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Abstract
It is shown among other inequalities that if A, B and X are n X n complex
matrices such that A and B are positive semidefinite, then s;(AX — XB) <

s ((3A+342 1P A12) @ (3B + LB 1XP B12)) for j = 1,2,....2n.
Several related singular value inequalities and norm inequalities are also given.

Keywords Concave function - Positive semidefinite matrix - Singular value -
Unitarily invariant norm - Inequality

Mathematics Subject Classification 15A18 - 15A42 - 15A60 - 47A30 - 47B15

1 Introduction

Let M, be the algebra of all n x n complex matrices. For A € M,,, we denote the
eigenvalues of |[A| = (A*A)'/? by s1(A) > 52(A) > --- > s,(A), they are called
the singular values of A. Note that s;(A) = s;(A*) = s;(|A|) for j = 1,2,...,n.
Note that the spectral (usual operator) norm |.|| is the largest singular value, i.e.
|A]l = s1(A), and the Schatten p-norms |.|| p are defined interms of the singular
values, where [|Al|, = (Z?:] S;(A))l/p for 1 < p < oo. Apart from the spectral
(usual operator) norm and the Schatten p-norms, we have the wider class of unitarily
invariant norms [||.|||. Unitarily invariant norms are characterized by the invariance
property which states that |[|[UAV||| = [||A||| for all A € M, and for all unitary
matrices U and V. Unitarily invariant norms are increasing functions of singular
values (see, e.g., [4] or [9]).

For A, B, X € M, a matrix of the form AX — XA is called a commutator, a
matrix of the form AX — X B is called a generalized commutator, a matrix of the form
AX + XA is called anticommutator, and a matrix of the form AX + X B is called a
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generalized anticommutator. In this paper, we present singular value inequalities for
these types of matrices.
Kittaneh in [11] has proved that if A, B € M, are positive semidefinite, then

sj(A+B) <s; ((A + (BI/ZAI/ZD ® (B + ‘AI/ZB”ZD) (1.1)

for j = 1,2,...,2n. Inequality (1.1) can be extended to unitarily invariant norms.
For j = 1, this inequality is the spectral norm inequality,

1A + B|| < maX{HA n ‘BI/ZAI/Z)H , HB n ‘Al/zBl/z‘H} . (12)

Specifying inequality (1.1) to the Schatten p-norms, we get

1/p
P p
IA+ B, < <HA + ‘BI/ZAI/Z‘HP + B+ ‘AWBI/ZHL) (1.3)

for 1 < p < oo. Kittaneh in [10] has been proved that if A, B € M, are positive
semidefinite, then

1A+ Blll < 1A @ BIIl + |||a"2B"2 @ 4125112 || (1:4)
It should be mentioned here that inequality (1.4) is trivial consequence of inequality

(1.1) by application of triangular inequality. Specifying inequality (1.4) to the spectral
norm |||, leads to

14+ BIl < max (Al IBI) + |A'2B"2] . (1.5)

Davidson and Power in [8] has been shown a weaker version of inequality (1.5). Bourin

in [7] provides an equivalent formulation of inequality (1.5). Specifying inequality
(1.4) to the Schatten p-norms, we have

1
14+ Bl, < (1415 + 1B15)"7 27 |a'212] . (1.6)

For recent studies and details for generalizations of singular value inequalities,
we refer to [1,2] and [3]. In this paper, we give a remarkable generalizations of the
inequalities (1.1), (1.2), and (1.3). Several applications are also given.

2 Main results
To reach our findings, we need the following lemmas. The first lemma has been shown

by Bhatia and Kittaneh in [5]. The second lemma has been proved by Bourin in [6].
The third lemma has been given by Bhatia in [4].
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Lemma2.1 Let A, B € M,,. Then
sj(AB™) < ESJ(A A+ B*B)

forj=1,2,...,n

Lemma 2.2 Let A, B € M, be normal and let f be a nonnegative concave function
on [0, 00). Then

HIFAA+ BDII < [ILFAAD + fABDI

for every unitarily invariant norm.
Lemma2.3 Let A, B € M, such that AB is Hermitian. Then
HAB]|| < [l|Re(BA)|||.
From now until the end of the paper, we will assume that all functions considered

are continuous and all matrices denoted by the symbol A or B are positive semidefinite.
Our first result is the following singular value inequality for generalized commutator.

Theorem2.4 Let A, B, X € M,,. Then
s;(AX —XB) <s; (K®L) (2.1)

for j =1,2,...,2n, where

1 1
K=-A+-AV2|x*[> 412
2 2
and
1 1 1/2 2 pl/2
L=-B+-BY2|x? B
2 2
Proof Let
g _A1/2 XBI/Z
=l o 0o |
[A2X 0
* _
B=l-pr o]
B A AI/ZXBI/Z
M = -Bl/2x*A1/2 Bl/2|x|2Bl/2 ’
and

N — Al/2|x*|2Al/2 _AI/ZXBl/Z
- _Bl/2x*Al/2 B :
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Then for j = 1,2, ..., 2n, we have

s;i(AX — XB) = 5;(SR*)

IA

1

zsj(S*S + R*R)(by Lemma 2.1)
1 1

o K 0

“%\lo L

=s5;(K®L).

Our inequality has thus been proved. O

Remark 2.5 Letting X = I in inequality (2.1), we give
sj(A—=B)<s5;(A® B) (2.2)

for j =1,2,...,2n. Inequality (2.2) has been proved by Zhan in [12].

Remark 2.6 Letting B = A in inequality (2.1), we give the following singular value
inequality for commutator.

s;(AX —XA) <s; (Y & Z)

for j =1,2,...,2n, where

! Lap 2 41/2
Y=§A+§A/ |x*|" Al
and
1 1 12 (v 2 21/2
Z=A+ AR IXP AR,

We present the following generalization of inequality (1.1), which is singular value
inequality for generalized anticommutator.

Theorem 2.7 Let A, B, X € M,,. Then
si(AX +XB) <s;(C® D) 2.3)
forj=1,2,...,2n, where
C=K+|B2x*a1,
D=L+ ‘A1/2XBI/2‘ :
1 1

_ 1 LA12 y*|2 4172
K=2A+2A |x*|7 A2,
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and
1 1 172 2 pl/2
L=-B+-B2|x?B2
2 2
Proof Let
S _A1/2 XBI/Z
=l o o |
M y*al/2 1/2
T — X*A B 7
00
r A AI/ZXBI/Z
U= Bl/2x*Al/2 Bl/2 |X|2 Bl/2 ’
and

Al/2|x*|2Al/2 A1/2X31/2
= B12x*A1/2 B :

Then for j = 1,2, ..., 2n, we have

sj(AX + XB) = s5;(ST*)

1
< Esj(S*S + T*T), (by Lemma2.1)
1
B K AI/ZXBI/2
=Sj (_Bl/2X*A1/2 L D
[K 0] 0 Al2xB1/2
=si\lo L|T|B2x*a12 0
o ([K 0], |B1/2x* A2 0
=si\lo L 0 |A12XB17|
([ K +|BY2Xx*Al2| 0
—\ 0 L+ |A2XB/2|
C 0]
=% \|lo p])
Inequality (2.3) has thus been substantiated. O

Remark 2.8 Letting X = [ in inequality (2.3), we give inequality (1.1). In that sense
inequality (2.3) is certainly a generalization of inequality (1.1).

We are now in a position to present our next norm inequality, which is a general-
ization of the generalized anticommutator.
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Theorem 2.9 Let A, B, X € M), and let f be a nonnegative increasing concave

function on [0, 00). Then

HfUAX +XB)® 0Dl < Il & J]ll

for every unitarily invariant norm, where

= (r &)+ £ (|B2x*a12))).
J=(rw+r(|a2xs2)).
K=laylarixpar
2 2 ’
and
1 L 12 v pl)2
L=-B+-B"2x>B"Y2.
2 2
Proof Let
S _AI/Z XBI/Z
L0 0 ’
_X*AI/Z Bl/2
r= | 0 o |’
r A A]/ZXBI/Z
E = Bl/2x*Al/2 Bl/2|X|ZBl/2
and

B12x*A1/2 B
Then for j = 1,2, ..., 2n, we have

si(fU(AX + XB) ®0))) = s;(f(|ST*|))
= f(5;(ST™)

<f <—s (S*S+T* T)) (by Lemma2.1)

=f <—sj (E+F)>

(7 (= +37))
N <f <‘[BI/ZX*A1/2

Il
h
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This implies that,

1/2 1/2
HfUAX +XB) @ 0Dl < f(H:Blﬂ)I((*Al/z ! )L(B }Dm

K 0
= ||f 0 Al2x g1/
[BWX*AW 0
K O
(6 2])
0 Al2x B2
S '31/2X*A1/2 0
(by Lemma2.2),

IA

|
/([5.4])-

|B1/2x* A2 0
f 0 |AL2X B

fK) 0 }+

IA

0 f@
it

0 F(|A2xB2])
T oo
=l o v

=l & JIIl,

which is precisely inequality (2.4). O
Remark 2.10 Letting f(¢) = t in inequality (2.4), we give norm inequality for gener-
alized anticommutator. In that sense, inequality (2.4) is certainly a generalization of
generalized anticommutator norm inequalities.

Specifying inequality (2.4) to the spectral norm and the Schatten p-norms, we give
the following norm inequalities for generalized anticommutator which are generaliza-

tions of the inequalities (1.2) and (1.3), respectively.
Corollary 2.11 Let A, B, X € M,,. Then
IAX + X B|| < max { HK + ‘BI/ZX*AWH) , HL n )A1/2XBI/2‘ H} (2.5)
where
K= %A + %Al/z |x*|* Al
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and

11
L=-B+-B"?|x*B'2
27 T2

Proof Inequality (2.3) follows by substituting f (¢) = ¢ and by considering the spectral
norm in Theorem 2.9. O

Remark 2.12 Letting X = I in Corollary 2.11, we give inequality (1.2).

Corollary 2.13 Let A, B, X € M,,. Then for 1 < p < 0o, we have

l/p
14 4
IAX + XB|, < <”K+)B”2X*Al/2’” +HL+‘A1/2XBI/2‘H ) (2.6)
14 P

where
1 1 1/2 |yvx|2 4172
K=-A+_-A2|X*|"A
2 2
and
1 112 v12 pls2
L=—-B+-B'/|X|"B"/".
2 2

Proof Inequality (2.6) follows by substituting f(¢) = ¢ and by considering the Schat-
ten p-norms in Theorem 2.9. O

Remark 2.14 Letting X = [ in Corollary 2.13, we give inequality (1.3).
The following two corollaries are applications of Theorem 2.9.

Corollary 2.15 Let A, B, X € M,,. Then
[lllog (1(AX + XB)| + DIl < [[IM @ NI||

for every unitarily invariant norm, where

M= (log (K + 1) + log (’Bl/ZX*Al/Z‘ n 1)) ,

N = (log (L+1)+log (‘AI/ZXBVZ‘ + 1)) :
o

K=-A+-A"72|x*> a2,
2772

and

1 1
L=-B+ B2 x> B>,
27 "2
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Proof The inequality is an immediate consequence of Theorem 2.9 by letting f(¢) =
log(t + 1). O

Corollary 2.16 Let A, B, X € M,,. Then, forr € (0, 1], we have
|[1AX + XB)|"||| < IIP & Q|

for every unitarily invariant norm, where
P=(k+ ‘Bl/ZX*AW‘r) ,

0= (Lr i )Al/zXBWD,

11
K =-A+-AV2 x> A2,
2772

and

1 1
L=—-B+ -B'?2|x|?B'/2.
2 2

Proof Theinequality is an immediate consequence of Theorem 2.9 by letting f () = "
and r € (0, 1]. O
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