

Singular value inequalities and applications

Wasim Audeh¹

Received: 25 September 2020 / Accepted: 7 October 2020 / Published online: 13 October 2020 © Springer Nature Switzerland AG 2020

Abstract

It is shown among other inequalities that if *A*, *B* and *X* are $n \times n$ complex matrices such that *A* and *B* are positive semidefinite, then $s_j(AX - XB) \leq s_j\left(\left(\frac{1}{2}A + \frac{1}{2}A^{1/2}|X^*|^2A^{1/2}\right) \oplus \left(\frac{1}{2}B + \frac{1}{2}B^{1/2}|X|^2B^{1/2}\right)\right)$ for j = 1, 2, ..., 2n. Several related singular value inequalities and norm inequalities are also given.

Keywords Concave function \cdot Positive semidefinite matrix \cdot Singular value \cdot Unitarily invariant norm \cdot Inequality

Mathematics Subject Classification $15A18 \cdot 15A42 \cdot 15A60 \cdot 47A30 \cdot 47B15$

1 Introduction

Let \mathbb{M}_n be the algebra of all $n \times n$ complex matrices. For $A \in \mathbb{M}_n$, we denote the eigenvalues of $|A| = (A^*A)^{1/2}$ by $s_1(A) \ge s_2(A) \ge \cdots \ge s_n(A)$, they are called the singular values of A. Note that $s_j(A) = s_j(A^*) = s_j(|A|)$ for $j = 1, 2, \ldots, n$. Note that the spectral (usual operator) norm ||.|| is the largest singular value, i.e. $||A|| = s_1(A)$, and the Schatten p-norms $||.||_p$ are defined interms of the singular values, where $||A||_p = \left(\sum_{j=1}^n s_j^p(A)\right)^{1/p}$ for $1 \le p \le \infty$. Apart from the spectral (usual operator) norm and the Schatten p-norms, we have the wider class of unitarily invariant norms |||.|||. Unitarily invariant norms are characterized by the invariance property which states that |||UAV||| = |||A||| for all $A \in \mathbb{M}_n$ and for all unitary matrices U and V. Unitarily invariant norms are increasing functions of singular values (see, e.g., [4] or [9]).

For $A, B, X \in \mathbb{M}_n$, a matrix of the form AX - XA is called a commutator, a matrix of the form AX - XB is called a generalized commutator, a matrix of the form AX + XA is called anticommutator, and a matrix of the form AX + XB is called a

⊠ Wasim Audeh waudeh@uop.edu.jo

¹ Department of Mathematics, Petra University, Amman, Jordan

generalized anticommutator. In this paper, we present singular value inequalities for these types of matrices.

Kittaneh in [11] has proved that if $A, B \in \mathbb{M}_n$ are positive semidefinite, then

$$s_j(A+B) \le s_j\left(\left(A + \left|B^{1/2}A^{1/2}\right|\right) \oplus \left(B + \left|A^{1/2}B^{1/2}\right|\right)\right)$$
 (1.1)

for j = 1, 2, ..., 2n. Inequality (1.1) can be extended to unitarily invariant norms. For j = 1, this inequality is the spectral norm inequality,

$$||A + B|| \le \max\left\{ \left\| A + \left| B^{1/2} A^{1/2} \right| \right\|, \left\| B + \left| A^{1/2} B^{1/2} \right| \right\| \right\}.$$
(1.2)

Specifying inequality (1.1) to the Schatten p-norms, we get

$$\|A + B\|_{p} \le \left(\left\| A + \left| B^{1/2} A^{1/2} \right| \right\|_{p}^{p} + \left\| B + \left| A^{1/2} B^{1/2} \right| \right\|_{p}^{p} \right)^{1/p}$$
(1.3)

for $1 \le p \le \infty$. Kittaneh in [10] has been proved that if $A, B \in \mathbb{M}_n$ are positive semidefinite, then

$$|||A + B||| \le |||A \oplus B||| + ||||A^{1/2}B^{1/2} \oplus A^{1/2}B^{1/2}||||.$$
(1.4)

It should be mentioned here that inequality (1.4) is trivial consequence of inequality (1.1) by application of triangular inequality. Specifying inequality (1.4) to the spectral norm $\|.\|$, leads to

$$||A + B|| \le \max\{||A||, ||B||\} + ||A^{1/2}B^{1/2}||.$$
(1.5)

Davidson and Power in [8] has been shown a weaker version of inequality (1.5). Bourin

in [7] provides an equivalent formulation of inequality (1.5). Specifying inequality (1.4) to the Schatten p-norms, we have

$$\|A + B\|_{p} \le \left(\|A\|_{p}^{p} + \|B\|_{p}^{p}\right)^{1/p} + 2^{1/p} \left\|A^{1/2}B^{1/2}\right\|_{p}.$$
 (1.6)

For recent studies and details for generalizations of singular value inequalities, we refer to [1,2] and [3]. In this paper, we give a remarkable generalizations of the inequalities (1.1), (1.2), and (1.3). Several applications are also given.

2 Main results

To reach our findings, we need the following lemmas. The first lemma has been shown by Bhatia and Kittaneh in [5]. The second lemma has been proved by Bourin in [6]. The third lemma has been given by Bhatia in [4]. **Lemma 2.1** Let $A, B \in \mathbb{M}_n$. Then

$$s_j(AB^*) \le \frac{1}{2}s_j(A^*A + B^*B)$$

for j = 1, 2, ..., n

Lemma 2.2 Let $A, B \in \mathbb{M}_n$ be normal and let f be a nonnegative concave function on $[0, \infty)$. Then

$$|||f(|A + B|)||| \le |||f(|A|) + f(|B|)|||$$

for every unitarily invariant norm.

Lemma 2.3 Let $A, B \in \mathbb{M}_n$ such that AB is Hermitian. Then

$$|||AB||| \le |||Re(BA)|||$$
.

From now until the end of the paper, we will assume that all functions considered are continuous and all matrices denoted by the symbol *A* or *B* are positive semidefinite. Our first result is the following singular value inequality for generalized commutator.

Theorem 2.4 *Let* $A, B, X \in M_n$ *. Then*

$$s_i(AX - XB) \le s_i(K \oplus L) \tag{2.1}$$

for j = 1, 2, ..., 2n, where

$$K = \frac{1}{2}A + \frac{1}{2}A^{1/2} |X^*|^2 A^{1/2}$$

and

$$L = \frac{1}{2}B + \frac{1}{2}B^{1/2} |X|^2 B^{1/2}$$

Proof Let

$$S = \begin{bmatrix} A^{1/2} & XB^{1/2} \\ 0 & 0 \end{bmatrix},$$

$$R^* = \begin{bmatrix} A^{1/2}X & 0 \\ -B^{1/2} & 0 \end{bmatrix},$$

$$M = \begin{bmatrix} A & A^{1/2}XB^{1/2} \\ B^{1/2}X^*A^{1/2} & B^{1/2} |X|^2 B^{1/2} \end{bmatrix},$$

and

$$N = \begin{bmatrix} A^{1/2} |X^*|^2 A^{1/2} & -A^{1/2} X B^{1/2} \\ -B^{1/2} X^* A^{1/2} & B \end{bmatrix}.$$

🖄 Springer

Then for $j = 1, 2, \ldots, 2n$, we have

$$s_{j}(AX - XB) = s_{j}(SR^{*})$$

$$\leq \frac{1}{2}s_{j}(S^{*}S + R^{*}R) \text{(by Lemma 2.1)}$$

$$= s_{j}\left(\frac{1}{2}M + \frac{1}{2}N\right)$$

$$= s_{j}\left(\begin{bmatrix}K & 0\\0 & L\end{bmatrix}\right)$$

$$= s_{j}(K \oplus L).$$

Our inequality has thus been proved.

Remark 2.5 Letting X = I in inequality (2.1), we give

$$s_j(A - B) \le s_j(A \oplus B) \tag{2.2}$$

for j = 1, 2, ..., 2n. Inequality (2.2) has been proved by Zhan in [12].

Remark 2.6 Letting B = A in inequality (2.1), we give the following singular value inequality for commutator.

$$s_i(AX - XA) \le s_i(Y \oplus Z)$$

for j = 1, 2, ..., 2n, where

$$Y = \frac{1}{2}A + \frac{1}{2}A^{1/2} |X^*|^2 A^{1/2}$$

and

$$Z = \frac{1}{2}A + \frac{1}{2}A^{1/2} |X|^2 A^{1/2}.$$

We present the following generalization of inequality (1.1), which is singular value inequality for generalized anticommutator.

Theorem 2.7 Let $A, B, X \in M_n$. Then

$$s_i(AX + XB) \le s_i(C \oplus D) \tag{2.3}$$

for j = 1, 2, ..., 2n, where

$$C = K + \left| B^{1/2} X^* A^{1/2} \right|,$$

$$D = L + \left| A^{1/2} X B^{1/2} \right|,$$

$$K = \frac{1}{2} A + \frac{1}{2} A^{1/2} \left| X^* \right|^2 A^{1/2}$$

and

$$L = \frac{1}{2}B + \frac{1}{2}B^{1/2} |X|^2 B^{1/2}.$$

Proof Let

$$S = \begin{bmatrix} A^{1/2} & XB^{1/2} \\ 0 & 0 \end{bmatrix},$$

$$T = \begin{bmatrix} X^*A^{1/2} & B^{1/2} \\ 0 & 0 \end{bmatrix},$$

$$U = \begin{bmatrix} A & A^{1/2}XB^{1/2} \\ B^{1/2}X^*A^{1/2} & B^{1/2} |X|^2 B^{1/2} \end{bmatrix},$$

and

$$V = \begin{bmatrix} A^{1/2} |X^*|^2 A^{1/2} & A^{1/2} X B^{1/2} \\ B^{1/2} X^* A^{1/2} & B \end{bmatrix}.$$

Then for $j = 1, 2, \ldots, 2n$, we have

$$s_{j}(AX + XB) = s_{j}(ST^{*})$$

$$\leq \frac{1}{2}s_{j}(S^{*}S + T^{*}T), \text{ (by Lemma2.1)}$$

$$= \frac{1}{2}s_{j}(U + V)$$

$$= s_{j}\left(\begin{bmatrix} K & A^{1/2}XB^{1/2} \\ B^{1/2}X^{*}A^{1/2} \\ L \end{bmatrix}\right)$$

$$= s_{j}\left(\begin{bmatrix} K & 0 \\ 0 & L \end{bmatrix} + \begin{bmatrix} 0 & A^{1/2}XB^{1/2} \\ B^{1/2}X^{*}A^{1/2} \\ 0 \end{bmatrix}\right)$$

$$\leq s_{j}\left(\begin{bmatrix} K & 0 \\ 0 & L \end{bmatrix} + \begin{bmatrix} |B^{1/2}X^{*}A^{1/2}| & 0 \\ 0 & |A^{1/2}XB^{1/2}| \end{bmatrix}\right)$$

$$= s_{j}\left(\begin{bmatrix} K + |B^{1/2}X^{*}A^{1/2}| \\ 0 \\ L + |A^{1/2}XB^{1/2}| \end{bmatrix}\right)$$

$$= s_{j}\left(\begin{bmatrix} C & 0 \\ 0 & D \end{bmatrix}\right).$$

Inequality (2.3) has thus been substantiated.

Remark 2.8 Letting X = I in inequality (2.3), we give inequality (1.1). In that sense inequality (2.3) is certainly a generalization of inequality (1.1).

We are now in a position to present our next norm inequality, which is a generalization of the generalized anticommutator.

.

Theorem 2.9 Let $A, B, X \in \mathbb{M}_n$ and let f be a nonnegative increasing concave function on $[0, \infty)$. Then

$$|||f(|(AX + XB) \oplus 0|)||| \le |||I \oplus J|||$$
(2.4)

for every unitarily invariant norm, where

$$I = \left(f(K) + f\left(\left| B^{1/2} X^* A^{1/2} \right| \right) \right),$$

$$J = \left(f(L) + f\left(\left| A^{1/2} X B^{1/2} \right| \right) \right),$$

$$K = \frac{1}{2}A + \frac{1}{2}A^{1/2} \left| X^* \right|^2 A^{1/2},$$

and

$$L = \frac{1}{2}B + \frac{1}{2}B^{1/2} |X|^2 B^{1/2}$$

Proof Let

$$S = \begin{bmatrix} A^{1/2} & XB^{1/2} \\ 0 & 0 \end{bmatrix},$$

$$T = \begin{bmatrix} X^*A^{1/2} & B^{1/2} \\ 0 & 0 \end{bmatrix},$$

$$E = \begin{bmatrix} A & A^{1/2}XB^{1/2} \\ B^{1/2}X^*A^{1/2} & B^{1/2} |X|^2 B^{1/2} \end{bmatrix},$$

and

$$F = \begin{bmatrix} A^{1/2} |X^*|^2 A^{1/2} & A^{1/2} X B^{1/2} \\ B^{1/2} X^* A^{1/2} & B \end{bmatrix}$$

Then for $j = 1, 2, \ldots, 2n$, we have

$$s_{j}(f(|(AX + XB) \oplus 0|)) = s_{j}(f(|ST^{*}|))$$

$$= f(s_{j}(ST^{*}))$$

$$\leq f\left(\frac{1}{2}s_{j}(S^{*}S + T^{*}T)\right) \text{ (by Lemma2.1)}$$

$$= f\left(\frac{1}{2}s_{j}(E + F)\right)$$

$$= s_{j}\left(f\left(\left|\frac{1}{2}E + \frac{1}{2}F\right|\right)\right)$$

$$= s_{j}\left(f\left(\left|\left[\frac{K}{B^{1/2}X^{*}A^{1/2}} L\right]\right|\right)\right)$$

This implies that,

$$\begin{split} |||f(|(AX + XB) \oplus 0|)||| &\leq ||| f\left(\left| \left[\begin{array}{cc} K & A^{1/2}XB^{1/2} \\ B^{1/2}X^*A^{1/2} & L \end{array} \right] \right| \right) ||| \\ &= ||| f\left(\left| \left[\begin{array}{cc} K & 0 \\ 0 & L \end{array} \right] + \\ \left[\begin{array}{cc} 0 & A^{1/2}XB^{1/2} \\ B^{1/2}X^*A^{1/2} & 0 \end{array} \right] \right) + \\ &\leq ||| &f\left(\left| \begin{bmatrix} K & 0 \\ 0 & L \end{array} \right] \right) + \\ f\left(\left| \begin{array}{cc} B^{1/2}X^*A^{1/2} & 0 \\ B^{1/2}X^*A^{1/2} & 0 \end{array} \right] \right) ||| \\ &\text{(by Lemma2.2),} \\ &\leq ||| &f\left(\left[\begin{array}{cc} B^{1/2}X^*A^{1/2} & 0 \\ 0 & |A^{1/2}XB^{1/2}| \end{array} \right] \right) ||| \\ &= ||| & \left[\begin{array}{cc} f\left(K & 0 \\ 0 & L \end{array} \right] + \\ f\left(\left[B^{1/2}X^*A^{1/2} \right] & 0 \\ 0 & |A^{1/2}XB^{1/2}| \end{array} \right] \right) ||| \\ &= ||| & \left[\begin{array}{cc} f\left((B^{1/2}X^*A^{1/2} \right) & 0 \\ 0 & f\left(|A^{1/2}XB^{1/2}| \right) \end{array} \right] || \\ &= ||| & \left[\begin{array}{cc} I & 0 \\ 0 & J \\ \end{array} \right] || \\ &= ||| & \left[\begin{array}{cc} I & 0 \\ 0 & J \\ \end{array} \right] || \\ &= ||| & I \oplus J ||| \\ &= ||| & I \oplus J ||| , \end{split}$$

which is precisely inequality (2.4).

Remark 2.10 Letting f(t) = t in inequality (2.4), we give norm inequality for generalized anticommutator. In that sense, inequality (2.4) is certainly a generalization of generalized anticommutator norm inequalities.

Specifying inequality (2.4) to the spectral norm and the Schatten *p*-norms, we give the following norm inequalities for generalized anticommutator which are generalizations of the inequalities (1.2) and (1.3), respectively.

Corollary 2.11 Let $A, B, X \in M_n$. Then

$$\|AX + XB\| \le \max\left\{ \left\| K + \left| B^{1/2} X^* A^{1/2} \right| \right\|, \left\| L + \left| A^{1/2} X B^{1/2} \right| \right\| \right\}$$
(2.5)

where

$$K = \frac{1}{2}A + \frac{1}{2}A^{1/2} \left| X^* \right|^2 A^{1/2}$$

Deringer

and

$$L = \frac{1}{2}B + \frac{1}{2}B^{1/2} |X|^2 B^{1/2}.$$

Proof Inequality (2.3) follows by substituting f(t) = t and by considering the spectral norm in Theorem 2.9.

Remark 2.12 Letting X = I in Corollary 2.11, we give inequality (1.2).

Corollary 2.13 Let $A, B, X \in M_n$. Then for $1 \le p \le \infty$, we have

$$\|AX + XB\|_{p} \le \left(\left\| K + \left| B^{1/2} X^{*} A^{1/2} \right| \right\|_{p}^{p} + \left\| L + \left| A^{1/2} X B^{1/2} \right| \right\|_{p}^{p} \right)^{1/p}$$
(2.6)

where

$$K = \frac{1}{2}A + \frac{1}{2}A^{1/2} |X^*|^2 A^{1/2}$$

and

$$L = \frac{1}{2}B + \frac{1}{2}B^{1/2} |X|^2 B^{1/2}.$$

Proof Inequality (2.6) follows by substituting f(t) = t and by considering the Schatten p-norms in Theorem 2.9.

Remark 2.14 Letting X = I in Corollary 2.13, we give inequality (1.3).

The following two corollaries are applications of Theorem 2.9.

Corollary 2.15 *Let* $A, B, X \in M_n$ *. Then*

$$|||\log(|(AX + XB)| + I)||| \le |||M \oplus N|||$$

for every unitarily invariant norm, where

$$M = \left(\log \left(K + I \right) + \log \left(\left| B^{1/2} X^* A^{1/2} \right| + I \right) \right),$$

$$N = \left(\log \left(L + I \right) + \log \left(\left| A^{1/2} X B^{1/2} \right| + I \right) \right),$$

$$K = \frac{1}{2}A + \frac{1}{2}A^{1/2} \left| X^* \right|^2 A^{1/2},$$

and

$$L = \frac{1}{2}B + \frac{1}{2}B^{1/2} |X|^2 B^{1/2}.$$

Deringer

Proof The inequality is an immediate consequence of Theorem 2.9 by letting $f(t) = \log(t+1)$.

Corollary 2.16 Let $A, B, X \in M_n$. Then, for $r \in (0, 1]$, we have

$$\left|\left|\left|\left|(AX + XB)\right|^{r}\right|\right|\right| \leq \left|\left|P \oplus Q\right|\right|\right|$$

for every unitarily invariant norm, where

$$P = \left(K^{r} + \left|B^{1/2}X^{*}A^{1/2}\right|^{r}\right),$$

$$Q = \left(L^{r} + \left|A^{1/2}XB^{1/2}\right|^{r}\right),$$

$$K = \frac{1}{2}A + \frac{1}{2}A^{1/2}\left|X^{*}\right|^{2}A^{1/2},$$

and

$$L = \frac{1}{2}B + \frac{1}{2}B^{1/2} |X|^2 B^{1/2}.$$

Proof The inequality is an immediate consequence of Theorem 2.9 by letting $f(t) = t^r$ and $r \in (0, 1]$.

Acknowledgements The author is grateful to the referee for his comments and suggestions.

Funding Not applicable.

Compliance with ethical standards

Conflict of interest The author declare that she/he have no conflict of interest.

References

- Audeh, W.: Generalizations for singular value and arithmetic–geometric mean inequalities of operators. J. Math. Anal. Appl. 489, 1–8 (2020)
- Audeh, W.: Generalizations for singular value inequalities of operators. Adv. Oper. Theory 5, 371–381 (2020)
- Audeh, W., Kittaneh, F.: Singular value inequalities for compact operators. Linear Algebra Appl. 437, 2516–2522 (2012)
- 4. Bhatia, R.: Matrix Analysis. Springer, New York (1997)
- Bhatia, R., Kittaneh, F.: On the singular values of a product of operators. SIAM J. Matrix Anal. Appl. 11, 272–277 (1990)
- Bourin, J.C.: A matrix subadditivity inequality for symmetric norms, proc. Am. Math. Soc. 138, 495– 504 (2009)
- Bourin, J.C., Mhanna, A.: Positive block matrices and numerical ranges. C. R. Acad. Sci. Paris 355, 1077–1081 (2017)
- Davidson, K., Power, S.C.: Best approximation in C*-algebras. J. Reine Angew. Math. 368, 43–62 (1986)
- 9. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)

- 10. Kittaneh, F.: Norm inequalities for certain operator sums. J. Funct. Anal. 143, 337–348 (1997)
- 11. Kittaneh, F.: Norm inequalities for sums of positive operators, II. Positivity 10, 251-260 (2006)
- Zhan, X.: Singular values of differences of positive semidefinite matrices. SIAM J. Matrix Anal. Appl. 22, 819–823 (2002)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.