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Abstract
It is shown among other inequalities that if A, B and X are n × n complex
matrices such that A and B are positive semidefinite, then s j (AX − XB) ≤
s j

((
1
2 A + 1

2 A
1/2 |X∗|2 A1/2

)
⊕ ( 1

2 B + 1
2 B

1/2 |X |2 B1/2
))

for j = 1, 2, . . . , 2n.

Several related singular value inequalities and norm inequalities are also given.

Keywords Concave function · Positive semidefinite matrix · Singular value ·
Unitarily invariant norm · Inequality

Mathematics Subject Classification 15A18 · 15A42 · 15A60 · 47A30 · 47B15

1 Introduction

Let Mn be the algebra of all n × n complex matrices. For A ∈ Mn , we denote the
eigenvalues of |A| = (A∗A)1/2 by s1(A) ≥ s2(A) ≥ · · · ≥ sn(A), they are called
the singular values of A. Note that s j (A) = s j (A∗) = s j (|A|) for j = 1, 2, . . . , n.
Note that the spectral (usual operator) norm ‖.‖ is the largest singular value, i.e.
‖A‖ = s1(A), and the Schatten p-norms ‖.‖p are defined interms of the singular

values, where ‖A‖p =
(∑n

j=1 s
p
j (A)

)1/p
for 1 ≤ p ≤ ∞. Apart from the spectral

(usual operator) norm and the Schatten p-norms, we have the wider class of unitarily
invariant norms |||.|||. Unitarily invariant norms are characterized by the invariance
property which states that |||U AV ||| = |||A||| for all A ∈ Mn and for all unitary
matrices U and V . Unitarily invariant norms are increasing functions of singular
values (see, e.g., [4] or [9]).

For A, B, X ∈ Mn , a matrix of the form AX − X A is called a commutator, a
matrix of the form AX − XB is called a generalized commutator, a matrix of the form
AX + X A is called anticommutator, and a matrix of the form AX + XB is called a

B Wasim Audeh
waudeh@uop.edu.jo

1 Department of Mathematics, Petra University, Amman, Jordan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11117-020-00790-6&domain=pdf
http://orcid.org/0000-0003-4603-4188


844 W. Audeh

generalized anticommutator. In this paper, we present singular value inequalities for
these types of matrices.

Kittaneh in [11] has proved that if A, B ∈ Mn are positive semidefinite, then

s j (A + B) ≤ s j
((

A +
∣∣∣B1/2A1/2

∣∣∣
)

⊕
(
B +

∣∣∣A1/2B1/2
∣∣∣
))

(1.1)

for j = 1, 2, . . . , 2n. Inequality (1.1) can be extended to unitarily invariant norms.
For j = 1, this inequality is the spectral norm inequality,

||A + B|| ≤ max
{∥∥∥A +

∣∣∣B1/2A1/2
∣∣∣
∥∥∥ ,

∥∥∥B +
∣∣∣A1/2B1/2

∣∣∣
∥∥∥
}
. (1.2)

Specifying inequality (1.1) to the Schatten p-norms, we get

‖A + B‖p ≤
(∥∥∥A +

∣∣∣B1/2A1/2
∣∣∣
∥∥∥
p

p
+

∥∥∥B +
∣∣∣A1/2B1/2

∣∣∣
∥∥∥
p

p

)1/p

(1.3)

for 1 ≤ p ≤ ∞. Kittaneh in [10] has been proved that if A, B ∈ Mn are positive
semidefinite, then

|||A + B||| ≤ |||A ⊕ B||| +
∣∣∣
∣∣∣
∣∣∣A1/2B1/2 ⊕ A1/2B1/2

∣∣∣
∣∣∣
∣∣∣ . (1.4)

It should be mentioned here that inequality (1.4) is trivial consequence of inequality
(1.1) by application of triangular inequality. Specifying inequality (1.4) to the spectral
norm ‖.‖, leads to

||A + B|| ≤ max {‖A‖ , ‖B‖} +
∥∥∥A1/2B1/2

∥∥∥ . (1.5)

Davidson and Power in [8] has been shown aweaker version of inequality (1.5). Bourin

in [7] provides an equivalent formulation of inequality (1.5). Specifying inequality
(1.4) to the Schatten p-norms, we have

‖A + B‖p ≤ (‖A‖p
p + ‖B‖p

p
)1/p + 21/p

∥∥∥A1/2B1/2
∥∥∥
p
. (1.6)

For recent studies and details for generalizations of singular value inequalities,
we refer to [1,2] and [3]. In this paper, we give a remarkable generalizations of the
inequalities (1.1), (1.2), and (1.3). Several applications are also given.

2 Main results

To reach our findings, we need the following lemmas. The first lemma has been shown
by Bhatia and Kittaneh in [5]. The second lemma has been proved by Bourin in [6].
The third lemma has been given by Bhatia in [4].
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Singular value inequalities and applications 845

Lemma 2.1 Let A, B ∈ Mn. Then

s j (AB
∗) ≤ 1

2
s j (A

∗A + B∗B)

for j = 1, 2, . . . , n

Lemma 2.2 Let A, B ∈ Mn be normal and let f be a nonnegative concave function
on [0,∞). Then

||| f (|A + B|)||| ≤ ||| f (|A|) + f (|B|)|||

for every unitarily invariant norm.

Lemma 2.3 Let A, B ∈ Mn such that AB is Hermitian. Then

|||AB||| ≤ |||Re(BA)||| .

From now until the end of the paper, we will assume that all functions considered
are continuous and allmatrices denoted by the symbol A or B are positive semidefinite.
Our first result is the following singular value inequality for generalized commutator.

Theorem 2.4 Let A, B, X ∈ Mn. Then

s j (AX − XB) ≤ s j (K ⊕ L) (2.1)

for j = 1, 2, . . . , 2n, where

K = 1

2
A + 1

2
A1/2

∣∣X∗∣∣2 A1/2

and

L = 1

2
B + 1

2
B1/2 |X |2 B1/2.

Proof Let

S =
[
A1/2 XB1/2

0 0

]
,

R∗ =
[
A1/2X 0
−B1/2 0

]
,

M =
[

A A1/2XB1/2

B1/2X∗A1/2 B1/2 |X |2 B1/2

]
,

and

N =
[
A1/2 |X∗|2 A1/2 −A1/2XB1/2

−B1/2X∗A1/2 B

]
.
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846 W. Audeh

Then for j = 1, 2, . . . , 2n, we have

s j (AX − XB) = s j (SR
∗)

≤ 1

2
s j (S

∗S + R∗R)(by Lemma 2.1)

= s j

(
1

2
M + 1

2
N

)

= s j

([
K 0
0 L

])

= s j (K ⊕ L) .

Our inequality has thus been proved. 	

Remark 2.5 Letting X = I in inequality (2.1), we give

s j (A − B) ≤ s j (A ⊕ B) (2.2)

for j = 1, 2, . . . , 2n. Inequality (2.2) has been proved by Zhan in [12].

Remark 2.6 Letting B = A in inequality (2.1), we give the following singular value
inequality for commutator.

s j (AX − X A) ≤ s j (Y ⊕ Z)

for j = 1, 2, . . . , 2n, where

Y = 1

2
A + 1

2
A1/2

∣∣X∗∣∣2 A1/2

and

Z = 1

2
A + 1

2
A1/2 |X |2 A1/2.

We present the following generalization of inequality (1.1), which is singular value
inequality for generalized anticommutator.

Theorem 2.7 Let A, B, X ∈ Mn. Then

s j (AX + XB) ≤ s j (C ⊕ D) (2.3)

for j = 1, 2, . . . , 2n, where

C = K +
∣∣∣B1/2X∗A1/2

∣∣∣ ,
D = L +

∣∣∣A1/2XB1/2
∣∣∣ ,

K = 1

2
A + 1

2
A1/2

∣∣X∗∣∣2 A1/2,
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Singular value inequalities and applications 847

and

L = 1

2
B + 1

2
B1/2 |X |2 B1/2.

Proof Let

S =
[
A1/2 XB1/2

0 0

]
,

T =
[
X∗A1/2 B1/2

0 0

]
,

U =
[

A A1/2XB1/2

B1/2X∗A1/2 B1/2 |X |2 B1/2

]
,

and

V =
[
A1/2 |X∗|2 A1/2 A1/2XB1/2

B1/2X∗A1/2 B

]
.

Then for j = 1, 2, . . . , 2n, we have

s j (AX + XB) = s j (ST
∗)

≤ 1

2
s j (S

∗S + T ∗T ), (by Lemma2.1)

= 1

2
s j (U + V )

= s j

([
K A1/2XB1/2

B1/2X∗A1/2 L

])

= s j

([
K 0
0 L

]
+

[
0 A1/2XB1/2

B1/2X∗A1/2 0

])

≤ s j

([
K 0
0 L

]
+

[ ∣∣B1/2X∗A1/2
∣∣ 0

0
∣∣A1/2XB1/2

∣∣
])

= s j

([
K + ∣∣B1/2X∗A1/2

∣∣ 0
0 L + ∣∣A1/2XB1/2

∣∣
])

= s j

([
C 0
0 D

])
.

Inequality (2.3) has thus been substantiated. 	

Remark 2.8 Letting X = I in inequality (2.3), we give inequality (1.1). In that sense
inequality (2.3) is certainly a generalization of inequality (1.1).

We are now in a position to present our next norm inequality, which is a general-
ization of the generalized anticommutator.
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848 W. Audeh

Theorem 2.9 Let A, B, X ∈ Mn and let f be a nonnegative increasing concave
function on [0,∞). Then

||| f (|(AX + XB) ⊕ 0|)||| ≤ |||I ⊕ J ||| (2.4)

for every unitarily invariant norm, where

I =
(
f (K ) + f

(∣∣∣B1/2X∗A1/2
∣∣∣
))

,

J =
(
f (L) + f

(∣∣∣A1/2XB1/2
∣∣∣
))

,

K = 1

2
A + 1

2
A1/2

∣∣X∗∣∣2 A1/2,

and

L = 1

2
B + 1

2
B1/2 |X |2 B1/2.

Proof Let

S =
[
A1/2 XB1/2

0 0

]
,

T =
[
X∗A1/2 B1/2

0 0

]
,

E =
[

A A1/2XB1/2

B1/2X∗A1/2 B1/2 |X |2 B1/2

]
,

and

F =
[
A1/2 |X∗|2 A1/2 A1/2XB1/2

B1/2X∗A1/2 B

]
.

Then for j = 1, 2, . . . , 2n, we have

s j ( f (|(AX + XB) ⊕ 0|)) = s j ( f (
∣∣ST ∗∣∣))

= f (s j (ST
∗))

≤ f

(
1

2
s j (S

∗S + T ∗T )
)
(by Lemma2.1)

= f

(
1

2
s j (E + F)

)

= s j

(
f

(∣∣∣∣
1

2
E + 1

2
F

∣∣∣∣
))

= s j

(
f

(∣∣∣∣
[

K A1/2XB1/2

B1/2X∗A1/2 L

]∣∣∣∣
))

.
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Singular value inequalities and applications 849

This implies that,

||| f (|(AX + XB) ⊕ 0|)||| ≤
∣∣∣∣
∣∣∣∣
∣∣∣∣ f

(∣∣∣∣
[

K A1/2XB1/2

B1/2X∗A1/2 L

]∣∣∣∣
)∣∣∣∣

∣∣∣∣
∣∣∣∣

=

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
f

⎛
⎜⎜⎝

∣∣∣∣∣∣∣∣

[
K 0
0 L

]
+

[
0 A1/2XB1/2

B1/2X∗A1/2 0

]

∣∣∣∣∣∣∣∣

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

f

(∣∣∣∣
[
K 0
0 L

]∣∣∣∣
)

+

f

(∣∣∣∣
0 A1/2XB1/2

B1/2X∗A1/2 0

∣∣∣∣
)

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
,

(by Lemma2.2),

≤

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

f

([
K 0
0 L

])
+

f

([ ∣∣B1/2X∗A1/2
∣∣ 0

0
∣∣A1/2XB1/2

∣∣
])

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

[
f (K ) 0
0 f (L)

]
+

[
f
(∣∣B1/2X∗A1/2

∣∣) 0
0 f

(∣∣A1/2XB1/2
∣∣)

]

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

=
∣∣∣∣
∣∣∣∣
∣∣∣∣

[
I 0
0 J

]∣∣∣∣
∣∣∣∣
∣∣∣∣

= |||I ⊕ J ||| ,

which is precisely inequality (2.4). 	


Remark 2.10 Letting f (t) = t in inequality (2.4), we give norm inequality for gener-
alized anticommutator. In that sense, inequality (2.4) is certainly a generalization of
generalized anticommutator norm inequalities.

Specifying inequality (2.4) to the spectral norm and the Schatten p-norms, we give
the following norm inequalities for generalized anticommutator which are generaliza-
tions of the inequalities (1.2) and (1.3), respectively.

Corollary 2.11 Let A, B, X ∈ Mn. Then

‖AX + XB‖ ≤ max
{∥∥∥K +

∣∣∣B1/2X∗A1/2
∣∣∣
∥∥∥ ,

∥∥∥L +
∣∣∣A1/2XB1/2

∣∣∣
∥∥∥
}

(2.5)

where

K = 1

2
A + 1

2
A1/2

∣∣X∗∣∣2 A1/2
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850 W. Audeh

and

L = 1

2
B + 1

2
B1/2 |X |2 B1/2.

Proof Inequality (2.3) follows by substituting f (t) = t and by considering the spectral
norm in Theorem 2.9. 	

Remark 2.12 Letting X = I in Corollary 2.11, we give inequality (1.2).

Corollary 2.13 Let A, B, X ∈ Mn. Then for 1 ≤ p ≤ ∞, we have

‖AX + XB‖p ≤
(∥∥∥K +

∣∣∣B1/2X∗A1/2
∣∣∣
∥∥∥
p

p
+

∥∥∥L +
∣∣∣A1/2XB1/2

∣∣∣
∥∥∥
p

p

)1/p

(2.6)

where

K = 1

2
A + 1

2
A1/2

∣∣X∗∣∣2 A1/2

and

L = 1

2
B + 1

2
B1/2 |X |2 B1/2.

Proof Inequality (2.6) follows by substituting f (t) = t and by considering the Schat-
ten p-norms in Theorem 2.9. 	

Remark 2.14 Letting X = I in Corollary 2.13, we give inequality (1.3).

The following two corollaries are applications of Theorem 2.9.

Corollary 2.15 Let A, B, X ∈ Mn. Then

|||log (|(AX + XB)| + I )||| ≤ |||M ⊕ N |||

for every unitarily invariant norm, where

M =
(
log (K + I ) + log

(∣∣∣B1/2X∗A1/2
∣∣∣ + I

))
,

N =
(
log (L + I ) + log

(∣∣∣A1/2XB1/2
∣∣∣ + I

))
,

K = 1

2
A + 1

2
A1/2

∣∣X∗∣∣2 A1/2,

and

L = 1

2
B + 1

2
B1/2 |X |2 B1/2.

123



Singular value inequalities and applications 851

Proof The inequality is an immediate consequence of Theorem 2.9 by letting f (t) =
log(t + 1). 	

Corollary 2.16 Let A, B, X ∈ Mn. Then, for r ∈ (0, 1], we have

∣∣∣∣∣∣|(AX + XB)|r ∣∣∣∣∣∣ ≤ |||P ⊕ Q|||

for every unitarily invariant norm, where

P =
(
Kr +

∣∣∣B1/2X∗A1/2
∣∣∣
r)

,

Q =
(
Lr +

∣∣∣A1/2XB1/2
∣∣∣
r)

,

K = 1

2
A + 1

2
A1/2

∣∣X∗∣∣2 A1/2,

and

L = 1

2
B + 1

2
B1/2 |X |2 B1/2.

Proof The inequality is an immediate consequence ofTheorem2.9 by letting f (t) = tr

and r ∈ (0, 1]. 	
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