

Singular value inequalities and applications

Wasim Audeh[1](http://orcid.org/0000-0003-4603-4188)

Received: 25 September 2020 / Accepted: 7 October 2020 / Published online: 13 October 2020 © Springer Nature Switzerland AG 2020

Abstract

It is shown among other inequalities that if A , B and X are $n \times n$ complex matrices such that *A* and *B* are positive semidefinite, then $s_j(AX - XB) \leq$ $s_j\left(\left(\frac{1}{2}A + \frac{1}{2}A^{1/2} |X^*|^2 A^{1/2}\right) \oplus \left(\frac{1}{2}B + \frac{1}{2}B^{1/2} |X|^2 B^{1/2}\right)\right)$ for $j = 1, 2, ..., 2n$. Several related singular value inequalities and norm inequalities are also given.

Keywords Concave function · Positive semidefinite matrix · Singular value · Unitarily invariant norm · Inequality

Mathematics Subject Classification 15A18 · 15A42 · 15A60 · 47A30 · 47B15

1 Introduction

Let \mathbb{M}_n be the algebra of all $n \times n$ complex matrices. For $A \in \mathbb{M}_n$, we denote the eigenvalues of $|A| = (A^*A)^{1/2}$ by $s_1(A) \geq s_2(A) \geq \cdots \geq s_n(A)$, they are called the singular values of *A*. Note that $s_j(A) = s_j(A^*) = s_j(|A|)$ for $j = 1, 2, ..., n$. Note that the spectral (usual operator) norm $\|.\|$ is the largest singular value, i.e. $||A|| = s_1(A)$, and the Schatten p-norms $||.||_p$ are defined interms of the singular values, where $||A||_p = \left(\sum_{j=1}^n s_j^p(A)\right)^{1/p}$ for $1 \le p \le \infty$. Apart from the spectral (usual operator) norm and the Schatten p-norms, we have the wider class of unitarily invariant norms |||*.*|||. Unitarily invariant norms are characterized by the invariance property which states that $|||UAV||| = |||A|||$ for all $A \in M_n$ and for all unitary matrices *U* and *V*. Unitarily invariant norms are increasing functions of singular values (see, e.g., [\[4](#page-8-0)] or [\[9](#page-8-1)]).

For $A, B, X \in \mathbb{M}_n$, a matrix of the form $AX - XA$ is called a commutator, a matrix of the form $AX - XB$ is called a generalized commutator, a matrix of the form $AX + XA$ is called anticommutator, and a matrix of the form $AX + XB$ is called a

 \boxtimes Wasim Audeh waudeh@uop.edu.jo

¹ Department of Mathematics, Petra University, Amman, Jordan

generalized anticommutator. In this paper, we present singular value inequalities for these types of matrices.

Kittaneh in [\[11](#page-9-0)] has proved that if $A, B \in \mathbb{M}_n$ are positive semidefinite, then

$$
s_j(A + B) \le s_j \left(\left(A + \left| B^{1/2} A^{1/2} \right| \right) \oplus \left(B + \left| A^{1/2} B^{1/2} \right| \right) \right) \tag{1.1}
$$

for $j = 1, 2, \ldots, 2n$. Inequality [\(1.1\)](#page-1-0) can be extended to unitarily invariant norms. For $i = 1$, this inequality is the spectral norm inequality,

$$
||A + B|| \le \max\left\{ ||A + |B^{1/2}A^{1/2}|| \right\}, ||B + |A^{1/2}B^{1/2}|| \right\}.
$$
 (1.2)

Specifying inequality [\(1.1\)](#page-1-0) to the Schatten p-norms, we get

$$
||A + B||_p \le ||A + |B^{1/2}A^{1/2}||_p^p + ||B + |A^{1/2}B^{1/2}||_p^p)^{1/p} \tag{1.3}
$$

for $1 \leq p \leq \infty$. Kittaneh in [\[10\]](#page-9-1) has been proved that if $A, B \in \mathbb{M}_n$ are positive semidefinite, then

$$
|||A + B||| \le |||A \oplus B||| + \left|| \left| A^{1/2} B^{1/2} \oplus A^{1/2} B^{1/2} \right| \right||.
$$
 (1.4)

It should be mentioned here that inequality (1.4) is trivial consequence of inequality [\(1.1\)](#page-1-0) by application of triangular inequality. Specifying inequality [\(1.4\)](#page-1-1) to the spectral norm $\| \cdot \|$, leads to

$$
||A + B|| \le \max \{ ||A||, ||B|| \} + \left||A^{1/2} B^{1/2} \right||.
$$
 (1.5)

Davidson and Power in [\[8\]](#page-8-2) has been shown a weaker version of inequality [\(1.5\)](#page-1-2). Bourin

in [\[7](#page-8-3)] provides an equivalent formulation of inequality [\(1.5\)](#page-1-2). Specifying inequality [\(1.4\)](#page-1-1) to the Schatten p-norms, we have

$$
\|A + B\|_{p} \le \left(\|A\|_{p}^{p} + \|B\|_{p}^{p}\right)^{1/p} + 2^{1/p} \left\|A^{1/2}B^{1/2}\right\|_{p}.
$$
 (1.6)

For recent studies and details for generalizations of singular value inequalities, we refer to [\[1](#page-8-4)[,2\]](#page-8-5) and [\[3](#page-8-6)]. In this paper, we give a remarkable generalizations of the inequalities (1.1) , (1.2) , and (1.3) . Several applications are also given.

2 Main results

To reach our findings, we need the following lemmas. The first lemma has been shown by Bhatia and Kittaneh in [\[5](#page-8-7)]. The second lemma has been proved by Bourin in [\[6](#page-8-8)]. The third lemma has been given by Bhatia in [\[4](#page-8-0)].

Lemma 2.1 *Let A*, $B \in M_n$ *. Then*

$$
s_j(AB^*) \le \frac{1}{2} s_j(A^*A + B^*B)
$$

for $j = 1, 2, ..., n$

Lemma 2.2 *Let* $A, B \in M_n$ *be normal and let* f *be a nonnegative concave function on* [0*,*∞*). Then*

$$
|||f(|A+B|)||| \le |||f(|A|) + f(|B|)|||
$$

for every unitarily invariant norm.

Lemma 2.3 *Let* $A, B \in \mathbb{M}_n$ *such that* AB *is Hermitian. Then*

$$
|||AB||| \leq |||Re(BA)|||.
$$

From now until the end of the paper, we will assume that all functions considered are continuous and all matrices denoted by the symbol *A* or *B* are positive semidefinite. Our first result is the following singular value inequality for generalized commutator.

Theorem 2.4 *Let A*, *B*, $X \in M_n$ *. Then*

$$
s_j(AX - XB) \le s_j (K \oplus L) \tag{2.1}
$$

for $j = 1, 2, \ldots, 2n$, where

$$
K = \frac{1}{2}A + \frac{1}{2}A^{1/2} |X^*|^2 A^{1/2}
$$

and

$$
L = \frac{1}{2}B + \frac{1}{2}B^{1/2} |X|^2 B^{1/2}.
$$

Proof Let

$$
S = \begin{bmatrix} A^{1/2} & XB^{1/2} \\ 0 & 0 \end{bmatrix},
$$
\n
$$
R^* = \begin{bmatrix} A^{1/2}X & 0 \\ -B^{1/2} & 0 \end{bmatrix},
$$
\n
$$
M = \begin{bmatrix} A & A^{1/2}XB^{1/2} \\ B^{1/2}X^*A^{1/2} & B^{1/2} |X|^2B^{1/2} \end{bmatrix},
$$

and

$$
N = \begin{bmatrix} A^{1/2} |X^*|^2 A^{1/2} & -A^{1/2} X B^{1/2} \\ -B^{1/2} X^* A^{1/2} & B \end{bmatrix}.
$$

² Springer

Then for $j = 1, 2, \ldots, 2n$, we have

$$
s_j(AX - XB) = s_j(SR^*)
$$

\n
$$
\leq \frac{1}{2}s_j(S^*S + R^*R)(by Lemma 2.1)
$$

\n
$$
= s_j \left(\frac{1}{2}M + \frac{1}{2}N\right)
$$

\n
$$
= s_j \left(\begin{bmatrix} K & 0 \\ 0 & L \end{bmatrix}\right)
$$

\n
$$
= s_j(K \oplus L).
$$

Our inequality has thus been proved.

Remark 2.5 Letting $X = I$ in inequality [\(2.1\)](#page-2-0), we give

$$
s_j(A - B) \le s_j(A \oplus B) \tag{2.2}
$$

for $j = 1, 2, \ldots, 2n$. Inequality [\(2.2\)](#page-3-0) has been proved by Zhan in [\[12](#page-9-2)].

Remark 2.6 Letting $B = A$ in inequality [\(2.1\)](#page-2-0), we give the following singular value inequality for commutator.

$$
s_j(AX - XA) \leq s_j (Y \oplus Z)
$$

for $j = 1, 2, \ldots, 2n$, where

$$
Y = \frac{1}{2}A + \frac{1}{2}A^{1/2} |X^*|^2 A^{1/2}
$$

and

$$
Z = \frac{1}{2}A + \frac{1}{2}A^{1/2} |X|^2 A^{1/2}.
$$

We present the following generalization of inequality (1.1) , which is singular value inequality for generalized anticommutator.

Theorem 2.7 *Let* $A, B, X \in \mathbb{M}_n$ *. Then*

$$
s_j(AX + XB) \le s_j(C \oplus D) \tag{2.3}
$$

for $j = 1, 2, ..., 2n$ *, where*

$$
C = K + |B^{1/2} X^* A^{1/2}|,
$$

\n
$$
D = L + |A^{1/2} X B^{1/2}|,
$$

\n
$$
K = \frac{1}{2} A + \frac{1}{2} A^{1/2} |X^*|^2 A^{1/2},
$$

 \Box

and

$$
L = \frac{1}{2}B + \frac{1}{2}B^{1/2} |X|^2 B^{1/2}.
$$

Proof Let

$$
S = \begin{bmatrix} A^{1/2} & XB^{1/2} \\ 0 & 0 \end{bmatrix},
$$
\n
$$
T = \begin{bmatrix} X^* A^{1/2} & B^{1/2} \\ 0 & 0 \end{bmatrix},
$$
\n
$$
U = \begin{bmatrix} A & A^{1/2} X B^{1/2} \\ B^{1/2} X^* A^{1/2} & B^{1/2} |X|^2 B^{1/2} \end{bmatrix},
$$

and

$$
V = \begin{bmatrix} A^{1/2} |X^*|^2 A^{1/2} & A^{1/2} X B^{1/2} \\ B^{1/2} X^* A^{1/2} & B \end{bmatrix}.
$$

Then for $j = 1, 2, \ldots, 2n$, we have

$$
s_j(AX + XB) = s_j(ST^*)
$$

\n
$$
\leq \frac{1}{2}s_j(S^*S + T^*T), \text{ (by Lemma2.1)}
$$

\n
$$
= \frac{1}{2}s_j(U + V)
$$

\n
$$
= s_j \left(\begin{bmatrix} K & A^{1/2}XB^{1/2} \\ B^{1/2}X^*A^{1/2} & L \end{bmatrix} \right)
$$

\n
$$
= s_j \left(\begin{bmatrix} K & 0 \\ 0 & L \end{bmatrix} + \begin{bmatrix} 0 & A^{1/2}XB^{1/2} \\ B^{1/2}X^*A^{1/2} & 0 \end{bmatrix} \right)
$$

\n
$$
\leq s_j \left(\begin{bmatrix} K & 0 \\ 0 & L \end{bmatrix} + \begin{bmatrix} |B^{1/2}X^*A^{1/2}| & 0 \\ 0 & |A^{1/2}XB^{1/2}| \end{bmatrix} \right)
$$

\n
$$
= s_j \left(\begin{bmatrix} K + |B^{1/2}X^*A^{1/2}| & 0 \\ 0 & L + |A^{1/2}XB^{1/2}| \end{bmatrix} \right)
$$

\n
$$
= s_j \left(\begin{bmatrix} C & 0 \\ 0 & D \end{bmatrix} \right).
$$

Inequality (2.3) has thus been substantiated.

Remark 2.8 Letting $X = I$ in inequality [\(2.3\)](#page-3-1), we give inequality [\(1.1\)](#page-1-0). In that sense inequality (2.3) is certainly a generalization of inequality (1.1) .

We are now in a position to present our next norm inequality, which is a generalization of the generalized anticommutator.

Theorem 2.9 *Let* $A, B, X \in \mathbb{M}_n$ *and let* f *be a nonnegative increasing concave function on* [0*,*∞*). Then*

$$
|||f(|(AX + XB) \oplus 0|)||| \le |||I \oplus J||| \tag{2.4}
$$

for every unitarily invariant norm, where

$$
I = \left(f(K) + f\left(\left| B^{1/2} X^* A^{1/2} \right| \right) \right),
$$

\n
$$
J = \left(f(L) + f\left(\left| A^{1/2} X B^{1/2} \right| \right) \right),
$$

\n
$$
K = \frac{1}{2} A + \frac{1}{2} A^{1/2} \left| X^* \right|^2 A^{1/2},
$$

and

$$
L = \frac{1}{2}B + \frac{1}{2}B^{1/2} |X|^2 B^{1/2}.
$$

Proof Let

$$
S = \begin{bmatrix} A^{1/2} & XB^{1/2} \\ 0 & 0 \end{bmatrix},
$$
\n
$$
T = \begin{bmatrix} X^* A^{1/2} & B^{1/2} \\ 0 & 0 \end{bmatrix},
$$
\n
$$
E = \begin{bmatrix} A & A^{1/2} X B^{1/2} \\ B^{1/2} X^* A^{1/2} & B^{1/2} |X|^2 B^{1/2} \end{bmatrix},
$$

and

$$
F = \begin{bmatrix} A^{1/2} |X^*|^2 A^{1/2} & A^{1/2} X B^{1/2} \\ B^{1/2} X^* A^{1/2} & B \end{bmatrix}.
$$

Then for $j = 1, 2, \ldots, 2n$, we have

$$
s_j(f(|(AX + XB) \oplus 0|)) = s_j(f(|ST^*|))
$$

\n
$$
= f(s_j(ST^*))
$$

\n
$$
\leq f\left(\frac{1}{2}s_j(S^*S + T^*T)\right)
$$
(by Lemma2.1)
\n
$$
= f\left(\frac{1}{2}s_j(E + F)\right)
$$

\n
$$
= s_j\left(f\left(\left|\frac{1}{2}E + \frac{1}{2}F\right|\right)\right)
$$

\n
$$
= s_j\left(f\left(\left|\frac{K}{B^{1/2}X^*A^{1/2}} - \frac{A^{1/2}XB^{1/2}}{L}\right|\right)\right).
$$

This implies that,

$$
\|\|f\|(\|AX+XB)\oplus 0\|)\| \le \left|\|f\left(\left|\left[\frac{K}{B^{1/2}X^*A^{1/2}}\frac{A^{1/2}XB^{1/2}}{L}\right]\right|\right)\right|\|
$$

\n
$$
= \left|\|f\left(\left|\left[\frac{K}{0}\frac{0}{L}\right] + \frac{1}{A^{1/2}XB^{1/2}}\frac{0}{L}\right]\right)\right|\|
$$

\n
$$
\le \left|\|f\left(\left|\frac{K}{0}\frac{0}{L}\right]\right| + \frac{1}{A^{1/2}XB^{1/2}}\frac{0}{L}\right)\|
$$

\n(by Lemma2.2),
\n
$$
\le \left|\|f\left(\left[\frac{B^{1/2}X^*A^{1/2}}{B^{1/2}}\frac{0}{L}\right]\right) + \frac{1}{A^{1/2}XB^{1/2}}\frac{0}{L}\right)\|
$$

\n
$$
= \left|\|f\left(\left[\frac{B^{1/2}X^*A^{1/2}}{B^{1/2}}\right]\frac{0}{A^{1/2}XB^{1/2}}\right]\right)\|
$$

\n
$$
= \left|\|f\left(\frac{B^{1/2}X^*A^{1/2}}{B^{1/2}}\frac{0}{L}\right)\frac{0}{L^{1/2}XB^{1/2}}\right|\right|\|
$$

\n
$$
= \left|\|f\left(\frac{B^{1/2}X^*A^{1/2}}{B^{1/2}}\frac{0}{L}\right)\frac{0}{L^{1/2}XB^{1/2}}\right|\right|\|
$$

\n
$$
= \left|\|f\oplus J\|\right|,
$$

which is precisely inequality (2.4) .

Remark 2.10 Letting $f(t) = t$ in inequality [\(2.4\)](#page-5-0), we give norm inequality for generalized anticommutator. In that sense, inequality (2.4) is certainly a generalization of generalized anticommutator norm inequalities.

Specifying inequality [\(2.4\)](#page-5-0) to the spectral norm and the Schatten *p*-norms, we give the following norm inequalities for generalized anticommutator which are generalizations of the inequalities (1.2) and (1.3) , respectively.

Corollary 2.11 *Let A*, *B*, $X \in M_n$ *. Then*

$$
||AX + XB|| \le \max\left\{ \left\| K + \left| B^{1/2} X^* A^{1/2} \right| \right\|, \left\| L + \left| A^{1/2} X B^{1/2} \right| \right\| \right\} \tag{2.5}
$$

where

$$
K = \frac{1}{2}A + \frac{1}{2}A^{1/2} |X^*|^2 A^{1/2}
$$

² Springer

and

$$
L = \frac{1}{2}B + \frac{1}{2}B^{1/2} |X|^2 B^{1/2}.
$$

Proof Inequality [\(2.3\)](#page-3-1) follows by substituting $f(t) = t$ and by considering the spectral norm in Theorem 2.9. norm in Theorem [2.9.](#page-4-0)

Remark 2.12 Letting $X = I$ in Corollary [2.11,](#page-6-0) we give inequality [\(1.2\)](#page-1-3).

Corollary 2.13 *Let* $A, B, X \in \mathbb{M}_n$ *. Then for* $1 \leq p \leq \infty$ *, we have*

$$
\|AX+XB\|_p \le \left(\left\|K+\left|B^{1/2}X^*A^{1/2}\right|\right\|_p^p + \left\|L+\left|A^{1/2}XB^{1/2}\right|\right\|_p^p\right)^{1/p} (2.6)
$$

where

$$
K = \frac{1}{2}A + \frac{1}{2}A^{1/2} |X^*|^2 A^{1/2}
$$

and

$$
L = \frac{1}{2}B + \frac{1}{2}B^{1/2} |X|^2 B^{1/2}.
$$

Proof Inequality [\(2.6\)](#page-7-0) follows by substituting $f(t) = t$ and by considering the Schatten p-norms in Theorem 2.9. ten p-norms in Theorem [2.9.](#page-4-0)

Remark 2.14 Letting $X = I$ in Corollary [2.13,](#page-7-1) we give inequality [\(1.3\)](#page-1-4).

The following two corollaries are applications of Theorem [2.9.](#page-4-0)

Corollary 2.15 *Let A, B, X* \in \mathbb{M}_n *. Then*

$$
|||log (|(AX + XB)| + I)||| \le |||M \oplus N|||
$$

for every unitarily invariant norm, where

$$
M = \left(\log (K + I) + \log \left(\left|B^{1/2}X^*A^{1/2}\right| + I\right)\right),
$$

\n
$$
N = \left(\log (L + I) + \log \left(\left|A^{1/2}XB^{1/2}\right| + I\right)\right),
$$

\n
$$
K = \frac{1}{2}A + \frac{1}{2}A^{1/2} |X^*|^2 A^{1/2},
$$

and

$$
L = \frac{1}{2}B + \frac{1}{2}B^{1/2} |X|^2 B^{1/2}.
$$

² Springer

Proof The inequality is an immediate consequence of Theorem [2.9](#page-4-0) by letting $f(t) = \log(t + 1)$. $\log(t+1)$.

Corollary 2.16 *Let* $A, B, X \in \mathbb{M}_n$ *. Then, for* $r \in (0, 1]$ *, we have*

$$
\left|\left|\left|\left|\left|(AX+XB)\right|^r\right|\right|\right|\leq \left|\left|\left|P\oplus Q\right|\right|\right|
$$

for every unitarily invariant norm, where

$$
P = \left(K^r + \left| B^{1/2} X^* A^{1/2} \right|^r \right),
$$

\n
$$
Q = \left(L^r + \left| A^{1/2} X B^{1/2} \right|^r \right),
$$

\n
$$
K = \frac{1}{2} A + \frac{1}{2} A^{1/2} \left| X^* \right|^2 A^{1/2},
$$

and

$$
L = \frac{1}{2}B + \frac{1}{2}B^{1/2} |X|^2 B^{1/2}.
$$

Proof The inequality is an immediate consequence of Theorem [2.9](#page-4-0) by letting $f(t) = t^r$ and $r \in (0, 1]$.

Acknowledgements The author is grateful to the referee for his comments and suggestions.

Funding Not applicable.

Compliance with ethical standards

Conflict of interest The author declare that she/he have no conflict of interest.

References

- 1. Audeh,W.: Generalizations for singular value and arithmetic–geometric mean inequalities of operators. J. Math. Anal. Appl. **489**, 1–8 (2020)
- 2. Audeh, W.: Generalizations for singular value inequalities of operators. Adv. Oper. Theory **5**, 371–381 (2020)
- 3. Audeh, W., Kittaneh, F.: Singular value inequalities for compact operators. Linear Algebra Appl. **437**, 2516–2522 (2012)
- 4. Bhatia, R.: Matrix Analysis. Springer, New York (1997)
- 5. Bhatia, R., Kittaneh, F.: On the singular values of a product of operators. SIAM J. Matrix Anal. Appl. **11**, 272–277 (1990)
- 6. Bourin, J.C.: A matrix subadditivity inequality for symmetric norms, proc. Am. Math. Soc. **138**, 495– 504 (2009)
- 7. Bourin, J.C., Mhanna, A.: Positive block matrices and numerical ranges. C. R. Acad. Sci. Paris **355**, 1077–1081 (2017)
- 8. Davidson, K., Power, S.C.: Best approximation in C∗-algebras. J. Reine Angew. Math. **368**, 43–62 (1986)
- 9. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)
- 10. Kittaneh, F.: Norm inequalities for certain operator sums. J. Funct. Anal. **143**, 337–348 (1997)
- 11. Kittaneh, F.: Norm inequalities for sums of positive operators, II. Positivity **10**, 251–260 (2006)
- 12. Zhan, X.: Singular values of differences of positive semidefinite matrices. SIAM J. Matrix Anal. Appl. **22**, 819–823 (2002)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.