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Abstract
In this paper, the robust approach (the worst case approach) for nonsmooth nonconvex
optimization problems with uncertainty data is studied. First various robust constraint
qualifications are introduced based on the concept of tangential subdifferential. Fur-
ther, robust necessary and sufficient optimality conditions are derived in the absence
of the convexity of the uncertain sets and the concavity of the related functions with
respect to the uncertain parameters. Finally, the results are applied to obtain the nec-
essary and sufficient optimality conditions for robust weakly efficient solutions in
multiobjective programming problems. In addition, several examples are provided to
illustrate the advantages of the obtained outcomes.

Keywords Nonconvex optimization · Nonsmooth optimization · Robustness ·
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1 Introduction

Optimization problems that arise in applications are often faced with uncertainty (that
is, the input parameters are not known exactly). For example, we can mention to
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engineering and finance problems, management include energy management [51] and
water management [4,24], location planning [13], scheduling and delivering routing
[16], allocation and network design problems [31], traveling salesman problem [14],
transit network design [12], etc. Consequently, a great deal of attention has been
focused onoptimization problemswith data uncertainty and try to study these problems
from the theory and application aspects.

Robust optimization is an emerging area research and one of the computationally
powerful deterministic approaches that deals with the optimization problemswith data
uncertainty. The goal of robust programming is to find a worst-case solution which
simultaneously satisfies all possible realizations of the constraints to immunize an
optimization problem against uncertain parameters in the problem, particularly when
no probability distribution information on the uncertain parameters is given.

The concept of robust programming has been first introduced by Soyester [48]
in 1973 in what now is called robust linear programming. Due to the importance
of the theory and practical aspects many researchers have been widely studied the
robust optimization over the past two decades (see, e.g., [3,5–10,18,25,26,28,30,32,
33,38,47]). A successful treatment of the robust optimization approaches to convex
optimization problems under data uncertainty was given in [7,9,49]. Recently, in [15] a
nonsmooth and nonconvex multiobjective optimization problem with data uncertainty
has been investigated by using a generalized alternative theoremwithin the framework
of vector optimization.

In [27] the authors proved aKarush–Kuhn–Tucker (KKT) optimality condition for a
robust programmingwith continuously differentiable functions. Optimality conditions
for uncertainmultiobjective programmingwith convex functions are studied in [29,30].
In the continuation of the previous studies, in [33] the authors extended the optimality
results to a robust multiobjective optimization problem for weakly and properly robust
efficient solutions, where the involved functions are locally Lipschitz.

As seen in the robust optimization, the convexity of the uncertain sets and the
concavity of the functions with respect to the uncertain parameters play a significant
role in deriving the optimality conditions (see, e.g., [15,30,32,33,49]).

On the other hand, as we know in the optimization theory a feature of convex pro-
gramming is that when Slater’s condition holds, the KKT optimality conditions are
both necessary and sufficient. It is well known that this may fails without the convexity
of the objective or constraint functions.Martínez-Legaz [40] used the notion of tangen-
tial subdifferential, a concept due to Pschenichnyi [46], for a class of nonconvex and
nonsmooth functions. Very recently, in [41] optimality conditions for a nonsmooth and
nonconvex constrained optimization problem have been established with the concept
of tangential subdifferential in the absence of convexity of the feasible set.

Motivated and inspired by the previous studies, this paper is devoted to investigate
a nonsmooth and nonconvex constrained optimization problem with data uncertainty
both in objective and constraint functions. Our focus is to obtain the necessary and
sufficient conditions for optimality by using a robust approach based on the tangential
subdifferential. In spite of almost all of the previous studies, we drop the convex-
ity assumption of the uncertain sets and the feasible set. Moreover, we do not need
the concavity of the functions with respect to the uncertain parameters. We observe
that the tangential subdifferential includes both convex subdifferential and Gâteaux
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Robustness in Nonsmooth Nonconvex Optimization Problems 703

derivative. Hence the robust optimality conditions in terms of tangential subdiffer-
ential give sharper results and can be employed for a large class of nonconvex and
nondifferentiable robust optimization problems.

Further as far as we know, all the previous investigations obtained the optimal-
ity conditions under some strong constraint qualifications such as Mangasarian–
Fromovitz or Slater constraint qualifications (see, e.g., [17,29,33,49]). In this paper,
some of the well known robust constraint qualifications such as generalized Abadie
(ACQ), Cottle (CCQ), Mangasarian-Fromovitz (MFCQ), Robinson (RCQ), Kuhn–
Tucker (KTCQ) and Zangwill (ZCQ) constraint qualifications are established in the
framework of tangential subdifferential. Then the interrelations between these con-
straint qualifications are investigated. In particular, it is shown that (ACQ) is the
weakest among all these constraint qualifications. In [17] the KKT optimality condi-
tions for a nonsmooth and nonconvex robust multiobjective problemwere established.
These optimality results were presented in terms of the Mordukhovich subdifferen-
tial and obtained under a generalized Mangasarian–Fromovitz constraint qualification
which is strictly stronger than the Abadie constraint qualification. Moreover in [19],
the author extended the optimality results of [17] to infinite dimensional spaces by
using advanced techniques of variational analysis.

We observe that our results include the results of ones which considered the convex-
ity of the uncertain sets in addition to the concavity of the functions with respect to the
uncertain parameters by using stronger constraint qualifications (see, e.g., [33,49,50]).
As an application of the robust tangentially convex programming, we provide neces-
sary and sufficient conditions for weakly robust efficient solutions in multiobjective
programming problems with data uncertainty which are less sensitive to small pertur-
bations in variables than global optimum or global efficient solutions. We obtain these
results by using the suitable robust constraint qualifications in terms of the tangential
subdifferential.

An important feature is the structure of our constraint qualifications, which unlike
most of the literature on multiobjective programming, in our setting the objective
functions have no role in the definition of these constraint qualifications; (see, e.g.,
[22,23,37,39]). Throughout the paper, several examples are given to clarify the results.

The paper is organized as follows: Sect. 2 is devoted to the basic definitions and
preliminary results of convex and nonsmooth analysis. In Sect. 3, we establish some
results in nonsmooth analysis that characterize the directional derivative of a certain
function.Anumber ofwell known robust constraint qualifications are introduced based
on the tangential subdifferential and their relationships are studied in Sect. 4. Then
in Sect. 5, necessary and sufficient conditions for robust local optimality are proved.
Finally, we show the viability of our results for robust weakly efficient solutions in
multiobjective problems with uncertain data in Sect. 6. A number of examples are
given through the paper to illustrate the obtained results.

2 Preliminaries

In this section, we recall some basic definitions and results from nonsmooth analysis
needed in what follows (see, e.g., [2,11,20,21]).
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704 F. Mashkoorzadeh et al.

Our notation is basically standard. Throughout the paper, R
n signifies Euclidean

space whose norm is denoted by ||.||. The inner product of two vectors x, y ∈ R
n is

shownby 〈x, y〉.The closed unit ball, the nonnegative reals and the nonnegative orthant
of R

n are denoted by B, R+ and R
n+, respectively. For a given subset S ⊆ R

n, cl S
and co S stand for the closure and convex hull of S, respectively.

Let f : R
n → R ∪ {+∞} and x̄ ∈ dom f := {x ∈ R

n | f (x) < ∞}. We say that
f is upper semi continuous (u.s.c.) at x̄ if lim supx→x̄ f (x) ≤ f (x̄).
The lower and upper Dini derivatives of f at x̄ in the direction d ∈ R

n are defined,
respectively, by

f −(x̄; d) := lim inf t↓0
f (x̄ + td) − f (x̄)

t
,

f +(x̄; d) := lim supt↓0
f (x̄ + td) − f (x̄)

t
.

The directional derivative of f at x̄ in the direction d is given by

f ′(x̄; d) := lim
t↓0

f (x̄ + td) − f (x̄)

t
, (1)

when the limit in (1) exists.
In the following, we present the definition of a class of functions that was introduced

by Pshenichnyi [46] and is called “tangentially convex” by Lemaréchal [36].

Definition 1 A function f : R
n → R ∪ {+∞} is said to be tangentially convex

at x̄ ∈ dom f if for each d ∈ R
n the limit in (1) exists, is finite and the function

d �−→ f ′(x̄; d) is convex.

In fact in this case, d �−→ f ′(x̄; d) is a sublinear function, since it is generally
positively homogeneous.

It is worth mentioning that the class of tangentially convex functions contains
convex functions with open domain and Gâteaux differentiable functions. This class
is closed under addition and multiplication by scalars. Therefore, it contains a large
class of nonconvex and nondifferentiable functions. The product of two nonnegative
tangentially convex functions is also tangentially convex.

Corresponding to the concept of tangentially convex functions, the following notion
of subdifferential is defined in [46].

Definition 2 The tangential subdifferential of f : R
n → R ∪ {+∞} at x̄ ∈ dom f is

the set

∂T f (x̄) := {ξ ∈ R
n | 〈ξ, d〉 ≤ f ′(x̄; d), ∀d ∈ R

n}.

If f is tangentially convex at x̄, then ∂T f (x̄) is a nonempty closed convex subset
of R

n . It is also easy to show that f ′(x̄; .) is the support function of ∂T f (x̄), that is,
for each d ∈ R

n one has

f ′(x̄; d) = max
ξ∈∂T f (x̄)

〈ξ, d〉.
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Robustness in Nonsmooth Nonconvex Optimization Problems 705

Obviously, if f is a convex function then ∂T f (x̄) reduces to the classical convex
subdifferential ∂ f (x̄) (see [11, p. 44]).

Following [40], we recall the notion of pseudoconvexity to the tangentially convex
setting.

Definition 3 A function f : R
n → R ∪ {+∞} which is tangentially convex at x̄ ∈

dom f is said to be pseudoconvex at x̄ if f (x) ≥ f (x̄) for every x ∈ R
n such that

f ′(x̄; x − x̄) ≥ 0.

Finally in this section, let us recall from [2,11,21] the definitions of some tangent
and normal cones to a closed set.

For a given nonempty closed subset S of R
n and x̄ ∈ S,

• The cone of feasible directions of S at x̄ is

D(x̄; S) := {d ∈ R
n | ∃δ > 0, s.t. x̄ + td ∈ S, ∀t ∈ (0, δ)}.

• The cone of attainable directions of S at x̄ is

A(x̄; S) := {d ∈ R
n |∃α : R → R

n, s.t. α(0) = x̄ and ∃δ > 0, s.t.
∀t ∈ (0, δ), α(t) ∈ S and limt↓0 α(t)−α(0)

t = d}.

• The contingent cone of S at x̄ is

T (x̄; S) := {d ∈ R
n| ∃tk ↓ 0, ∃dk → d, s.t. x̄ + tkdk ∈ S, ∀k}.

3 Max function

In this section, we try to prove some results in nonsmooth analysis that characterize
the directional derivatives of a certain “max function” defined this way.

Let V be a nonempty compact subset ofR
q and consider the function g : R

n×V →
R ∪ {+∞}. We define the function ψ : R

n → R ∪ {+∞} and the multifunction
V : R

n ⇒ R
qas follows:

ψ(x) := max
v∈V g(x, v), (2)

V (x) := {v ∈ V | ψ(x) = g(x, v)}. (3)

We make the following assumptions in the remainder of this paper:

(A1) The function (x, v) �→ g(x, v) is u.s.c. at each (x, v) ∈ R
n × V .

(A2) g is locally Lipschitz in x, uniformly for v ∈ V ; i.e., for each x ∈ R
n, there

exist an open neighbourhood N (x) of x and a positive number L such that for
each y, z ∈ N (x) and v ∈ V , one has

|g(y, v) − g(z, v)| ≤ L||y − z||.
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(A3) g is a tangentially convex function with respect to x; i.e., g′
x (x, v; d) which

is the directional derivative of g with respect to x, exists, is finite for every
(x, v) ∈ R

n × V , and is a convex function of d ∈ R
n .

(A4) The mapping v → g′
x (x, v; d) is u.s.c. at each v ∈ V .

Acomparison between the above-mentioned assumptions and other related contexts
shows that the assumptions (A1) and (A2) are common in robust optimizationproblems
(see, e.g., [17,19]). Assumptions (A3) and (A4) are related to the concept of the
tangential subdifferential.

The following theorem, which is a nonsmooth version of Danskin’s theorem for
max-functions [20],makes connection between the functionsψ ′(x; d) and g′

x (x, v; d).

Theorem 1 The directional derivative ψ ′(x; d) exists, and satisfies

ψ ′(x; d) = max
v∈V (x)

g′
x (x, v; d), ∀d ∈ R

n . (4)

Proof We may suppose that d( �= 0) ∈ R
n . Fix (x, v) ∈ R

n × V and take an arbitrary
sequence ti ↓ 0 such that

ψ+(x; d) = lim
i→∞

ψ(x + ti d) − ψ(x)

ti
. (5)

Thus for each i, there exists some vi ∈ V (x + ti d) such that ψ(x + ti d) = g(x +
ti d, vi ). Due to the fact that V (x + ti d) ⊆ V and the compactness of V , one can
find a subsequence vi converges to v̄ ∈ V . Clearly for a fixed v ∈ V and for each
i, g(x + ti d, v) ≤ g(x + ti d, vi ). Then passing to the limit, it follows that g(x, v) ≤
lim supi→∞ g(x + ti d, vi ). Now by assumption (A1), we get

g(x, v) ≤ lim sup
i→∞

g(x + ti d, vi ) ≤ g(x, v̄).

This implies that v̄ ∈ V (x), and hence ψ(x) = g(x, v̄).

Further, it is clear that for each t > 0,

ψ(x + td) − ψ(x)

t
≥ g(x + td, v̄) − g(x, v̄)

t
.

Therefore passing to the limit as t ↓ 0, we get:

ψ−(x; d) ≥ g′
x (x, v̄; d). (6)

Now consider the following double sequence:

{
g(x + t j d, vi ) − g(x, vi )

t j

}
(i, j)∈N×N

. (7)
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According to (A2), we obtain

∣∣∣∣g(x + t j d, vi ) − g(x, vi )

t j

∣∣∣∣ ≤ L||d||, (8)

where L is a Lipschitz constant for g around x . Thus the sequence in (7) is bounded.
Hence by [1, Theorem 8.39], we can find a subsequence (without relabeling) such that

lim
i, j→∞

g(x + t j d, vi ) − g(x, vi )

t j
= α ∈ R.

On the other hand,

lim
i→∞ lim

j→∞
g(x + t j d, vi ) − g(x, vi )

t j
= lim

i→∞ g′
x (x, vi ; d)

≤ g′
x (x, v̄; d),

where the last inequality is due to (A4). Thus using [1, Theorem 8.39], we get

lim
i, j→∞

g(x + t j d, vi ) − g(x, vi )

t j
≤ g′

x (x, v̄; d).

Then we construct a subsequence by taking i = j = k, and get

lim
k→∞

g(x + tkd, vk) − g(x, vk)

tk
≤ g′

x (x, v̄; d).

Thus by (5), we obtain

ψ+(x; d) = lim
k→∞

ψ(x + tkd) − ψ(x)

tk

≤ lim
k→∞

g(x + tkd, vk) − g(x, vk)

tk
≤ g′

x (x, v̄; d).

Using the above inequality togetherwith (6),wegetψ ′(x; d) = g′
x (x, v̄; d).Moreover,

for each v ∈ V (x),

g′
x (x, v; d) ≤ ψ ′(x; d) = g′

x (x, v̄; d),

which implies (4) and completes the proof of theorem. ��

The next two results provide some consequences needed in what follows.
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Proposition 1 The following set

Γ := co
⋃

v∈V (x)

∂x
T g(x, v)

is closed.

Proof Consider the sequence {ξi } ⊆ Γ such that limi→∞ ξi = ξ. Using Carathé-
odory’s theorem [20] one has ξi = ∑n+1

j=1 λi jξ
′
i j ,

where ξ ′
i j ∈ ∂x

T g(x, vi j ) for some vi j ∈ Vj (x),
∑n+1

j=1 λi j = λi and λi j ≥ 0 for all
j = 1, . . . , n + 1, i ∈ N. Passing to subsequences if necessary, we can assume that
for each fixed j ∈ N, limi→∞ λi j = λ j ≥ 0,

∑n+1
j=1 λ j = 1, and also, there exists a

subsequence {vi j }i∈N ⊆ V such that limi→∞ vi j = v j ∈ V .

It is clear that (A2) implies that for each i, j ∈ N, ||ξ ′
i j || ≤ L,where L is a Lipschitz

constant of g around x . Thus for all i, j ∈ N, we may assume that limi→∞ ξ ′
i j = ξ ′

j .

Further, for each d ∈ R
n, we have 〈ξ ′

i j , d〉 ≤ g′
x (x, vi j ; d). Then passing to the limit

as i → ∞, we get 〈ξ ′
j , d〉 ≤ g′

x (x, v j ; d), hence ξ ′
j ∈ ∂x

T g(x, v j ). This implies that

ξ = ∑n+1
j=1 λ jξ

′
j ∈ Γ and completes the proof. ��

The following proposition provides some properties of the max function ψ(x).

Proposition 2 Consider the max functionψ(.) defined in (2). Then the following prop-
erties hold:

(i) ψ(.) is a tangentially convex function.
(ii) ∂Tψ(x) is a compact set for each x ∈ R

n .

Proof (i) The proof is straightforward of Theorem 1 and the tangential convexity
of g with respect to x .

(ii) According to (i) and [41, Lemma 3.1], the proof is simple.
��

The next theorem investigates the relationships between the tangential subdiffer-
entials of the functions ψ and g.

Theorem 2 Consider the max function ψ(.) defined in (2). Then the tangential subd-
ifferential ∂Tψ(x) at each x ∈ R

n is given as follows:

∂Tψ(x) = co
⋃

v∈V (x)

∂x
T g(x, v). (9)

Proof Define Γ := co ∪v∈V (x) ∂x
T g(x, v), we show that ∂Tψ(x) ⊆ Γ . Assume by

contradiction that there exists a point ξ ∈ ∂Tψ(x)\Γ . Applying Proposition 1 together
with the convex separation theorem, we get a nonzero vector d0 ∈ R

n and α ∈ R such
that

〈ξ, d0〉 > α ≥ 〈ξ ′, d0〉, ∀ξ ′ ∈ Γ .
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Moreover, by the tangential convexity of the function ψ, and using Theorem 1, we
get

max
v∈V (x)

g′
x (x, v; d0) = ψ ′(x; d0) ≥ 〈ξ, d0〉 > α ≥ 〈ξ ′, d0〉,

for all ξ ′ ∈ Γ . On the other hand, there is some v̂ ∈ V (x) such that ψ ′(x; d0) =
g′
x (x, v̂; d0). Also there exists some ξ̂ ∈ ∂ x

T g(x, v̂) such that 〈ξ̂ , d0〉 = g′
x (x, v̂; d0).

Now putting all above together, we get

g′
x (x, v̂; d0) > α ≥ 〈ξ̂ , d0〉 = g′

x (x, v̂; d0),

which is a contradiction.
Conversely, let ξ ∈ Γ . Then ξ = ∑n+1

j=1 λ jξ j , ξ j ∈ ∂x
T g(x, v j ) for some v j ∈

V (x),
∑n+1

j=1 λ j = 1 and λ j ≥ 0 for all j = 1, . . . , n + 1. For fixed d ∈ R
n one has

〈ξ, d〉 ≤
n+1∑
j=1

λ j g
′
x (x, v j ; d) ≤ max

v∈V (x)
g′
x (x, v; d) = ψ ′(x; d),

which implies that ξ ∈ ∂Tψ(x), and completes the proof. ��
Corollary 1 Consider the functions fi : R

n → R ∪ {+∞}, i = 1, . . . , r . Define
f (x) := max1≤i≤r fi (x) for each x ∈ R

n . Suppose that each fi is tangentially
convex and locally Lipschitz at x̄ ∈ R

n . Then f is tangentially convex at x̄ and we
have

∂T f (x̄) = co
⋃

i∈I (x̄)
∂T fi (x̄), f ′(x̄; d) = max

i∈I (x̄) f
′
i (x̄; d),

where I (x̄) denotes the set of indices i such that fi (x̄) = f (x̄).

Remark 1 In this work, we derive necessary and sufficient optimality results for robust
optimization problemswith uncertainly data based on the concept of tangential subdif-
ferential. As it can be seen, we intensively use the nonsmooth calculus of themaximum
functions of type (2) for our analysis. To this end, we prove an exact formula in (9) for
the tangential subdifferential of the function ψ . A closer look reveals that the com-
pactness has a critical role in the proof of the above formula. It is worth noting that
some of the recent results in variational analysis offer various estimate subdifferential
formulas for supremum functions without any compactness assumptions (see, e.g.,
[42–45]). Although this assumption seems to be restrictive for many applications, we
impose the compactness of V for the following two reasons:

1. To guarantee that the maximum function ψ is a tangentially convex function.
2. To state an exact formula for the tangential subdifferential of ψ based on the

tangential subdifferentials ∂x
T g(x, v), in order to obtain our sufficient optimality

results.
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710 F. Mashkoorzadeh et al.

In this regards, using some relatively strong concepts like compactness of the uncertain
set V can be justifiable.

4 Constraint qualifications

In this section, we focus mainly on some nonsmooth constraint qualifications in the
face of data uncertainty based on the tangential subdifferential. Let us consider the
following robust constraint system:

S := {x ∈ R
n | g j (x, v j ) ≤ 0, ∀v j ∈ Vj , j = 1, . . . ,m},

where g j : R
n×Vj → R∪{∞}, j = 1, . . . ,m, and v j ∈ Vj is an uncertain parameter

for some nonempty compact subset Vj ⊆ R
q j , j = 1, . . . ,m, q j ∈ N := {1, 2, ...}.

From now on, we suppose that assumptions (A1) − (A4) are satisfied for g j , j =
1, . . . ,m. Let the functions ψ j : R

n → R ∪ {∞} be defined by

ψ j (x) := max
v j∈Vj

g j (x, v j ), j = 1, . . . ,m. (10)

Then it is clear that

S = {x ∈ R
n | ψ j (x) ≤ 0, j = 1, . . . ,m}.

The index set of the active constraints at x̄ ∈ S is denoted by J (x̄), and given by

J (x̄) := { j ∈ {1, . . . ,m} | ψ j (x̄) = 0}.

Moreover, for each j ∈ J (x̄), we define

Vj (x̄) := {v j ∈ Vj | g j (x̄, v j ) = ψ j (x̄)}.

As usual in classical optimization, we require to use the following linearized cones
at x̄ :

G0(x̄) := {d ∈ R
n | ψ ′

j (x̄; d) < 0, ∀ j ∈ J (x̄)},
G ′(x̄) := {d ∈ R

n | ψ ′
j (x̄; d) ≤ 0, ∀ j ∈ J (x̄)}.

It is easy to show that

clG0(x̄) ⊆ cl D(x̄; S) ⊆ cl A(x̄; S) ⊆ T (x̄; S) ⊆ G ′(x̄), (11)

while the converse inclusions do not hold in general (see [41]).
We now pay our main attention to define new constraint qualifications in terms of

the tangential subdifferential. We say that the generalized
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• Slater constraint qualification (SCQ) is satisfied at x̄ if there exists x0 ∈ S such
that ψ j (x0) < 0 for j = 1, . . . ,m.

• Cottle constraint qualification (CCQ) holds at x̄ if G ′(x̄) ⊆ clG0(x̄).
• Zangwill constraint qualification (ZCQ) holds at x̄ if G ′(x̄) ⊆ cl D(x̄; S).

• Kuhn–Tucker constraint qualification (KTCQ) is satisfied at x̄ if G ′(x̄) ⊆
cl A(x̄; S).

• Abadie constraint qualification (ACQ) holds at x̄ if G ′(x̄) ⊆ T (x̄; S).

• Robinson constraint qualification (RCQ) is satisfied at x̄ if for some nonzero vector
d ∈ R

n one has for each j ∈ J (x̄), ψ ′
j (x̄; d) < 0.

• Mangasarian-Fromovitz constraint qualification (MFCQ) holds at x̄ if

0 ∈
∑
j∈J (x̄)

λ j∂Tψ j (x̄), λ j ≥ 0, ∀ j ∈ J (x̄),

then

λ j = 0, ∀ j ∈ J (x̄).

Obviously, all the above constraint qualifications reduce to their counterparts defined
in [41].

The next proposition provides the relationships between the constraint qualifica-
tions defined above.

Proposition 3 The following assertions are satisfied.

(i) (RCQ) is equivalent to G0(x̄) �= ∅.

(ii) (CCQ) is equivalent to (RCQ).
(iii) (RCQ) is equivalent to (MFCQ).
(iv) (RCQ) implies (ZCQ).
(v) (SCQ) implies (CCQ) provided that for each j ∈ J (x̄), ψ j is pseudoconvex at

x̄ .

Proof The proof is straightforward and we refer the reader to [41, Section 3]. ��

The following diagram summarizes the results of Proposition 3:

(SCQ)
Pseudoconvexity of active constraints

(CCQ) (ZCQ) (KTCQ) (ACQ)

(RCQ) (MFCQ)

We conclude this section with some examples that illustrate the relationships
between the above constraint qualifications.

The first example presents a situation that all the constraint qualifications are satis-
fied.
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Example 1 Consider the set S given by

S := {x = (x1, x2) ∈ R
2| g j (x, v j ) ≤ 0, ∀v j = (v j1, v j2) ∈ Vj , j = 1, 2},

where g1(x, v1) := −x1+2v11v12|x2|, g2(x, v2) := −(v21+1)2x21 − (v22 +1)(x2 −
1)2 + 1, V1 := {v1 = (v11, v12) ∈ R

2 | v211 + v212 ≤ 1, v11v12 ≥ 0} and V2 :=
[0, 1] × [0, 1].

It is clear that V1 is a nonconvex set while V2 is convex. Clearly,

S = {x ∈ R
2 | ψ j (x) ≤ 0, j = 1, 2},

where

ψ1(x) := max
v1∈V1

g1(x, v1) =
{−x1 + |x2|, x2 �= 0

−x1, x2 = 0,

and

ψ2(x) := max
v2∈V2

g2(x, v2) =

⎧⎪⎪⎨
⎪⎪⎩

1, x1 = 0, x2 = 1
−(x2 − 1)2 + 1, x1 = 0, x2 �= 1
−x21 + 1, x1 �= 0, x2 = 1
−x21 − (x2 − 1)2 + 1, x1 �= 0, x2 �= 1.

Moreover,

V1(x) =
{

{( −1√
2
, −1√

2
), ( 1√

2
, 1√

2
)}, x2 �= 0

V1, x2 = 0,

and

V2(x) = V21(x) × V22(x),

where

V21(x) =
{ [0, 1], x1 = 0

{0}, x1 �= 0,
V22(x) =

{ [0, 1], x2 = 1
{0}, x2 �= 1.

It is easily seen that g1 and g2 satisfy assumptions (A1) − (A4) at x̄ = (0, 0) ∈ S.

Further, it follows immediately that (SCQ) holds at x̄ . A simple calculation shows
that ∂Tψ1(x̄) = {−1} × [−1, 1], and ∂Tψ2(x̄) = {(0, 2)} for all d = (d1, d2) ∈
R
2, ψ ′

1(x̄; d) = −d1 + |d2| and ψ ′
2(x̄; d) = 2d2. Taking (d1, d2) = (2,−1), we get

G0(x̄) = {(d1, d2) ∈ R
2 | − d1 + |d2| < 0, d2 < 0} �= ∅. Therefore,

clG0(x̄) = D(x̄; S) = A(x̄; S) = T (x̄; S) = G ′(x̄)
= {(d1, d2) ∈ R

2 | − d1 + |d2| ≤ 0, d2 ≤ 0}.
Hence (CCQ), (MFCQ), (RCQ), (ZCQ), (KTCQ) and (ACQ) hold at x̄ .
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Robustness in Nonsmooth Nonconvex Optimization Problems 713

The following examples illustrate that the above implications do not hold in the
opposite directions in general. In the second example, we show that (ZCQ) does
not generally imply (CCQ).

Example 2 Consider the following constrained system:

S := {x = (x1, x2) ∈ R
2| g j (x, v j ) ≤ 0, ∀v j = (v j1, v j2) ∈ Vj , j = 1, 2, 3},

where g1(x, v1) := −x1+2v11v12|x2|, g2(x, v2) := −(v21+1)2x21 − (v22 +1)(x2 −
1)2+1, g3(x, v3) := (v31−1)2x21 +(v32−1)(x2+1)2+1, V1 := {v1 = (v11, v12) ∈
R
2 | v211 + v212 ≤ 1, v11 ≤ 0 or v12 ≤ 0}, V2 := [0, 1] × [0, 1] and V3 := [−1, 0] ×

[−1, 0].
Obviously, V1 is nonconvex and V2 and V3 are convex sets. Further, x̄ = (0, 0) ∈ S

and g1, g2 and g3 satisfy assumptions (A1) − (A4). Clearly,

S = {x ∈ R
2 | ψ j (x) ≤ 0, j = 1, 2, 3},

where

ψ1(x) := max
v1∈V1

g1(x, v1) =
{−x1 + |x2|, x2 �= 0

−x1, x2 = 0,

ψ2(x) := max
v2∈V2

g2(x, v2) =

⎧⎪⎪⎨
⎪⎪⎩

1, x1 = 0, x2 = 1
−(x2 − 1)2 + 1, x1 = 0, x2 �= 1
−x21 + 1, x1 �= 0, x2 = 1
−x21 − (x2 − 1)2 + 1, x1 �= 0, x2 �= 1,

and

ψ3(x) := max
v3∈V3

g3(x, v3) =

⎧⎪⎪⎨
⎪⎪⎩

1, x1 = 0, x2 = −1
−(x2 + 1)2 + 1, x1 = 0, x2 �= −1
−x21 + 1, x1 �= 0, x2 = −1
−x21 − (x2 + 1)2 + 1, x1 �= 0, x2 �= −1.

Moreover,

V1(x) =
{

{( −1√
2
, −1√

2
)}, x2 �= 0

V1, x2 = 0,

V2(x) = V21(x) × V22(x),

where

V21(x) =
{ [0, 1], x1 = 0

{0}, x1 �= 0,
V22(x) =

{ [0, 1], x2 = 1
{0}, x2 �= 1,

and

V3(x) = V31(x) × V32(x),
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where

V31(x) =
{ [−1, 0], x1 = 0

{0}, x1 �= 0,
V32(x) =

{ [−1, 0], x2 = −1
{0}, x2 �= −1.

An easy computation shows that ∂Tψ1(x̄) = {−1}×[−1, 1], ∂Tψ2(x̄) = {(0, 2)} and
∂Tψ3(x̄) = {(0,−2)}. It is easy to observe that for all d = (d1, d2) ∈ R

2, ψ ′
1(x̄; d) =

−d1+|d2|, ψ ′
2(x̄; d) = 2d2 andψ ′

3(x̄; d) = −2d2.Thus (MFCQ), (RCQ) and (CCQ)
are not satisfied at x̄ . While, one has clearly that D(x̄; S) = A(x̄; S) = T (x̄; S) =
G ′(x̄) = R+ × {0} which shows that (ZCQ), (KTCQ) and (ACQ) hold at x̄ .

Finally, the following example illustrates (KTCQ) does not imply (ZCQ) in general.

Example 3 Consider the set S given by

S := {x = (x1, x2) ∈ R
2| g j (x, v j ) ≤ 0, ∀v j = (v j1, v j2) ∈ Vj , j = 1, 2},

where g1(x, v1) := 2|v11v12x1|3 − x2, g2(x, v2) := −(v21 + 1)x21 + v22|x2|, V1 :=
{v1 = (v11, v12) ∈ R

2 | v211 + v212 ≤ 1, v11v12 ≥ 0} and V2 := [0, 1] × [0, 1]. It is
clear that V1 is nonconvex set and V2 is convex. Further, g1 and g2 satisfy assumptions
(A1) − (A4), and x̄ = (0, 0) is a feasible point. We observe that

S = {x ∈ R
2 | ψ j (x) ≤ 0, j = 1, 2},

where

ψ1(x) := max
v1∈V1

g1(x, v1) =
{ |x1|3 − x2, x1 �= 0

−x2, x1 = 0,

ψ2(x) := max
v2∈V2

g2(x, v2) =

⎧⎪⎪⎨
⎪⎪⎩

0, x1 = 0, x2 = 0
|x2|, x1 = 0, x2 �= 0
−x21 , x1 �= 0, x2 = 0
−x21 + |x2|, x1 �= 0, x2 �= 0.

Furthermore,

V1(x) =
{{( −1√

2
, −1√

2

)
,
(

1√
2
, 1√

2

)}
, x1 �= 0

V1, x1 = 0,

V2(x) = V21(x) × V22(x),

where

V21(x) =
{ [0, 1], x1 = 0

{0}, x1 �= 0,
V22(x) =

{ [0, 1], x2 = 0
{1}, x2 �= 0.

For all d = (d1, d2) ∈ R
2, we have ψ ′

1(x̄; d) = −d2 and ψ ′
2(x̄; d) = |d2|. Thus

∂Tψ1(x̄) = {(0,−1)} and ∂Tψ2(x̄) = {0} × [−1, 1]. Clearly, (MFCQ) does not hold
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at x̄ . Moreover, A(x̄; S) = T (x̄; S) = G ′(x̄) = R × {0}, which implies that (KTCQ)
and (ACQ) are satisfied at x̄ . On the other hand, D(x̄; S) = {(0, 0)}, thus (ZCQ) does
not hold at x̄ .

5 Optimality conditions for robust optimization problem

Westart this section by introducing the concept of robust solution. Thenwe try to derive
new necessary and sufficient optimality results for a robust optimization problem by
using some suitable constraint qualifications defined in Sect. 4. For this purpose, we
intend to study the following optimization programming problem in the face of data
uncertainty in the constraints:

min f (x) (U P1)

s.t. g j (x, v j ) ≤ 0, j = 1, . . . ,m,

where v j ∈ Vj , j = 1, . . . ,m are uncertain parameters for some nonempty compact
subset Vj ⊆ R

q j . Moreover, f : R
n → R ∪ {+∞} is a tangentially convex function

at a feasible point x̄, and each g j : R
n × Vj → R ∪ {+∞} satisfies assumptions

(A1) − (A4). The problem (U P1) is usually associated with its robust counterpart as
follows:

min f (x) (RP1)

s.t. g j (x, v j ) ≤ 0, ∀v j ∈ Vj , j = 1, . . . ,m,

where the uncertain constraints are enforced for every possible value of the parameters
within their prescribed uncertainty sets Vj , j = 1, . . . ,m. The problem (RP1) can
be considered as the robust case (the worst-case) of (U P1).

Now we consider S = {x ∈ R
n | g j (x, v j ) ≤ 0, ∀v j ∈ Vj , j = 1, . . . ,m} as the

feasible set of (RP1) and make the following definitions.

Definition 4 Suppose that x̄ is a feasible point of (RP1). We say that x̄ is

(i) a robust local minimizer of (RP1) if there exists a neighborhood N (x̄) of x̄ such
that for all x ∈ S ∩ N (x̄), one has f (x) ≥ f (x̄).

(ii) a robust B-stationary (Bouligand-stationarity) point of (RP1) if for each d ∈
T (x̄; S), one has f ′(x̄; d) ≥ 0.

The first main result of this section, provides necessary and sufficient optimality
conditions for (RP1).

Theorem 3 Let x̄ be a feasible point of (RP1). Then the following assertions hold:

(i) If x̄ is a robust local optimal point and f is Lipschitz near x̄, then x̄ is robust
B-stationary.

(ii) If x̄ is robust B-stationary, f is Lipschitz near x̄ and f ′(x̄; d) > 0 for all
d ∈ T (x̄; S)\{0}, then x̄ is a robust local optimal point.
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(iii) If (ACQ) holds at x̄, then x̄ is robust B-stationary if and only if

0 ∈ ∂T f (x̄) + cl
( ⋃

v jk∈Vj (x̄)

λk j≥0, j∈J (x̄)

l∈N

l∑
k=1

λk j∂
x
T g j (x̄, v jk)

)
. (12)

(iv) If (CCQ) holds at x̄, then x̄ is robust B-stationary if and only if

0 ∈ ∂T f (x̄) +
l∑

k=1

λk j∂
x
T g j (x̄, v jk), (13)

where l ∈ N, λk j ≥ 0, and v jk ∈ Vj (x̄) for all k = 1, . . . , l, and j ∈ J (x̄).

Proof (i) , (ii) For the proof of parts (i) and (ii), we refer the reader to [41, Theorem
4.1(i,ii)].

(iii) It is clear that the robust B-stationarity of x̄ implies the B-stationarity of x̄ as a
feasible point of the following tangentially convex problem:

min f (x) (P1)

s.t. ψ j (x) ≤ 0, j = 1, . . . ,m,

where ψ j (x) is the same as defined in (10).
It is easy to see that all the assumptions of [41, Theorem 4.1(iii)] are satisfied.
Therefore there exists some positive real number λ̂ j , j ∈ J (x̄) such that

0 ∈ ∂T f (x̄) + cl (
⋃

λ̂ j≥0

∑
j∈J (x̄)

λ̂ j∂Tψ j (x̄)). (14)

Now according to Theorem 2, we can rewrite (14) as follows:

0 ∈ ∂T f (x̄) + cl (
⋃

λ̂ j≥0

∑
j∈J (x̄)

λ̂ jco ∪v j∈Vj (x̄) ∂x
T g j (x̄, v j )). (15)

Then by using an argument similar to Proposition 1, we obtain (12).
(iv) We proceed similarly to (iii) and by [41, Theorem 4.1(iv)], we get the result.

��
In the following, we investigate the latter results in specific conditions.

Proposition 4 Consider the problem (RP1). Suppose also that for each j ∈ J (x̄), Vj

is a convex set. Moreover, assume that for each x ∈ S, g j (x, .) is concave on Vj , then

(i) Vj (x̄) is a convex and compact set.
(ii) ∂Tψ j (x̄) = {ξ j | ∃v j ∈ Vj (x̄) such that ξ j ∈ ∂x

T g j (x̄, v j )}.
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Proof (i) Let v j , w j ∈ Vj (x̄), then

ψ j (x̄) ≥ g j (x̄, λv j + (1 − λ)w j ) ≥ λg j (x̄, v j ) + (1 − λ)g j (x̄, w j ) = ψ j (x̄),

for each λ ∈ [0, 1]. Thus λv j + (1 − λ)w j ∈ Vj (x̄) and Vj (x̄) is convex.
To prove the compactness of Vj (x̄), it is enough to show that Vj (x̄) is a closed
set. To this end, consider a sequence vkj ∈ Vj (x̄) converging to v j . This implies

that ψ j (x̄) = g j (x̄, vkj ). Now by assumption (A1), one can get

ψ j (x̄) = lim sup
k→∞

g j (x̄, v
k
j ) ≤ g j (x̄, v j ) ≤ ψ j (x̄),

and thusψ j (x̄) = g j (x̄, v j ).Therefore,v j ∈ Vj (x̄) and theproof of (i) is complete.
(ii) Define Λ := {ξ j | ∃v j ∈ Vj (x̄) such that ξ j ∈ ∂x

T g j (x̄, v j )} and assume that
ξ j ∈ Λ.Thus one can find some v j ∈ Vj (x̄) such that ξ j ∈ ∂x

T g j (x̄, v j ).Obviously
it follows that ξ j ∈ co ∪v j∈Vj (x̄) ∂x

T g j (x̄, v j ) = ∂Tψ j (x̄).
Conversely, suppose that ξ ∈ ∂Tψ j (x̄). Then according to Theorem 2, we can
assume that ξ = ∑k

i=1 λiξi , where ξi ∈ ∂x
T g j (x̄, vi ) for some vi ∈ Vj (x̄), λi ≥ 0

for all i = 1, . . . , k and
∑k

i=1 λi = 1. Using an argument similar to the proof of
part (i), we can get by the concavity of g j (x, .) on Vj that v = ∑k

i=1 λivi ∈ Vj (x̄).
On the other hand, for a fixed d ∈ R

n and each t > 0 one has

∑k
i=1 λi (g j (x̄ + td, vi ) − g j (x̄, vi ))

t
=

∑k
i=1 λi (g j (x̄ + td, vi ) − ψ j (x̄))

t

≤ g j (x̄ + td,
∑k

i=1 λivi ) − ψ j (x̄)

t

= g j (x̄ + td, v) − g j (x̄, v)

t
.

Thus we arrive at

〈ξ, d〉 ≤
k∑

i=1

λi g
′
j x (x̄, vi ; d) ≤ g′

j x (x̄, v; d),

which implies that ξ ∈ ∂x
T g j (x̄, v) and completes the proof of theorem.

��
The following corollary is a direct consequence of Theorem 3 and Proposition 4.

Corollary 2 Under the assumptions of Proposition 4, the following assertions hold:

(i) If (ACQ) holds at x̄, then x̄ is robust B-stationary if and only if

0 ∈ ∂T f (x̄) + cl (
⋃

λ j≥0

∑
j∈J (x̄)

v j∈Vj (x̄)

λ j∂
x
T g j (x̄, v j )). (16)
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(ii) If (CCQ) holds at x̄, then x̄ is robust B-stationary if and only if there exist
v j ∈ Vj (x̄), λ j ≥ 0 such that

0 ∈ ∂T f (x̄) +
∑
j∈J (x̄)

λ j∂
x
T g j (x̄, v j ). (17)

In the last part of this section,we extend the previous results for a robust optimization
problem in the face of data uncertainty both in the objective and constraint functions.
To this end, we consider the following problem:

min f (x, u) (U P2)

s.t. g j (x, v j ) ≤ 0, j = 1, . . . ,m,

whereu ∈ U and v j ∈ Vj , j = 1, . . . ,m are uncertain parameters for somenonempty
compact subsets U ⊆ R

p, and Vj ⊆ R
q j , respectively. Moreover, f : R

n × U →
R ∪ {+∞}, and g j : R

n × Vj → R ∪ {+∞}, j = 1, . . . ,m are functions that
satisfy assumptions (A1) − (A4). The robust optimization problem associated with
the uncertain program (U P2) is

min max
u∈U f (x, u) (RP2)

s.t. g j (x, v j ) ≤ 0, ∀v j ∈ Vj , j = 1, . . . ,m.

We suppose that S := {x ∈ R
n | g j (x, v j ) ≤ 0, ∀v j ∈ Vj , j = 1, . . . ,m} is the

feasible set of (RP2). We also consider the tangentially convex function φ : R
n →

R ∪ {+∞} given by φ(x) := maxu∈U f (x, u), and define U (x̄) := {u ∈ U | φ(x̄) =
f (x̄, u)}.
To prove the last main result of this section, we require the following optimality

notions for (RP2.)

Definition 5 Suppose that x̄ is a feasible point of (RP2). we say that x̄ is

(i) a robust local optimal solution of (RP2) if there exists a neighborhood N (x̄) of
x̄ such that for all x ∈ S ∩ N (x̄), one has

φ(x) ≥ φ(x̄).

(ii) a robust B-stationary solution of (RP2) if for each d ∈ T (x̄; S), one has

φ′(x̄; d) ≥ 0.

The following theorem presents the relationship between the above optimality
notions.

Theorem 4 Let x̄ be a feasible point of problem (RP2). If x̄ is a robust local optimal
point, then x̄ is robust B-stationary.

The converse is true provided that for all d ∈ T (x̄; S)\{0}, one has φ′(x̄; d) > 0.
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Proof The proof is simple and we left it to the reader. ��
The last result of this section, establishes necessary and sufficient optimality conditions
for (RP2).

Theorem 5 Consider the optimization problem (RP2).
Then the following assertions hold true:

(i) If (ACQ) holds at x̄ ∈ S, then x̄ is a robust B-stationary solution of (RP2) if and
only if there is some s ∈ N, ui ∈ U (x̄) and ηi ≥ 0 for all i ∈ {1, . . . , s} with∑s

i=1 ηi = 1 such that

0 ∈
s∑

i=1

ηi∂
x
T f (x̄, ui ) + cl

( ⋃
v jk∈Vj (x̄)

λk j≥0, j∈J (x̄)

l∈N

l∑
k=1

λk j∂
x
T g j (x̄, v jk)). (18)

(ii) If (CCQ) holds at x̄ ∈ S, then x̄ is a robust B-stationary solution of (RP2) if and
only if

0 ∈
s∑

i=1

ηi∂
x
T f (x̄, ui ) +

l∑
k=1

λk j∂
x
T g j (x̄, v jk), (19)

where s, l ∈ N, ui ∈ U (x̄) for all i = 1, . . . , s, λk j ≥ 0, and v jk ∈ Vj (x̄) for
all k = 1, . . . , l, and j ∈ J (x̄).

Proof (i) It is clear that the robust B-stationarity of x̄ for (RP2) implies the
B-stationarity of x̄ as a feasible point of the following tangentially convex opti-
mization problem:

min φ(x) (P2)

s.t. ψ j (x) ≤ 0, j = 1, . . . ,m.

Obviously, the Abadie constraint qualification defined in [41] holds at x̄ . Thus by
using [41, Theorem 4.1(ii)],

0 ∈ ∂Tφ(x̄) + cl (
⋃

λ̂ j≥0

∑
j∈J (x̄)

λ̂ j∂Tψ j (x̄)).

Now using Theorem 2 we get

0 ∈ co
⋃

u∈U (x̄)

∂x
T f (x̄, u) + cl (

⋃
λ̂ j≥0

∑
j∈J (x̄)

λ̂ jco
⋃

v j∈Vj (x̄)

∂x
T g j (x̄, v j )).

Then by an argument similar to that of Proposition 1, we arrive at the inclusion
in (18).
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(ii) Using an argument similar to Theorems 3 together with part (i), the proof is
immediate.

��
We conclude this section with the following example and we show that the closures

in inclusions (12) and (18) cannot be omitted.

Example 4 Consider the following robust optimization problem:

min f (x, u) = (cos u1u2)x
2
2 − esin x1, ∀u = (u1, u2) ∈ U

s.t. g(x, v) = ||(v1, v2)||||(x1, x2)|| − x2 ≤ 0, ∀v = (v1, v2) ∈ V
x = (x1, x2) ∈ R

2,

where U := {u = (u1, u2) ∈ R
2 | u1 ∈ [0, π

2 ], u2 ∈ [0, π
2 ]} and V := {v =

(v1, v2) ∈ R
2 | v21 + v22 ≤ 1, v1v2 ≥ 0}. It is not difficult to check that the functions

f , g satisfy assumptions (A1)− (A4), and x̄ = (0, 0) ∈ S is a robust local minimizer
of the problem.

It is clear that the feasible set S can be presented as

S = {x ∈ R
2 | ψ(x) ≤ 0}.

Obviously, S is a nonconvex set,

ψ(x) := max
v∈V g(x, v) =

{
0, (x1, x2) = 0
||(x1, x2)|| − x2, (x1, x2) �= 0,

and

V (x) = {(v1, v2) ∈ V | v21 + v22 = 1, v1v2 ≥ 0}.

Thus one has S = {0} × R+. Further,

φ(x) := max
u∈U f (x, u) =

{
x22 − esin x1 , x2 �= 0
−esin x1 , x2 = 0,

and

U (x) =
{ {(u1, u2) ∈ R

2 | u1u2 = 0}, x2 �= 0
U , x2 = 0.

A simple calculation gives us ψ ′(x̄; d) = ||(d1, d2)|| − d2 and G ′(x̄) = T (x̄; S) = S.

Therefore, (ACQ) holds at x̄ . It is also easy to see that ∂Tφ(x̄) = {(1, 0)}, ∂Tψ(x̄) =
B + (0,−1) = {x | x21 + (x2 + 1)2 ≤ 1}, and

⋃
λ≥0

λ∂Tψ(x̄) = {x | x2 < 0},
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which implies immediately that

0 ∈ ∂Tφ(x̄) + cl (
⋃
λ≥0

λ∂Tψ(x̄)).

Further, for each d ∈ T (x̄; S), we have φ′(x̄; d) = d1 = 0, which means that x̄ is a
robust B-stationary point. However, it is clear that G0(x̄) = ∅ and (CCQ) does not
hold at x̄, and it is worth noting that 0 /∈ ∂Tφ(x̄) + ⋃

λ≥0 λ∂Tψ(x̄). Thus the closure
in inclusion (18) cannot be omitted.

On the other hand a simple calculation gives us

f ′
x (x̄, u; d) = −d1, ∀u ∈ U (x̄) = U , ∂ x

T f (x̄, u) = {(−1, 0)},

and

g′
x (x̄, v; d) = ||(v1, v2)||||(d1, d2)|| − d2, ∀v ∈ V (x̄) = V ,

∂x
T g(x̄, v) = ||(v1, v2)||B + {(0,−1)}.

Taking η1 = 1, η2 = η3 = 0, with u(1) = (1, 0), u(2) = (0, 0) and u(3) = (0, 1)
together with λ1 = 1, λ2 = λ3 = 0, v(1) = (1, 0), v(2) = (0, 1

2 ) and v(3) = (0, 0),
we get

0 ∈
3∑

i=1

ηi∂
x
T f (x̄, u(i)) + cl

( ⋃
λk≥0

3∑
k=1

λk∂
x
T g(x̄, v

(k))
)
.

Thus all assumptions of Theorem 5 are satisfied. It is worth mentioning that V (x̄) is
not convex, thus part (i) of Proposition 4 is not satisfied. In other words, the concavity
of g with respect to v is necessary for convexity of V (x̄). Moreover, taking v ∈ V (x̄)
with ||v|| < 1 implies that

∂Tψ(x̄) �= {ξ | ∃v ∈ V (x̄) such that ξ ∈ ∂x
T g(x̄, v)}.

This shows that part (ii) of Proposition 4 does not hold in general.

6 Application tomultiobjective problems

The final section of this paper is devoted to the optimality conditions for a special class
of optimization problems known as robust multiobjective programming problems.

For this purpose, we consider the following robust multiobjective programming
problem:

min ( f1(x), . . . , fr (x)) (RMOP1)

s.t. g j (x, v j ) ≤ 0, ∀v j ∈ Vj , ∀ j = 1, . . . ,m,
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where fi : R
n → R ∪ {+∞}, i = 1, . . . , r , are tangentially convex functions at a

feasible point x̄ . Further, the assumptions (A1) − (A4) are satisfied and S is the same
as defined in the previous section.

To proceed, we recall the following optimality notions for (RMOP1).

Definition 6 Suppose that x̄ is a feasible point of (RMOP1). We say that x̄ is

(i) a weakly robust efficient solution of (RMOP1) if for all x ∈ S, there exists some
i = 1, . . . , r such that fi (x) ≥ fi (x̄). We call x̄ a local weakly robust efficient
solution if there exists a neighborhood N (x̄) such that for each x ∈ N (x̄)∩ S, x̄
is a weakly robust efficient solution.

(ii) a weakly robust efficient B-stationary solution of (RMOP1) if for every d ∈
T (x̄; S), there exists some i = 1, . . . , r such that f ′

i (x̄; d) ≥ 0.

It is easy to check that theweakly robust efficiency of x̄ as a feasible point of (RMOP1)
is equivalent to the weakly efficiency of x̄ as a feasible point of the following problem:

min ( f1(x), . . . , fr (x)) (MOP1)

s.t. ψ j (x) ≤ 0, ∀ j = 1, . . . ,m,

where ψ j : R
n → R ∪ {+∞}, j = 1, . . . ,m is a function that defined in (RP1).

The next theorem provides necessary and sufficient optimality conditions for
(RMOP1).

Theorem 6 Let x̄ be a feasible point of (RMOP1). Suppose that fi , i = 1, . . . , r , are
locally Lipschitz at x̄ .

Then the following statements are true:

(i) If (ACQ) holds at x̄, then x̄ is a weakly robust efficient B-stationary solution of
(RMOP1) if and only if there exist some ηi ≥ 0, i = 1, . . . , r with

∑r
i=1 ηi = 1

such that

0 ∈
r∑

i=1

ηi∂T fi (x̄) + cl
( ⋃

v jk∈Vj (x̄)

λk j≥0, j∈J (x̄)

l∈N

l∑
k=1

λk j∂
x
T g j (x̄, v jk)). (20)

(ii) If (CCQ) holds at x̄, then x̄ is a weakly robust efficient B-stationary solution of
(RMOP1) if and only if there exist some ηi ≥ 0, i = 1, . . . , r ,with

∑r
i=1 ηi = 1

such that

0 ∈
r∑

i=1

ηi∂
x
T fi (x̄) +

l∑
k=1

λk j∂
x
T g j (x̄, v jk), (21)

where l ∈ N, λk j ≥ 0 and v jk ∈ Vj (x̄) for all k = 1, . . . , l, and j ∈ J (x̄).
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Proof (i) It is not difficult to show that the weakly robust efficient B-stationarity
of x̄ is equivalent to the B-stationarity of x̄ as a feasible point of the following
optimization problem:

min θ(x) := max{ fi (x) − fi (x̄), i = 1, . . . , r}
s.t. ψ j (x) ≤ 0 ∀ j = 1, . . . ,m. (Pθ )

Obviously, (Pθ ) is a tangentially convex problem and all the assumptions of The-
orem 3 (iii) are satisfied. Thus

0 ∈ ∂T θ(x̄) + cl
( ⋃

v jk∈Vj (x̄)

λk j≥0, j∈J (x̄)

l∈N

l∑
k=1

λk j∂
x
T g j (x̄, v jk)). (22)

Then we observe that

∂T θ(x̄) = co
r⋃

i=1

∂T fi (x̄).

Hence one can find some ηi ≥ 0 with
∑r

i=1 ηi = 1 such that (21) is satisfied.
(ii) We proceed similarly to (i) and by Theorem 5 (ii), we get the result.

��
In the following, we consider a more general case of robust multiobjective pro-

gramming problem in the face of uncertainty both in the objective and the constraint
functions as follows:

min ( f1(x, u1), . . . , fr (x, ur )) (MOP2)

s.t. g j (x, v j ) ≤ 0, j = 1, . . . ,m,

where fi : R
n × Ui → R ∪ {+∞}, i = 1, . . . , r , and g j : R

n × Vj → R ∪
{+∞}, j = 1, . . . ,m are given functions. Furthermore, ui ∈ Ui , i = 1, . . . , r and
v j ∈ Vj , j = 1, . . . ,m are uncertain parameters for nonempty compact subsets of
R

pi , pi ∈ N and R
q j , q j ∈ N, respectively. We also suppose that the assumptions

(A1) − (A4) are satisfied for all the functions fi , i = 1, . . . , r and g j , j = 1, . . . ,m.

The robust optimization problem associated with the uncertain program (MOP2)
is as follows

min (max
u1∈U1

f1(x, u1), . . . , max
ur∈Ur

fr (x, ur )) (RMOP2)

s.t. g j (x, v j ) ≤ 0, ∀v j ∈ Vj , j = 1, . . . ,m.
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For each i = 1, . . . , r , we define the function φi : R
n → R ∪ {+∞} by φi (x) :=

maxui∈Ui { fi (x, ui )} and the set Ui (x̄) := {ui ∈ Ui | φi (x̄) = fi (x̄, ui )}.
To proceed, we require to define the following optimality concepts for (RMOP2).

Definition 7 Suppose that x̄ is a feasible point of (RMOP2). We say that x̄ is

(i) a weakly robust efficient solution of (RMOP2) if for all x ∈ S, there exists
some i = 1, . . . , r such that maxui∈Ui fi (x, ui ) ≥ maxui∈Ui fi (x̄, ui ). We call
x̄ a local weakly robust efficient solution if there exists a neighborhood N (x̄)
such that for each x ∈ N (x̄) ∩ S, x̄ is a weakly robust efficient solution.

(ii) a weakly robust efficient B-stationary solution of (RMOP2) if for every d ∈
T (x̄; S), there exists some i = 1, . . . , r such that maxui∈Ui (x̄) f ′

i (x̄, ui ) ≥ 0.

It is clear that the weakly robust efficiency of x̄ is equivalent to the weakly efficiency
of x̄ as a feasible point of the following multiobjective tangentially convex problem:

min (φ1(x), . . . , φr (x))

s.t. ψ j (x) ≤ 0, ∀ j = 1, . . . ,m.

The last result of this paper presents necessary and sufficient optimality conditions
for (RMOP2).

Theorem 7 Let x̄ be a feasible point of (RMOP2). The following assertions hold:

(i) If (ACQ) holds at x̄, then x̄ is a weakly robust efficient B-stationary solution of
(RMOP2) if and only if there is some ui ∈ Ui (x̄), i = 1, . . . , r , ηi ≥ 0 with∑r

i=1 ηi = 1 such that

0 ∈
r∑

i=1

ηi {co ∪ui∈Ui (x̄) ∂x
T fi (x̄, ui )} + cl

( ⋃
v jk∈Vj (x̄)

λk j≥0, j∈J (x̄)

l∈N

l∑
k=1

λk j∂
x
T g j (x̄, v jk)).

(23)

(ii) If (CCQ) holds at x̄, then x̄ is a weakly robust efficient B-stationary solution of
(RMOP1) if and only if there is some ui ∈ Ui (x̄), i = 1, . . . , r , ηi ≥ 0 with∑r

i=1 ηi = 1 such that

0 ∈
r∑

i=1

ηi {co ∪ui∈Ui (x̄) ∂x
T fi (x̄, ui )} +

l∑
k=1

λk j∂
x
T g j (x̄, v jk), (24)

where l ∈ N, λk j ≥ 0, and v jk ∈ Vj (x̄) for all k = 1, . . . , l, and j ∈ J (x̄).

Proof (i) It is easy to check that the weakly robust efficient B-stationarity of x̄ is
equivalent to theB-stationarity of x̄ as a feasible point of the following optimization
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problem:

min θ(x) := max{φi (x) − φi (x̄), i = 1, . . . , r} (P̄θ )

s.t. ψ j (x) ≤ 0, ∀ j = 1, . . . ,m.

Obviously, (P̄θ ) is a tangentially convex problem and all the assumptions of
Theorem 3 (iii) are satisfied. Thus

0 ∈ ∂T θ(x̄) + cl
( ⋃

v jk∈Vj (x̄)

λk j≥0, j∈J (x̄)

l∈N

l∑
k=1

λk j∂
x
T g j (x̄, v jk)). (25)

Applying Corollary 1 and Theorem 6 (i), we get the result.
(ii) Using the similar arguments as used in part (i) and Theorem 6 (ii), the proof can

be derived.
��

We conclude the paper with an example illustrating Theorem 7.

Example 5 Consider the following robust multiobjective programming problem:

min ( f1(x, u1), f2(x, u2)), ∀ui = (ui1, ui2) ∈ Ui , i = 1, 2
s.t. g j (x, v j ) ≤ 0, ∀v j = (v j1, v j2) ∈ Vj , j = 1, 2, 3

x = (x1, x2) ∈ R
2,

where f1(x, u1) := u11 max{x1, x2}, f2(x, u2) := (u21 − u22)min{x1, x2}, and
Ui := {ui ∈ R

2 | u2i1 + u2i2 ≤ 1, }\{ui ∈ R
2 | ui1 < 0, ui2 < 0}, i = 1, 2. Also we

define the functions g j (x, v j ) as in Example 2.
It is easy to check that fi (i = 1, 2) and g j ( j = 1, 2, 3) satisfy the assumptions

(A1) − (A4). A simple calculation gives us

φ1(x) := max
u1∈U1

f1(x, u1) = |max{x1, x2}|, φ2(x) := max
u2∈U2

f2(x, u2) = |min{x1, x2}|,

with

U1(x) =
{ {(1, 0)}, max{x1, x2} ≥ 0

{(−1, 0)}, max{x1, x2} < 0,

and

U2(x) =
{ {(u21, u22) ∈ U2 such that u22 = u21 − 1}, min{x1, x2} ≥ 0

{(u21, u22) ∈ U2 such that u22 = u21 + 1}, min{x1, x2} < 0.
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An easy calculation gives us for a feasible point x̄ = (0, 0) :

φ′
1(x̄; d) := |max{d1, d2}|, φ′

2(x̄; d) := |min{d1, d2}|,

for all d = (d1, d2) ∈ R
2, and

∂Tφ1(x̄) = co {(±1, 0), (0,±1)}, ∂Tφ2(x̄) = co {(±1, 0), (0,±1)}.

It is a simple matter to see that x̄ is a weakly robust efficient solution of the problem
and according to Example 2, (ACQ) holds at this point.

Taking η1 = η2 = 1
2 , and λ1 = 0, λ2 = λ3 = 1, one has

0 ∈
2∑

i=1

ηi∂Tφi (x̄) + cl
( ⋃

λ j≥0

3∑
j=1

λ j∂Tψ j (x̄)
)
.

On the other hand, a simple calculation gives us

f ′
1x (x̄, u1; d) = u11 max{d1, d2}, f ′

2x (x̄, u2; d) = (u21 − u22)min{d1, d2}

with

∂x
T f1(x̄, u1) = co {(1, 0), (0, 1)}, ∂x

T f2(x̄, u2) = co {(−1, 0), (0,−1)},

where

u1 ∈ U1(x̄) = {(1, 0)}, u2 ∈ U2(x̄) = {(u21, u22) ∈ U2 | u22 = u21 − 1}.

Further,

g′
1x (x̄, v1; d) = −d1 + 2v11v12|d2|, ∂x

T g1(x̄, v1) = {−1} × [−2|v11v12|, 2|v11v12|],

for all v1 = (v11, v12) ∈ V1(x̄) = V1,

g′
2x (x̄, v2; d) = 2d2(v22 + 1)2, ∂x

T g2(x̄, v2) = {0, 2(v22 + 1)2} = {(0, 2)},

for all v2 = (v21, v22) ∈ V2(x̄) = [0, 1] × {0}, and

g′
3x (x̄, v3; d) = 2d2(v32 − 1)2, ∂x

T g3(x̄, v3) = {0, 2(v32 − 1)2} = {(0,−2)},

for all v3 = (v31, v32) ∈ V3(x̄) = [−1, 0] × {0}. Taking η1 = η2 = 1
2 , λ1i = 1

3

with v1i = (v
(1)
1i , v

(2)
1i ) = ( −1√

2
, −1√

2
), i = 1, 2, 3, λ21 = 1

2 , v21 = (v
(1)
21 , v

(2)
21 ) =

(0, 0), λ22 = 1
2 , v22 = (v

(1)
22 , v

(2)
22 ) = (1, 0), λ23 = 0 with arbitrary v23 =

(v
(1)
23 , v

(2)
23 ) ∈ V2(x̄), and λ31 = 1, v31 = (v

(1)
31 , v

(2)
31 ) = (−1, 0), λ32 = λ33 = 0
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with arbitrary v32 = (v
(1)
32 , v

(2)
32 ), v33 = (v

(1)
33 , v

(2)
33 ) ∈ V3(x̄), the following condition

is satisfied

0 ∈
2∑

i=1

ηi {co ∪ui∈Ui (x̄) ∂x
T fi (x̄, ui )} + cl

( ⋃
v jk∈Vj (x̄)

λ jk≥0

3∑
k=1

λ jk∂
x
T g j (x̄, v jk)

)
.

Thus all the assumptions of Theorem 7(i) are satisfied. It is worth mentioning that
V (x̄) is not convex, thus part (i) of Proposition 4 is not satisfied. Hence, the concavity
of g j with respect to v j is necessary for convexity of Vj (x̄). Moreover, taking v j =
( −1√

2
, −1√

2
) ∈ Vj (x̄) implies that

∂Tψ j (x̄) = {(−1, 0)} � {ξ j | ∃v j ∈ Vj (x̄) such that ξ j ∈ ∂x
T g j (x̄, v j )},

which shows that the equality in part (ii) of Proposition 4 does not hold.

7 Conclusion

In this work, a robust approach for nonsmooth and nonconvex optimization problems
with the uncertainty data is studied. The robust optimality conditions are established
in terms of tangential subdifferential. The results are obtained under data uncertainty
in objective(s) and constraint functions by using the weakest constraint qualification
(ACQ). Our results are obtained without requiring the convexity of the uncertain set
and the concavity of the related functions with respect to the uncertain parameters.
Moreover, the results are applied to present the necessary and sufficient optimality
conditions for robust weakly efficient solutions in multiobjective programming prob-
lems. The obtained results provide sharper outcomes than the other related contexts;
see for instance, [17,33–35,50].
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