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Abstract
As a variant of metric subregularity, pseudo metric subregularity is studied via general
limit critical sets using the techniques of variational analysis. In terms of limit critical
sets, we provide some sufficient conditions for the validity of pseudo/Hölder metric
subregularity. Usually, the property of pseudo metric subregularity is not stable under
small smooth perturbation. We provide a characterization for pseudo metric subregu-
larity to be stable under small C1,p smooth perturbation. In particular, some existing
results onmetric subregularity are extended to pseudometric subregularity. Finally, we
consider the pseudo weak sharp minimizer of a proper lower semicontinuous function
and its relation with pseudo metric subregularity of the corresponding subdifferential
mapping.
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1 Introduction

It is well known that metric (sub)regularity plays an important role in many fields of
nonlinear analysis as well as its applications, i.e., optimization, constraint qualification
conditions and stability analysis etc. (for more details see [1,5–7,14,21,22,27] and
references therein). Let X , Y be Banach spaces, F : X ⇒ Y be a multifunction and
(x̄, ȳ) ∈ gph(F). Recall that F is metrically regular at (x̄, ȳ) if there exist τ, δ ∈
(0,+∞) such that

τd(x, F−1(y)) ≤ d(y, F(x)) ∀(x, y) ∈ B(x̄, δ) × B(ȳ, δ). (1.1)

The supremum of τ over all such combinations of τ and δ is called the regularity
modulus for F at (x̄, ȳ) and denoted by reg(F, x̄, ȳ) (cf. [10,11,16]). It is well known
that metric regularity is persistent with respect to small Lipschitz perturbation (cf. [2,
Theorem 3.3]), i.e., if F : X ⇒ Y is a closed multifunction and is metrically regular
at (x̄, ȳ) ∈ gph(F), then for any f : X → Y , which is locally Lipschtiz continuous
around x̄ with lip( f , x̄) < reg(F, x̄, ȳ), F + f is metrically regular at (x̄, ȳ + f (x̄)).

Fixing y = ȳ in (1.1), we obtain the following weaker version of metric regularity
of F at (x̄, ȳ), i.e.,

τd(x, F−1(ȳ)) ≤ d(ȳ, F(x)) ∀x ∈ B(x̄, δ) (1.2)

for some τ, δ ∈ (0,+∞), which is called metric subregularity and is closely related
to properties such as calmness, weak sharp minima and error bound. The latter has
important applications in sensitivity and convergence analysis of mathematical pro-
gramming (cf. [9,12,26]). Unlikemetric regularity, the property ofmetric subregularity
is usually unstable even under small smooth perturbation (see [5, Example 1.2]). For
this, Gfrerer introduced the so-called limit critical set of a multifunction F , in terms of
which a point-based characterization is obtained for stability of metric subregularity
of F under small C1 perturbations in Asplund spaces (cf. [5,8]).

However, the metric subregularity is quite restrictive in some applications. A useful
variant of metric subregularity is the following Hölder metric subregularity: F is said
to be Hölder metrically subregular of order p (with p ∈ [1,+∞)) at (x̄, ȳ), if there
exists τ, δ ∈ (0,+∞) such that

τd(x, F−1(ȳ))p ≤ d(ȳ, F(x)) ∀x ∈ B(x̄, δ) (1.3)

(cf. [4,13,14,25,30] and references therein). In terms of coderivative, Li and Mor-
dukhovich [14] provided sufficient conditions for Hölder metric subregularity, while
Kruger [13] uses slope to study it. In [30], Zheng and Zhu studied a more general con-
cept called generalized metric subregularity. Using x̄ instead of F−1(ȳ) in (1.3),we
obtain theHölder strongmetric subregularity, i.e. F is said to beHölder stronglymetri-
cally subregular of order p (with p ∈ [1,+∞)) at (x̄, ȳ), if there exists τ, δ ∈ (0,+∞)

such that

τ‖x − x̄‖p ≤ d(ȳ, F(x)) ∀x ∈ B(x̄, δ). (1.4)
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It is clear that the validity of (1.4) is equivalent to the fact that (1.3) holds with x̄
being an isolated point of F−1(ȳ).

In [7], Gfrerer introduced a new concept called pseudo metric subregularity with
directions andNgai et al. [23] studied amore general case of pseudometric subregular-
ity with directions. For convenience, we consider the next notion (without directions):
F is said to be pseudo metrically subregular of order p (with p ∈ [1,+∞)) at (x̄, ȳ),
if there exists τ, δ ∈ (0,+∞) such that

τ‖x − x̄‖p−1d(x, F−1(ȳ)) ≤ d(ȳ, F(x)) ∀x ∈ B(x̄, δ). (1.5)

It is clear that Höder/pseudo metric subregularity of order one goes back to metric
subregularity. To some extent, pseudometric subregularity can be understood asmetric
subregularitywithmodulus τ behaving like O(‖x− x̄‖p−1) as x → x̄ (formore details
see [7]). Note that (x̄, ȳ) ∈ gph(F), it is clear that pseudo metric subregularity implies
(usually strictly stronger, see [25, Example, page 1975]) Hölder metric subregularity
and is weaker (usually strictly weaker) than Hölder strong metric subregularity. The
following example helps to illustrate this fact in detail:

Example 1.1 Let X = R
2, Y = R, (x̄, ȳ) = ((0, 0), 0) and F(s, t) = [s2 − t2,+∞)

for all (s, t) ∈ R
2. Then F is pseudo metrically subregular of order 2 at (x̄, ȳ), but

is not Hölder strongly metrically subregular of order 2 at the referred point. Indeed,
F−1(0) = {(s, t) ∈ R

2 : s2 ≤ t2} and (0, 0) is not the isolated point of F−1(0),
so F is not Hölder strongly metrically subregular of order 2 at ((0, 0), 0). For any
(s, t) /∈ F−1(0), one has |s| > |t |. If s > t ≥ 0, we have

‖(s, t) − (0, 0)‖d((s, t), F−1(0)) =
√
2

2

√
s2 + t2|s − t | ≤

√
2

2
|s + t ||s − t |

=
√
2

2
d(0, F(s, t)). (1.6)

If s > −t ≥ 0 or −s > t ≥ 0 or s < t ≤ 0, it is also easy to calculate that (1.6) holds.
This implies that F is pseudo metrically subregular of order 2 at ((0, 0), 0).

To study pseudo metric subregularity, Gfrerer [7, Theorem 1-(2)] provided a suf-
ficient condition through an approach similar to the limit critical set. Usually, the
property of pseudo metric subregularity is also unstable under small perturbations.
Let C1(X , Y , x̄) denote the set of all mappings from X to Y which are Fréchet con-
tinuously differentiable on some neighbourhood of x̄ . For a mapping f : X → Y and
x̄ ∈ X , we say that f is C1,p around x̄ if f ∈ C1(X , Y , x̄) and for any ε ∈ (0,+∞),
there exists δ ∈ (0,+∞) such that

‖∇ f (x) − ∇ f (x̄)‖ ≤ ε‖x − x̄‖p−1 ∀x ∈ B(x̄, δ).

Let C1,p(X , Y , x̄) denote the set of all mappings from X to Y which are C1,p around
x̄ .
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The following example demonstrates that, even for a convex multifunction in finite
dimensional space, the property of pseudometric subregularity is unstable under small
C1,p smooth perturbation.

Example 1.2 Let p ∈ [1,+∞) be fixed. Consider the convex multifunction F : R ⇒
R with F(x) := [0,+∞) for x ∈ (−∞, 0) and F(x) := [x p,+∞) for x ∈ [0,+∞).
Let x̄ = ȳ = 0, then F−1(0) = (−∞, 0] and d(0, F(x)) = x p for all x ∈ (0,+∞).
It is easy to see that F is pseudo metrically subregular of order p at (0, 0). Define
f : R → R as f (x) := |x |1+p for all x ∈ R, then we have

f ′(x) :=
⎧
⎨

⎩

(1 + p)x p, i f x ∈ (0,+∞),

0, i f x = 0,
−(1 + p)(−x)p, i f x ∈ (−∞, 0),

and | f ′(x) − f ′(0)|/|x − 0|p−1 ≤ (1 + p)|x | → 0 when x → 0. This shows that f
is C1,p around 0 with f (0) = 0 and f ′(0) = 0. However, F + f is no longer pseudo
metrically subregular of order p at (0, 0). Indeed, for xk = − 1

k , k ∈ N, it is clear that
(F + f )−1(0) = {0}, d(xk, (F + f )−1(0)) = |xk | = 1

k and d(0, (F + f )(xk)) =
|xk |1+p = 1

k1+p , hence
d(0,(F+ f )(xk))

‖xk−0‖p−1d(xk ,(F+ f )−1(0))
= 1

k → 0.

Hence, it is natural and essential to investigate qualifications on multifunctions
for which pseudo metric subregularity remains true under certain smooth perturba-
tions. For convenience, we define two different kinds of stability for pseudo metric
subregularity as below:

Definition 1.1 Let F : X ⇒ Y be a multifunction, (x̄, ȳ) ∈ gph(F) and p ∈ [1,+∞).
(i) We say that F : X ⇒ Y is pseudo metrically subregular of order p stable at

(x̄, ȳ) under C1,p perturbation, if for any f ∈ C1,p(X , Y , x̄) with f (x̄) = 0 and
∇ f (x̄) = 0, the mapping F + f is pseudo metrically subregular of order p at (x̄, ȳ);

(ii) We say that F is pseudo metrically subregular of order p stable at (x̄, ȳ) under
p-bounded smooth perturbation, if there exists c ∈ (0,+∞) such that, for any f ∈
C1(X , Y , x̄) with f (x̄) = 0 and ‖∇ f (x)‖ ≤ c‖x − x̄‖p−1 for all x sufficiently close
to x̄ , the mapping F + f is pseudo metrically subregular of order p at (x̄, ȳ).

It is clear that the stability of pseudo metric subregularity under p-bounded smooth
perturbation implies the one under C1,p perturbation. It is worth to note that the
condition ‖∇ f (x)‖ ≤ c‖x− x̄‖p−1 for all x sufficiently close to x̄ ensures ‖∇ f (x̄)‖ =
0 for any p ∈ (1,+∞), but when p = 1, this condition reduces to the boundedness
of ∇ f (x) around x̄ .

The rest of the paper is organized as follows. Section 2 contains basic definitions and
required preliminary results used in what follows. In Sect. 3, via new-defined general
limit critical sets, we provide some sufficient conditions for pseudo metric subregular-
ity. We show that two kinds of stability for pseudo metric subregularity in Definition
1.1 are equivalent and furthermore provide a characterization for the aforementioned
property, which is also generalization of [8, Theorem 2.8 ((i) ⇔ (i i))]. In Sect. 4, we
consider the pseudo weak sharp minimizer of a proper lower semicontinuous function
and its relation with pseudo metric subregularity of the corresponding subdifferential
mapping.
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2 Notations and preliminaries

In this section, we summarize some fundamental notations and tools in variational
analysis,more details see [17,20,24]. Recall that aBanach space X is called anAsplund
space if every continuous convex function on X is Fréchet differentiable at each point
of a dense subset of X . It is well known that X is an Asplund space if and only if every
separable subspace of X has a separable dual space. In particular, every reflexive
Banach space is an Asplund space. Let X be an Asplund space with topological dual
X∗ and BX and SX denote the closed unit ball and unit sphere of X , respectively.
We denote by B(x, r) (B[x, r ]) the open (closed) ball with center x and radius r
and d(x, A) := infa∈A d(x, a) the point-to-set distance from x to A (in the usual
convention, the infimum of the empty set equals +∞). For a proper lower semi-
continuous function φ : X → R ∪ {+∞}, let dom(φ) and epi(φ) denote the domain
and the epigraph of φ, respectively, that is,

dom(φ) := {x ∈ X | φ(x) < +∞} and epi(φ) := {(x, r) ∈ X × R|φ(x) ≤ r}.
For x ∈ dom(φ), recall that regular subdifferential (Fréchet subdifferential) ∂̂φ(x̄) of
φ at x is defined as

∂̂φ(x) :=
{

x∗ ∈ X∗| lim inf
x ′→x

φ(x ′) − φ(x) − 〈x∗, x ′ − x〉
‖x ′ − x‖ ≥ 0

}
.

When f is convex, regular subdifferentials reduce to the one in the sense of convex
analysis; that is,

∂̂φ(x) = ∂φ(x) := {x∗ ∈ X∗|〈x∗, x ′ − x〉 ≤ φ(x ′) − φ(x) ∀x ′ ∈ X} ∀x ∈ dom(φ).

For a closed subset A of X and a point a in A, let N̂ (A, a) denote the regular normal
cone (Fréchet normal cone) of A to a, defined by

N̂ (A, a) :=
⎧
⎨

⎩
x∗ ∈ X∗| lim sup

x
A−→a

〈x∗, x − a〉
‖x − a‖ ≤ 0

⎫
⎬

⎭
.

Let the indicator function δA be defined as

δA(x) :=
{

0, i f x ∈ A,

+∞, otherwise.

It well known that N̂ (A, a) = ∂̂δA(a) for all a ∈ A and

∂̂φ(x) = {x∗ ∈ X∗|(x∗,−1) ∈ N̂ (epi(φ), (x, φ(x)))} ∀x ∈ dom(φ).

If A is convex, then

N̂ (A, a) = {x∗ ∈ X∗|〈x∗, x − a〉 ≤ 0 ∀x ∈ A} ∀a ∈ A.
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Let F : X ⇒ Y be a multifunction and its graph and domain be defined as

gph(F) := {(x, y) ∈ X × Y | y ∈ F(x) ∀x ∈ X} and dom(F) := {x ∈ X |F(x) �= ∅}.

Wesay that F is a closedmultifunction if its graphgph(F) is closed in the product space
X×Y .Wewill use the following notion of the coderivativewhichwere first constructed
by Mordukhovich (cf. [15]). For (x, y) ∈ gph(F), the coderivative D̂∗F(x, y) is a
multifunction between Y ∗ and X∗ defined by

D̂∗F(x, y)(y∗) := {x∗ ∈ X∗|(x∗,−y∗) ∈ N̂ (gph(F), (x, y))} ∀y∗ ∈ Y ∗.

The details of the coderivatives can be found in [17]. For a closed multifunction
F : X ⇒ Y and a single-valued mapping f : X → Y , if (x, y) ∈ gph(F + f ) and f
is Fréchet differentiable at x , then one has that (cf. [17, Theorem 1.62]):

(x∗,−y∗) ∈ N̂ (gph(F + f ), (x, y)) ⇔ (x∗ − ∇ f (x)∗y∗,−y∗) ∈ N̂ (gph(F), (x, y − f (x))).

(2.1)

Recall that the duality mapping J : Y ⇒ Y ∗ denotes the normal dual mapping of
Y , that is,

J (y) := {y∗ ∈ SY ∗ |〈y∗, y〉 = ‖y‖} ∀y ∈ Y\{0}.

It is clear that J (y) = ∂‖ · ‖(y) and, when Y is smooth, J (y) is single-valued and
J (y) = ∇‖ · ‖(y) for all y ∈ Y\{0}. For x̄ ∈ X and A ⊂ X , let PA(x̄) denote the
projection from x̄ to A, that is

PA(x̄) := {x ∈ A|‖x − x̄‖ = d(x̄, A)}.

For convenience, we use the following notations (cf. [27,30]). Let ε ∈ (0,+∞), the
normalized ε-enlargement of the duality mapping is

Jε(y) := {y∗ ∈ SY ∗ |d(y∗, J (y)) < ε} ∀y ∈ Y\{0}

and the ε-approximation of x̄ to A is defined as

Pε
A(x̄) := {x ∈ A|‖x − x̄‖ < min{(1 + ε)d(x̄, A), d(x̄, A) + ε}.

Several kinds of subdifferential sum rules are employed in the main results of this
paper. Below we provide these rules for completeness (cf. [17]).

Lemma 2.1 Suppose that X is an Asplund space and φ,ψ : X → R ∪ {+∞} is
a proper lower semi-continuous function. Let x̄ ∈ dom(ψ) such that φ is Lipschitz
continuous at x̄ . Then the following statements hold:
(i) For any x∗ ∈ ∂̂(φ + ψ)(x̄) and any σ ∈ (0,+∞), there exist x1, x2 ∈ B(x̄, σ )

such that |ψ(x2) − ψ(x̄)| < σ and

x∗ ∈ ∂̂φ(x1) + ∂̂ψ(x2) + σ BX∗ .
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(ii) If φ is Fréchet differentiable at x̄ with derivative ∇φ(x̄), then

∂̂(φ + ψ)(x̄) = ∇φ(x̄) + ∂̂ψ(x̄).

We conclude this section with the the Ekeland variational principle (cf. [3,17]),
which plays a key role in the proof of the main result.

Lemma 2.2 (Ekeland variational principle) Suppose that X is a Banach space, and
f : X → R ∪ {+∞} is lower semicontinuous and bounded from below. Let ε > 0
and x̄ ∈ X be given such that

f (x̄) < inf
x∈X

f (x) + ε.

Then for any λ > 0, there exists x ∈ X satisfying

(i) ‖x − x̄‖ < λ,

(ii) f (x) ≤ f (x̄),

(iii) f (x) < f (u) + ε
λ
‖u − x‖ for all u ∈ X \ {x}.

3 The stability of pseudometric subregularity under smooth
disturbance

Without any other statement, throughout the remainder of this paper,we always assume
that X and Y are Asplund spaces and F : X ⇒ Y is a closed multifunction.

For convenience, for (x̄, ȳ) ∈ X × Y and δ, ε > 0, we set

B(F, x̄, ȳ, δ, ε) := {(x, y) ∈ B(x̄, δ) × B(ȳ, δ)|x /∈ F−1(ȳ), y ∈ Pε
F(x)(ȳ)},

C(F, x̄, ȳ, β, p) := {(x, y) ∈ gph(F)|‖y − ȳ‖ < β‖x − x̄‖p−1d(x, F−1(ȳ))}

and

D(F, x̄, ȳ, β, p) := {(x, y) ∈ gph(F)|‖y − ȳ‖ < βd(x, F−1(ȳ))p}.

We first state the following lemma which provides a new sufficient condition for
pseudo/Hölder metric subregularity of order p and estimates its modulus for a gener-
alized multifunction.

Lemma 3.1 Let (x̄, ȳ) ∈ gph(F), α, β, ε, δ ∈ (0,+∞) and p ∈ [1,+∞).
(i) If

d(0, D̂∗F(x, y)(Jε(y′ − ȳ)) ≥ α‖x − x̄‖p−1 ∀(x, y) ∈ B(F, x̄, ȳ, δ, ε) ∩ C(F, x̄, ȳ, β, p),

y′ ∈ B(y,min{ε, ‖y − ȳ‖2})\{ȳ}.
(3.1)

Then F is pseudo metrically subregular of order p at (x̄, ȳ), explicitly,

κ‖x − x̄‖p−1d(x, F−1(ȳ)) ≤ d(ȳ, F(x)) ∀x ∈ B(x̄, δ′), (3.2)
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where

κ := min

{
α

3 · 2p−1 ,
β

2p

}
and δ′ := min

{
2δ

3
,

(
δ

κ

) 1
p
}

. (3.3)

If, in addition, Y is a Fréchet smooth Banach space, then the condition (3.1) can be
replaced by

d(0, D̂∗ F(x, y)(Jε(y − ȳ)) ≥ α‖x − x̄‖p−1 ∀(x, y) ∈ B(F, x̄, ȳ, δ, ε) ∩ C(F, x̄, ȳ, β, p).

(ii) If

d(0, D̂∗F(x, y)(Jε(y′ − ȳ))

≥ αd(x, F−1(ȳ))p−1 ∀(x, y) ∈ B(F, x̄, ȳ, δ, ε) ∩ D(F, x̄, ȳ, β, p),

y′ ∈ B(y,min{ε, ‖y − ȳ‖2})\{ȳ},
(3.4)

Then F is Hölder metrically subregular of order p at (x̄, ȳ), explicitly,

κd(x, F−1(ȳ))p ≤ d(ȳ, F(x)) ∀x ∈ B(x̄, δ′),

where κ and δ′ are defined as in (3.3). If, in addition, Y is a Fréchet smooth Banach
space, then the condition (3.4) can be replaced by

d(0, D̂∗F(x, y)(Jε(y − ȳ))

≥ αd(x, F−1(ȳ))p−1 ∀(x, y) ∈ B(F, x̄, ȳ, δ, ε) ∩ D(F, x̄, ȳ, β, p).

Proof We are going to show (i), while the validity of (ii) follows similarly. In order
to show that (3.2) holds, we assume to the contrary that there exists x ′ ∈ B(x̄, δ′)
such that κ‖x ′ − x̄‖p−1d(x ′, F−1(ȳ)) > d(ȳ, F(x ′)). Take y′ ∈ F(x ′) and τ ∈ (0, κ)

sufficiently close to κ such that

d(ȳ, F(x ′)) ≤ ‖y′ − ȳ‖ < τλ‖x ′ − x̄‖p−1, (3.5)

where λ = d(x ′, F−1(ȳ)). Let η ∈ (0, 1) be small enough such that

0 <
4τηδ p−1 + η

1 − 2τηδ p−1 − η
max{1, δ} < ε, 0 <

τ

1 − 3τηδ p−1 < κ and
6τηδ p−1

1 − 3τηδ p−1 < ε. (3.6)

Define the norm on the product space X × Y as

‖(x, y)‖η := ‖x‖ + η‖y‖ ∀(x, y) ∈ X × Y .

Let ϕ : X × Y → [0,+∞] be defined by

ϕ(x, y) := ‖y − ȳ‖ + δgph(F)(x, y) ∀(x, y) ∈ X × Y .
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Clearly, ϕ is lower semicontinuous (due to the closeness of gph(F)) and attains its
minimum value at (x̄, ȳ). According to (3.5), we easily obtain that

ϕ(x ′, y′) < inf
(x,y)∈X×Y

ϕ(x, y) + τλ‖x ′ − x̄‖p−1.

It then follows from Lemma 2.2 that there exists (x̃, ỹ) ∈ gph(F) such that

‖(x̃, ỹ) − (x ′, y′)‖η <
λ

2
, (3.7)

ϕ(x̃, ỹ) ≤ ϕ(x ′, y′) (3.8)

and

ϕ(x̃, ỹ) ≤ ϕ(x, y) + 2τ‖x ′ − x̄‖p−1(‖x − x̃‖ + η‖y − ỹ‖) ∀(x, y) ∈ X × Y .(3.9)

Note that λ = d(x ′, F−1(ȳ)), by (3.7) and (3.8), one has ‖ỹ − ȳ‖ ≤ ‖y′ − ȳ‖ and

‖x̃ − x ′‖ <
λ

2
≤ ‖x ′ − x̄‖

2
<

δ′

2
, (3.10)

which leads to the fact that

‖x̃ − x̄‖ ≤ ‖x̃ − x ′‖ + ‖x ′ − x̄‖ <
3δ′

2
≤ δ. (3.11)

Using the triangle inequality, we obtain from (3.10) that

d(x̃, F−1(ȳ)) ≥ d(x ′, F−1(ȳ)) − ‖x̃ − x ′‖ >
λ

2
> 0 and ‖x̃ − x̄‖

≥ ‖x ′ − x̄‖ − ‖x̃ − x ′‖ >
‖x ′ − x̄‖

2
. (3.12)

Then x̃ /∈ F−1(ȳ), and hence ỹ �= ȳ. Let

σ ∈
(
0,min

{
‖x̃ − x̄‖ − ‖x ′ − x̄‖

2
, δ − ‖x̃ − x̄‖, d(x̃, F−1(ȳ)) − λ

2
,
ηε

2
, τ‖x ′ − x̄‖p−1,

η(τλ‖x ′ − x̄‖p−1 − ‖y′ − ȳ‖), η‖ỹ − ȳ‖
2

,
η2‖ỹ − ȳ‖
8τηδ p−1 + 2

,
η‖ỹ − ȳ‖2

8

})
.

(3.13)

be sufficiently small and pick any (u, v) ∈ gph(F) ∩ B((x̃, ỹ), σ ). Then v ∈
F(u), ‖u − x̃‖ < σ and ‖v − ỹ‖ < σ/η. It follows from (3.12) and (3.13) that
‖u − x̄‖ < ‖x̃ − x̄‖ + σ < δ,

d(u, F−1(ȳ)) > d(x̃, F−1(ȳ)) − σ >
λ

2
> 0 and ‖u − x̄‖ > ‖x̃ − x̄‖ − σ >

‖x ′ − x̄‖
2

. (3.14)

Together with (3.5), (3.8) and (3.13), we have that u ∈ B(x̄, δ)\F−1(ȳ) and

‖v − ȳ‖ ≤ ‖ỹ − ȳ‖ + ‖v − ỹ‖ < ‖ỹ − ȳ‖ + σ

η
≤ ‖y′ − ȳ‖ + σ

η
.
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Hence,

‖v − ȳ‖ < ‖y′ − ȳ‖ + σ/η < τλ‖x ′ − x̄‖p−1 ≤ min{τδ′p, 2pτ‖u − x̄‖p−1d(u, F−1(ȳ))}.

Since τ < κ , according to the definitions of κ and δ′ in (3.3), we arrive at τδ′p <

κδ′p ≤ δ and 2pτ < 2pκ ≤ β. Therefore,

(u, v) ∈ C(F, x̄, ȳ, β, p) and v ∈ F(u) ∩ B(ȳ, δ). (3.15)

By (3.13), we also have that ‖ỹ − ȳ‖ < ‖v − ȳ‖ + σ/η < ‖v − ȳ‖ + ‖ỹ − ȳ‖/2, and
then ‖ỹ − ȳ‖ < 2‖v − ȳ‖. Consider an arbitrary y ∈ F(u), it follows from (3.9) and
(3.13) that

‖v − ȳ‖ < ‖ỹ − ȳ‖ + σ/η ≤ ‖y − ȳ‖ + 2τ‖x ′ − x̄‖p−1(‖u − x̃‖ + η‖y − ỹ‖) + σ/η

< ‖y − ȳ‖ + 2τ‖x ′ − x̄‖p−1(σ + η(‖y − ȳ‖ + ‖ȳ − v‖ + ‖v − ỹ‖)) + σ/η

< ‖y − ȳ‖ + 2τηδ p−1(‖y − ȳ‖ + ‖ȳ − v‖) + (4τδ p−1 + 1/η)σ

< ‖y − ȳ‖ + 2τηδ p−1(‖y − ȳ‖ + ‖ȳ − v‖) + η‖v − ȳ‖

(the last inequality holds due to our choice of σ in (3.13) and the fact that ‖ỹ − ȳ‖ <

2‖v − ȳ‖). And then

‖v − ȳ‖ <
1 + 2τηδ p−1

1 − 2τηδ p−1 − η
‖y − ȳ‖ ∀y ∈ F(u).

Hence, with the help of (3.15) and the first inequality in (3.6), we have that

‖v − ȳ‖ <
1 + 2τηδ p−1

1 − 2τηδ p−1 − η
d(ȳ, F(u)) < min{(1 + ε)d(ȳ, F(u)), d(ȳ, F(u)) + ε}, (3.16)

This implies that v ∈ Pε
F(u)(ȳ). Consequently, since u /∈ F−1(ȳ), it follows from

(3.15) that

(u, v) ∈ B(F, x̄, ȳ, δ, ε) ∩ C(F, x̄, ȳ, β, p) ∀(u, v) ∈ gph(F) ∩ B((x̃, ỹ), σ ). (3.17)

By (3.9) and the optimality condition, one has

(0, 0) ∈ ∂̂(ϕ + 2τ‖x ′ − x̄‖p−1(‖ · −x̃‖ + η‖ · −ỹ‖))(x̃, ỹ). (3.18)

Recall that σ < τ‖x ′ − x̄‖p−1, it follows from Lemma 2.1 (i) that there exist
(x̃1σ , ỹ1σ ), (x̃2σ , ỹ2σ ) ∈ B((x̃, ỹ), σ ) such that (x̃2σ , ỹ2σ ) ∈ gph(F) and

(0, 0) ∈ ∂̂‖ · −ȳ‖(x̃1σ , ỹ1σ ) + ∂̂δgph(F)(x̃2σ , ỹ2σ ) + 3τ‖x ′ − x̄‖p−1(BX∗ × ηBY ∗).

(3.19)

According to (3.17), we have (x̃2σ , ỹ2σ ) ∈ B(F, x̄, ȳ, δ, ε) ∩ C(F, x̄, ȳ, β, p). Note
that ‖ỹ1σ − ỹ‖ < σ/η <

‖ỹ−ȳ‖
2 , one has ỹ1σ �= ȳ. By (3.13) and (3.14), we also

have the estimation ‖x ′ − x̄‖ < 2‖x̃2σ − x̄‖ and ‖ỹ − ȳ‖ < 2‖ỹ2σ − ȳ‖, and
hence ‖ỹ1σ − ỹ2σ ‖ < 2σ/η < min{ε, ‖ỹ − ȳ‖2/4} ≤ min{ε, ‖ỹ2σ − ȳ‖2}, i.e.
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ỹ1σ ∈ B(ỹ2σ ,min{ε, ‖ỹ2σ − ȳ‖2})\{ȳ}. Therefore, it follows from assumption (3.1)
that

d(0, D̂∗F(x̃2σ , ỹ2σ )(Jε(ỹ1σ − ȳ)) ≥ α‖x̃2σ − x̄‖p−1. (3.20)

On the other hand, (3.19) shows that there exists b∗
1 ∈ J (y1σ − ȳ) and (a∗

2 , b∗
2) ∈

BX∗ × BY ∗ such that

(3τ‖x ′ − x̄‖p−1a∗
2 ,−b∗

1 + 3τ‖x ′ − x̄‖p−1ηb∗
2) ∈ N̂ (gphF, (x̃2σ , ỹ2σ )).

Let

x̃∗ := 3τ‖x ′ − x̄‖p−1a∗
2

‖b∗
1 − 3τ‖x ′ − x̄‖p−1ηb∗

2‖
and ỹ∗ := b∗

1 − 3τ‖x ′ − x̄‖p−1ηb∗
2

‖b∗
1 − 3τ‖x ′ − x̄‖p−1ηb∗

2‖
,

then (x̃∗,−ỹ∗) ∈ N̂ (gphF, (x̃2σ , p̃2σ )). It is easy to calculate that

‖ỹ∗ − b∗
1‖ ≤ ‖(1 − ‖b∗

1 − 3τ‖x ′ − x̄‖p−1ηb∗
2‖)b∗

1‖
‖b∗

1 − 3τ‖x ′ − x̄‖p−1ηb∗
2‖

+ 3τ‖x ′ − x̄‖p−1η

‖b∗
1 − 3τ‖x ′ − x̄‖p−1ηb∗

2‖
≤ 6τδ p−1η

1 − 3τδ p−1η
< ε

(the last inequality holds due to (3.6)). This shows that ỹ∗ ∈ Jε(ỹ1σ − ȳ). Recall that
‖x ′ − x̄‖ < 2‖x̃2σ − x̄‖ and κ ≤ α

3·2p−1 , it follows from (3.6) that

d(0, D̂∗ F(x̃2σ , ỹ2σ )(Jε(ỹ1σ − ȳ)) ≤ ‖x̃∗‖ ≤ 3τ‖x ′ − x̄‖p−1

1 − 3τη‖x ′ − x̄‖p−1 <
3τ‖x ′ − x̄‖p−1

1 − 3τηδ p−1

< 3κ‖x ′ − x̄‖p−1 < 3 · 2p−1κ‖x̃2σ − x̄‖p−1

≤ α‖x̃2σ − x̄‖p−1,

which contradicts (3.20). Therefore, we conclude that (3.2) holds. If, in addition, Y
is a Fréchet smooth Banach space, we apply Lemma 2.1 (i) with (3.18) to obtain the
existence of (x̃1σ , ỹ1σ ) ∈ B((x̃, ỹ), σ ) such that (x̃1σ , ỹ1σ ) ∈ gph(F) and

(0, 0) ∈ ∂̂(‖ · −ȳ‖ + δgph(F))(x̃1σ , ỹ1σ ) + 3τ‖x ′ − x̄‖p−1BX∗ × ηBY ∗ . (3.21)

Then it follows from (3.14) and (3.17) that (x̃1σ , ỹ1σ ) ∈ B(F, x̄, ȳ, δ, ε) ∩
C(F, x̄, ȳ, β, p) and ‖x ′ − x̄‖ < 2‖x̃1σ − x̄‖, and hence ỹ1σ �= ȳ. Note that Y is
a Fréchet smooth Banach space, applying Lemma 2.1 (ii) to (3.21) gives us

(0, 0) ∈ {0} × ∇‖ỹ1σ − ȳ‖ + N̂ (gph(F), (x̃1σ , ỹ1σ )) + 3τ‖x ′ − x̄‖p−1BX∗ × ηBY ∗ .

The rest of the proof follows similarly as in the case of Asplund spaces. The proof is
completed. ��
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The essential work of studying pseudo metric subregularity revolves around estab-
lishing the validity of inequality (1.5). For any τ, δ ∈ (0,+∞), letN (F, x̄, ȳ, p, τ, δ)

denote the set of all x ∈ B(x̄, δ) failing (1.5), namely

N (F, x̄, ȳ, p, τ, δ) := {x ∈ B(x̄, δ)|τ‖x − x̄‖p−1d(x, F−1(ȳ)) > d(ȳ, F(x))}.

It follows that the property of pseudo metric subregularity is equivalent to the
existence of τ, δ ∈ (0,+∞) such that N (F, x̄, ȳ, p, τ, δ) = ∅. For given pos-
itive β, δ, since inequality (1.5) holds (with τ = β) automatically for any x ∈
B(x̄, δ)\N (F, x̄, ȳ, p, β, δ) in the case when N (F, x̄, ȳ, p, β, δ) �= ∅, one only
needs to consider the candidate x inN (F, x̄, ȳ, p, β, δ) in order to verify the inequal-
ity (1.5). It is clear that B(F, x̄, ȳ, δ, ε) ∩ C(F, x̄, ȳ, β, p) ⊂ {(x, y) ∈ X × Y |x ∈
N (F, x̄, ȳ, p, β, δ), y ∈ Pε

F(x)(ȳ)}. In Lemma 3.1, variational conditions are pro-
vided on B(F, x̄, ȳ, δ, ε)∩C(F, x̄, ȳ, β, p) to ensure the pseudo metric subregularity
of F at (x̄, ȳ), where the explicit quantitative relationships between β, κ, δ and δ′ are
calculated.

To characterize metric subregularity, Gfrerer [5] introduced the limit critical set
Cr0F(x̄, ȳ) of F at (x̄, ȳ), i.e., the set of all pairs (v, u∗) ∈ Y × X∗ such that there
exist sequences {tk} ⊂ (0,+∞), {(uk, v

∗
k )} ⊂ SX × SY ∗ and {(vk, u∗

k)} ⊂ Y × X∗
satisfying tk → 0, (vk, u∗

k) → (v, u∗) and

(u∗
k ,−v∗

k ) ∈ N̂ (gph(F), (x̄ + tkuk, ȳ + tkvk)) ∀k ∈ N.

In terms ofCr0F(x̄, ȳ), Gfrerer proved the following interesting point-based sufficient
condition for metric subregularity: Let F : X ⇒ Y and (x̄, ȳ) ∈ gph(F). Then, F is
metrically subregular at (x̄, ȳ) provided that (0, 0) /∈ Cr0F(x̄, ȳ).

For the purpose of studying pseudo metric subregularity of order p, we adopt the
following definitions of general limit critical sets Cr F(x̄, ȳ, p), Ĉr F(x̄, ȳ, p) and
C̃r F(x̄, ȳ, p) for a general multifunction F : X ⇒ Y :

(i) (v, u∗) ∈ Cr F(x̄, ȳ, p) if and only if (v, u∗) ∈ Y × X∗ with the property
that there exists sequences {tk} ⊂ (0,+∞), {(uk, v

∗
k )} ⊂ SX × SY ∗ and {(vk, u∗

k)} ⊂
Y × X∗ satisfying tk → 0,

(
vk,

u∗
k

t p−1
k

)
→ (v, u∗) and

(u∗
k ,−v∗

k ) ∈ N̂ (gph(F), (x̄ + tkuk, ȳ + t p
k vk)) ∀k ∈ N. (3.22)

(ii) (v, u∗) ∈ Ĉr F(x̄, ȳ, p) if and only if (v, u∗) ∈ Y × X∗ with the property
that there exists sequences {tk} ⊂ (0,+∞), {(uk, v

∗
k )} ⊂ SX × SY ∗ and {(vk, u∗

k)} ⊂
Y\{0} × X∗ satisfying x̄ + tkuk /∈ F−1(ȳ), (3.22),

tk → 0,

(

vk,
u∗

k

t p−1
k

)

→ (v, u∗) and
〈
v∗

k ,
vk

‖vk‖
〉

→ 1. (3.23)
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(iii) (v, u∗) ∈ C̃r F(x̄, ȳ, p) if and only if (v, u∗) ∈ Y × X∗ with the property
that there exists sequences {tk} ⊂ (0,+∞), {(uk, v

∗
k )} ⊂ SX × SY ∗ and {(vk, u∗

k)} ⊂
Y\{0} × X∗ satisfying (3.22), (3.23) and

t p
k ‖vk‖

d(ȳ,F(x̄+tk uk ))
→ 1.

Remark 3.1 In the definition of C̃r F(x̄, ȳ, p), the requirements of vk �= 0 and
tk‖vk‖

d(ȳ,F(x̄+tk uk ))
→ 1 guarantee that ȳ + tkvk �= ȳ and x̄ + tkuk /∈ F−1(ȳ) except

for finitely many k ∈ N.

In [25], the authors introduced a similar concept C̆P F(x̄, ȳ, p) via proximal normal
cone in C2 type Banach space to study Hölder metric subregularity of order p. In [7,
Theorem 1-(2)], upon letting u = 0 and s = 1, the author obtains that the condition
(0, 0) /∈ Ĉr F(x̄, ȳ, p) implies that F is pseudo metrically subregular of order p at
(x̄, ȳ) for p ∈ [1,+∞).

Remark 3.2 From the definition of critical sets, it is clear that

C̃r F(x̄, ȳ, p) ⊂ Ĉr F(x̄, ȳ, p) ⊂ Cr F(x̄, ȳ, p). (3.24)

Furthermore, we claim that the above inclusions are strict. In fact, let F be defined
as in Example 1.2, tk = 1/k, vk = 0 and uk = −1, it is easy to calculate that
N̂ (gph(F), (tkuk, t p

k vk)) = {(0,−1)}. This shows that (0, 0) ∈ Cr F(0, 0, p). On the
other hand, for any sequences {tk} ⊂ (0,+∞), {(uk, v

∗
k )} ⊂ SR×SR and {(vk, u∗

k)} ⊂
R\{0} × R satisfying tkuk /∈ F−1(0) = (−∞, 0], (3.22) and (3.23), we have that
uk = 1, v∗

k = −1 and t p
k vk ≥ (tkuk)

p > 0, and hence (vk, u∗
k) → (v, u∗) �= (0, 0).

This shows that (0, 0) /∈ Ĉr F(0, 0, p), which justifies that the set Ĉr F(0, 0, p) is
strictly smaller than the set Cr F(0, 0, p). For the strict inclusion C̃r F(x̄, ȳ, p) ⊂
Ĉr F(x̄, ȳ, p), it will be shown in Example 3.1.

Nowwe are ready to state the following point-based sufficient conditions for pseudo
metric subregularity of order p in terms of the aforementioned three types of limit
critical sets.

Theorem 3.1 Let (x̄, ȳ) ∈ gph(F), p ∈ [1,+∞). Consider following statements:

(i) (0, 0) /∈ Cr F(x̄, ȳ, p);
(ii) (0, 0) /∈ Ĉr F(x̄, ȳ, p);
(iii) (0, 0) /∈ C̃r F(x̄, ȳ, p);
(iv) F is pseudo metrically subregular of order p at (x̄, ȳ).

Then (i) ⇒ (i i) ⇒ (i i i) ⇒ (iv). If, in addition, F is convex, then (i i) ⇔
(i i i) ⇔ (iv).

Proof From the inclusion (3.24), we immediately have (i) ⇒ (i i) ⇒ (i i i). For
(i i i) ⇒ (iv), it suffices to show that there exist α, β, ε, δ ∈ (0,+∞) such that (3.1)
holds according to Lemma 3.1. We argue with contradiction. Suppose to the contrary
that for αk = βk = δk = εk = 1/k, there exists (xk, yk) ∈ B(F, x̄, ȳ, 1/k, 1/k) ∩
C(x̄, ȳ, 1/k, p), y′

k ∈ B(yk,min{1/k, ‖yk − ȳ‖2})\{ȳ} such that

d(0, D̂∗F(xk, yk)(J 1
k
(y′

k − ȳ)) <
1

k
‖xk − x̄‖p−1.
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Then, there exist v∗
k ∈ J1/k(y′

k − ȳ) and u∗
k ∈ D̂∗F(xk, yk)(v

∗
k ) such that ‖u∗

k‖ ≤
1
k ‖xk−x̄‖p−1.According to the definition ofB(F, x̄, ȳ, 1/k, 1/k) andC(x̄, ȳ, 1/k, p),
one has

xk ∈ B

(
x̄,

1

k

)
\F−1(ȳ), yk ∈ P

1
k

F(xk )
(ȳ), ‖yk − ȳ‖ <

1

k
‖xk − x̄‖p−1d(xk , F−1(ȳ)). (3.25)

This shows that yk ∈ F(xk), xk �= x̄ and yk �= ȳ. Let tk := ‖xk−x̄‖, uk := t−1
k (xk−x̄)

and vk := t−p
k (yk − ȳ). It then follows from (3.25) that 0 < tk < 1

k , (xk, yk) =
(x̄ + tkuk, ȳ + t p

k vk) ∈ gph(F), uk ∈ SX ,

‖yk − ȳ‖ <

(
1 + 1

k

)
d(ȳ, F(xk)) and 0 < ‖vk‖ <

d(xk, F−1(ȳ))

ktk
≤ 1

k
.

Therefore, (u∗
k ,−v∗

k ) ∈ N̂ (x̄ + tkuk, ȳ + t p
k vk), vk �= 0, vk → 0 and d(ȳ, F(x̄ +

tkuk)) ≤ t p
k ‖vk‖ = ‖yk − ȳ‖ < (1+ 1

k )d(ȳ, F(x̄ + tkuk)). Hence
t p
k ‖vk‖

d(ȳ,F(x̄+tk uk ))
→ 1.

Take y∗
k ∈ J (y′

k − ȳ) such that ‖v∗
k − y∗

k ‖ < 1/k. Observing that ‖y′
k − yk‖ <

‖yk − ȳ‖2, v∗
k , y∗

k ∈ SY ∗ and 〈y∗
k , y′

k − ȳ〉 = ‖y′
k − ȳ‖, we obtain that

1 ≥
〈
v∗

k ,
vk

‖vk‖
〉

=
〈
y∗

k ,
yk − ȳ

‖yk − ȳ‖
〉
+
〈
v∗

k − y∗
k ,

vk

‖vk‖
〉

≥
〈
y∗

k ,
y′

k − ȳ

‖y′
k − ȳ‖

〉
−
∥∥∥∥

yk − ȳ

‖yk − ȳ‖ − y′
k − ȳ

‖y′
k − ȳ‖

∥∥∥∥ − 1

k

≥ 1 − 2‖yk − y′
k‖

‖yk − ȳ‖ − 1

k

> 1 − 2‖yk − ȳ‖ − 1

k
.

Taking the limit of k → ∞, we arrive at
〈
v∗

k ,
vk‖vk‖

〉
→ 1. It follows that (0, 0) ∈

C̃r F(x̄, ȳ, p), which is a contradiction with (i i i). Therefore, (iv) holds. If in addition
we assume that F is convex, we claim that (i i) ⇔ (i i i) ⇔ (iv). Indeed, it suffices
to show that (iv) ⇒ (i i). We argue again with contradiction. Suppose to the contrary
that (iv) holds and there exist sequences {tk} ⊂ (0,+∞), {(uk, v

∗
k )} ⊂ SX × SY ∗

and {(vk, u∗
k)} ⊂ Y\{0} × X∗ satisfying x̄ + tkuk /∈ F−1(ȳ), (3.22) and (3.23) with

(v, u∗) = (0, 0). Let (xk, yk) := (x̄ + tkuk, ȳ + t p
k vk), we have that gph(F) �

(xk, yk) → (x̄, ȳ) and yk �= ȳ for all k ∈ N. By ssumption (iv), there exist τ, δ ∈
(0,+∞) such that (1.5) holds. Note that xk → x̄ and

〈
v∗

k ,
vk‖vk‖

〉
→ 1, without loss

of generality, we may assume that xk ∈ B(x̄, δ)\F−1(ȳ) and
〈
v∗

k ,
vk‖vk‖

〉
≥ 1

2 for all

k ∈ N. Then, it follows from (1.5) that

τ t p−1
k d(xk, F−1(ȳ)) = τ‖xk − x̄‖p−1d(xk, F−1(ȳ)) ≤ d(ȳ, F(xk))

≤ ‖yk − ȳ‖ = t p
k ‖vk‖. (3.26)
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By the convexity of F and (3.22), one has

〈u∗
k , x − xk〉 ≤ 〈v∗

k , y − yk〉 ∀(x, y) ∈ gph(F).

Therefore, for any u ∈ F−1(ȳ), we have that

〈u∗
k , u − xk〉 ≤ 〈v∗

k , ȳ − yk〉 = −t p
k ‖vk‖

〈
v∗, vk

‖vk‖
〉

≤ − t p
k ‖vk‖
2

.

Together with (3.26), we obtain that

τ

2
t p−1
k d(xk, F−1(ȳ)) ≤ t p

k ‖vk‖
2

≤ 〈u∗
k , xk − u〉 ≤ ‖u∗

k‖‖xk − u‖ ∀u ∈ F−1(ȳ).

Since xk /∈ F−1(ȳ) and u is chosen from F−1(ȳ)) arbitrarily, we conclude that 0 <
τ
2 ≤ ‖u∗

k‖
t p−1
k

, which contradicts the fact that
‖u∗

k‖
t p−1
k

→ 0. Therefore (i i) holds and the

proof is complete. ��
Nextwe provide an example showing that in Remark 3.2, the first inclusion in (3.24)

is strict, which illustrates that Theorem 3.1 ((i i i) ⇒ (iv)) is indeed an improvement
of [7, Theorem 1-(2)] upon considering u = 0 and s = 1.

Example 3.1 Let X = Y = R, p = 2 and (x̄, ȳ) = (0, 0). Consider the multifunction
F : R ⇒ R defined as follows:

F(x) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

R, if x ∈ (−∞, 0];
[x2 − 1

(n+1)2
,+∞) ∪ (−∞,− 2

n2
+ 2

(n+1)2
], if x ∈ ( 1

n+1 ,
1
n ), n ∈ N;

[0,+∞) ∪ (−∞,− 2
n2

+ 2
(n+1)2

], if x = 1
n , n ∈ N;

[x2 − 1,+∞) ∪ (−∞,−x2 + 1], if x ∈ [1,+∞).

It is clear that the F is of closed graph and F−1(0) = (−∞, 0] ∪ { 1n |n ∈ N}. First
we show that (0, 0) /∈ C̃r F(0, 0, 2). If this is not true, then there exist sequences
{tk} ⊂ (0,+∞), {(uk, v

∗
k )} ⊂ SX × SY ∗ and {(vk, u∗

k)} ⊂ Y\{0} × X∗ satisfy-

ing (3.22), (3.23) and
t2k ‖vk‖

d(ȳ,F(x̄+tk uk ))
→ 1 with (v, u∗) = (0, 0). Let xk := tkuk

and yk := t2k vk . Without loss of generality, we may assume that tk ∈ (0, 1) and

0 <
|yk |

d(0,F(xk))
< 2 for all k ∈ N. Then there exists subsequence {nk} of natu-

ral numbers such that tk ∈ [ 1
nk+1 ,

1
nk

) for all k ∈ N. By Remark 3.1, we have

that xk /∈ F−1(0), and then uk = 1. Note that F(xk) = [x2k − 1
(nk+1)2

,+∞) ∪
(−∞,− 2

n2k
+ 2

(nk+1)2
], xk = tk and d(0, F(xk)) = x2k − 1

(nk+1)2
< 1

n2k
− 1

(nk+1)2
,

one has yk > 0 and d(0, F(xk)) ≤ yk < 2
n2k

− 2
(nk+1)2

. If d(0, F(xk)) < yk , then

(xk, yk) ∈ int gph(F) and then N̂ (gph(F), (xk, yk)) = {(0, 0)}, which is in direct con-
tradiction with (3.22). If d(0, F(xk)) = yk , then N̂ (gph(F), (xk, yk)) = {(2xk,−1)},
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and then u∗
k = 2xk and

u∗
k

tk
= 2 � 0, which arrives also at a contraction. This shows

that (0, 0) /∈ C̃r F(x̄, ȳ, 2). It then follows from Theorem 3.1 that F is pseudo met-
rically subregular of order 2 at (0, 0). Next, we show that (0, 0) ∈ Ĉr F(x̄, ȳ, 2).
Let tn = 2n+1

2n(n+1) , un = 1, vn = − 8
2n+1 , u∗

n = 0 and v∗
n = −1. It is clear that

tnun ∈ ( 1
n+1 ,

1
n ), t2n vn = − 2

n2
+ 2

(n+1)2
∈ F(tnun), 〈v∗

n , vn/‖vn‖〉 = 1, (vn, u∗
n) →

(0, 0) and (u∗
n,−v∗

n) = (0, 1) ∈ N̂ (gph(F), (tnun, t2n vn)). This shows that (0, 0) ∈
Ĉr F(0, 0, 2). Together with (3.24), we conclude that C̃r F(0, 0, 2) is strictly smaller
than Ĉr F(0, 0, 2).

From Example 3.1 and Remark 3.2, it is easy to observe that condition (i) in
Theorem 3.1 is only sufficient but not necessary for pseudo metric subregularity.

It is worth to mention that condition (i) in Theorem 3.1 is not sufficient for pseudo
metric regularity (for definition, see [7, Definition 1]). For instance, consider a mul-
tifunction F : R ⇒ R such that F(x) = [x p,+∞) (p ∈ [1,+∞)) for all x ∈ R. It
is easy to verify that (0, 0) /∈ Cr F(0, 0, p), but F is not pseudo metrically regular at
(0, 0) .

Next, we show that statement (i) in Theorem 3.1 is a characterization for stability
of pseudo metric subregularity under C1,p and p-bounded smooth perturbations.

Theorem 3.2 Let (x̄, ȳ) ∈ gph(F) and p ∈ [1,+∞). Then, the following statements
are equivalent:

(i) (0, 0) /∈ Cr F(x̄, ȳ, p);
(ii) F is pseudo metrically subregular of order p stable at (x̄, ȳ) under p-bounded

smooth perturbation.
(iii) F is pseudo metrically subregular of order p stable at (x̄, ȳ) under C1,p pertur-

bation.

Proof We first show that (i) ⇒ (i i). Suppose to the contrary that (i) holds but F is
not pseudo metrically subregular of order p stable at (x̄, ȳ) under p-bounded smooth
perturbation, i.e., there exist fk ∈ C1(X , Y , x̄) and δk ∈ (0, 1/k) such that fk(x̄) = 0,

‖∇ fk(x)‖ ≤ 1

k
‖x − x̄‖p−1 ∀x ∈ B(x̄, δk) (3.27)

and F + fk is not pseudo metrically subregular of order p at (x̄, ȳ). Note that (x̄, ȳ) ∈
gph(F + fk), it follows from Theorem 3.1 that (0, 0) ∈ C̃r(F + fk)(x̄, ȳ, p). Then,
for every k there exist sequences {tki } ⊂ (0,+∞), {(uki , v

∗
ki

)} ⊂ SX × SY ∗ and

{(vki , u∗
ki

)} ⊂ Y\{0} × X∗ satisfying tki → 0,

(
vki ,

u∗
ki

t p−1
ki

)
→ (0, 0), as i → ∞, and

(u∗
ki ,−v∗

ki ) ∈ N̂ (gph(F + fk), (x̄ + tki uki , ȳ + t p
kivki )) ∀i ∈ N. (3.28)

For each k we can find some index ik such that tkik
≤ δk, ‖vkik

‖ ≤ 1/k and ‖u∗
kik

‖ ≤
t p−1
kik
k . Let tk := tkik

, uk := ukik
, vk := vkik

− f (x̄+tkik
ukik

)

t p
kik

, u∗
k := u∗

kik
− ∇ f (x̄ +
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tkik
ukik

)∗v∗
kik

and v∗
k := v∗

kik
. It is clear that (uk, v

∗
k ) ∈ SX × SY ∗ , ȳ + t p

k vk ∈ F(x̄ +
tkuk). From (2.1) and (3.28), we obtain that

(u∗
k ,−v∗

k ) ∈ N̂ (gph(F), (x̄ + tkik ukik , ȳ + t p
kik

vkik − f (x̄ + tkik ukik )))

= N̂ (gph(F), (x̄ + tkuk, ȳ + t p
k vk)).

Since ‖x̄ + tkuk − x̄‖ = tk < δk , it follows from (3.27) that ‖∇ fk(x̄ + tkuk)‖ ≤
1
k ‖tkuk‖p−1 = t p−1

k
k , for each k ∈ N. By themeanvalue theorem, there exists θ ∈ (0, 1)

such that

‖ f (x̄ + tkuk) − f (x̄)‖
t p
k

= ‖∇ f (x̄ + θ tkuk)tkuk‖
t p
k

≤ 1

k
.

Therefore, we calculate that

‖u∗
k‖

t p−1
k

≤
‖u∗

kik
‖

t p−1
k

+ ‖∇ f (x̄ + tkuk)
∗v∗

k ‖
t p−1
k

≤ ‖u∗
kik

‖
t p−1
k

+ 1

k
→ 0

and ‖vk‖ ≤ ‖vkik ‖ + ‖ f (x̄+tk uk )‖
t p
k

≤ ‖vkik ‖ + 1
k → 0 as k → ∞. This shows that

(0, 0) ∈ Cr F(x̄, ȳ, p), which is a direct contradiction with the assumption. Hence,
(i) ⇒ (i i) is true.

(i i) ⇒ (i i i) follows straightly from Definition 1.1.
For (i i i) ⇒ (i), we argue with contradiction. Assume that (i i i) is true but (0, 0) ∈

Cr F(x̄, ȳ, p), i.e., there exist sequences {tk} ⊂ (0,+∞), {(uk, v
∗
k )} ⊂ SX × SY ∗ and

{(vk, u∗
k)} ⊂ Y × X∗ satisfying tk → 0,

(
vk,

u∗
k

t p−1
k

)
→ (0, 0) and (3.22). Taking

subsequences if necessary, we may assume that tk ∈ (0, 1), tk+1 <
tk
4 , ‖vk‖ < 1

k2

and ‖u∗
k‖ <

t p−1
k
2k . Let (xk, yk) := (x̄ + tkuk, ȳ + t p

k vk). By (3.22), there are numbers
ρk ∈ (0, tk

2k ) such that

〈(u∗
k ,−v∗

k ), (x, y) − (xk , yk)〉 ≤ t p−1
k

2k
(‖x − xk‖ + ‖y − yk‖) ∀(x, y) ∈ gph(F) ∩ (B(xk , ρk)

×B(yk , ρk)),

and thus we arrive at the estimates

〈−v∗
k , y − yk〉 ≤ 〈−u∗

k , x − xk〉 + t p−1
k

2k
(‖x − xk‖ + ‖y − yk‖)

≤ t p−1
k

k
(‖x − xk‖ + ‖y − yk‖) ∀(x, y) ∈ gph(F) ∩ (B(xk, ρk) × B(yk, ρk)).

(3.29)
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For each k ∈ N, pick continuous linear functionsq∗
k ∈ SX∗ and p∗

ki ∈ SX∗ , for each i <

k such that

〈q∗
k , x̄ − xk〉 = ‖xk − x̄‖ = tk, 〈p∗

ki , xi − xk〉 = ‖xi − xk‖.

We define the function ξk : X → R+ and the mapping f : X → Y as

ξk(x) := 4t−2
k

(

〈q∗
k , x − xk〉2 +

k−1∑

i=1

〈p∗
ki , x − xk〉2

)

∀x ∈ X , k ∈ N

and

f (x) :=
∞∑

k=1

fk(x) :=
∞∑

k=1

−(1 − ξk(x))
1+p
+

(

t p
k vk − t p−1

k ρk zk√
k

)

∀x ∈ X ,

respectively, where (1 − ξk(x))+ := max{1 − ξk(x), 0} and {zk} ⊂ SY such that
〈v∗

k , zk〉 ≥ 1/2 for all k ∈ N. It is clear that

∞∑

k=1

‖ fk(x)‖ ≤
∞∑

k=1

∥∥∥∥∥
t p
k vk − t p−1

k ρk zk√
k

∥∥∥∥∥
=

∞∑

k=1

∥∥∥∥vk − ρk zk

tk
√

k

∥∥∥∥ t p
k ≤

∞∑

k=1

(
1

k2
+ 1

2k
3
2

)
t p
k < ∞,

which indicates that f is well defined on X . Next we prove that the mapping F + f is
not pseudo metrically subregular of order p at (x̄, ȳ). To this end, we fix an arbitrary
x ∈ B(xk, ρk/2), then for any k ∈ N, it follows from the proof (part 2) of [5, Theorem
3.2, p. 1447] that

0 ≤ ξk(x) ≤ 16ρ2
k

15t2k
≤ 4

15k2
→ 0 as k → ∞ (3.30)

and ξl(x) ≥ 1 for all l �= k. Hence we obtain that

f (x) = −(1 − ξk(x))1+p

(

t p
k vk − t p−1

k ρk zk√
k

)

∀x ∈ B(xk, ρk/2)

and therefore f (xk) = −t p
k vk + t p−1

k ρk zk√
k

(since ξk(xk) = 0). Using the fact that

(xk, yk) ∈ gph(F), we arrive at

d(ȳ, (F + f )(xk)) ≤ ‖ȳ − yk − f (xk)‖ =
∥∥∥∥∥

t p−1
k ρk zk√

k

∥∥∥∥∥
= t p−1

k ρk√
k

. (3.31)
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By (3.30), we immediately obtain the bound

0 ≤ t p
k (1 − (1 − ξk(x))1+p) = t p

k ((1 + p)ξk(x) + o(ξk(x))) ≤ 2(1 + p)t p
k ξk(x)

≤ 32

30k
(1 + p)t p−1

k ρk (3.32)

for sufficiently large k ∈ N, where o : R+ → R+ shares the property that o(t)/t → 0
as t ↓ 0. Now we claim that d(xk, (F + f )−1(ȳ)) ≥ ρk

2 for sufficiently large k ∈ N.
Indeed, if this is not true, then for any sufficiently large K ∈ N, there exists some
k ≥ K and x ∈ B(xk, ρk/2) such that ȳ ∈ (F + f )(x). Then ȳ − f (x) ∈ F(x). By
(3.32), we calculate that

‖ȳ − f (x) − yk‖ =
∥∥∥∥∥
−t p

k vk + (1 − ξk(x))1+p

(

t p
k vk − t p−1

k ρk zk√
k

)∥∥∥∥∥

≤ t p
k (1 − (1 − ξk(x))1+p)‖vk‖ + (1 − ξk(x))1+p t p−1

k ρk√
k

≤
(
32(1 + p)

30k3
+ 1√

k

)
t p−1
k ρk <

ρk

2
,

(the last inequality holds since k is sufficiently large), which indicates that (x, ȳ −
f (x)) ∈ gph(F) ∩ B(xk, ρk/2) × B(yk, ρk/2). Hence it follows from (3.29) that

〈−v∗
k , ȳ − f (x) − yk〉 ≤ t p−1

k

k
(‖x − xk‖ + ‖ȳ − f (x) − yk‖) ≤ t p−1

k ρk

k
.(3.33)

On the other hand, for sufficiently large k, by using the fact that 1
2 < (1− 4

15k2
)1+p <

(1 − ξk(x))1+p ≤ 1 and inequality (3.32), we arrive at

〈−v∗
k , ȳ − f (x) − yk 〉 =

〈

−v∗
k , ((1 − ξk (x))1+p − 1)t p

k vk − (1 − ξk (x))1+p t p−1
k ρk zk√

k

〉

≥ −t p
k (1 − (1 − ξk (x))1+p)‖vk‖ + (1 − ξk (x))1+p t p−1

k ρk√
k

〈
v∗

k , zk
〉

≥ − 32t p−1
k ρk

30k3
+ t p−1

k ρk

4
√

k
,

which is a contradiction to (3.33) due to the fact that− 32
30k3

+ 1
4
√

k
> 1

k for sufficiently

large k ∈ N. Together with (3.31) we conclude that

‖xk − x̄‖p−1d(xk , (F + f )−1(ȳ)) = t p−1
k d(xk , (F + f )−1(ȳ)) ≥

√
k

2
d(ȳ, (F + f )(xk))

for k ∈ N large enough. This shows that F + f is not pseudo metrically subregular
of order p at (x̄, ȳ).
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To complete the proof, it remains to demonstrate that f ∈ C1,p(X , Y , x̄) with
f (x̄) = 0 and ∇ f (x̄) = 0. It is clear that each of the function ξk is continuously
differentiable at any x ∈ X with derivative

〈∇ξk(x), u〉=8t−2
k

(

〈q∗
k , x − xk〉〈q∗

k , u〉 +
k−1∑

i=1

16i−k〈p∗
ki , x − xk〉〈p∗

ki , u〉
)

∀u ∈ X

and by using the Cauchy-Schwarz inequality, we also have t2k ‖∇ξk(x)‖ ≤ 8tk
√

ξk(x)

(for details see the proof (part 2) of [5, Theorem 3.2, p. 1449]). And then, each fk is
also continuously differentiable at any x ∈ X with derivative

∇ fk(x)u = (1 + p)(1 − ξk(x))
p
+〈∇ξk(x), u〉

(

t p
k vk − t p−1

k ρk zk√
k

)

∀u ∈ X ,

and consequently

∞∑

i=1

‖∇ fk(x)‖ ≤ ∑∞
i=1(1 + p)(1 − ξk(x))

p
+‖∇ξk(x)‖

∥∥∥∥t p
k vk − t p−1

k ρk zk√
k

∥∥∥∥

≤ ∑∞
i=1 8(1 + p)(1 − ξk(x))

p
+
√

ξk(x)t p−1
k

(
vk + ρk

tk
‖zk‖√

k

)

≤ ∑∞
i=1 8(1 + p)t p−1

k

(
1
k2

+ 1

k
3
2

)
< +∞ ∀x ∈ X (3.34)

(the fact that 0 ≤ (1 − ξk(x))
p
+
√

ξk(x) ≤ 1 for all x ∈ X has been used in the above
inequality). Hence f is continuously differentiable thanks to the uniform convergence
of

∑∞
i=1 ‖∇ fk(x)‖ with respect to x . Notice that 〈q∗

k , x̄ − xk〉 = tk for all k ∈ N,
one has ξk(x̄) ≥ 4, and then (1 − ξk(x̄))+ = 0. Hence, we have that f (x̄) = 0 and
∇ f (x̄) = 0. We also have the estimates

t2k
4

ξk(x) ≥ 〈q∗
k , x − xk〉2 = (〈q∗

k , x − x̄〉 + tk)
2 ≥ t2k − 2tk‖x − x̄‖ ∀x ∈ X ,

and consequently

1 − ξk(x) ≤ −3 + 8t−1
k ‖x − x̄‖ < 8t−1

k ‖x − x̄‖ ∀x ∈ X . (3.35)

Let ε ∈ (0, 1) be arbitrarily given. Since
∑∞

k=1 8
p(1 + p)

(
1
k2

+ 1

k
3
2

)
< ∞, there

exists an index K such that
∑∞

k=K+1 8
p(1 + p)

(
1
k2

+ 1

k
3
2

)
< ε. Let δ = 1

2 min{tk :
k = 1, · · · , K }. Fixing any 1 ≤ k ≤ K and x ∈ B(x̄, δ), we have 〈q∗

k , x − xk〉 =
〈q∗

k , x̄ − xk〉 + 〈q∗
k , x − x̄〉 ≥ tk − δ ≥ tk/2, which indicates that ξk(x) ≥ 1. This
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shows that (1 − ξk(x))+ = 0, and then ∇ fk(x) = 0 for all k = 1, · · · , K and all
x ∈ B(x̄, δ). Together with (3.34),(3.35) and ∇ f (x̄) = 0, we conclude that

‖∇ f (x) − ∇ f (x̄)‖

≤
∞∑

k=1

‖∇ fk(x)‖ =
∞∑

k=K+1

‖∇ fk(x)‖

≤
∞∑

k=K+1

8(1 + p)(1 − ξk(x))
p
+
√

ξk(x)t p−1
k

(
1

k2
+ 1

k
3
2

)

≤
∞∑

k=K+1

8(1 + p)(1 − ξk(x))+
√

ξk(x)(8t−1
k ‖x − x̄‖)p−1t p−1

k

(
1

k2
+ 1

k
3
2

)

≤
∞∑

k=K+1

8p(1 + p)‖x − x̄‖p−1
(

1

k2
+ 1

k
3
2

)
< ε‖x − x̄‖p−1 ∀x ∈ B(x̄, δ).

This shows that f ∈ C1,p(X , Y , x̄), which justifies that (i i i) ⇒ (i). The proof is
complete. ��
Remark 3.3 In Theorem 3.2, the approach of proving (i i i) ⇒ (i) is inspired from
Gfrerer [5, Theorem 3.2-(2)] and it can be simplified by setting ξk(x) := 4t2k ‖x − xk‖2
when X is a Fréchet smooth Banach space. In the case of p = 1, the equivalence
(i) ⇔ (i i) in Theorem 3.2 goes back to the statement (i) ⇔ (i i) in [8, Theorem 2.8],
which gives a characterization for the stability of metric subregularity under small C1

perturbation.

It’s well understood that Hölder strong metric subregularity is stronger than pseudo
metric subregularity and it naturally possess the stability under smallLipschitz function
perturbation, see [19] and the references therein. The following example illustrates
that, even infinite dimensional spaces, condition (i) inTheorem3.2 implies the stability
of pseudometric subregularity, but not necessarily imply the property of Hölder strong
metric subregularity.

Example 3.2 Let X = R
2, Y = R, p = 2 and (x̄, ȳ) = ((0, 0), 0). Consider the

multifunction F : R
2 ⇒ R satisfying F(s, t) = [s2+2s+t2,+∞) for all (s, t) ∈ R

2.
At first, we show that (0, (0, 0)) /∈ Cr F(x̄, ȳ, p). Otherwise, there exists sequences
{τk} ⊂ (0,+∞), {(uk, v

∗
k )} = {((sk, tk), v∗

k )} ⊂ SR2 × SR and {(vk, (s∗
k , t∗k ))} ⊂

R\{0} × R
2 satisfying τk → 0,

(
vk,

(s∗
k ,t∗k )

τk

)
→ (0, (0, 0)) and

((s∗
k , t∗k ),−v∗

k ) ∈ N̂ (gph(F), (τk(sk, tk), τ
2
k vk)) ∀k ∈ N. (3.36)

Then, it is easy to see that (τk(sk, tk), τ 2k vk) ∈ bd(gph(F)) and N̂ (gph(F), (τk(sk, tk),
τ 2k vk)) = {λ((2τksk + 2, 2τk tk),−1) : λ ≥ 0}, for all k ∈ N. Note that v∗

k ∈ SR, one
has v∗

k = 1, and then, it follows from (3.36) that (s∗
k , t∗k ) = (2τksk + 2, 2τk tk), for

all k ∈ N. Hence,
(s∗

k ,t∗k )

τk
= (2τk sk+2,2τk tk )

τk
→ (0, 0), which contradicts the fact that
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(sk, tk) ∈ SR2 . Therefore, (0, (0, 0)) /∈ Cr F(x̄, ȳ, p) and it follows from Theorem
3.2 that F is pseudo metrically subregular of order 2 stable at ((0, 0), 0) under C1,2

perturbation. It is clear that F−1(0) = {(s, t) ∈ R
2 : s2 + 2s + t2 ≤ 0} �= {(0, 0)},

which indicates that F is not Hölder strongly metrically subregular of order 2 at
((0, 0), 0).

4 Pseudo weak sharpminimizer

In this section, we mainly consider the pseudo weak sharp minimizer of a proper
lower semicontinuous function f and its relation with pseudo metric subregularity
of the subdifferential mapping ∂̂ f . Recall that for a lower semicontinuous function
f on a Banach space X , x̄ ∈ dom( f ) is said to be a q-order weak sharp minimizer
(q ∈ (0,+∞)) if there exist κ, r , δ ∈ (0,+∞) such that f (x̄) = infu∈B[x̄,r ] f (u)

and

κd(x, S( f , x̄, r))q ≤ f (x) − f (x̄) ∀x ∈ BX (x̄, δ),

where S( f , x̄, r) := {x ∈ X : f (x) = infu∈B[x̄,r ] f (u)}. It is well recognized that
x̄ ∈ S( f , x̄, r) ⊂ (∂̂ f )−1(0), which induce the following weaker notion of pseudo
weak sharp minimizer. Let p ∈ [1,+∞), r ∈ (0,+∞], f : X → R ∪ {+∞} and
x̄ ∈ dom( f ), we say that x̄ is a p-order pseudo weak sharp minimizer of f if there
exist κ, δ ∈ (0,+∞) such that

κ‖x − x̄‖p−1d(x, (∂̂ f )−1(0))2 ≤ f (x) − inf
u∈B[x̄,r ] f (u) ∀x ∈ B(x̄, δ).

It is clear that x̄ is a p-order pseudo weak sharp minimizer of f , it must be a mini-
mizer of f . In terms of Hölder metric subregularity of the subdifferential mapping, the
authors [18,19,28,29] get the Hölder weak sharp minimizer for a proper lower semi-
continuous function f . Under the pseudo metric subregularity of the subdifferential
mapping ∂̂ f , we have the following result:

Theorem 4.1 Let X be an Asplund space and f : X → R ∪ {+∞} be a proper lower
semicontinuous function. Let p ∈ [1,+∞), r ∈ (0,+∞] and let x̄ ∈ (∂̂ f )−1(0).
Then the following statements hold:

(i) Suppose that there exist κ, δ ∈ (0,+∞) such that

κ‖x − x̄‖p−1d(x, (∂̂ f )−1(0)) ≤ d(0, ∂̂ f (x)) ∀x ∈ B(x̄, δ). (4.1)

Then

τ‖x − x̄‖p−1d(x, (∂̂ f )−1(0))2 ≤ f (x) − inf
u∈B[x̄,r ] f (u) ∀x ∈ B(x̄, η), (4.2)

where τ := pκ

(1+p)1+p and η := 1+p
1+2p min{r , δ}.
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(ii) Suppose that f is convex and that there exist τ, η ∈ (0,+∞) such that (4.2)
holds, then

τ‖x − x̄‖p−1d(x, (∂̂ f )−1(0)) ≤ d(0, ∂̂ f (x)) ∀x ∈ B(x̄, η). (4.3)

Consequently, under the convexity assumption on f , x̄ is a p-order pseudo weak sharp
minimizer of f if and only if ∂̂ f is pseudo metrically subregular of order p at (x̄, 0).

Proof (i) Suppose to the contrary that (4.2) is not true, namely there exists x0 ∈ B(x̄, η)

such that

f (x0) < inf
u∈B[x̄,r ] f (u) + τ‖x0 − x̄‖p−1d(x0, (∂̂ f )−1(0))2.

This implies that ‖x0 − x̄‖p−1d(x0, (∂̂ f )−1(0))2 > 0. Take some τ ′ ∈ (0, τ ) suffi-
ciently close to τ such that

f (x0) < inf
u∈B[x̄,r ] f (u) + τ ′‖x0 − x̄‖p−1d(x0, (∂̂ f )−1(0))2,

then, it follows from the Ekeland variational principle (Lemma 2.2) that there exists
x̂ ∈ B[x̄, r ] such that

‖x̂ − x0‖ <
p

1 + p
d(x0, (∂̂ f )−1(0)) (4.4)

and

f (x̂) ≤ f (x) + τ ′(1 + p)

p
‖x0 − x̄‖p−1d(x0, (∂̂ f )−1(0))‖x − x̂‖ ∀x ∈ B(x̄, r).

(4.5)

This implies that 0 ∈ ∂̂( f + τ ′(1+p)
p ‖x0 − x̄‖p−1d(x0, (∂̂ f )−1(0))‖ · −x̂‖)(x̂). For

any

σ ∈
(
0,min

{
p

1 + p
d(x0, (∂̂ f )−1(0))

−‖x̂ − x0‖, (τ − τ ′)(1 + p)

p
‖x0 − x̄‖p−1d(x0, (∂̂ f )−1(0))

})
,

it follows from Lemma 2.1 (i) that there exists x̃ ∈ B(x̂, σ ) such that

0 ∈ ∂̂ f (x̃) +
(

τ ′(1 + p)

p
‖x0 − x̄‖p−1d(x0, (∂̂ f )−1(0)) + σ

)
BX . (4.6)
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Then by (4.4) and the choice of σ , it is easy to see that ‖x̃ −x0‖ ≤ ‖x̂−x0‖+‖x̂− x̃‖ <

‖x̂ − x0‖ + σ <
p

1+p d(x0, (∂̂ f )−1(0)). Therefore, we have

d(x̃, (∂̂ f )−1(0)) ≥ d(x0, (∂̂ f )−1(0)) − ‖x̃ − x0‖ ≥ 1

1 + p
d(x0, (∂̂ f )−1(0))

and

‖x̃ − x̄‖ ≥ ‖x0 − x̄‖ − ‖x̃ − x0‖ ≥ ‖x0 − x̄‖ − p

1 + p
d(x0, (∂̂ f )−1(0)) ≥ 1

1 + p
‖x0 − x̄‖.

Together with (4.6), we obtain that

d(0, ∂̂ f (x̃)) ≤ τ ′(1 + p)

p
‖x0 − x̄‖p−1d(x0, (∂̂ f )−1(0)) + σ

<
τ(1 + p)

p
‖x0 − x̄‖p−1d(x0, (∂̂ f )−1(0))

≤ τ(1 + p)1+p

p
‖x̃ − x̄‖p−1d(x̃, (∂̂ f )−1(0)).

(4.7)

On the other hand, it is easy to see that

‖x̃ − x̄‖ ≤ ‖x0 − x̄‖ + ‖x̃ − x0‖ ≤ ‖x0 − x̄‖ + p

1 + p
d(x0, (∂̂ f )−1(0))

≤ 1 + 2p

1 + p
‖x0 − x̄‖ <

(1 + 2p)η

1 + p
.

By the definition of η, it follows that x̃ ∈ B(x̄,min{r , δ}). Hence, by (4.1), one has

κ‖x̃ − x̄‖p−1d(x̃, (∂̂ f )−1(0)) ≤ d(0, ∂̂ f (x̃)).

Together with (4.7), we have κ <
τ(1+p)1+p

p , which contradicts the definition of τ and
completes the proof of part (i).

(ii) Pick any x ∈ B(x̄, η) and take a sequence {xk} in (∂̂ f )−1(0) such that
d(x, (∂̂ f )−1(0)) = limk→∞ ‖xk − x‖. Since x̄ ∈ (∂̂ f )−1(0), it follows from the
convexity of f that f (x̄) = f (xk) = infu∈B[x̄,r ] f (u) for all k ∈ N. Let x∗ ∈ ∂̂ f (x),
then

f (x) − f (x̄) = f (x) − f (xk) ≤ 〈x∗, x − xk〉 ≤ ‖x∗‖‖x − xk‖ ∀k ∈ N.

This and (4.2) imply that

τ‖x − x̄‖p−1d(x, (∂̂ f )−1(0))2 ≤ f (x) − f (x̄) ≤ ‖x∗‖‖x − xk‖ ∀k ∈ N.

Letting k → ∞, we obtain that τ‖x − x̄‖p−1d(x, (∂̂ f )−1(0)) ≤ ‖x∗‖. Since x∗ is
arbitrarily chosen from ∂̂ f (x), we conclude that (4.3) holds. The proof is complete. ��
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Under the stability assumption of pseudometric subregularity of the subdifferential
mapping, we obtain the following result involving the stability of pseudo weak sharp
minimizer.

Corollary 4.1 Let p ∈ [1,+∞), r ∈ (0,+∞], f : X → R ∪ {+∞} be a proper
lower semicontinuous function, and x̄ ∈ (∂̂ f )−1(0). And let ∂̂ f be pseudo metrically
subregular of order p stable at (x̄, 0) under C1,p perturbation. Then, for any twice
smooth function g : X → R with ∇g ∈ C1,p(X , R, x̄), ∇g(x̄) = 0 and ∇2g(x̄) = 0,
we have that x̄ is a p-order pseudo weak sharp minimizer of f + g.

Proof Pick any twice smooth function g : X → R with ∇g ∈ C1,p(X , R, x̄),
∇g(x̄) = 0 and ∇2g(x̄) = 0, one has ∂̂( f + g)(x̄) = ∂̂ f (x̄) + ∇g(x̄) = ∂̂ f (x̄).
And then, x̄ ∈ (∂̂( f + g))−1(0). By the assumption, we have ∂̂( f + g) is pseudo met-
rically subregular of order p at (x̄, 0). Then, the result directly follows from Theorem
4.1 (i). The proof is complete. ��

5 Concluding remarks

The major efforts of this paper are dedicated to investigating the stability of pseudo-
metric subregularity of order p under small smooth perturbations. Limit critical sets
involving order p are employed as the basic tool to characterize sufficient conditions
as well as equivalent description for pseudo-metric subregularity. In Example 1.2,
it is pointed out that the property of Hölder metric subregularity is also not stable
under small C1,p perturbation. Motivated by Theorem 3.1, to study Hölder metric
subregularity of order p, we may adopt the following limit critical set Cr ′F(x̄, ȳ, p):
for (x̄, ȳ) ∈ gph(F), p ∈ [1,+∞) and (v, u∗) ∈ Y × X∗, we define that (v, u∗) ∈
Cr ′F(x̄, ȳ, p) if there exist sequences {tk} ⊂ (0,+∞), {(uk, v

∗
k )} ⊂ SX × SY ∗ and

{(vk, u∗
k)} ⊂ Y\{0} × X∗ satisfying (3.22) and

tk → 0,

(
vk,

u∗
k

d(x̄ + tkuk, F−1(ȳ))p−1

)
→ (v, u∗).

Similar to the proof of Theorem 3.1 (by applying Lemma 3.1 (ii) instead of Lemma
3.1 (i)), it can also be shown that (0, 0) /∈ Cr ′F(x̄, ȳ, p) is a sufficient condition
for Hölder metric subregularity. Then it is natural to propose the following open
question: Is (0, 0) /∈ Cr ′F(x̄, ȳ, p) a characterization for the stability of Hölder
metric subregularity under small C1,p perturbations?
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