Such a space is unique up to isomorphism
(for details see, e.g., [9, Section 2.4]). Given a concrete example of a partially ordered
vector space, the challenge is to find a convenient realization of a vector lattice cover
such that the order in the vector lattice cover is pointwise. In general this is hard,
but one can use the functional representation in case of order unit spaces. Also for
some spaces of operators, it is possible to calculate such a vector lattice cover, see
Example 59.

A pre-Riesz space X with Riesz completion (Y , i) is called pervasive if for every
y ∈ Y \ {0}, y ≥ 0, there is x ∈ X \ {0} such that 0 ≤ i(x) ≤ y. Instead of the Riesz
completion, one can also use an arbitrary vector lattice cover in this definition, see [9,
Proposition 2.8.8].

For A ⊆ X , denote Au = {x ∈ X; ∀a ∈ A : x ≥ a} and Al = {x ∈ X; ∀a ∈
A : x ≤ a}. Riesz* homomorphisms are defined in [10, Definition 5.1 and Corollary
5.4(iv)], Riesz homomorphisms and complete Riesz homomorphisms in [5].

Definition 1 Let X and Y be directed partially ordered vector spaces. A linear map
T : X → Y is called

– a Riesz* homomorphism if, for every nonempty finite subset F of X , one has

T
[
Ful

]
⊆ T [F]ul,

– a Riesz homomorphism if, for every x, y ∈ X , one has

T
[{x, y}u]l = T [{x, y}]ul,

– a complete Riesz homomorphism if, for every nonempty set A ⊆ X , we have

inf A = 0 
⇒ inf T [A] = 0.

If X and Y are pre-Riesz spaces, then every complete Riesz homomorphism is a Riesz
homomorphism, every Riesz homomorphism is a Riesz* homomorphism, and every
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Riesz* homomorphism is positive, see [9, Theorem 2.3.19]. If X is, in addition, a
vector lattice, then T is a Riesz homomorphism if and only if, for every u, v ∈ X ,
there exists T (u) ∨ T (v) in Y , and T (u) ∨ T (v) = T (u ∨ v). If X and Y are vector
lattices, then the notions of a Riesz homomorphism and a Riesz* homomorphism both
coincide with the notion of a Riesz homomorphism from vector lattice theory, see,
e.g., [9, Lemma 2.3.2].Moreover, in this case, T is a complete Riesz homomorphism if
and only if T is an order continuous Riesz homomorphism, see [9, Proposition 1.4.5].

We will need the following characterization of Riesz* homomorphisms and Riesz
homomorphisms in the case that the range space is a vector lattice, see also [9, Propo-
sition 2.3.26].

Proposition 2 Let X be a partially ordered vector space, let Y be a Riesz space, and
let T : X → Y be a linear map.

(i) T is a Riesz* homomorphism if and only if

sup
{
T (x); x ∈ {a1, . . . , an}ul

}
=

n∨
k=1

T (ak)

for every a1, . . . , an ∈ X and n ∈ N.
(ii) T is a Riesz homomorphism if and only if

inf
{
T (x); x ∈ {a1, . . . , an}u

} =
n∨

k=1
T (ak)

for every a1, . . . , an ∈ X and n ∈ N.

The following modification of Proposition 2(ii) will be of use.

Proposition 3 Let X1 be a partially ordered vector space, Y a Riesz space, X2 an order
dense subspace of Y , and T : X1 → X2 a linear map. T is a Riesz homomorphism if
and only if, for every x, y ∈ X1, we have

inf{T v; v ∈ X1, v ∈ {x, y}u} = T (x) ∨ T (y) in Y .

Proof Let T : X1 → X2 be aRiesz homomorphism.Let x, y ∈ X1. Since T is positive,
T x ∨T y is a lower bound of {T v; v ∈ X1, v ∈ {x, y}u}. Letw ∈ Y be a lower bound
of {T v; v ∈ X1, v ∈ {x, y}u}. As X2 is order dense in Y , it suffices to show that, for
every z ∈ X2 with z ≤ w, we have that z ≤ T x ∨ T y. Let z ∈ X2 be such that z ≤ w.
Then we have

z ∈ {T v; v ∈ X1, v ∈ {x, y}u}l = {T x, T y}ul

in X2, as T is a Riesz homomorphism. Hence z ≤ T x ∨ T y in Y , which implies
w ≤ T x ∨ T y.

Conversely, let x, y ∈ X1. We have that

{T v; v ∈ X1, v ∈ {x, y}u}l = {T x ∨ T y}l = {T x, T y}ul
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in Y . Intersecting with X2 yields that T is a Riesz homomorphism. ��
Recall that two elements x and y in a pre-Riesz space (X , K ) are disjoint, denoted

x ⊥ y, if {x + y, x − y}u = {x − y,−x + y}u. The disjoint complement of a set
M ⊆ X is denoted by Md. If (Y , i) is a vector lattice cover of X , then x ⊥ y if and
only if i(x) ⊥ i(y), see, e.g., [9, Proposition 4.1.4]. Let X and V be pre-Riesz spaces.
A linear map T : X → V is called disjointness preserving if, for every x, y ∈ X with
x ⊥ y, one has T (x) ⊥ T (y). If T is a Riesz* homomorphism, then T is a positive
disjointness preserving operator, see [9, Theorem 5.1.12].

We collect standard definitions concerning operators. Let X ,Y be a partially ordered
vector spaces. As usual, a linear operator T from X to Y is called positive if T maps
the cone in X into the cone in Y , order bounded if T maps order bounded subsets
to order bounded subsets, and regular whenever T can be written as a difference of
two positive operators. For the set of all linear operators, we write L(X ,Y ). The set
of all order bounded operators is denoted by Lb(X ,Y ), whereas the set of all regular
operators is denoted by Lr(X ,Y ). If X is directed, the set of all positive operators is
a cone, which yields a natural partial order in these spaces of operators. Recall that
Lr(X ,Y ) ⊆ Lb(X ,Y ). If X is directed and has the Riesz decomposition property, and
Y is a Dedekind complete vector lattice, then Lb(X ,Y ) = Lr(X ,Y ) is a Dedekind
complete vector lattice, and the lattice operations are given by the Riesz-Kantorovich
formulas, see, e.g., [3, Theorem 1.59].

We say that a net (xα)α∈A in a partially ordered vector space X order converges to
x ∈ X if there is a net (yα)α∈A with yα ↓ 0 (which means that the net is decreasing
and inf{yα; α ∈ A} = 0) and α0 ∈ A such that, for every α ∈ A, α ≥ α0, we
have ±(xα − x) ≤ yα . In this case, we write xα

o−→ x . The following statement on
order continuity in finite dimensions is convenient if one studies examples. Note that
the (Euclidean) norm in R

n is semimonotone if the cone K in R
n is generating and

closed, for details, see, e.g., [9, Proposition 1.5.16]. Therefore, order bounded sets are
norm bounded, see [9, Lemma 1.5.7]. In particular, every order interval [a, b] := {x ∈
R
n; a ≤ x ≤ b} in (R, K ) is compact.

Proposition 4 Let K be a generating closed cone in R
n.

(i) Let (xα)α∈A be a net in R
n and let x ∈ R

n. If xα
o−→ x, then xα

‖·‖−→ x.
(ii) Every continuous linear map ϕ : R

n → R is order continuous.

Proof (i) First, let (xα)α∈A be a net in R
n such that xα ↓ 0. We show that every subnet

of (xα) has a subnet converging to 0, which implies xα
‖·‖−→ 0, by [15, Proposition

2.1.31]. Indeed, let (yβ)β∈B be a subnet of (xα) and let g : B → A be increasing with
yβ = xg(β) for every β ∈ B and g[B] cofinal in A. Fix β0 ∈ B. For every β ≥ β0, we
have 0 ≤ yβ ≤ yβ0 , hence yβ belongs to the order interval [0, yβ0 ], which is compact.
Hence, there exists a subnet (zγ )γ∈C of (yβ) and z ∈ [0, yβ0 ] such that ‖zγ − z‖ → 0,
see [15, Proposition 2.1.37]. Let h : C → B be increasing with zγ = yh(γ ) for every
γ ∈ C and h[C] cofinal in B. To show that z = 0, fix α ∈ A. As g[B] and h[C] are
cofinal, there is βα ∈ B with g(βα) ≥ α and γα ∈ C with h(γα) ≥ βα . For every
γ ≥ γα , we have

zγ ≤ zγα = yh(γα) ≤ yβα = xg(βα) ≤ xα.
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Since K is closed, it follows that z ≤ xα . From xα ↓ 0, we obtain z = 0.
Second, let (xα)α∈A be a net in R

n and let x ∈ R
n be such that xα

o−→ x . Then
there is a net (yα)α∈A with yα ↓ 0 and α0 ∈ A such that, for every α ≥ α0, we have
−yα ≤ xα − x ≤ yα . Due to the first part of the proof, we obtain ‖yα‖ → 0. Since
the norm is semimonotone, it follows that ‖xα − x‖ → 0, see also [9, Theorems 3.6.3
and 3.6.8].

(ii) is an immediate consequence of (i).
��

3 The van Haandel extension revisited

Van Haandel observed that Riesz* homomorphisms are exactly those operators
between pre-Riesz spaces that can be extended to Riesz homomorphisms between
the corresponding Riesz completions, see [10, Theorem 5.6] or [9, Theorem 2.4.11].

Theorem 5 Let X1 and X2 be pre-Riesz spaces with Riesz completions (Y1, i1) and
(Y2, i2), respectively. Let T : X1 → X2 be a linear map. The following statements are
equivalent.

(i) T is a Riesz* homomorphism.
(ii) There exists a Riesz homomorphism S : Y1 → Y2 satisfying S ◦ i1 = i2 ◦ T .
Moreover, if (i) is satisfied, then the Riesz homomorphism in (ii) is unique.

Theoperator S inTheorem5(ii) is called the vanHaandel extensionof T . If the operator
T is a Riesz homomorphism or a complete Riesz homomorphism, somewhat stronger
conclusions than those of Theorem 5 can be drawn. For Riesz homomorphisms, a
stronger uniqueness result holds.

Proposition 6 Let V and W be Riesz spaces and let X be an order dense subspace of
V that generates V as a Riesz space. Let T : V → W be a positive linear operator. If
T |X : X → W is a Riesz homomorphism, then T is a Riesz homomorphism.

Proof First, let x1, . . . , xn ∈ X . We show that

T (x1 ∨ · · · ∨ xn) = T (x1) ∨ · · · ∨ T (xn). (1)

Indeed, as T is positive, we have T (x1 ∨ · · · ∨ xn) ≥ T (x1) ∨ · · · ∨ T (xn). As
T |X : X → W is a Riesz homomorphism, Proposition 2 yields that

T |X (x1) ∨ · · · ∨ T |X (xn) = inf{T |X (x); x ∈ X , x ∈ {
x1, . . . , xn}u

}
.

For every x ∈ X with x ∈ {x1, . . . , xn}u, we have x ≥ x1 ∨ · · · ∨ xn in V , therefore
T (x) ≥ T (x1 ∨ · · · ∨ xn). It follows that T (x1) ∨ · · · ∨ T (xn) ≥ T (x1 ∨ · · · ∨ xn).

Second, observe that V is the Riesz completion of X and denote by S : V → W the
vanHaandel extension of the Riesz* homomorphism T |X .We show that T = S, which
is a Riesz homomorphism. Indeed, let v ∈ V . Then there are a1, . . . , am, b1, . . . , bn ∈
X with v = ∨m

i=1 ai −
∨n

j=1 b j . By (1), we obtain
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T v = T
( m∨
i=1

ai
)
− T

( n∨
j=1

b j

)
=

m∨
i=1

T (ai )−
n∨
j=1

T (b j )

=
m∨
i=1

S(ai )−
n∨
j=1

S(b j ) = Sv.

��
The condition in Proposition 6 that W need to be a Riesz space can be relaxed to W
being a pre-Riesz space.

Corollary 7 Let V be a Riesz space, let W be a pre-Riesz space, and let X be an
order dense subspace of V that generates V as a Riesz space. Let T : V → W be a
positive linear operator. If T |X : X → W is a Riesz homomorphism, then T is a Riesz
homomorphism.

Proof Let (W ρ, i) be the Riesz completion of W . Since i is a complete Riesz homo-
morphism by [9, Proposition 2.3.27], it follows from [9, Proposition 2.3.24(ii)] that
i ◦ T |X : X → W ρ is a Riesz homomorphism. Therefore, Proposition 6 yields that
i ◦ T : V → W ρ is a Riesz homomorphism. With the aid of Proposition 3, it follows
that i ◦ T : V → i[W ] is a Riesz homomorphism. As i is an order isomorphism, T is
a Riesz homomorphism. ��
Corollary 8 Consider the setting of Theorem 5. If T : X1 → X2 is a Riesz homomor-
phism and S, S̃ : Y1 → Y2 are positive linear operators such that S ◦ i1 = i2 ◦ T and
S̃ ◦ i1 = i2 ◦ T , then S = S̃. Moreover, S equals the van Haandel extension of T .

This corollary has a useful consequence for the van Haandel extensions of sums of
operators.

Proposition 9 Let X1 and X2 be pre-Riesz spaces with Riesz completions (Y1, i1)
and (Y2, i2), respectively. Let S, T : X1 → X2 be Riesz* homomorphisms with van
Haandel extensions S̄, T̄ : Y1 → Y2, respectively. If S+ T is a Riesz homomorphism,
then the van Haandel extension of S + T equals S̄ + T̄ .

Proof Since S̄+ T̄ is a positive operator extending S+ T , it follows from Corollary 8
that S̄ + T̄ equals the van Haandel extension of S + T . ��
For complete Riesz homomorphisms, observe the following result, which is a slightly
more general version of [12, Lemma 4.3].

Proposition 10 Let Y1, Y2 be partially ordered vector spaces and X1, X2 order dense
subspaces of Y1, Y2, respectively. Let T : Y1 → Y2 be a positive linear operator with
T [X1] ⊆ X2. Then T is a complete Riesz homomorphism if and only if T |X1 : X1 →
X2 is a complete Riesz homomorphism.

Proof First, observe that for A ⊆ X1 and s ∈ X1, we have

inf A = s in X1 if and only if inf A = s in Y1. (2)
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Indeed, assume that inf A = s in X1. If y ∈ Y1 is a lower bound of A in Y1, then, as
X1 is order dense in Y1, we have y = sup{x ∈ X1; x ≤ y}. Every x in the latter set
is a lower bound of A, hence x ≤ s, and, therefore, y ≤ s. The converse implication
is straightforward.

Now let T be a complete Riesz homomorphism. Let A ⊆ X1 be such that inf A = 0
in X1, then, by (2), inf A = 0 in Y1. As T is a complete Riesz homomorphism, we
get inf T [A] = 0 in Y2. Since T [A] ⊆ X2, we conclude inf T [A] = 0 in X2, hence
T |X1 : X1 → X2 is a complete Riesz homomorphism.

Conversely, let T |X1 : X1 → X2 be a complete Riesz homomorphism. Let A ⊆ Y1
be such that inf A = 0 in Y1. Define

A0 := {x ∈ X1; ∃a ∈ A : x ≥ a}.

Clearly, 0 is a lower bound of A0. Let v ∈ X1 be a lower bound of A0. For every
a ∈ A, as X1 is order dense in Y1, we have a = inf{x ∈ X1; x ≥ a} ≥ v. Thus,
0 = inf A ≥ v. This implies inf A0 = 0 in X1. By assumption, we get inf T [A0] = 0
in X2, and also in Y2 by (2). As T is positive, 0 is a lower bound of T [A] in Y2. Let
y ∈ Y2 be a lower bound of T [A]. Then y ≤ b for every b ∈ T [A0]. Indeed, let
b ∈ T [A0]. Then there is x ∈ A0 such that b = T (x). Further, there is a ∈ A such that
x ≥ a. Thus, y ≤ T (a) ≤ T (x) = b.We conclude that y ≤ inf T [A0] = 0. Therefore,
inf T [A] = 0 in Y2, which means that T is a complete Riesz homomorphism. ��
Corollary 11 Consider the setting of Theorem 5. If T : X1 → X2 is a complete Riesz
homomorphism, then its van Haandel extension is a complete Riesz homomorphism,
as well.

4 Riesz* homomorphisms and complete Riesz homomorphisms on
spaces of continuous functions

For Riesz* homomorphisms on order dense subspaces of spaces of continuous func-
tions, a representation as weighted composition operators (similar to the vector lattice
setting) is given by van Imhoff in [12, Theorem 3.2], see also [9, Theorem 5.1.14],
which we state in Theorem 12 below. We say that a subspace X of C(P) strongly
separates the points of P if, for every p1, p2 ∈ P with p1 �= p2, there is x ∈ X such
that x(p1) = 0 and x(p2) = 1.

Theorem 12 Let P and Q be nonempty compact Hausdorff spaces and let X and Y
be order dense subspaces of C(P) and C(Q), respectively. Let T : X → Y be linear.

(i) If T is a Riesz∗ homomorphism, then there exist w : Q → R+ and α : Q → P
such that, for every x ∈ X and q ∈ Q, we have

(T x)(q) = w(q)x(α(q)). (3)

If, in addition, X strongly separates the points of P, thenw can be taken such that
w is continuous on Q, the map α is uniquely determined on {q ∈ Q; w(q) > 0},
and, on this set, α is continuous.
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(ii) If there existw ∈ C(Q),w ≥ 0, and α : Q → P continuous on {q ∈ Q; w(q) >

0} such that (3) holds for every x ∈ X and q ∈ Q, then T is a Riesz∗ homomor-
phism.

Since we will need the statement later on, we extract a part of the proof of Theo-
rem 12 as a proposition, see also [12, Proof of Theorem 3.2].

Proposition 13 Let P and Q be nonempty compact Hausdorff spaces and let X be an
order dense subspaceof C(P) that strongly separates thepoints of P. Letw : Q → R+
and α : Q → P be such that q �→ w(q)x(α(q)) ∈ C(Q) for every x ∈ X. Then w is
continuous on Q and α is continuous on {q ∈ Q; w(q) > 0}.

The following result is given in [12, Lemma 4.2].

Lemma 14 Let P be a nonempty compact Hausdorff space and let X be an order
dense subspace of C(P). Let G ⊆ X be a set of positive elements. Then the following
statements are equivalent.

(i) inf G = 0.
(ii) For every ε > 0 and every nonempty open set U ⊆ P, there exist x ∈ G and

p ∈ U such that x(p) ≤ ε.

For complete Riesz homomorphisms, the representation as weighted composition
operator in Theorem 12 can be specified as follows, see [12, Theorem 4.4]. Hereby,
α : Q → P is called weak-open if, for every nonempty open setU ⊆ Q, the set α[U ]
is dense somewhere, i.e., there exists a nonempty open set V ⊆ P such that α[U ] ∩V
is dense in V .

Theorem 15 Let P and Q be nonempty compact Hausdorff spaces, let X be an order
dense subspace of C(P) and let Y be a subspace of C(Q). Let T : X → Y be given
by (3), where w ∈ C(P), w ≥ 0, and α : Q → P. Then the following statements are
equivalent.

(i) T is a complete Riesz homomorphism.
(ii) α is weak-open on {q ∈ Q; w(q) > 0}.

In the setting of the previous theorems, pervasiveness can be characterized as fol-
lows, see also [12, Lemma 6.4].

Proposition 16 Let P be a nonempty compact Hausdorff space and X an order dense
subspace of C(P). The space X is pervasive if and only if for every nonempty open
set U ⊆ P, there exists an x ∈ X \ {0}, x ≥ 0, such that coz(x) ⊆ U, where
coz(x) := {u ∈ P; x(u) �= 0}.
Proof Let X be pervasive in the vector lattice cover C(P) and letU ⊆ P be nonempty
and open. Let q ∈ U . By Urysohn’s lemma, there exists a positive function y ∈ C(P)

such that y(q) = 1 and y = 0 on P \ U . Hence coz(y) ⊆ U . Since y �= 0 and X is
pervasive, there is x ∈ X \ {0} with 0 ≤ x ≤ y. Therefore, coz(x) ⊆ U .

Conversely, let y ∈ C(P)\{0}, y ≥ 0. Fix ε > 0 such that ε < ‖y‖∞. DefineU :=
{p ∈ P; y(p) > ε}. Then U is nonempty and open, hence there exists v ∈ X \ {0},
v ≥ 0, with coz(v) ⊆ U . For x := ε

‖v‖∞ v ∈ X \ {0}, we get 0 ≤ x ≤ y, hence X is
pervasive. ��
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Next we consider order unit spaces and recall a characterization of functionals
that are Riesz* homomorphisms. Let (X , K ) be an Archimedean partially ordered
vector space with order unit u, equipped with the order unit norm ‖x‖u := inf{λ ∈
(0,∞); −λu ≤ x ≤ λu} for x ∈ X , see, e.g., [9, Section 1.5.3]. Every order unit
space is pre-Riesz. We construct a vector lattice cover with pointwise partial order.
The functional representation of X is given by means of the weakly-∗ compact convex
set

� := {ϕ ∈ X ′; ϕ[K ] ⊆ [0,∞), ϕ(u) = 1} (4)

and the set � of the extreme points of �. The weak-∗ closure � of � in � is (with
the weak-∗ topology) a compact Hausdorff space, and the map

� : X → C(�), x �→ (ϕ �→ ϕ(x)) (5)

is a bipositive linear map, and hence injective (for details, see, e.g., [9, Section 2.5]).
In [8], it is shown that (C(�),�) is a vector lattice cover of X , see also [9, Theorem
2.5.9]. We recall the statement in [9, Proposition 2.5.5].

Proposition 17 Let X be an order unit space and let ϕ ∈ �.

(a) One has ϕ ∈ � if and only if ϕ is a Riesz homomorphism.
(b) One has ϕ ∈ � if and only if ϕ is a Riesz* homomorphism.

Example 18 (Lorentz cone) Let H be a Hilbert space and let X := R× H be ordered
by the Lorentz cone LH := {(r , z) ∈ R×H ; r2−〈z, z〉 ≥ 0 and r ≥ 0}.We deal with
the functional representation with respect to the order unit u := (1, 0), for details, see
[9, Lemma 2.6.3 and Theorem 2.6.4]. If H is n-dimensional, then we have � = �,
and � can be identified with the (n− 1)-sphere in R

n . In this case, by Proposition 17,
the set � in (5) consists of Riesz homomorphisms.

Example 19 (Polyhedral cone) Let X := R
n and let K be a generating polyhedral

cone in R
n . Then there is an order unit u in K , and there are k ≥ n linear functionals

f (1), . . . , f (k) such that

K =
{
x ∈ R

n; ∀i ∈ {1, . . . , k} : f (i)(x) ≥ 0
}

, (6)

where each f (i) defines a facet1 of K and f (i)(u) = 1; for details, see also [9, Section
2.6.1]. In view of (5), we get

� = � = { f (1), . . . , f (k)}

and � : (Rn, K ) → (Rk, R
k+),

�(x) := ( f1(x), . . . , fk(x))
T for x ∈ R

n . (7)

1 This means dim({x ∈ R
n; f (i)(x) = 0}) = n − 1.
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In [8], it is shown that (Rk,�) is theRiesz completion of (Rn, K ), see also [9, Theorem
2.6.2].

Lemma 20 Let X be an order unit space, where u is an order unit, and (C(�),�)

its functional representation corresponding to (5). Then �[X ] strongly separates the
points of �.

Proof Let ϕ1, ϕ2 ∈ � with ϕ1 �= ϕ2. Then there is z ∈ X with ϕ1(z) �= ϕ2(z). We
have that ϕ1(u) = ϕ2(u) = 1. We define

x := z − ϕ1(z)u

ϕ2(z)− ϕ1(z)

and observe that (�(x))(ϕ1) = ϕ1(x) = 0 and (�(x))(ϕ2) = ϕ2(x) = 1. Thus, �[X ]
strongly separates the points of �. ��
Remark 21 Let X be an order unit space and let v be an order unit in X . If w ∈ X is
such that w ⊥ v, then w = 0. Indeed, using the functional representation, we have
(�(v))(ϕ) > 0 for every ϕ ∈ �. As �(v) ⊥ �(w), we get �(w) = 0 and, hence,
w = 0.

5 Characterization of functionals that are complete Riesz
homomorphisms

In the spirit of Proposition 17, we characterize those functionals on order unit spaces
that are complete Riesz homomorphisms. First, we study point evaluations that are
complete Riesz homomorphisms.

Lemma 22 Let P be a nonempty compact Hausdorff space, let p ∈ P, and let
ϕ : C(P) → R be given by ϕ(x) = x(p) for x ∈ C(P). Then ϕ is a complete
Riesz homomorphism if and only if {p} is open in P.

Proof Weview ϕ as amap fromC(P) to C(Q), where the set Q consists of one point q,
and, for every x ∈ C(Q), the real numberϕ(x) is interpreted as the continuous function
q �→ ϕ(x) on Q. Define α : Q → P by α(q) := p. Then, for every x ∈ C(P), we
have

(ϕ(x)) (q) = x(p) = x(α(q)).

We show that α is weak-open if and only if {p} is open in P . For a proof, assume first
that α is weak-open. Then α[Q] = {α(q)} = {p} is dense somewhere, that is, there is
a nonempty open set V ⊆ P such that {p}∩V is dense in V . We obtain that V = {p}.
Indeed, if p /∈ V , then {p} ∩ V = ∅ is not dense in V as V is nonempty. If there is
p0 ∈ V \ {p}, then there is a net in {p} converging to p0, which contradicts the fact
that P is Hausdorff. We conclude that {p} is open in P .

Conversely, assume that {p} is open in P . LetU ⊆ Q be nonempty and open. Then
U = {q}, so α[U ] = {α(q)} = {p}. We thus have that {p} is open and nonempty and
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α[U ] ∩ {p} = {p} is dense in {p}. Hence, α is weak-open. Now, the requested claim
follows from Theorem 15. ��
Example 23 It is well-known that for every t ∈ [−1, 1] the point evaluation
ϕt : C[−1, 1] → R, x �→ ϕt (x) := x(t), is a Riesz homomorphism, but not order
continuous. Hence, it is not a complete Riesz homomorphism, as is also indicated by
Lemma 22. Observe that point evaluations on order dense subspaces of C[−1, 1] are
not Riesz homomorphisms, in general. For instance, the Namioka space X in Exam-
ple 42 below is order dense in C[−1, 1], but the restriction of ϕ0 to X is not a Riesz
homomorphism, see Proposition 17.

The next statement provides the characterization of functionals that are complete
Riesz homomorphisms.

Proposition 24 Let (X , K , ‖·‖u) be an order unit space and let (C(�),�) be its func-
tional representation according to (5). Then ϕ ∈ � is a complete Riesz homomorphism
if and only if {ϕ} is open in �.

Proof By Lemma 22, the set {ϕ} is open in � if and only if the point evaluation
ϕ̂ : C(�) → R, x �→ x(ϕ), is a complete Riesz homomorphism. This is equivalent to
ϕ̂ ◦� = ϕ being a complete Riesz homomorphism, due to Proposition 10. ��
Example 25 (Polyhedral cone) In Example 19, the set � = � consists of complete
Riesz homomorphisms. Indeed, for every ϕ ∈ �, we have that {ϕ} is open in �, thus
ϕ is a complete Riesz homomorphism by Proposition 24.

In Riesz spaces, a linear map is a complete Riesz homomorphism if and only if
it is an order continuous Riesz homomorphism, see, e.g., [9, Proposition 1.4.5]. In
pre-Riesz spaces, every complete Riesz homomorphism is an order continuous Riesz
homomorphism, see [9, Propositions 2.3.16 and 2.3.20]. We give a functional on a
pre-Riesz space that is an order continuous Riesz homomorphism, but not a complete
Riesz homomorphism.

Example 26 (Lorentz cone) We continue Example 18 with H being an n-dimensional
Hilbert space, X := R × H and LH the Lorentz cone in X . Let ϕ ∈ � = �. We
already observed that ϕ is a Riesz homomorphism. As � can be identified with the
(n − 1)-sphere in R

n , the set {ϕ} is not open. Proposition 24 yields that ϕ is not a
complete Riesz homomorphism. By Proposition 4, the map ϕ is order continuous.

6 Riesz homomorphisms and complete Riesz homomorphisms on
order unit spaces

By means of the functional representation, we characterize in Theorem 29 the order
unit spaces on which every Riesz* homomorphism is a Riesz homomorphism, or a
complete Riesz homomorphism, respectively. First, we consider operators that are
represented as weighted composition operators as in Theorem 12. As preparatoy work
for Theorem 29, we prove the following technical proposition, whose main content
is part (i), since part (ii) follows from Theorem 15. Nevertheless, the consequence in
Theorem 29(ii) below has not been observed, so far.
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Proposition 27 Let (X1, K1, ‖·‖u), (X2, K2, ‖·‖v) be order unit spaces and
(C(�1),�1), (C(�2),�2) their functional representations, respectively. Let w ∈
C(�2) be positive and α : �2 → �1. Let the linear operator T0 : �1[X1] → C(�2)

be such that T0[�1[X1]] ⊆ �2[X2] and given by

(T0v)(q) = w(q)v(α(q)) for v ∈ �1[X1], q ∈ �2. (8)

If we define the linear operator T : X1 → X2 by T := �−1
2 ◦ T0 ◦ �1, then the

following statements hold.

(i) If, for every nonempty open set U ⊆ {q ∈ �2; w(q) > 0}, there exists q ∈ U
such that α(q) ∈ �1, then T is a Riesz homomorphism.

(ii) If, for every nonempty open set U ⊆ {q ∈ �2; w(q) > 0}, there exists q ∈ U
such that {α(q)} is open in �1, then T is a complete Riesz homomorphism.

Proof (i)We show that T0 is a Riesz homomorphism.We intend to apply Proposition 3
with Y := C(�2). Let x, y ∈ �1[X1] and denote

G : = {T0v − (T0x ∨ T0y); v ∈ �1[X1], v ∈ {x, y}u}
= {q �→ w(q) (v(α(q))− x(α(q)) ∨ y(α(q))) ; v ∈ �1[X1], v ∈ {x, y}u}
⊆ Y .

As T0 is positive, the set G consists of positive elements. We show that inf G = 0 in
C(�2) usingLemma 14with X := C(�2). Let ε > 0 andU ⊆ �2 be a nonempty open
set. We investigate two cases. First, assume that there is q0 ∈ U such that w(q0) = 0.
As �1[X1] is directed, there is v ∈ �1[X1] such that v ≥ x and v ≥ y. Now

w(q0) (v(α(q0))− x(α(q0)) ∨ y(α(q0))) = 0 < ε.

Second, we consider the caseU ⊆ {q ∈ �2; w(q) > 0}. By assumption, there exists
q0 ∈ U such that α(q0) ∈ �1. By Proposition 17, the functional α(q0) is a Riesz
homomorphism on X1. Since �−1

1 : �1[X1] → X1 is an order isomorphism, we have
that ϕ := α(q0) ◦�−1

1 : �1[X1] → R is a Riesz homomorphism, and therefore,

inf{ϕ(v); v ∈ �1[X1], v ∈ {x, y}u} = ϕ(x) ∨ ϕ(y).

Let M > 0 be an upper bound of w. Then there exists v ∈ �1[X1] with v ∈ {x, y}u
such that

ϕ(v) ≤ ϕ(x) ∨ ϕ(y)+ ε
M . (9)

Recall that for every a ∈ X1 and λ ∈ �1, we have (�1(a))(λ) = λ(a). Hence, for
z ∈ �1[X1], the choice a := �−1

1 (z) and λ := α(q0) yields

ϕ(z) = α(q0)(�
−1
1 (z)) = �1(�

−1
1 (z))(α(q0)) = z(α(q0)).
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Now, (9) reads as

v(α(q0)) ≤ x(α(q0)) ∨ y(α(q0))+ ε
M ,

which implies

w(q0)(v(α(q0))− x(α(q0)) ∨ y(α(q0))) ≤ M(v(α(q0))− x(α(q0)) ∨ y(α(q0)))

≤ ε.

Weconclude that in both cases condition (ii) in Lemma14 is satisfied, hence inf G = 0.
By Proposition 3, it follows that T0 is a Riesz homomorphism. As T = �−1

2 ◦ T0 ◦�1

and �1, �
−1
2 are order isomorphisms, T is a Riesz homomorphism.

(ii) Similar to the proof of (i), we show that T0 is a complete Riesz homomorphism.
Let A ⊆ �1[X1] be a set of positive elements such that inf A = 0. We intend to show
that inf T0[A] = 0 using Lemma 14 for G := T0[A]. Clearly, the set G consists of
positive elements. Let ε > 0 and U ⊆ �2 be a nonempty open set. First, if there is
q0 ∈ U such that w(q0) = 0, then, for every v ∈ A, we have

T0(v)(q0) = w(q0)v(α(q0)) = 0 < ε.

Second, let U ⊆ {q ∈ �2; w(q) > 0}. By assumption, there exists q0 ∈ U such that
{α(q0)} is open is �1. By Proposition 24, α(q0) is a complete Riesz homomorphism
on X1, hence ϕ := α(q0) ◦�−1

1 : �1[X1] → R is a complete Riesz homomorphism,
and therefore, inf ϕ[A] = 0. Let M > 0 be an upper bound of w. Then there exists
v ∈ A such that

v(α(q0)) = ϕ(v) ≤ ε
M ,

which implies

T0(v)(q0) = w(q0)v(α(q0)) ≤ Mv(α(q0)) ≤ ε.

We conclude that condition (ii) in Lemma 14 is satisfied, hence inf T0[A] = 0. It
follows that T0 and, therefore, T is a complete Riesz homomorphism. ��

The sufficient condition in Proposition 27(ii) is not a necessary one. Indeed, con-
sider X1 = X2 := C[0, 1] and the identity map T : x �→ x . Then T is a complete
Riesz homomorphism, but, as singletons in [0, 1] are not open, the condition in Propo-
sition 27(ii) is not satisfied.

The following digression to rank-one operators will be helpful later on.

Proposition 28 Let X and Y be partially ordered vector spaces, let v ∈ Y \{0}, v ≥ 0,
and let f : X → R be linear. Define the linear map T : X → Y by T x = f (x)v for
x ∈ X.

(i) T is positive if and only if f is positive.
(ii) T is a Riesz* homomorphism if and only if f is a Riesz* homomorphism.
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(iii) If T is a Riesz homomorphism, then f is a Riesz homomorphism. The converse
implication is satisfied if Y is Archimedean.

(iv) If T is a completeRiesz homomorphism, then f is a completeRiesz homomorphism.
The converse implication is satisfied if Y is Archimedean.

Proof

(i) is clear.
(ii) Let T be a Riesz* homomorphism. Let F ⊆ X be a nonempty finite set. Then

T [Ful] ⊆ T [F]ul. Let α ∈ f [Ful] and let z ∈ Ful be such that f (z) = α. Define
μ := max{ f (a); a ∈ F}. For every a ∈ F , we have Ta = f (a)v ≤ μv, hence
μv ∈ T [F]u. As T z ∈ T [Ful] ⊆ T [F]ul, we obtain f (z)v = T z ≤ μv. Hence,
f (z) ≤ μ, and, therefore, f (z) ∈ f [F]ul. Thus, f [Ful] ⊆ f [F]ul, which yields
that f is a Riesz* homomorphism.
Conversely, let f be a Riesz* homomorphism. Let F ⊆ X be a nonempty finite
set. Then f [Ful] ⊆ f [F]ul. Let y ∈ T [Ful] and let z ∈ Ful be such that T z = y.
Let u ∈ T [F]u. Since f (z) ∈ f [Ful] ⊆ f [F]ul and μ := max{ f (a); a ∈ F} ∈
f [F]u, we have f (z) ≤ μ, hence T z = f (z)v ≤ μv. As, for every a ∈ F ,
f (a)v = Ta ≤ u, we obtain y = T z ≤ μv ≤ u. Thus, y ∈ T [F]ul, which
implies that T is a Riesz* homomorphism.

(iii) We use Proposition 2(ii). Suppose that f is positive and not a Riesz homomor-
phism, then there exist a, b ∈ X and ε > 0 such that

inf{ f (z); z ∈ {a, b}u} > f (a) ∨ f (b)+ ε =: α.

For every z ∈ {a, b}u, we have T z = f (z)v ≥ αv, hence αv ∈ T [{a, b}u]l.
As {Ta, Tb}ul = { f (a)v, f (b)v}ul = {( f (a) ∨ f (b))v}l, it follows that
αv /∈ {Ta, Tb}ul. Hence T [{a, b}u]l � {Ta, Tb}ul, which means that T is
not a Riesz homomorphism.
Conversely, assume that Y is Archimedean and that f is a Riesz homomor-
phism. Let a, b ∈ X . By (i), T is positive, hence {Ta, Tb}ul ⊆ T [{a, b}u]l. By
Proposition 2(ii), we have

μ := max{ f (a), f (b)} = inf{ f (z); z ∈ {a, b}u}.

Let y ∈ T [{a, b}u]l and u ∈ {Ta, Tb}u. For every z ∈ {a, b}u, we have y ≤
T z = f (z)v, hence y ≤ μv, as Y is Archimedean, see [16, Theorem 9.1]. As
u ≥ f (a)v and u ≥ f (b)v, we get u ≥ μv. We conclude u ≥ y, which means
T [{a, b}u]l ⊆ {Ta, Tb}ul. Therefore, T is a Riesz homomorphism.

(iv) Let T be a complete Riesz homomorphism. Let A ⊆ X be a nonempty set
with inf A = 0. Then inf{ f (a)v; a ∈ A} = inf T [A] = 0. This implies
inf f [A] = 0, hence f is a complete Riesz homomorphism.
Conversely, let f be a complete Riesz homomorphism. Then, for a nonempty
set A ⊆ X with inf A = 0, we get inf f [A] = 0, therefore inf T [A] =
inf{ f (a)v; a ∈ A} = 0, as Y is Archimedean. Thus, T is a complete Riesz
homomorphism. ��
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A topological vector space M is called discrete if, for every x ∈ M , the set {x} is open.
The subsequent statements are convenient if one studies examples.

Theorem 29 Let (X1, K1, ‖·‖u), (X2, K2, ‖·‖v)beorder unit spaces and (C(�1),�1),
(C(�2),�2) their functional respresentations, respectively.

(i) One has �1 = �1 if and only if every Riesz* homomorphism T : X1 → X2 is a
Riesz homomorphism.

(ii) �1 is discrete if and only if every Riesz* homomorphism T : X1 → X2 is a
complete Riesz homomorphism.

Proof (i) Let T : X1 → X2 be a Riesz* homomorphism. By Theorem 12(i) and
Lemma 20, there exist a positive function w ∈ C(�2) and α : �2 → �1 such
that the operator T0 := �2 ◦ T ◦ �−1

1 is given by (8). If �1 = �1, then the
condition in Proposition 27(i) is trivially met, and we conclude that T is a Riesz
homomorphism. Conversely, let ϕ ∈ �1 and consider

T : X1 → X2, x �→ ϕ(x)v. (10)

By the Propositions 17(b) and 28(ii), the operator T is a Riesz* homomorphism.
The assumption yields that T is a Riesz homomorphism, which implies that ϕ is
a Riesz homomorphism, by Proposition 28(iii). Hence, by Proposition 17(a), we
get ϕ ∈ �1.

(ii) Similar to (i), if �1 is discrete, then the condition in Proposition 27(ii) is satisfied,
hence T is a complete Riesz homomorphism. Conversely, let ϕ ∈ �1 and con-
sider T given by (10). As in (i), the operator T is a Riesz* homomorphism. By
assumption, T is a complete Riesz homomorphism. Applying Proposition 28(iv)
yields that ϕ is a complete Riesz homomorphism. Hence, by Proposition 24, the
set {ϕ} is open in �1.

��
Example 30 (Lorentz cone) We continue Example 18, i.e., H is a finite-dimensional
Hilbert space, and X1 := R × H is ordered by the Lorentz cone LH . As �1 = �1,
Theorem 29(i) yields that everyRiesz* homomorphism from X1 into an arbitrary order
unit space X2 is a Riesz homomorphism.

In view of Example 25, we obtain the following consequence of Theorem 29(ii).

Corollary 31 Let X1 = R
n be equipped with a generating polyhedral cone and let X2

be an order unit space. Then every Riesz* homomorphism T : X1 → X2 is a complete
Riesz homomorphism.

In Proposition 28(iii) and (iv), the converse implication is not true, in general, if Y
is not Archimedean, as the subsequent examples show.

Example 32 Let X := R × H as in Example 18, where H := R
2. Let X be ordered

by the Lorentz cone LH , which is a circular cone here. For x ∈ X , instead of(
x3, (x1, x2)T

)
, we write (x1, x2, x3)T, as usual. Let f : X → R, x �→ 〈x, (1, 0, 1)T〉.

123



2116 A. Kalauch et al.

By Example 18, the functional f is a Riesz homomorphism. Let Y := R
2 be ordered

by the lexicographical cone

C := {(x1, x2)T ∈ R
2; x1 > 0 or x1 = 0 and x2 ≥ 0}.

Fix v := (1, 0)T and define T : X → Y , x �→ f (x)v. Let a := (0, 1, 0)T and
b := (0,−1, 0)T. Then f (a) = f (b) = 0, hence Ta = Tb = 0, which implies
{Ta, Tb}ul = {0}l. Let x = (x1, x2, x3)T be an upper bound of a and b, then x3 > ±x1,
hence f (x) > 0. In particular, for α ∈ (0,∞), the element x := (− 1

α
, 0, α + 1

α
) is

an upper bound of a and b, where f (x) = α. Therefore, f
[{a, b}u] = (0,∞). We

conclude T
[{a, b}u] = {λv; λ ∈ (0,∞)}, and (0, 1)T is a lower bound of this set,

but (0, 1)T /∈ {0}l. Consequently, T [{a, b}u]l � {Ta, Tb}ul, which implies that T is
not a Riesz homomorphism.

Example 33 Let X := R
3 be ordered by the four-ray cone

K := pos
{(

1
0
1

)
,
(
0
1
1

)
,
(−1

0
1

)
,
( 0−1

1

)}
. (11)

Considering (6), the cone K is given by the four functionals

f (1) = (−1,−1, 1) , f (2) = (1,−1, 1) , f (3) = (1, 1, 1) , f (4) = (−1, 1, 1) ,

(12)

where each of them is a complete Riesz homomorphism by Example 25. Consider
u := (0, 0, 1)T ∈ K and A := {λu; λ ∈ (0,∞)}. Then inf A = 0 in X . Let Y , C , and
v be as in Example 32. The set

T [A] :=
{
f (1)(a)v; a ∈ A

}
= {λv; λ ∈ (0,∞)}

has (0, 1)T as a lower bound, hence 0 is not the infimum of T [A] in Y . Therefore, T
is not a complete Riesz homomorphism.

7 Characterization of elements withmodulus

If a partially ordered vector space (X , K ) is an anti-lattice, an element x ∈ X has a
modulus if and only if x ∈ K ∪ (−K ). In [8], it is shown that a partially ordered vector
space is an anti-lattice if and only if there are no nontrivial positive disjoint elements
in the space, see also [9, Theorem 4.1.10]. In this spirit, we characterize elements with
modulus in an arbitrary pre-Riesz space in Theorem 35 below.

Lemma 34 Let (X , K ) be a pre-Riesz space and let (Y , i) be a vector lattice cover of
X. If x ∈ X is such that |x | := sup{x,−x} exists in X, then

(a) i(|x |) = |i(x)|, and
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(b) there exist a, b ∈ K, a ⊥ b, such that x = a − b.

Proof (a) Let x ∈ X be such that |x | exists in X . As±x ≤ |x |, we get±i(x) ≤ i(|x |)
and, hence, |i(x)| ≤ i(|x |). By order denseness of i[X ] in Y , we have

|i(x)| = inf {i(w); w ∈ X , i(w) ≥ |i(x)|}
= inf {i(w); w ∈ X , w ≥ ±x} . (13)

If w ∈ X is such that w ≥ ±x , then w ≥ |x |, so i(w) ≥ i(|x |). By (13), it follows
that |i(x)| ≥ i(|x |). Hence, |i(x)| = i(|x |).

(b) Let x ∈ X be such that |x | exists in X . Define a := 1
2 (x + |x |) and b := a − x .

Using (a), we get

i(a) = 1
2 (i(x)+ i(|x |)) = 1

2 (i(x)+ |i(x)|)
= 1

2

(
i(x)+ − i(x)− + i(x)+ + i(x)−

) = i(x)+,

i(b) = i(a)− i(x) = i(x)+ − (
i(x)+ − i(x)−

) = i(x)−.

Therefore, i(a) and i(b) are positive disjoint elements in Y . We conclude that a
and b are positive disjoint elements in X , and we have x = a − b.

��
Theorem 35 Let (X , K ) be a pre-Riesz space and let (Y , i) be a vector lattice cover
of X. For x ∈ X, the following statements are equivalent.

(i) |x | exists in X.
(ii) |i(x)| ∈ i[X ].
(iii) Either2 x ∈ K ∪ (−K ), or there exist a, b ∈ K \ {0}, a ⊥ b, such that x ∈

span{a, b}.
(iv) Either x ∈ K ∪ (−K ), or there exists a subspace D of X with x ∈ D and i[D]

is a Riesz subspace of Y .

Proof (i)⇒ (iii): Let x ∈ X\(K∪(−K )) be such that |x | exists in X . ByLemma34(b),
there exist a, b ∈ K , a ⊥ b, such that x = a − b. As x /∈ K ∪ (−K ), it follows that
a �= 0, b �= 0.

(iii)⇒ (iv): Let x ∈ X \(K ∪ (−K )) and let a1, a2 be nontrivial positive disjoint
elementswith x ∈ span{a1, a2}. Define D := span{a1, a2}. Let y ∈ i[D], i.e., there are
real numbers α1, α2 such that y = α1i(a1)+ α2i(a2). Let P := { j ∈ {1, 2}; α j ≥ 0}
and define

y1 :=
∑
p∈P

αpi(ap) and y2 :=
∑

p∈{1,2}\P
|αp|i(ap).

Then y1 ≥ 0, y2 ≥ 0, y1 ⊥ y2, and y = y1 − y2. Hence y1 = y+ and y2 = y−, and
these elements are in i[D]. We conclude that i[D] is a Riesz subspace of Y .
2 Clearly, (iii) can also be formulated as follows: There exist disjoint elements a, b ∈ K such that x ∈
span{a, b}. However, this formulation might hide the geometry of the problem.

123



2118 A. Kalauch et al.

(iv)⇒ (ii): If x ∈ D for a subspace D of X such that i[D] is a Riesz subspace of
Y , we have |i(x)| ∈ i[D] ⊆ i[X ].

(ii)⇒ (i): Let x ∈ X and assume that there is an element v ∈ X such that |i(x)| =
i(v). We show that v = |x |. Since i(v) ≥ ±i(x), it follows that v ≥ ±x , due to the
bipositivity of i . Moreover, w ≥ ±x implies i(w) ≥ ±i(x), so i(w) ≥ |i(x)| = i(v),
consequently w ≥ v. Hence, v = sup{x,−x} = |x |. ��
Corollary 36 Let (X , K ) be a pre-Riesz space and let a, b ∈ K. The following state-
ments are equivalent.

(i) a ⊥ b.
(ii) The modulus of a − b exists and equals a + b.

Proof Let (Y , i) be a vector lattice cover of X .
(i)⇒ (ii): As i(a) and i(b) are positive and disjoint, we get

|i(a − b)| = |i(a)− i(b)| = i(a)+ i(b) = i(a + b) ∈ i[X ].

By Theorem 35, |a − b| exists in X . Lemma 34(a) implies that

i(|a − b|) = |i(a − b)| = i(a + b),

hence |a − b| = a + b.
(ii)⇒ (i): Using Lemma 34(a), we have

|i(a)− i(b)| = |i(a − b)| = i(|a − b|) = i(a + b) = i(a)+ i(b),

hence i(a) ∧ i(b) = 1
2 (i(a)+ i(b)− |i(a)− i(b)|) = 0. We conclude that a ⊥ b. ��

Theorem 35 can be used to determine the set of elements that have a modulus in
examples.

Example 37 (a) Let V := R
3 be equipped with the four-ray cone given in (11). The

set M ⊆ V of elements in (V , K ) that have a modulus is

M = K ∪ (−K ) ∪ E1 ∪ E2,

where E1 =
{
(0, u, v)T ; u, v ∈ R

}
and E2 =

{
(u, 0, v)T ; u, v ∈ R

}
. Indeed,

to apply Theorem 35, we need all pairs of (normed) nontrivial positive disjoint
elements. (In other words, we need all directed bands.) In [9, Example 4.4.18], it
is observed that there are only two such pairs, namely

{(
0
1
1

)
,
( 0−1

1

)}
and

{(
1
0
1

)
,
(−1

0
1

)}
.

Note that E1 is the span of the first pair, and E2 is the span of the second pair.
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(b) A generalization of (a) in R
n is given in [9, Example 1.7.7]. Consider the space

X := R
n (n ≥ 3) with the following (2n − 2)-ray cone. Let e(i) denote the

standard basis vectors, and for i ∈ {1, . . . , n − 1}, define x (i) := e(i) + e(n) and
y(i) := −e(i) + e(n). Let

K := pos
{
x (1), . . . , x (n−1), y(1), . . . , y(n−1)} .

In [14, Example 4.2], all pairs of nontrivial disjoint elements are determined. The
(normed) pairs in K are {x (i), y(i)} for i ∈ {1, . . . , n− 1}. Hence, by Theorem 35,
the set M ⊆ X of elements with modulus is

M = K ∪ (−K ) ∪
n−1⋃
i=1

span{x (i), y(i)}. (14)

Remark 38 Note that (iv) in Theorem 35 is stronger than assuming that D is a
vector lattice. In Example 37(a), the subspace D := {

(u, u, v)T ; u, v ∈ R
}
is a two-

dimensional vector lattice, but i[D] is not a Riesz subspace in the Riesz completion.

It follows from Theorem 35 that an operator preserves moduli if and only if it is
disjointness preserving on the positive elements, as we show next. Note that operators
as in Proposition 39(ii) play a role in [6].

Proposition 39 Let (X , K ) and V be pre-Riesz spaces, and let T : X → V be a
positive linear map. Then the following statements are equivalent.

(i) For every a, b ∈ K with a ⊥ b, we have Ta ⊥ Tb.
(ii) If x ∈ X has a modulus, then T x has a modulus in V , and T |x | = |T x |.
Proof (i)⇒ (ii): Let (Y , i) be a vector lattice cover of V . Let x ∈ X be such that |x |
exists. By Lemma 34(b), there exist a, b ∈ K , a ⊥ b, such that x = a − b. Hence,
i(Ta) ⊥ i(Tb), and i(Ta) and i(Tb) are positive. Therefore, by Corollary 36,

|i(T x)| = |i(T (a − b))| = |i(Ta)− i(Tb)|
= i(Ta)+ i(Tb) = i(T (a + b)) = i(T |x |) ∈ i[V ]. (15)

By Theorem 35, |T x | exists in V , and by Lemma 34(a), we get i(|T x |) = |i(T x)|.
Now, (15) yields that i(|T x |) = i(T |x |), which implies |T x | = T |x |.

(ii) ⇒ (i): Let a, b ∈ K be such that a ⊥ b. By Corollary 36, |a − b| exists and
equals a + b. By assumption, |T (a − b)| exists and

|Ta − Tb| = |T (a − b)| = T |a − b| = Ta + Tb.

Again by Corollary 36, we obtain Ta ⊥ Tb. ��
Remark 40 Let X andY be pre-Riesz spaces and T : X → Y aRiesz* homomorphism.
Then T is a positive disjointness preserving operator, hence also the condition in
Proposition 39(ii) is satisfied.
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Note that Proposition 39 describes, in fact, the behaviour of operators on subspaces
generated by two nontrivial positive disjoint elements.

Corollary 41 Let X and Y be pre-Riesz spaces and let T : X → Y be a positive linear
map that is disjointness preserving on positive elements. Let a and b be nontrivial
positive disjoint elements in X and let D := span{a, b}. Then T [D] is a Riesz space
and T |D : D → T [D] is a Riesz homomorphism.

Proof By Corollary 36, D is a Riesz space, and similarly, as T (a) ⊥ T (b), T [D]
is a Riesz space as well. According to Proposition 39, T |D : D → T [D] is a Riesz
homomorphism. ��
As a consequence, in view of Remark 40, observe that Riesz* homomorphisms act
as Riesz homomorphisms on two-dimensional subspaces spanned by two nontrivial
positive disjoint elements.

8 Relation between positive disjointness preserving operators and
Riesz* homomorphisms

For linear operators in Riesz spaces, it is well-known that an operator is positive
and disjointness preserving if and only if it is a Riesz homomorphism. In pre-Riesz
spaces, every Riesz* homomorphism is a positive disjointness preserving operator,
see [9, Theorem 5.1.12]. We will deal with the converse implication and study the
following question:

(Q) Let a positive linear map T : X → Y between pre-Riesz spaces be disjointness
preserving on positive elements, as in Proposition 39. Under which conditions on
X and Y do we have that T is a Riesz* homomorphism?

Van Imhoff observed in [13, Example 2.29] that, in general, additional conditions are
needed for T to be a Riesz* homomorphism in (Q). The next example shows that even
in the case of functionals extra conditions are necessary.

Example 42 Consider the Namioka space

X = {x ∈ C[−1, 1]; 2x(0) = x(1)+ x(−1)}

with pointwise order and define the linear functional

h : X → R, x �→ 2x(1)+ x(−1)− x(0).

To show that h is positive, let x ∈ X , x ≥ 0. Then

0 ≤ x(0) = x(1)+ x(−1)− x(0) ≤ 2x(1)+ x(−1)− x(0) = h(x).

To prove that h is disjointness preserving, let x, y ∈ X with x ⊥ y. This implies that,
for q ∈ M := {1,−1, 0}, we have x(q) = 0 or y(q) = 0. We need to show that
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h(x) = 0 or h(y) = 0. By symmetry, it is enough to consider the cases where x equals
zero for either none or exactly one of the elements of M . If x(q) �= 0 for all q ∈ M ,
then y(q) = 0 for all q ∈ M and, therefore, h(y) = 0. If there exists exactly one
q ∈ M , say q = 1, such that x(1) = 0, then y(−1) = y(0) = 0, and, by the definition
of X , we get y(1) = 2y(0)− y(−1) = 0 and therefore h(y) = 0. The other cases are
similar. Hence, h is disjointness preserving.

Finally, we show that h is not a Riesz* homomorphism. Suppose the contrary, then,
by Theorem 12, there exist α > 0 and t ∈ [−1, 1] such that h(x) = αx(t) for every
x ∈ X . Since 1 : [−1, 1] → R, q �→ 1, is in X , we get

2 = h(1) = α1(t) = α.

Next, consider the function y ∈ X defined by y(q) := 1
2q + 1

2 , q ∈ [−1, 1]. Then
3
2 = h(y) = 2y(t) = 2

( 1
2 t + 1

2

) = t + 1.

Consequently, t = 1
2 . Now, let z ∈ X be given by

z(q) :=
{
2|q + 1

2 | if q ∈ [−1, 0],
2|q − 1

2 | if q ∈ (0, 1].

Then we get h(z) = 2 and h(z) = 2z
( 1
2

) = 0, a contradiction.

We study (Q) in spaces of continuous functions. For a nonempty compact Hausdorff
space P and X ⊆ C(P), we consider the condition

(SD) For every p1, p2 ∈ P with p1 �= p2, there exist a1, a2 ∈ X with a1, a2 ≥ 0 and
a1 ⊥ a2 such that a1(p1) �= 0 and a2(p2) �= 0,

i.e., the points of P are separated by disjoint positive elements. Using the condition
(SD),we obtain an affirmative answer to (Q) first for functionals, and then for operators
in Theorem 49 below.

Proposition 43 Let P be a nonempty compact Hausdorff space and let X be an order
dense subspace of C(P) such that (SD) is satisfied. Then every positive linear func-
tional f : X → R which is disjointness preserving on positive elements is a Riesz*
homomorphism.

Proof Let f : X → R be a positive linear map which is disjointness preserving on
positive elements. As X is majorizing in C(P), there exists a positive linear map
f̂ : C(P) → R extending f , due to the Kantorovich theorem [3, Theorem 1.36]. By
the Riesz-Markov-Kakutani representation theorem, there exists a finite nonnegative
regular Borel measure μ on P such that f̂ (x) = ∫

xdμ for every x ∈ C(P). Consider
the support of μ given by

supp(μ) := {p ∈ P; μ(U ) > 0 for every open U ⊆ P with p ∈ U }.
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If supp(μ) = ∅, then f = 0, which is a Riesz* homomorphism. If supp(μ) �= ∅,
then we show that supp(μ) consists of one point. Indeed, suppose there are p1, p2 ∈
supp(μ) with p1 �= p2. By (SD), there exist positive disjoint elements a1, a2 ∈ X
with a1(p1) > 0 and a2(p2) > 0. Choose ε > 0 and an open setU ⊆ P with p1 ∈ U
such that a1(p) ≥ ε for every p ∈ U . Then

f (a1) = f̂ (a1) ≥
∫

ε1Udμ = εμ(U ) > 0,

as p1 ∈ supp(μ). Similarly, f (a2) > 0. Hence, f (a1) and f (a2) are not disjoint,
which is a contradiction. Thus, there exists p ∈ P such that supp(μ) = {p}. It follows
that there exists ω > 0 such that μ = ωδp, where δp is the point measure at p.
Therefore, f̂ (x) = ∫

xdμ = ωx(p) for every x ∈ C(P), which means that f̂ is a
Riesz homomorphism. As X is order dense in C(P), we obtain that f is a Riesz*
homomorphism, due to Theorem 5. ��
Example 44 For X = C1[0, 1] ⊆ C[0, 1], the condition (SD) is satisfied.

Example 45 Clearly, (SD) fails for every space X ⊆ C(P) that does not contain
nonzero positive disjoint elements. By [9, Theorem 4.1.10], this means that (SD) is
not satisfied whenever X is an antilattice.

Example 46 In the Namioka space as in Example 42, the condition (SD) fails due to
Proposition 43. To see this directly, take p1 = −1 and p2 = 1. As a1, a2 ≥ 0 and
a1(p1) > 0, a2(p2) > 0 implies that a1(0) > 0 and a2(0) > 0, we obtain that a1 and
a2 are not disjoint.

Observe that the sufficient condition (SD) in Proposition 43 is not a necessary one,
as the next example shows.

Example 47 Let X := {x ∈ C[0, 1]; x(0) = x(1)}. On the one hand, as X is a Riesz
space, every positive disjointness preserving functional is a Riesz homomorphism,
and, hence, a Riesz* homomorphism. On the other hand, (SD) does not hold. Indeed,
let p1 = 0, p2 = 1 and let a1, a2 ≥ 0 be disjoint elements in X such that a1(0) �= 0.
Then a2(0) = 0, which implies a2(1) = 0. Note that X is isomorphic to C(S), where
S denotes the unit circle in R

2. Observe that C(S) satisfies (SD).

If (SD) is satisfied for X ⊆ C(P), then, in particular, a1(p2) = 0, hence the
following is obvious.

Lemma 48 If X ⊆ C(P) satisfies (SD), then X strongly separates the points of P.

The next result provides an answer to question (Q) for pre-Riesz spaces consisting
of continuous functions.

Theorem 49 Let P and Q be nonempty compact Hausdorff spaces, let X be an order
dense subspace of C(P) that satisfies (SD), and let Y be an order dense subspace of
C(Q). Then every positive linear map T : X → Y which is disjointness preserving on
the positive elements of X is a Riesz* homomorphism.
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Proof Let q ∈ Q. Then fq : X → R, x �→ (T x)(q), is a positive linear map which is
disjointness preserving on positive elements of X . By Proposition 43, the functional
fq is a Riesz* homomorphism. We extend fq first to a Riesz homomorphism on the
Riesz completion of X by means of Theorem 5, and then to a Riesz homomorphism
f̂q : C(P) → R, using the Lipecki-Luxemburg-Schep theorem, see, e.g., [9, Theorem
2.1.17]. Now there exist w(q) ∈ R+ and α(q) ∈ P such that f̂q(x) = w(q)x(α(q))

for every x ∈ C(P), see, e.g., [9, Theorem 5.1.13]. Moreover, for every x ∈ X , we
obtain

(T x)(q) = fq(x) = f̂q(x) = w(q)x(α(q)).

By Lemma 48, the space X strongly separates the points of P . Next we apply Proposi-
tion 13.As T x ∈ C(Q) for every x ∈ X , we get thatw ∈ C(Q) and thatα is continuous
on {q ∈ Q; w(q) > 0}. Now it follows from Theorem 12(ii) that T : X → Y is a
Riesz* homomorphism. ��

A result similar to Theorem 49 was shown by van Imhoff under the additional
assumption that X and Y are pointwise pervasive, see [13, Theorem 2.30]. We show
that his result is a special case of Theorem 49. For a nonempty compact Hausdorff
space P , a set X ⊆ C(P) is called pointwise pervasive if for every p ∈ P and every
neighbourhood U ⊆ P of p, there exists x ∈ X , x ≥ 0, such that x(p) �= 0 and
coz(x) ⊆ U . If X is pointwise pervasive, then X is pervasive, see Proposition 16.

Proposition 50 Let P be a nonempty Hausdorff space and let X ⊆ C(P) be pointwise
pervasive. Then X satisfies (SD).

Proof Let p1, p2 ∈ P , p1 �= p2. Since P is Hausdorff, there exist disjoint neighbour-
hoods V1, V2 of p1, p2, respectively. As X is pointwise pervasive, there are x1, x2 ∈ X ,
x1, x2 ≥ 0, such that xi (pi ) �= 0 and coz(xi ) ⊆ Vi for i ∈ {1, 2}. The disjointness of
V1 and V2 implies that x1 ⊥ x2. ��
We reformulate Theorem 49 for order unit spaces, where we use the functional repre-
sentation.

Corollary 51 For an order unit space (X , K , ‖·‖u), consider the following three state-
ments.

(a) For every Riesz* homomorphisms ϕ1, ϕ2 : X → R with ϕ1(u) = ϕ2(u) = 1 and
ϕ1 �= ϕ2, there exist disjoint elements a1, a2 ∈ K such that ϕ1(a1) �= 0 and
ϕ2(a2) �= 0.

(b) For the functional representation (�,�) of (X , K , ‖·‖u) given in (5), we have that
�[X ] ⊆ C(�) satisfies (SD).

(c) For every order unit space (Y ,C, ‖·‖v) and every positive linear map T : X → Y
that is disjointness preserving on K , we have that T is a Riesz* homomorphism.

Then (a) and (b) are equivalent, and (b) implies (c).

Proof (a) ⇒ (b): Let p1, p2 ∈ � be such that p1 �= p2. Then p1, p2 are Riesz*
homomorphisms due to Proposition 17, and p1(u) = p2(u) = 1. By assumption,
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there exist disjoint elements a1, a2 ∈ K such that p1(a1) �= 0 and p2(a2) �= 0. Then
�(a1) and�(a2) are positive disjoint elements in�[X ]with�(a1)(p1) = p1(a1) �= 0
and �(a2)(p2) = p2(a2) �= 0.

(b)⇒ (a): Letϕ1, ϕ2 ∈ �,ϕ1 �= ϕ2.As�[X ] satisfies (SD), there areb1, b2 ∈ �[X ]
with b1, b2 ≥ 0 and b1 ⊥ b2 such that b1(ϕ1) �= 0 and b2(ϕ2) �= 0. There are
a1, a2 ∈ X with b1 = �(a1), b2 = �(a2). We get a1, a2 ≥ 0, a1 ⊥ a2, ϕ1(a1) =
�(a1)(ϕ1) �= 0 and ϕ2(a2) = �(a2)(ϕ2) �= 0.

(b)⇒ (c): As X and �[X ] are isomorphic as partially ordered vector spaces, we
apply Theorem 49, where, bymeans of the functional representation, we also consider
Y as an order dense subspace of an appropriate space of continuous functions. ��
Corollary 51 is convenient for the study of examples. In the subsequent one, we
furthermore show that, in general, (SD) is a weaker condition than being pointwise
pervasive.

Example 52 For the four-ray cone in Example 37(a), the statement (a) in Corollary 51
holds. We continue Example 37(b), i.e., we study the (2n−2)-ray cone K in X := R

n

further. The element u := e(n) is an order unit in X and, by [14, Example 4.1], we get
in (5) that

� = { fσ ∈ K ′; σ ∈ {−1, 1}n−1}, (16)

where fσ (x) := ∑n−1
i=1 σi xi+xn . In [14, Section 4], all positive disjointness preserving

bijections T : X → X are calculated. We show now that every positive linear map that
is disjointness preserving on K is a complete Riesz homomorphism. First, we establish
that (a) in Corollary 51 is satisfied. Indeed, let fσ , fδ ∈ � (σ, δ ∈ {−1, 1}n−1) with
fσ �= fδ . This implies that σ �= δ. Therefore, there exists j ∈ {1, . . . , n − 1} such
that σ j �= δ j , say σ j = 1, δ j = −1. We get fσ

(
x ( j)

) = σ j + 1 = 2 �= 0 and
fδ

(
y( j)

) = −δ j + 1 = 2 �= 0. Since x ( j), y( j) ≥ 0 and x ( j) ⊥ y( j), we have shown
that X satisfies Corollary 51(a), which implies that �[X ] has the property (SD) in
C(�). Now, let Y be an order unit space and let T : X → Y be a positive linear
map that is disjointness preserving on K . So far, we have shown that T is a Riesz*
homomorphism. By Corollary 31, the map T is a complete Riesz homomorphism.

We show that X is not pervasive and, therefore, not pointwise pervasive. Indeed,
using (5) and (16), we obtain � : X → R

2n−1 given by

�(x) =
2n−1∑
j=1

fγ ( j)(x)e
( j), x ∈ X ,

where γ : {1, . . . , 2n−1} → {σ ; σ ∈ {−1, 1}n−1} is a bijection. We get (R2n−1 ,�)

as the functional representation of X . In view of [9, Proposition 4.1.15 and Theorem
4.2.6], we show that there exists a band B in R

2n−1 such that {x ∈ X; �(x) ∈ B} is
not a band in X . Let

B := span
{
e(i); i ∈ {2, . . . , 2n−1}

}
⊆ R

2n−1 ,
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which is a band, see, e.g., [9, Example 1.3.14]. Denote I+ := {i ∈ {1, . . . , n −
1}; γ (1)i = 1} and I− := {i ∈ {1, . . . , n − 1}; γ (1)i = −1}. We get

{x ∈ X; �(x) ∈ B} = {x ∈ X; fγ (1) = 0}
⊇ span

(
{x (i); i ∈ I−} ∪ {y(i); i ∈ I+}

)
,

where the latter is at least two-dimensional, as n ≥ 3. In [14, Example 4.2], it is
shown that every band in X equals either span

{
e(i) + e( j)

}
or span

{
e(i) − e( j)

}
for

some i, j ∈ N, 1 ≤ i < j ≤ n. Hence, {x ∈ X; �(x) ∈ B} is not a band. We
conclude that X is not pervasive.

Next, we discuss to what extent the statement in Corollary 51(b) is necessary for
the one in (c).

Proposition 53 Let (X , K , ‖·‖u) be an order unit spaces and (C(�),�) the functional
representation of X. Then the following statements are equivalent.

(i) �[X ] ⊆ C(�) satisfies (SD).
(ii) For everyϕ1, ϕ2 ∈ �,ϕ1 �= ϕ2, we have thatϕ1+ϕ2 is not disjointness preserving

on K .
(iii) For every ϕ ∈ � that is disjointness preserving on K , we have that ϕ ∈ �, and

for every ϕ1, ϕ2 ∈ �, ϕ1 �= ϕ2, we have that
1
2 (ϕ1 + ϕ2) /∈ �.

(iv) For every order unit space (Y ,C, ‖·‖v), we have that every positive linear map
T : X → Y that is disjointness preserving on K is a Riesz* homomorphism, and
for every ϕ1, ϕ2 ∈ �, ϕ1 �= ϕ2, we have that

1
2 (ϕ1 + ϕ2) /∈ �.

Proof (i) ⇒ (ii): Let ϕ1, ϕ2 ∈ �, ϕ1 �= ϕ2, and define ϕ := ϕ1 + ϕ2. Since �[X ]
satisfies (SD), there exist disjoint elements a, b ∈ K such that ϕ1(a) > 0, ϕ2(b) > 0.
By the positivity of ϕ1, ϕ2, we also have ϕ1(b) ≥ 0, ϕ2(a) ≥ 0. Hence, we get

ϕ(a) = ϕ1(a)+ ϕ2(a) > 0, ϕ(b) = ϕ1(b)+ ϕ2(b) > 0.

Therefore, ϕ is not disjointness preserving on K .
(ii)⇒ (i): Assume that �[X ] does not have the property (SD). By Corollary 51, there
exist ϕ1, ϕ2 ∈ �, ϕ1 �= ϕ2, such that for every a, b ∈ K with a ⊥ b, we have

ϕ1(a) �= 0⇒ ϕ2(b) = 0 and ϕ1(b) �= 0⇒ ϕ2(a) = 0. (17)

We show that ϕ := ϕ1+ ϕ2 is disjointness preserving on K . Let a, b ∈ K be disjoint.
Then, since ϕ1, ϕ2 are disjointness preserving, ϕ1(a)ϕ1(b) = ϕ2(a)ϕ2(b) = 0. We
get

ϕ(a)ϕ(b) = ϕ1(a)ϕ1(b)+ ϕ1(a)ϕ2(b)+ ϕ2(a)ϕ1(b)+ ϕ2(a)ϕ2(b)

= ϕ1(a)ϕ2(b)+ ϕ2(a)ϕ1(b).

If ϕ1(a) �= 0, then we have ϕ1(b) = 0 by the disjointness of a and b, and ϕ2(b) = 0 by
(17), hence ϕ(a)ϕ(b) = 0. If ϕ1(a) = 0 and ϕ1(b) = 0, we also have ϕ(a)ϕ(b) = 0. If
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ϕ1(a) = 0 and ϕ1(b) �= 0, then we have by (17) that ϕ2(a) = 0, hence ϕ(a)ϕ(b) = 0.
We conclude that ϕ is disjointness preserving on K .

(ii) ⇒ (iv): As (ii) implies (i), Corollary 51 yields that that every positive linear
map T : X → Y that is disjointness preserving on K is a Riesz* homomorphism.
Furthermore, for every ϕ1, ϕ2 ∈ �, ϕ1 �= ϕ2, we have that ϕ1 + ϕ2 is not disjointness
preserving on K , hence not a Riesz* homomorphism. Therefore, 1

2 (ϕ1 + ϕ2) /∈ �.
(iv)⇒ (iii) is obvious.
(iii) ⇒ (ii): Let ϕ1, ϕ2 ∈ �, ϕ1 �= ϕ2. Assume that ϕ := ϕ1 + ϕ2 is disjointness
preserving on K . Then 1

2ϕ is also disjointness preserving on K and therefore, by
assumption, a Riesz* homomorphism. Hence 1

2ϕ ∈ �. ��

9 Operators withmodulus

In this section, we apply the results of Section 6 to obtain moduli of functionals and
operators.We start by recalling the four-ray cone example and characterize functionals
that have a modulus.

Example 54 We change the point of view in Example 37(a), where in V = R
3 the

four-ray cone K , see (11), is considered. Let the space X := R
3 be equipped with the

cone

C := pos
{
f (1), f (2), f (3), f (4)

}
,

using (12). Then, by duality, Lb(X , R) can be identified with (V , K ). We already
calculated the set M of functionals in Lb(X , R) that have a modulus, see (14).

The method in the previous example is a special case of the subsequent Proposi-
tion 56 on finite-dimensional order unit spaces. Let K be a closed generating cone
in R

n . Then K contains an order unit u, and the dual cone K ′ := {y ∈ R
n; ∀x ∈

K : 〈x, y〉 ≥ 0} is generating in X ′. As K ′ is closed, it follows that (Rn, K ′) is also an
order unit space. For a fixed order unit v ∈ K ′, we consider the functional representa-
tion (C(L),�) of (Rn, K ′, ‖·‖v), see (5). Note that L ⊆ K ′′ = K (see also [9, Lemma
2.6.8]), that L consists of the extreme points of the base S = {x ∈ K ; 〈x, v〉 = 1} of
K , and that L can be considered as the closure of L in S. The next lemma states that
two functionals on (Rn, K ) are disjoint if and only if they are pointwise disjoint on
L .

Lemma 55 For every a, b ∈ K ′ \ {0}, we have a ⊥ b in (Rn, K ′) if and only if, for
every x ∈ L, we have a(x) = 0 or b(x) = 0.

Proof Since (C(L),�) is a vector lattice cover of (Rn, K ′), we have, for every a, b ∈
R
n , that a ⊥ b in (Rn, K ′) if and only if �(a) ⊥ �(b) in C(L), where the latter

means that, for every x ∈ L , we have a(x) = 0 or b(x) = 0. ��
Now, we characterize functionals that have a modulus. The subsequent statement is a
direct consequence of Theorem 35 and Lemma 55.

123



Operators in pre-Riesz spaces: moduli and homomorphisms 2127

Proposition 56 Let K be a closed generating cone in R
n, let v be an order unit in K ′,

and let (C(L),�) be the functional representation of (Rn, K ′, ‖·‖v). Let f : R
n → R

be a linear functional. Then the following are equivalent.

(i) f has a modulus in (Rn, K ′).
(ii) Either f ∈ K ′ ∪ (−K ′), or there exist a, b ∈ K ′ \ {0} with f ∈ span{a, b} such

that, for every x ∈ L, one has a(x) = 0 or b(x) = 0.

If a functional as in Proposition 56 has a modulus, then the modulus is given by the
Riesz-Kantorovich formula due to [4, Theorem 3.3]. Proposition 56(ii) can also be
replaced by

(ii’) either f ∈ K ′ ∪ (−K ′), or there exist a, b ∈ ∂� with f ∈ span{a, b} such that
for every x ∈ L one has a(x) = 0 or b(x) = 0,

where � is given in (4). Indeed, by Remark 21, for a, b ∈ K ′ \ {0}, a ⊥ b can only
occur if a and b are elements of the boundary of K ′, and a and b can then be scaled
appropriately.

Example 57 We continue Example 37(b), i.e., we consider the (2n − 2)-ray cone in
X := R

n where, for the order unit v : X → R, x �→ xn , in K ′, one has

L = L = {x (1), . . . , x (n−1), y(1), . . . , y(n−1)}.

We calculate all pairs {a, b} of disjoint elements in ∂�, where the latter means that
the nth entry of a and b equals 1. By Lemma 55, two disjoint elements are pointwise
disjoint on L . If, for i ∈ {1, . . . , n − 1}, we have ai + 1 = a

(
x (i)

) = 0, it follows
a

(
y(i)

) = −ai + 1 = 2 �= 0, hence −bi + 1 = b
(
y(i)

) = 0. We get {a, b} ⊆ �, and
if a = fσ , then b = fσ̃ , where, for j ∈ {1, . . . , n − 1}, we define σ̃ j := −σ j . By
Proposition 56, the set M of elements in X ′ that have a modulus is

M := K ′ ∪ (−K ′) ∪
⋃

σ∈{−1,1}n−1
span{ fσ , fσ̃ }.

Remark 58 Proposition 56(ii) can be reformulated by means of bands as follows,

(ii”) either f ∈ K ′ ∪ (−K ′), or there exist a band B in X ′, a ∈ B ∩ (K ′ \ {0}),
b ∈ Bd ∩ (K ′ \ {0}) such that f ∈ span{a, b}.

Indeed, if a ⊥ b, then, for B := {a}dd, we get b ∈ {a}d = Bd. Note that bands in X ′
are determined by bisaturated subsets of L , see [9, Theorem 4.4.17].

In the subsequent example, we use a vector lattice cover of a space of operators on
a Riesz space to find the operators with modulus. Note that the underlying Riesz space
is not Dedekind complete, so that we can not apply the Riesz-Kantorovich theory.

Example 59 Let �∞0 denote the space of all finally constant real sequences, i.e.,

�∞0 := {
(xi )i∈N ; ∃β ∈ R ∃ k ∈ N ∀ i > k : xi = β

}
,
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equipped with the coordinatewise order. This vector lattice is not Dedekind complete.
In [1, Theorem 4.1], it is established that Lr(�∞0 ) = Lb(�∞0 ), and in [1, Theorem 5.1]
that Lr(�∞0 ) does not satisfy the Riesz decomposition property, so it is not a vector
lattice. In [7, Example 3.1], it is shown that Lr(�∞0 ) is a pervasive pre-Riesz space,
and a vector lattice cover is calculated explicitely, where the order in the vector lattice
cover is pointwise. For details, see also [9, Example 5.4.15].

More precisely, observe that �∞0 has a countable algebraic basis B = {1, e(1), e(2),

. . .}, where 1 denotes the constant-1 sequence and e(i) the unit sequences. Hence, �∞0
can be identified with the space cc of all real sequences which are zero except for a
finite number of terms, ordered by the cone

K = {(ξ)i∈N0 ∈ cc; ξ0 ≥ 0, ξi + ξ0 ≥ 0 for every i ∈ N} .

The space Lr(�∞0 ) can be identified with the space of matrix representations of regular
operators in (cc, K ), i.e.,

R =
{
(ai j )i, j∈N0; ∀ j ∈ N0 : (ai j )i ∈ cc, and

( ∞∑
j=1

|ai j |
)
i∈N0

is bounded
}
,

ordered by the cone

C =
{
(ai j )i, j∈N0 ∈ R; ∀i, j ∈ N : a0 j + ai j ≥ 0,

and ∀i ∈ N : a00 + ai0 ≥
∞∑
j=1

(a0 j + ai j )
}
.

The pre-Riesz space (R, C) can be embedded order densely into the vector lattice
Y of all matrices (bi j )i∈N, j∈N0 that satisfy the four conditions

(bi j )i∈N is eventually constant for every j ≥ 1,
∞∑
j=1

|β j | < ∞, where β j = lim
i→∞ bi j ,

(bi0)i∈N is bounded,
( ∞∑

j=1
|bi j |

)
i∈N is bounded,

where Y is endowed with the entrywise order. Observe that Y is not σ -Dedekind
complete. The map F : R→ Y given by

A = (ai j )i, j∈N0 �→ F(A) = ( fi j (A))i∈N, j∈N0 ,
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where

fi j (A) =
{

a0 j + ai j for i ∈ N, j ≥ 1,
a00 + ai0 −∑∞

�=1(a0� + ai�) for i ∈ N, j = 0,

is bipositive, linear, and F[R] is order dense in Y . We obtain that (Y , F) is a vector
lattice cover of (R, C).

Whether an element of R has a modulus can be decided by checking if a certain
sequence is finally constant. For a fixed A = (ai j )i, j∈N0 ∈ R, denote, for every i ∈ N,

si :=
∣∣∣∣∣a00 −

∞∑
l=1

(a0l + ail)

∣∣∣∣∣+
∞∑
l=1

∣∣a0l + ail
∣∣.

We claim that A has a modulus |A| ∈ R if and only if (si )i∈N ∈ �∞0 . Applying
Theorem 35, we show that there is E = (ei j )i, j∈N0 ∈ R such that |F(A)| = F(E) if
and only if (si )i∈N ∈ �∞0 .

Indeed, assuming that E = (ei j )i, j∈N0 ∈ R exists with |F(A)| = F(E), one
obtains

e0 j + ei j = |a0 j + ai j | for i, j ∈ N, (18)

e00 + ei0 −
∞∑
l=1

(e0l + eil) =
∣∣∣∣∣a00 + ai0 −

∞∑
l=1

(a0l + ail)

∣∣∣∣∣ for i ∈ N. (19)

Since (ai j )i∈N0 ∈ cc and (ei j )i∈N0 ∈ cc, (18) implies e0 j = |a0 j | for j ∈ N and,
moreover, ei j = |a0 j + ai j | − |a0 j | for i, j ∈ N. Now (19) yields

e00 + ei0 =
∣∣∣∣∣a00 + ai0 −

∞∑
l=1

(a0l + ail)

∣∣∣∣∣+
∞∑
l=1

|a0l + ail | .

Since (ai0)i∈N0 ∈ cc and (ei0)i∈N0 ∈ cc, it follows that (si )i∈N is finally constant,
where the limit equals e00.

Vice versa, let the sequence (si )i∈N be finally constant. Define E := (ei j )i, j∈N0 by

e00 = lim
i→∞ si ,

ei0 =
∣∣∣∣∣a00 + ai0 −

∞∑
l=1

(a0l + ail)

∣∣∣∣∣+
∞∑
l=1

|a0l + ail | − e00 for i ∈ N,

e0 j = |a0 j | for j ∈ N,

ei j =
∣∣a0 j + ai j

∣∣− ∣∣a0 j
∣∣ for i, j ∈ N.

We show that E ∈ R. Since (ai0)i∈N is finally constant and (si )i∈N0 is finally constant
with limit e00, we obtain (ei0)i∈N0 ∈ cc. As (ai j )i∈N0 ∈ cc for every j ∈ N, it follows
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that (ei j )i∈N0 ∈ cc, as well. Finally, since there is M ≥ 0 such that
∑∞

j=1
∣∣ai j

∣∣ ≤ M
for every i ∈ N0, we obtain

∞∑
j=1

∣∣ei j
∣∣ =

∞∑
j=1

∣∣ ∣∣a0 j + ai j
∣∣− ∣∣a0 j

∣∣ ∣∣ ≤ 3M,

hence the sequence
(∑∞

j=1
∣∣ei j

∣∣)
i∈N0

is bounded. We conclude E ∈ R. The verifica-

tion of F(E) = |F(A)| is straightforward.
Next, we calculate the modulus of certain operators between spaces of continuous

functions.

Proposition 60 Let P and Q be nonempty compact Hausdorff spaces and let X ⊆
C(P) and Y ⊆ C(Q) be directed subspaces. Let α : Q → P and w : Q → R and
consider T : C(P) → R

Q,

(T x)(q) := w(q)x(α(q)), q ∈ Q, x ∈ C(P).

Suppose that T [X ] ⊆ Y . If Y is a Riesz subspace of C(Q), then T : X → Y has a
modulus, and, for every x ∈ X, we have

(|T |x)(q) = |w(q)|x(α(q)), q ∈ Q.

Proof Denote (Sx)(q) := |w(q)|x(α(q)) for q ∈ Q and x ∈ C(P). First, we show
that S[X ] ⊆ Y . Indeed, for x ∈ X , x ≥ 0, we have

(Sx)(q) = |w(q)|x(α(q)) = |w(q)x(α(q))| = |(T x)(q)|

for every q ∈ Q. As T [X ] ⊆ Y and Y is a Riesz subspace of C(Q), we get |T x | ∈ Y
and, hence, Sx ∈ Y . As X is directed, we obtain S[X ] ⊆ Y , and S : X → Y is a
positive linear map.

Next, we show that S is the modulus of T . Indeed, for every x ∈ X , x ≥ 0, we
have Sx ≥ ±T x , hence S ≥ ±T . If R : X → Y is a linear map such that R ≥ ±T ,
then for every x ∈ X , x ≥ 0, we have Rx ≥ T x and Rx ≥ −T x . For every q ∈ Q,
we then obtain

(Rx)(q) ≥ |(T x)(q)| = |w(q)x(α(q))| = |w(q)|x(α(q)) = (Sx)(q),

hence R ≥ S. Thus, S is the supremum of {T ,−T }. ��
Remark 61 If Y is a pre-Riesz space which is order dense in C(Q), then Y ρ is a Riesz
subspace of C(Q), and Y ⊆ Y ρ . In this case, T : X → Y has a modulus in the regular
operators from X to Y ρ .

It is an open question under which conditions the difference of two Riesz* homo-
morphisms has a modulus. In view of Corollary 36, this leads to the question under
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which conditions two Riesz* homomorphisms are disjoint. We give a partial answer
in the setting of Proposition 60. Let P be a nonempty compact Hausdorff space and
let X ⊆ C(P) be a linear subspace. We will use the following property of X , which
we call strongly pointwise pervasive:

(SPP) ∀z ∈ C(P)+ ∀p ∈ P : z(p) = sup{x(p); x ∈ X , 0 ≤ x ≤ z}.
Lemma 62 If X satisfies (SPP), then X is pointwise pervasive.

Proof Let p ∈ P and let U be a neighbourhood of p. Take U0 ⊆ P open with
p ∈ U0 ⊆ U . By Urysohn’s lemma, there exists a z ∈ C(P) with z(p) = 1 and z = 0
on P \ U0. According to (SPP), there exists x ∈ X with 0 ≤ x ≤ z and x(p) ≥ 1

2 .
Then x = 0 on P \U0 ⊇ P \U . Thus, X is pointwise pervasive. ��
As a consequence of Lemma 62 and Proposition 50, we obtain that (SPP) implies
(SD).

Theorem 63 Let P and Q be nonempty compact Hausdorff spaces and let X ⊆ C(P)

and Y ⊆ C(Q) be linear subspaces, where X is directed and satisfies (SPP). Let
T1, T2 : X → Y be given by

(Ti x)(q) := wi (q)x(αi (q)), q ∈ Q, i ∈ {1, 2},

where α1, α2 : Q → P and w1, w2 : Q → R+. Consider the condition

{q ∈ Q; w1(q) = 0 or w2(q) = 0 or α1(q) �= α2(q)} is dense in Q. (20)

(i) If (20) holds, then T1 ⊥ T2 in L(X ,Y ). Hence, T1 − T2 has a modulus which
equals T1 + T2.

(ii) If, in addition, Y is pervasive and, for every y1, y2 ∈ Y , we have y1 · y2 ∈ Y , then
(20) holds if and only if T1 ⊥ T2 in L(X ,Y ).

Proof (i) As T1 and T2 are positive, showing that T1 ⊥ T2 in L(X ,Y ) comes down to
showing that, for every U ∈ L(X ,Y ), we have

(U ≥ T1 − T2 and U ≥ T2 − T1) ⇒ U ≥ T1 + T2.

Let U ∈ L(X ,Y ) be such that U ≥ T1 − T2 and U ≥ T2 − T1. Fix x ∈ X with
x ≥ 0 and q ∈ Q. If w1(q) = 0, then (T1x)(q) = 0, hence (Ux)(q) ≥ (T2x)(q) =
((T1 + T2)x)(q). Similarly, if w2(q) = 0, then (Ux)(q) ≥ ((T1 + T2)x)(q).

Now assume w1(q) �= 0, w2(q) �= 0, and α1(q) �= α2(q). As the condition (SD)
follows from (SPP) for X , there exist a1, a2 ∈ X with a1, a2 ≥ 0 such that a1 ⊥ a2
and ai (αi (q)) = x(αi (q)) for i ∈ {1, 2}, a1(α2(q)) = 0 and a2(α1(q)) = 0. Put
z1 := x ∧ a1 and z2 := x ∧ a2. Let ε > 0. By (SPP), there exist y1, y2 ∈ X with
0 ≤ y1 ≤ z1 and 0 ≤ y2 ≤ z2 such that

yi (αi (q)) ≥ zi (αi (q))− ε, i ∈ {1, 2}.
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Then 0 ≤ y1 ∧ y2 ≤ a1 ∧ a2 = 0, therefore y1 ⊥ y2. Hence,

0 ≤ y1 + y2 = y1 ∨ y2 ≤ z1 ∨ z2 ≤ x .

Furthermore,

(Uy1)(q) ≥ ((T1 − T2)y1)(q) = w1(q)y1(α1(q))− w2(q)y1(α2(q))

= w1(q)y1(α1(q)) ≥ w1(q)(z1(α1(q))− ε)

= w1(q)(x(α1(q))− ε).

Similarly,

(Uy2)(q) ≥ ((T2 − T1)y2)(q) = w2(q)y2(α2(q))− w1(q)y2(α1(q))

≥ w2(q)(x(α2(q))− ε).

Thus,

(Ux)(q) ≥ (U (y1 + y2))(q)

≥ w1(q)x(α1(q))+ w2(q)x(α2(q))− (w1(q)+ w2(q))ε

= ((T1 + T2)x)(q)− (w1(q)+ w2(q))ε.

Hence (Ux)(q) ≥ ((T1 + T2) x) (q). Because of (20), it follows by continuity that
Ux ≥ (T1 + T2) x . Hence, U ≥ T1 + T2 and, therefore,

{T1 − T2, T2 − T1}u = {T1 + T2,−T1 − T2}u

in L(X ,Y ), which means that T1 ⊥ T2. By Corollary 36, the operator T1 − T2 has a
modulus which equals T1 + T2.

(ii) Suppose (20) does not hold. Then there exists a nonempty open set V ⊆ Q
such that w1 �= 0, w2 �= 0 and α1 = α2 on V . By Urysohn’s Lemma, there exists
a function v0 ∈ C(Q) with 0 ≤ v0 ≤ 1 such that coz(v0) ⊆ V and v0 �= 0. By the

pervasiveness of Y , there is v ∈ Y+ \ {0} with v(q) ≤ min
{
1, w2(q)

w1(q)

}
v0(q) for every

q ∈ Q. Choose q0 ∈ V such that v(q0) > 0. For every x ∈ X , q ∈ Q, define

(Ux)(q) := ((T1 + T2) x) (q)− v(q)T1x(q).

Since v, T1x ∈ Y and Y is closed under multiplication, we have U ∈ L(X ,Y ). We
show that U ≥ ± (T1 − T2). Indeed, let x ∈ X , x ≥ 0, and let q ∈ Q. If q /∈ V , then

(± (T1 − T2) x) (q) ≤ ((T1 + T2) x) (q) = (Ux)(q).
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If q ∈ V , then, as w2(q)− v(q)w1(q) ≥ 0, we have

(Ux)(q) = w1(q)x(α1(q))+ w2(q)x(α2(q))− v(q)w1(q)x(α1(q))

= (w1(q)+ w2(q)− v(q)w1(q)) x(α1(q))

≥ w1(q)x(α1(q)) = (T1x) (q)

≥ ((T1 − T2) x) (q),

and, similarly, as v(q)w1(q) ≤ w1(q),

(Ux)(q) = (w1(q)+ w2(q)− v(q)w1(q)) x(α1(q))

≥ w2(q)x(α1(q)) = w2(q)x(α2(q)) = (T2x) (q)

≥ ((T2 − T1) x) (q).

Thus, U ≥ ±(T1 − T2). Next, we show U � T1 + T2. Indeed, by (SPP), the space X
is pointwise pervasive, hence there exists x ∈ X , x ≥ 0, with x(α1(q0)) > 0. Then

(Ux)(q0) = (w1(q0)+ w2(q0)− v(q0)w(q0)) x(α1(q0))

< (w1(q0)+ w2(q0)) x(α1(q0))

= ((T1 + T2) x) (q0).

Thus,U ∈ {T1 − T2, T2 − T1}u, butU /∈ {T1 + T2,−T1 − T2}u, which means that T1
and T2 are not disjoint in L(X ,Y ). ��
Remark 64 Note that (20) is satisfied whenever the graphs

{(q, α1(q)); q ∈ Q} and {(q, α2(q)); q ∈ Q}

are disjoint sets. For the proof of Theorem 63(ii) that (20) is a necessary condition
for T1 ⊥ T2, we use that X is pointwise pervasive. It is open whether (SPP) is strictly
stronger than being pointwise pervasive.

Remark 65 If w1, w2, α1, α2 in Theorem 63 are continuous, the statement there is
about the modulus of differences of Riesz* homomorphisms by Theorem 12. This can
be specified further.

In [12], a subspace X of C(P) is called pointwise order dense if, for every z ∈ C(P)

and p ∈ P , we have z(p) = inf{x(p); x ∈ X , x ≥ z}. If X is a majorizing subspace
of C(P) that satisfies (SPP), then X is pointwise order dense. Indeed, let z ∈ C(P),
p ∈ P . As X is majorizing, there is v ∈ X , v ≥ z. By (SPP), we have

(v − z)(p) = sup{x(p); x ∈ X , 0 ≤ x ≤ v − z}, hence

(z − v)(p) = inf{−x(p); x ∈ X , 0 ≤ x ≤ v − z}, consequently

z(p) = inf{(v − x)(p); x ∈ X , 0 ≤ x ≤ v − z}
= inf{w(p); w ∈ X , z ≤ w}.
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In [12, Theorem 3.4], the following is shown: if X is pointwise order dense in C(P)

and Y is order dense in C(Q), then every Riesz* homomorphism is a Riesz homomor-
phism. Therefore, if, in addition to the assumptions in Theorem 63 and the continuity
of w1, w2, α1, α2, X is majorizing and Y is order dense, the statement there is for
differences of Riesz homomorphisms.

Let P be a nonempty compact Hausdorff space, p ∈ P , and X a linear subspace
of C(P). We denote ϕp : X → R, ϕp(x) := x(p).

Corollary 66 Let P be a nonempty compact Hausdorff space and let X ⊆ C(P) be a
linear directed subspace which satisfies (SPP). Then, for every p1, p2 ∈ P, we have
p1 �= p2 if and only if ϕp1 ⊥ ϕp2 .

Proof Let p1, p2 ∈ P , p1 �= p2. We view ϕpi (i ∈ {1, 2}) as a map from X to
C(Q), where the set Q consists of one point q, and, for every x ∈ X , we interpret
the real number ϕpi (x) as the continuous function q �→ ϕpi (x) (i ∈ {1, 2}). Define
αi : Q → P byαi (q) = pi (i ∈ {1, 2}).Hence,wehave, for x ∈ X , that (ϕpi (x))(q) =
x(pi ) = x(αi (q)) for every q ∈ Q. As the graphs ofα1 andα2 are disjoint, Theorem63
yields that ϕp1 ⊥ ϕp2 .

If p1 = p2, then obviously ϕp1 = ϕp2 , hence ϕp1 �⊥ ϕp2 . ��
Corollary 67 Let P and Q be nonempty compact Hausdorff spaces and let X ⊆ C(P)

and Y ⊆ C(Q) be linear subspaces, where X is directed and satisfies (SPP). Let
T1, T2 : X → Y be given by

(Ti x)(q) = wi (q)x(αi (q)), q ∈ Q, i ∈ {1, 2},

where α1, α2 : Q → P and w1, w2 : Q → R+. The set

{q ∈ Q; ϕq ◦ T1 ⊥ ϕq ◦ T2}

is dense in Q if and only if T1 ⊥ T2 in L(X ,C(Q)).

Proof Fix q ∈ Q. For every i ∈ {1, 2} and x ∈ X we have that

(ϕq ◦ Ti )(x) = wi (q)x(αi (q)).

Hence, (ϕq ◦ Ti ) = wi (q)ϕαi (q). We have

ϕq ◦ T1 ⊥ ϕq ◦ T2 ⇐⇒ w1(q)ϕα1(q) ⊥ w2(q)ϕα2(q)

⇐⇒ w1(q) = 0 or w2(q) = 0 or α1(q) �= α2(q),

by Corollary 66. Now we apply Theorem 63, which completes the proof. ��
Remark 68 If Y is a subspace of C(Q), then L(X ,Y ) is a subspace of L(X ,C(Q)).
Hence, for T1, T2 ∈ L(X ,Y ), we have

T1 ⊥ T2 in L(X ,C(Q)) 
⇒ T1 ⊥ T2 in L(X ,Y ).
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In the subsequent corollary, the space X is a pre-Riesz space. We use Theorem 5 to
obtain a unique extension for Riesz* homomorphisms on X .

Corollary 69 Let P and Q be nonempty compact Hausdorff spaces and let X ⊆ C(P)

be a linear subspace, where X is directed and satisfies (SPP). Let T1, T2 : X → C(Q)

be Riesz* homomorphisms and let S1, S2 : Xρ → C(P) be the Riesz homomorphisms
extending T1 and T2, respectively. Then

T1 ⊥ T2 in L(X ,C(Q)) ⇐⇒ S1 ⊥ S2 in L(Xρ,C(Q)).

Proof According to Theorem 12, there exist w1, w2 : Q → R+ and α1, α2 : Q → P
such that, for every i ∈ {1, 2}, x ∈ X , and q ∈ Q, we have

(Ti x)(q) = wi (q)x(αi (q)).

As x �→ (q �→ wi (q)x(αi (q))) is a Riesz homomorphism from Xρ to C(Q) extending
Ti , we obtain

(Si x)(q) = wi (q)x(αi (q))

for every i ∈ {1, 2}, x ∈ Xρ , and q ∈ Q, due to the uniqueness of the extension. Now
Theorem 63 completes the proof. ��

Theorem 63 considers operators that have a representation as weighted composition
operators. These operators are Riesz* homomorphisms. A natural next step would be
to investigate disjointness of two Riesz* homomorphisms between arbitrary pre-Riesz
spaces X and Y . Corollary 69 raises the question under which conditions on X and
Y we obtain that two Riesz* homomorphisms from X to Y are disjoint if and only if
their unique extensions from Xρ to Y ρ are disjoint.
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