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Abstract
In this paper, we introduce some strong and weak bilevel vector equilibrium problems
in locally convex Hausdorff topological vector spaces and present some conditions for
the existence of solutions to these problems by using the Kakutani–Fan–Glicksberg
fixed-point theorem. Furthermore, as a real-world application, we obtain the existence
of solutions to traffic network problems with equilibrium constraints.
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equilibrium constraints · Existence conditions
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1 Introduction

Motivated from the papers [18,22] in 1994, Blum and Oettli [8] introduced equilib-
rium problems which motivated some optimization problems [16,20,28,43], varia-
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tional inequality problems [19,26], lower and upper bounded equilibrium problems
[9,12,27], traffic network problems [13,41] andothers.Usually one is interested infind-
ing general and natural condition to guarantee the existence of solutions to optimization
problems [16], lower and upper bounded equilibrium problems [9,12], equilibrium
problems [21,30,37,42], variational relation problems [1,7,23,32,38] and other prob-
lems. In 2004, Mordukhovich [35] introduced and studied equilibrium problems with
equilibrium constraints and these problems include bilevel optimization problems,
bilevel variational inequality problems, mathematical program problems with equi-
librium constraints, optimization problems with equilibrium constraints, optimization
problems with variational inequality constraints, lower and upper bounded vector
equilibrium problems with equilibrium constraints and traffic network problems with
equilibrium constraints. Anh et al. [5], Chen et al. [11], Ding [14,15], Moudafi [36],
Wangkeeree and Yimmuang [40], Chadli et al. [10] considered existence of solutions,
Anh and Hung [2,3], Hung and Hai [24] considered stability properties of solutions
and Chen et al. [11] considered the well-posedness of solutions. To the best of our
knowledge nobody has considered existence conditions for solutions of strong and
weak bilevel vector equilibrium problems and traffic network problems with equi-
librium constraints so inspired by the papers of Anh and Hung [2,3], Hung and Hai
[24], Yang and Pu [42], Chen et al. [11], Ding [14,15], Moudafi [36], Wangkeeree
and Yimmuang [40], Chadli et al. [10], in this paper, we present existence conditions
for solutions of strong and weak bilevel vector equilibrium problems with multifunc-
tions in locally convex Hausdorff topological vector spaces and discuss applications
to traffic network problems with equilibrium constraints.

The rest of the paper is organized as follows: In Sect. 2, we introduce some strong
and weak bilevel vector equilibrium problems. In Sect. 3, we present some existence
conditions for solutions to these problems. Traffic network problems with equilibrium
constraints is discussed in Sect. 4.

2 Preliminaries

Let X , Z be real locally convex Hausdorff topological vector spaces, A be a nonempty
compact subset of X and C1 ⊂ Z be a closed convex and pointed cone with intC1 �=
∅, where intC1 is the interior of C1. Let K : A ⇒ A and F : A × A ⇒ Z be
multifunctions.

Now, we consider the following strong and weak vector quasi-equilibrium prob-
lems:
(SQVEP) Find a point x̄ ∈ K (x̄) such that

F(x̄, y) ⊂ C1, ∀y ∈ K (x̄);

(WQVEP) Find a point x̄ ∈ K (x̄) such that

F(x̄, y) �⊂ −intC1, ∀y ∈ K (x̄).
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We denote the solution sets of the problems (SQVEP) and (WQVEP) by Ss(F) and
Sw(F), respectively.

Let P be a real locally convex Hausdorff topological vector space, C2 ⊂ P be
a closed convex and pointed cone with intC2 �= ∅ and H : A × A ⇒ P be a
multifunction.

Also, we consider the following strong and weak bilevel vector equilibrium prob-
lems:
(SBVEP) Find a point x̄∗ ∈ Ss(F) such that

H(x̄∗, y∗) ⊂ C2, ∀y∗ ∈ Ss(F);

(WBVEP) Find a point x̄∗ ∈ Sw(F) such that

H(x̄∗, y∗) �⊂ −intC2, ∀y∗ ∈ Sw(F),

where Ss(F) and Sw(F) are the solution sets of the strong and weak vector quasi-
equilibrium problems, respectively.

We denote the solution sets of the problems (SBVEP) and (WBVEP) by Ψs(H)

and Ψw(H), respectively, i.e.,

Ψs(H) = {x̄∗ ∈Ss(F) : H(x̄∗, y∗) ⊂ C2, ∀y∗ ∈ Ss(F)

and F(x̄, y) ⊂ C1, ∀y ∈ K (x̄)}.

and

Ψw(H) = {x̄∗ ∈Sw(F) : H(x̄∗, y∗) �⊂ −intC2, ∀y∗ ∈ Sw(F)

and F(x̄, y) �⊂ −intC1, ∀y ∈ K (x̄)}.

First, we recall the following well-known definitions:

Definition 2.1 (see [33]) Let X ,Y be two topological vector spaces, F : X ⇒ Y be a
multifunction and let x0 ∈ X be a given point.

(1) F is said to be lower semi-continuous (lsc) at x0 ∈ X if F(x0) ∩ U �= ∅ for
some open set U ⊆ Y implies the existence of a neighborhood N of x0 such that
F(x) ∩U �= ∅ for all x ∈ N .

(2) F is said to be upper semi-continuous (usc) at x0 ∈ X if, for each open set
U ⊇ G(x0), there is a neighborhood N of x0 such that U ⊇ F(x) for all x ∈ N .

(3) F is said to be continuous at x0 ∈ X if it is both lsc and usc at x0 ∈ X
(4) F is said to be closed at x0 if, for each of the nets {xα} in X converging to x0 and

{yα} in Y converging to y0 such that yα ∈ F(xα), we have y0 ∈ F(x0).

If A ⊂ X , then F is said to be usc (lsc, continuous, closed, respectively) on the set
A if F is usc (lsc, continuous, closed, respectively) for all x ∈ domF ∩ A. If A ≡ X ,
then we omit “on X” in the statement.

Lemma 2.1 (see [33]) Let X ,Y be two topological vector spaces and F : X ⇒ Y be
a multifunction. Then we have the following:
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(1) If F is upper semi-continuous with closed values, then F is closed.
(2) If F is closed and F(X) is compact, then F is upper semi-continuous.

Lemma 2.2 (see [6]) Let X ,Y be two topological vector spaces and F : X ⇒ Y be
a multifunction. Then we have the following:

(1) F is lower semi-continuous at x0 ∈ X if and only if, for each net {xα} ⊆ X which
converges to x0 ∈ X and for each y0 ∈ F(x0), there exists {yα} in Y such that
yα ∈ F(xα), yα → y0.

(2) If F has compact values, then F is upper semi-continuous at x0 ∈ X if and only
if, for each net {xα} ⊆ X which converges to x0 ∈ X and for each net {yα} in Y
such that yα ∈ F(xα), there exist y0 ∈ F(x0) and a subnet {yβ} of {yα} such that
yβ → y0.

Lemma 2.3 (see [17]) Let A be a nonempty convex compact subset of Hausdorff
topological vector space X and N be a subset of A × A such that

(i) for each x ∈ A, (x, x) /∈ N;
(ii) for each y ∈ A, the set {x ∈ A : (x, y) ∈ N } is open on A;
(iii) for each x ∈ A, the set {y ∈ A : (x, y) ∈ N } is convex or empty.

Then there exists x0 ∈ A such that (x0, y) /∈ N for all y ∈ A.

Lemma 2.4 (see [29]) Let A be a nonempty compact convex subset of a locally convex
Hausdorff vector topological space X. If F : A ⇒ A is upper semi-continuous and,
for any x ∈ A, F(x) is nonempty convex closed, then there exists x∗ ∈ A such that
x∗ ∈ F(x∗).

3 Existence of solutions

In this section, we establish some existence results for strong and weak bilevel vector
equilibrium problems.

Definition 3.1 Let X , Z be two topological vector spaces and C ⊂ Z be a nonempty
closed convex cone. Suppose that F : X × X ⇒ Z is a multifunction.

(1) F is said to be strongly C-quasiconvex (in the first variable) in a convex set A ⊂ X
if, for each y ∈ X , x1, x2 ∈ A and λ ∈ [0, 1], F(x1, y) ⊂ C and F(x2, y) ⊂ C ,
then

F(λx1 + (1 − λ)x2, y) ⊂ C .

(2) F is said to be weakly C-quasiconvex (in the first variable) in a convex set A ⊂ X
if, for each y ∈ X , x1, x2 ∈ A and λ ∈ [0, 1], F(x1, y) �⊂ −intC and F(x2, y) �⊂
−intC , then

F(λx1 + (1 − λ)x2, y) �⊂ −intC .
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Remark 3.1 In Definition 3.1, if X = R, C = R− and F : R × R → R is a vector
function, then it follows that, if, for all y ∈ X , x1, x2 ∈ X andλ ∈ [0, 1], F(x1, y) ≤ 0,
F(x2, y) ≤ 0, then

F((1 − λ)x1 + λx2), y) ≤ 0.

This means that F is modified 0-level quasiconvex since the classical quasiconvexity
says that, for each y ∈ X , x1, x2 ∈ X and λ ∈ [0, 1],

F((1 − λ)x1 + λx2), y) ≤ max{F(x1, y), F(x2, y)}.

Let X and Z be two topological vector spaces, F : X × X ⇒ Z be a multifunction,
θ ∈ Z and C ⊂ Z be a closed convex cone. We use the following level-sets:

L≥θ F := {(x, y) ∈ X × X : F(x, y) ⊂ θ + C}

and

L �<θ F := {(x, y) ∈ X × X : F(x, y) �⊂ θ − intC}.

Now, we present some existence conditions on solution sets of the strong vector
quasi-equilibrium problem (SQVEP).

Lemma 3.1 Assume that, for the problem (SQVEP),

(i) K is continuous on A with nonempty compact convex values;
(ii) for all x ∈ A, F(x, x) ⊂ C1;
(iii) the set {y ∈ A : F(·, y) �⊂ C1} is convex on A;
(iv) for all y ∈ A, F(·, y) is strongly C1-quasiconvex on A;
(v) for all (x, y) ∈ A × A, L≥0F is closed.

Then problem (SQVEP) has a solution, i.e., there exists x̄ ∈ A such that x̄ ∈ K (x̄)
and

F(x̄, y) ⊂ C1, ∀y ∈ K (x̄).

Moreover, the solution set of the problem (SQVEP) is compact.

Proof For all x ∈ A, we define a multifunction M : A ⇒ A by

M(x) = {a ∈ K (x) : F(a, y) ⊂ C1, ∀y ∈ K (x)}.

First, we show that M(x) is nonempty. Indeed, for all y ∈ A, K (x) is a nonempty
compact convex set. Set

N = {a ∈ K (x) : F(a, y) �⊂ C1}.

Then we have the following:
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(a) Condition (ii) implies that, for any a ∈ K (x), (a, a) /∈ N ;
(b) Condition (iii) implies that, for any a ∈ K (x), {y ∈ A : (a, y) ∈ N } is convex on

K (x);
(c) Condition (v) implies that, for any a ∈ K (x), {y ∈ K (x) : (a, y) ∈ N } is open on

K (x).

From Lemma 2.3, there exists a ∈ K (x) such that (a, y) /∈ N for all y ∈ K (x),
i.e., F(a, y) ⊂ C1 for all y ∈ K (x). Thus M(x) is nonempty.

Next, we verify that M(x) is a convex set. Let a1, a2 ∈ M(x), λ ∈ [0, 1] and
put a = λa1 + (1 − λ)a2. Since a1, a2 ∈ K (x) and K (x) is a convex set, we have
a ∈ K (x). Thus it follows that, for any a1, a2 ∈ M(x),

F(a1, y) ⊂ C1, ∀y ∈ K (x).

From condition (iv), since F(·, y) is strongly C1-quasiconvex, we have

F(λa1 + (1 − λ)a2, y) ⊂ C1, ∀λ ∈ [0, 1],

i.e., a ∈ M(x). Therefore, M(x) is convex.
Next, we prove that M is upper semi-continuous on A with nonempty compact

values. Indeed, since A is a compact set, from Lemma 2.1(ii), we need only to show
that M is a closed mapping. Consider a net {xα} ⊂ A with xα → x ∈ A and let
aα ∈ M(xα) be such that aα → a0.

Now, we need to verify that a0 ∈ M(x). Since aα ∈ K (xα) and K is upper semi-
continuous on A with nonempty compact values, it follows that K is closed and so we
have a0 ∈ K (x). Suppose that a0 /∈ M(x). Then there exists y0 ∈ K (x) such that

F(a0, y0) �⊂ C1. (1)

It follows from the lower semi-continuity of K that there is a net {yα} such that
yα ∈ K (xα) and yα → y0. Since aα ∈ M(xα), we have

F(aα, yα) ⊂ C1. (2)

Condition (v) together with (2) yields

F(a0, y0) ⊂ C1. (3)

This is the contradiction from (1) and (3). Therefore, we conclude that a0 ∈ M(x).
Hence M is upper semi-continuous on A with nonempty compact values.

Next, we need to prove the solution set Ss(F) �= ∅. Indeed, since M is upper semi-
continuous on Awith nonempty compact values, from Lemma 2.4, there exists a point
x̂ ∈ A such that x̂ ∈ M(x̂). This implies that x̂ ∈ K (x̂) such that

F(x̂, y) ⊂ C1, ∀y ∈ K (x̂),

i.e., problem (SQVEP) has a solution.
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Finally, we prove that Ss(F) is compact and convex. In fact, since A is compact and
Ss(F) ⊂ A, we need only to prove that Ss(F) is closed. Consider a net {xα} ⊂ Ss(F)

with xα → x0. Now, we prove that x0 ∈ Ss(F). If x0 /∈ Ss(F), there exists y0 ∈ K (x0)
such that F(x0, y0) �⊂ C1. From the lower semi-continuity of K , it follows that, for
any x0 ∈ K (x0), there exists xα ∈ K (xα) such that xα → x0. Since xα ∈ Ss(F), there
exists xα ∈ K (xα) such that

F(xα, yα) ⊂ C1, ∀y ∈ K (xα).

It follows from the upper semi-continuity and compactness of K on A that there
exists y0 ∈ K (x0) such that yα → y0 (taking a subnet if necessary). Now condition
(v) together with (xα, yα) → (x0, y0) gives

F(x0, y0) ⊂ C1, ∀y0 ∈ K (x0),

which is a contradiction. This means that x0 ∈ Ss(F). Thus Ss(F) is a closed set.
Therefore, Ss(F) is a compact subset of A. This completes the proof. ��
Definition 3.2 (see [33]) Let X ,Y be two topological vector spaces, A be a nonempty
subset of X , F : A ⇒ Y be a multifunction and C ⊂ Y be a nonempty closed convex
cone. Now F is said to be upper C-continuous at x0 ∈ A if, for any neighborhood U
of the origin in Y , there is a neighborhood V of x0 such that

F(x) ⊂ F(x0) +U + C, ∀x ∈ V .

Definition 3.3 (see [33]) Let X and Y be two topological vector spaces and A be a
nonempty convex subset of X . A set-valuedmapping F : A ⇒ Y is said to be properly
C-quasiconvex if, for any x, y ∈ A and λ ∈ [0, 1],

either F(x) ⊂ F(t x + (1 − t)y) + C or F(y) ⊂ F(t x + (1 − t)y) + C .

Remark 3.2 Yang and Pu [42] obtained some existence results for the strong vector
quasi-equilibrium problem. Note, the assumptions of Theorem 3.3 in [42] are different
from the assumptions of Lemma 3.1.

The following example shows that all the assumptions of Lemma 3.1 are satisfied,
but Theorem 3.3 in [42] is not applicable. The reason is that F is neither upper C-
continuous nor properly C-quasiconvex.

Example 3.1 Let X = Z = R, A = [−2, 2], C = R+ and let K : A ⇒ A and
F : A × A ⇒ Z be multifunctions defined by

K (x) = [0, 1],

F(x, y) =
{[ 3

2 , 2
]
, if x0 = 3

2 ,[
0, 3

2

]
, otherwise.
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It is clear to see that all the assumptions of Lemma 3.1 are satisfied. However, F is
neither upper C-continuous nor properly C-quasiconvex at x0 = 3

2 .
First, we prove that F is not upper C-continuous at x0 = 3

2 . Let U = [− 1
3 ,

1
3 ] be a

neighborhood of the origin in Z , then, for any neighborhood V = [ 32 − ε, 3
2 + ε] of

x0 = 3
2 , where ε > 0, choose 3

2 �= x ′ ∈ V and y = 3
2 . Then we have

F(x ′, y) = F

(
x ′, 3

2

)

=
[
0,

3

2

]
�⊂ F(x0, y) +U + C

= F

(
3

2
,
3

2

)
+

[
−1

3
,
1

3

]
+ R+

=
[
3

2
, 2

]
+

[
−1

3
,
1

3

]
+ R+

=
[
7

6
,
7

3

]
+ R+.

Next, we show that F is not properly C-quasiconvex at x0 = 3
2 . Let y = 3

2 , λ = 3
2

and x1 = 1, x2 = 0. Then we have

F(x1, y) = F

(
0,

3

2

)
=

[
0,

3

2

]
�⊂ F(x1λ + (1 − λ)x2, y) + C

= F

(
3

2
,
3

2

)
+ R+ =

[
3

2
, 2

]
+ R+

and

F(x2, y) = F

(
0,

3

2

)
=

[
0,

3

2

]
�⊂ F(x1λ + (1 − λ)x2, y) + C

= F

(
3

2
,
3

2

)
+ R+ =

[
3

2
, 2

]
+ R+.

Thus Lemma 3.1 can be applied, but Theorem 3.3 in [42] is not applicable.

To establish an existence results for problem (WQVEP), we can easily get the
following corresponding result with Lemma 3.1 (we omit the proof).

Lemma 3.2 Assume that for the problem (WQVEP),

(i) K is continuous on A with nonempty compact convex values;
(ii) for all x ∈ A, F(x, x) �⊂ −intC1;
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(iii) the set {y ∈ A : F(·, y) ⊂ −intC1} is convex on A;
(iv) for all y ∈ A, F(·, y) is weakly C-quasiconvex on A;
(v) for all (x, y) ∈ A × A, L �<0F is closed.

Then problem (WQVEP) has a solution, i.e., there exists x̄ ∈ A such that x̄ ∈ K (x̄)
and

F(x̄, y) �⊂ −intC1, ∀y ∈ K (x̄).

Moreover, the solution set of the problem (WQVEP) is compact.

Now we investigate sufficient optimality conditions for problem (SBVEP).

Theorem 3.1 Suppose that all the conditions in Lemma 3.1 are satisfied, Ss(F) is
convex and the following additional conditions hold:

(i′) for all x∗ ∈ A, H(x∗, x∗) ⊂ C2;
(ii′) the set {y∗ ∈ A : H(·, y∗) �⊂ C2} is convex on A;
(iii′) for all y∗ ∈ A, H(·, y∗) is strongly C2-quasiconvex on A;
(iv′) for all y∗ ∈ A, L≥0H(·, y∗) is closed on A.

Then problem (SBVEP) has a solution, i.e., there exists x̄∗ ∈ A such that x̄∗ ∈ Ss(F)

and

H(x̄∗, y∗) ⊂ C2, ∀y∗ ∈ Ss(F).

Moreover, the solution set of the problem (SBVEP) is compact.

Proof For all x∗ ∈ A, we define a multifunction R : A ⇒ A by

R(x∗) = {b ∈ Ss(F) | H(b, y∗) ⊂ C2, ∀y∗ ∈ Ss(F)}.

First, we prove that R(x∗) is nonempty. Indeed, for all y∗ ∈ A, Ss(F) is a nonempty
compact convex set. Set

P = {b ∈ Ss(F) : H(b, y∗) �⊂ C2}.

Then we have the following:

(a) Condition (i′) implies that, for any b ∈ Ss(F), (b, b) /∈ P;
(b) Condition (ii′) implies that, for any b ∈ Ss(F), {y∗ ∈ A : (b, y) ∈ P} is convex

on Ss(F);
(c) Condition (iv′) implies that, for any b ∈ Ss(F), {y∗ ∈ Ss(F) : (b, y∗) ∈ P} is

open on Ss(F).

From Lemma 2.3, there exists b ∈ Ss(F) such that (b, y∗) /∈ P for all y∗ ∈ Ss(F),
i.e., H(b, y∗) ⊂ C2 for all y∗ ∈ Ss(F)}. Thus it follows that R(x∗) is nonempty.
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Next, we show that R(x∗) is a convex set. Let b1, b2 ∈ R(x∗) and λ ∈ [0, 1] and
put b = λb1 + (1 − λ)b2. Since b1, b2 ∈ Ss(F) and Ss(F) is a convex set, we have
b ∈ Ss(F). Thus it follows that, for all b1, b2 ∈ R(x∗),

H(b1, y
∗) ⊂ C2, ∀y∗ ∈ R(x∗).

From condition (iii′), since H(·, y∗) is strongly C2-quasiconvex, we have

H(λb1 + (1 − λ)b2, y
∗) ⊂ C2, ∀λ ∈ [0, 1],

i.e., b ∈ R(x∗). Thus, R(x∗) is convex.
Next, we prove that R is upper semi-continuous on A with nonempty compact

values. Indeed, since A is a compact set, from Lemma 2.1 (ii), we need only to show
that R is a closed mapping. Consider a net {x∗

α} ⊂ A with x∗
α → x∗ ∈ A and let

bα ∈ R(x∗
α) be such that bα → b0.

Now, we need to show that b0 ∈ R(x∗). Since bα ∈ Ss(F) and Ss(F) is compact,
we have b0 ∈ Ss(F). Suppose that b0 /∈ R(x∗). Then there exists y∗ ∈ Ss(F) such
that

H(b0, y
∗) �⊂ C2. (4)

On the other hand, since bα ∈ R(x∗
α), we have

H(bα, y∗) ⊂ C2, ∀y∗ ∈ Ss(F). (5)

Now condition (iii′) together with (5) gives

H(b0, y
∗) ⊂ C2, (6)

which is a contradiction from (4) and (6). Thus b0 ∈ R(x∗). Hence R is upper semi-
continuous on A with nonempty compact values.

Next, we prove that the solution set Ss(H) is nonempty. In fact, since R is upper
semi-continuous on A with nonempty compact values, from Lemma 2.4, there exists
a point x̂∗ ∈ A such that x̂∗ ∈ R(x̂∗). Hence there exists x̂∗ ∈ Ss(F) such that

H(x̂∗, y∗) ⊂ C2, ∀y∗ ∈ Ss(F),

i.e., the problem (SBVEP) has a solution.
Finally, we prove that Ss(H) is compact and convex. Consider a net {x∗

α} ⊂ Ss(H)

with x∗
α → x∗

0 . Now, we prove that x∗
0 ∈ Ss(H). Indeed, from the closedness of

Ss(F), there exists x∗
α ∈ Ss(F) such that x∗

α → x∗
0 . Since x∗

α ∈ Ss(H), there exists
xα ∈ Ss(F) such that

H(x∗
α, y∗) ⊂ C2, ∀y∗ ∈ Ss(F).
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Now condition (iv’) together with x∗
α → x∗

0 yields

H(x∗
0 , y

∗) ⊂ C2, ∀y∗ ∈ Ss(F),

so x∗
0 ∈ Ss(H). Thus Ss(H) is a closed set. Since Ss(H) ⊂ Ss(F) and Ss(F) is

compact it follows that Ss(H) is a compact subset of A. This completes the proof. ��
For problem (WBVEP), we obtain a similar conclusion as in Theorem 3.1.

Theorem 3.2 Suppose that all the conditions in Lemma 3.2 are satisfied, Sw(F) is
convex and the following additional conditions hold:

(i′) for all x∗ ∈ A, H(x∗, x∗) �⊂ −intC2;
(ii′) the set {y∗ ∈ A : H(·, y∗) ⊂ −intC2} is convex on A;
(iii′) for all y∗ ∈ A, H(·, y∗) is weakly C2-quasiconvex on A;
(iv′) for all y∗ ∈ A, L �<0H(·, y∗) is closed on A.

Then problem (WBVEP) has a solution, i.e., there exists x̄∗ ∈ A such that x̄∗ ∈ Sw(F)

and

H(x̄∗, y∗) �⊂ −intC2, ∀y∗ ∈ Sw(F).

Moreover, the solution set of the problem (WBVEP) is compact.

Remark 3.3 Ourmain results, Theorems 3.1 and 3.2 , are new and completely different
from the results obtained by Moudafi [36], Ding [14,15], Wangkeeree and Yimmuang
[40], Chen et al. [11] and Chadli et al. [10].

4 Application to traffic network problems with equilibrium
constraints

We discuss the traffic network problems, which was considered by many authors (see
e.g. [4,13,25,31,34,39,41] and the references therein).

Consider a transportation network G = (M, N ), where M denotes the set of nodes
and N denotes the set of arcs. Let Q = (Q1, Q2, . . . , Qn) be the set of origin-
destination pairs (O/D pairs in short). Assume that the pair Qi , i = 1, 2, . . . , n is
connected by a set Si of paths and Si contains si ≥ 1 paths. Let L = (L1, L2, . . . , Lm)

be the paths vector flow, where m = ∑n
i=1 si . Let the capacity restriction be

L ∈ A = {L ∈ R
m : 0 ≤ ωp ≤ L p ≤ Ωp, p = 1, 2, . . . ,m},

where ωp and Ωp are given real numbers, A ⊆ R
m a nonempty set. Assume further

that the travel cost on the path flow L p, p = 1, 2, . . . ,m, depends on the whole
path vector flow L and Tp(L) ≥ 0. Then, we have the path cost vector T (L) =
(T1(L), T2(L), . . . , Tm(L)).

A path flow vector L̄ is said to be an equilibrium flow vector if

∀Qi ,∀ξ ∈ Si ,∀τ ∈ Si such that [Tξ (L̄) < Tτ (L̄)] ⇒ [L̄ξ = Ωξ or L̄τ = ωτ ].
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Suppose the travel demand ψi of the O/D pair Qi , i = 1, 2, . . . , n, depend on the
equilibrium flows L̄ . Hence, considering all the O/D pairs, we have a mapping ψ :
R
m+ → R

n+. We use the Kronecker notation

φiτ =
{
1 if τ ∈ Si ,

0 if τ /∈ Si .

and

φ = {φiτ }, i = 1, 2, . . . n, and τ = 1, 2, . . .m.

Then, the path vector flows meetings the travel demands are called the feasible path
vector flows and form the constraint set

K (L̄) = {L ∈ A, φL = ψ(L̄)}.

A path vector flow L̄ ∈ K (L̄) is an equilibrium flow if and only if it is a solution
of the following quasivariational inequality.
(TNP) finding L̄ ∈ K (L̄) such that

〈T (L̄), L − L̄〉 ≥ 0,∀L ∈ K (L̄).

The following example describes the traffic network problem (TNP).

Example 4.1 Let m = n = 2 and a traffic network (see Fig. 1) consists of three nodes
{1, 2, 3}, three arcs {(−→12), (

−→
13), (

−→
32)} and two O/D pairs Q1 = (1, 2), Q2 = (1, 3).

The O/D pairs Qi , i = 1, 2 is connected by a set Si of paths, where S1 = {τ1 =
(12)}, S2 = {τ2 = (13)}. Then, s1 = 1, s2 = 1,m = ∑2

i=1 si = s1 + s2 = 2 and

φiτ =
(
1 0
0 1

)
.

Let the capacities on paths be Ωp = 1, p = 1, 2. Hence,

A = {L ∈ R
2+ : 0 ≤ L p ≤ 1, p = 1, 2}.

Let the cost of a flow on path p be equal to this flow, this means that

Tp(L) = {L p}, p = 1, 2, T (L) = {L}.

Assume the demand ψ : R
2+ → R

2+ is defined by ψ(L) = (ψ1(L), ψ2(L)). We have

K (L̄) ={L ∈ A : φL = ψ L̄}
=

{
(L1, L2) ∈ R

2+ :
(
1 0
0 1

) (
L1
L2

)
=

(
1
1

)}
.
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Fig. 1 Illustration of the traffic
network

It is easy to see that L̄ = (1, 1) ∈ K (L̄) satisfied

〈T (L̄), L − L̄〉 ≥ 0,∀L ∈ K (L̄).

Thus, it follows that L̄ = (1, 1) is a solution of the traffic network problem (TNP).

Next, we establish the traffic network problems with equilibrium constraints.
Let X = R

m, Z = R
n, P = R,C2 = R+ and A, K ,C1 be as in Sect. 2, let L(X , P)

be the space of all linear continuous operators from X into P , and T : A → L(X , P)be
a vector function.We consider the following traffic network problemswith equilibrium
constraints.
(STNPEC) finding L̄∗ ∈ Ss(F) such that

〈T (L̄∗), E∗ − L̄∗〉 ≥ 0,∀E∗ ∈ Ss(F).

(WTNPEC) finding L̄∗ ∈ Sw(F) such that

〈T (L̄∗), E∗ − L̄∗〉 ≥ 0,∀E∗ ∈ Sw(F),

where Ss(F) and Sw(F) are the solution sets of (SQVEP) and (WQVEP), respectively.
We denote the solution sets of (STNPEC) and (WTNPEC) by Ψs(T ) and Ψw(T ),
respectively.

Next, we discuss sufficient optimality conditions for (STNPEC).

Theorem 4.1 Suppose that all the conditions in Lemma 3.1 are satisfied, Ψs(T ) is
convex and the following additional conditions hold:

(i′) for all L∗ ∈ A, 〈T (L∗), L∗ − L∗〉 ≥ 0;
(ii′) the set {E∗ ∈ A, 〈T (.), E∗ − .〉 � 0} is convex on A;
(iii′) for all E∗ ∈ A, the function L∗ �→ 〈T (L∗), E∗ − L∗〉 is R+-quasiconvex on A;
(iv′) for all E∗ ∈ A, the function L∗ �→ 〈T (L∗), E∗ − L∗〉 is continuous on A.

Then, (STNPEC) has a solution, i.e., there exists L̄∗ ∈ A such that L̄∗ ∈ Ss(F) and

〈T (L̄∗), E∗ − L̄∗〉 ≥ 0,∀E∗ ∈ Ss(F).

Moreover, the solution set of the (STNPEC) is compact.
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Proof Setting X = R
m, Z = R

n, P = R,C2 = R+ and H(L∗, E∗) = 〈T (L∗), E∗ −
L∗〉, problem (STNPEC) becomes a particular case of (SBVEP), so Theorem 4.1 is a
direct consequence of Theorem 3.1. ��

The following example shows that all the assumptions of Theorem 4.1 are satisfied.

Example 4.2 Let X = Z = R, A = [−1, 1], C1 = R+ and let K : A ⇒ A and
F : A × A ⇒ Z be multifunctions defined by

K (L) =[0, 1],
F(L, E) =2L + 3.

It is clear to see that all the assumptions of Lemma 3.1 are satisfied. The solution set
of the strong vector quasi-equilibrium problem is

Ss(F) ={L ∈ A ∩ K (L) : F(L, E) ⊂ C1, ∀E ∈ K (L)}
={L ∈ [−1, 1] ∩ [0, 1] : 2L + 3 ≥ 0, ∀E ∈ [0, 1]}
=[0, 1].

Next, we choose the travel cost T (L) = [ 12 , 1]. Then, the solution set of the traffic
network problem with equilibrium constraints is

Ψs(T ) ={L∗ ∈ A ∩ Ss(F) : 〈T (L∗), E∗ − L∗〉 ≥ 0, ∀E∗ ∈ Ss(F)

and F(L, E) ⊂ C1, ∀E ∈ K (L)} = {0}.

Hence, all the assumptions of Theorem 4.1 hold and so the traffic network problem
with equilibrium constraints (STNPEC) has a solution and the solution set of the
(STNPEC) is compact.

Finally, applying Theorem 3.2, we also obtain the following result immediately.

Theorem 4.2 Suppose that all the conditions in Lemma 3.2 are satisfied, Ψw(T ) is
convex and the following additional conditions hold:

(i′) for all L∗ ∈ A, 〈T (L∗), L∗ − L∗〉 ≥ 0;
(ii′) the set {E∗ ∈ A, 〈T (.), E∗ − .〉 � 0} is convex on A;
(iii′) for all E∗ ∈ A, the function L∗ �→ 〈T (L∗), E∗ − L∗〉 is R+-quasiconvex on A;
(iv′) for all E∗ ∈ A, the function L∗ �→ 〈T (L∗), E∗ − L∗〉 is continuous on A.

Then, (WTNPEC) has a solution, i.e., there exists L̄∗ ∈ A such that L̄∗ ∈ Sw(F) and

〈T (L̄∗), E∗ − L̄∗〉 ≥ 0,∀E∗ ∈ Sw(F).

Moreover, the solution set of the (WTNPEC) is compact.

Remark 4.1 Note in the literature there are no results on existence conditions for solu-
tions of traffic network problems with equilibrium constraints, so as a result Theorems
4.1 and 4.2 are new.
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