

Radial non-potential Dirichlet systems with mean curvatur[e](http://crossmark.crossref.org/dialog/?doi=10.1007/s11117-020-00751-z&domain=pdf) operator in Minkowski space

Daniela Gurban1

Received: 6 November 2019 / Accepted: 27 March 2020 / Published online: 6 April 2020 © Springer Nature Switzerland AG 2020

Abstract

We deal with a multiparameter Dirichlet system having the form

 $\sqrt{2}$ ⎨ \mathbf{I} $M(u) + \lambda_1 \mu_1(|x|) f_1(u, v) = 0$ in $B(R)$, $M(v) + \lambda_2 \mu_2(|x|) f_2(u, v) = 0$ in $B(R)$, $\mathfrak{u}|_{\partial\mathcal{B}(R)}=0=\mathfrak{v}|_{\partial\mathcal{B}(R)},$

where M stands for the mean curvature operator in Minkowski space, $B(R)$ is an open ball of radius *R* in \mathbb{R}^N , the parameters λ_1, λ_2 are positive, the functions μ_1, μ_2 : $[0, R] \rightarrow [0, \infty)$ are continuous and positive and the continuous functions f_1, f_2 satisfy some sign, growth and monotonicity conditions. Among others, these type of nonlinearities, include the Lane-Emden ones. For this system we show that there exists a continuous curve Γ splitting the first quadrant into two disjoint unbounded, open sets \mathcal{O}_1 and \mathcal{O}_2 such that the system has zero, at least one or at least two positive radial solutions according to $(\lambda_1, \lambda_2) \in \mathcal{O}_1$, $(\lambda_1, \lambda_2) \in \Gamma$ or $(\lambda_1, \lambda_2) \in \mathcal{O}_2$, respectively. The set \mathcal{O}_1 is adjacent to the coordinates axes $0\lambda_1$ and $0\lambda_2$ and the curve Γ approaches asymptotically to two lines parallel to the axes $0\lambda_1$ and $0\lambda_2$. Actually, this result extends to more general radial systems the recent existence/non-existence and multiplicity result obtained in the case of Lane-Emden systems.

Keywords Minkowski curvature operator · Multiparameter system · Positive solution · Non-existence/existence · Multiplicity

Mathematics Subject Classification 35J66 · 34B15 · 34B18

B Daniela Gurban gurbandaniela@yahoo.com

 1 Department of Computers and Information Technology, Politehnica University of Timisoara, Blvd. V. Pârvan, No. 2, 300223 Timişoara, Romania

1 Introduction

In this paper we study non-existence, existence and multiplicity of positive solutions for systems having the form

$$
\begin{cases}\n\mathcal{M}(\mathbf{u}) + \lambda_1 \mu_1(|x|) f_1(\mathbf{u}, \mathbf{v}) = 0 \text{ in } \mathcal{B}(R), \\
\mathcal{M}(\mathbf{v}) + \lambda_2 \mu_2(|x|) f_2(\mathbf{u}, \mathbf{v}) = 0 \text{ in } \mathcal{B}(R), \\
\mathbf{u}|_{\partial \mathcal{B}(R)} = 0 = \mathbf{v}|_{\partial \mathcal{B}(R)},\n\end{cases} (1.1)
$$

where $\mathcal{B}(R) = \{x \in \mathbb{R}^N : |x| < R\}$ ($R > 0, N \geq 2$), M stands for the mean curvature operator in Minkowski space

$$
\mathcal{M}(w) = \text{div}\left(\frac{\nabla w}{\sqrt{1 - |\nabla w|^2}}\right),\,
$$

the parameters λ_1, λ_2 are positive, the functions $\mu_1, \mu_2 : [0, R] \rightarrow [0, \infty)$ are continuous with $\mu_1(r) > 0 < \mu_2(r)$ for all $r \in (0, R]$, under the following hypothesis on the continuous functions f_1 , f_2 : $[0, +\infty)^2 \rightarrow [0, +\infty)$:

 (H) (*i*) $f_1(s, t)$, $f_2(s, t)$ are quasi-monotone nondecreasing with respect to both *s* and *t*;

(*ii*) there exist constants $c > 0$, p_1 , $q_2 > 1$ and q_1 , $p_2 > 0$ such that

$$
0 < f_1(s, t) \le cs^{p_1} t^{q_1}, \\
0 < f_2(s, t) \le cs^{p_2} t^{q_2},\n\tag{1.2}
$$

for all $s, t > 0$.

Recall, a function $g(s, t) : [0, \infty)^2 \to [0, \infty)$ is said to be *quasi-monotone nondecreasing* with respect to *t* (resp. *s*) if for fixed *s* (resp. *t*) one has

$$
g(s, t_1) \le g(s, t_2)
$$
 as $t_1 \le t_2$ (resp. $g(s_1, t) \le g(s_2, t)$ as $s_1 \le s_2$).

In recent years, many papers were devoted to the study of Dirichlet problems for a single equation with operator *M* in a ball in \mathbb{R}^N [\[1](#page-10-0)[–3](#page-10-1)[,5](#page-10-2)[,7](#page-10-3)[,8](#page-10-4)[,13\]](#page-10-5), while at our best knowledge, for systems with such an operator the study was recently initiated in [\[9](#page-10-6)]. So, in [\[7\]](#page-10-3), for systems involving Lane-Emden type perturbations of the operator *M* and having a variational structure:

$$
\begin{cases}\n\mathcal{M}(\mathbf{u}) + \lambda \mu(|x|)(p+1)\mathbf{u}^p \mathbf{v}^{q+1} = 0, & \text{in } \mathcal{B}(R), \\
\mathcal{M}(\mathbf{v}) + \lambda \mu(|x|)(q+1)\mathbf{u}^{p+1} \mathbf{v}^q = 0, & \text{in } \mathcal{B}(R), \\
\mathbf{u}|_{\partial \mathcal{B}(R)} = 0 = \mathbf{v}|_{\partial \mathcal{B}(R)},\n\end{cases}
$$
\n(1.3)

where the positive exponents *p*, *q* satisfy max $\{p, q\} > 1$ and the function μ : $[0, R] \rightarrow [0, \infty)$ is continuous and $\mu(r) > 0$ for all $r \in (0, R]$, it was shown that there exists $\Lambda > 0$ such that [\(1.3\)](#page-1-0) has zero, at least one or at least two positive solutions according to $\lambda \in (0, \Lambda)$, $\lambda = \Lambda$ or $\lambda > \Lambda$. This result extends the corresponding one obtained in [\[3](#page-10-1)] in the case of a single equation.

Then, in the recent paper [\[8\]](#page-10-4) are considered non-potential radial systems having the form

$$
\begin{cases}\n\mathcal{M}(u) + \lambda_1 \mu_1(|x|) u^{p_1} v^{q_1} = 0, & \text{in } \mathcal{B}(R), \\
\mathcal{M}(v) + \lambda_2 \mu_2(|x|) u^{p_2} v^{q_2} = 0, & \text{in } \mathcal{B}(R), \\
u|_{\partial \mathcal{B}(R)} = 0 = v|_{\partial \mathcal{B}(R)},\n\end{cases}
$$
\n(1.4)

where λ_1, λ_2 are two positive parameters, p_1, p_2, q_1, q_2 are positive exponents with $\min\{p_1, q_2\} > 1$ and the weight functions $\mu_1, \mu_2 : [0, R] \rightarrow [0, \infty)$ are assumed to be continuous with $\mu_1(r) > 0 < \mu_2(r)$ for all $r \in (0, R]$. Using fixed point index estimations and lower and upper solutions method, it was proved the existence of a continuous curve Γ splitting the first quadrant into two disjoint open sets \mathcal{O}_1 and \mathcal{O}_2 such that the system (1.4) has zero, at least one or at least two positive, radial solutions according to $(\lambda_1, \lambda_2) \in \mathcal{O}_1$, $(\lambda_1, \lambda_2) \in \Gamma$ or $(\lambda_1, \lambda_2) \in \mathcal{O}_2$, respectively.

On the other hand, in paper [\[10\]](#page-10-7) are studied multiparameter Dirichlet systems having the form

$$
\begin{cases}\n\mathcal{M}(u) + \lambda_1 f_1(u, v) = 0, \text{ in } \Omega, \\
\mathcal{M}(v) + \lambda_2 f_2(u, v) = 0, \text{ in } \Omega, \\
u|_{\partial \Omega} = 0 = v|_{\partial \Omega},\n\end{cases}
$$

where Ω is a general bounded smooth domain in \mathbb{R}^N and the continuous functions *f*1, *f*² satisfy some sign, growth and quasi-monotonicity conditions. For such systems it has been obtained the existence of a hyperbola like curve which separates the first quadrant in two disjoint sets, an open one $\mathcal O$ and a closed one $\mathcal F$, such that the system has zero or at least one strictly positive solution, according to $(\lambda_1, \lambda_2) \in \mathcal{O}$ or $(\lambda_1, \lambda_2) \in \mathcal{F}$. Moreover, it has been showed that inside of F there exists an infinite rectangle in which the parameters being, the system has at least two strictly positive solutions. The approaches are based on a lower and upper solutions method and topological degree type arguments. This result extends, in some sense, to non-radial systems the existence/non-existence and multiplicity result obtained in [\[8\]](#page-10-4) for the radial case.

In view of the above, the aim of this paper is two fold: firstly to complete the result obtained in [\[8](#page-10-4)] by showing that this still remains valid for more general systems of type [\(1.1\)](#page-1-1) and secondly, to show that, at least in the radial case, a sharper result as the one in [\[8](#page-10-4)] can be obtained for such more general nonlinearities.

Since the solvability of (1.1) is guaranteed by [\[8,](#page-10-4) Corrolary 2.1], the main interest concerns the non-existence, existence and multiplicity of positive radial solutions. In this direction, the techniques employed in [\[8\]](#page-10-4) for Lane-Emden systems will be adapted for system (1.1) ; we point out that the growth conditions on f_1 , f_2 from hypothesis (*H*) play a key role in the proof of the main result.

Therefore, we show that there exists a continuous curve Γ splitting the first quadrant into two disjoint unbounded, open sets \mathcal{O}_1 and \mathcal{O}_2 such that the system [\(1.1\)](#page-1-1) has zero, at least one or at least two positive radial solutions according to $(\lambda_1, \lambda_2) \in \mathcal{O}_1$, $(\lambda_1, \lambda_2) \in \Gamma$ or $(\lambda_1, \lambda_2) \in \mathcal{O}_2$, respectively. The set \mathcal{O}_1 is adjacent to the coordinates

axes $0\lambda_1$ and $0\lambda_2$ and the curve Γ approaches asymptotically to two lines parallel to the axes $0\lambda_1$ and $0\lambda_2$ (Theorem [3.1\)](#page-9-0).

Also, notice that, at least when speaking about radial solutions, this result is sharper then the one obtained in [\[10\]](#page-10-7) due to the fact that here, the curve Γ which delimitates the multiplicity of solutions is the optimal one. Moreover, the conditions in hypothesis (*H*) are satisfied by Lane-Emden nonlinearities, so the result in [\[8](#page-10-4)] is recovered.

The rest of the paper is organized as follows. In Section [2](#page-3-0) we reduce problem [\(1.1\)](#page-1-1) to a homogeneous mixed boundary value problem and also we recall some results concerning lower (and upper) solutions method and some fixed point index estimations proved in [\[8](#page-10-4)]. The main non-existence, existence and multiplicity result for the multiparameter system (1.1) is stated and proved in Section [3.](#page-5-0) An example of nonlinearities different from the ones in [\[8\]](#page-10-4) is provided.

2 Preliminaries

As usual, when we are seeking for radial solutions of [\(1.1\)](#page-1-1), by setting $r = |x|$ and $u(x) = u(r)$, $v(x) = v(r)$, the Dirichlet problem [\(1.1\)](#page-1-1) reduces to the homogeneous mixed boundary value problem:

$$
\begin{cases}\n[r^{N-1}\varphi(u')] + r^{N-1}\lambda_1\mu_1(r) f_1(u, v) = 0, \\
[r^{N-1}\varphi(v')] + r^{N-1}\lambda_2\mu_2(r) f_2(u, v) = 0, \\
u'(0) = u(R) = 0 = v(R) = v'(0).\n\end{cases}
$$
\n(2.1)

where

$$
\varphi(y) = \frac{y}{\sqrt{1 - y^2}}
$$
 $(y \in \mathbb{R}, |y| < 1).$

By a *solution* of [\(2.1\)](#page-3-1) we mean a couple of nonnegative functions $(u, v) \in C^1[0, R] \times$ $C^1[0, R]$ with $||u'||_{\infty} < 1$, $||v'||_{\infty} < 1$ and $r \mapsto r^{N-1}\varphi(u'(r)), r \mapsto r^{N-1}\varphi(v'(r))$ of class C^1 on [0, *R*], which satisfies problem [\(2.1\)](#page-3-1). Here and below, $\|\cdot\|_{\infty}$ stands for the usual sup-norm on $C := C[0, R]$. We say that $u \in C$ is *positive* if $u > 0$ on $[0, R)$. By a *positive solution* of (2.1) we understand a solution (u, v) with both u and v positive.

Throughout this paper, the space $C^1 := C^1[0, R]$ will be understood with the norm $||u||_1 = ||u||_{\infty} + ||u'||_{\infty}$, while the product space $C^1 \times C^1$ will be endowed with the norm $||(u, v)|| = \max{||u||_{\infty}, ||v||_{\infty}} + \max{||u'||_{\infty}, ||v'||_{\infty}}$. We consider the closed subspace

$$
C_M^1 := \{(u, v) \in C^1 \times C^1 : u'(0) = u(R) = 0 = v(R) = v'(0)\}
$$

and its closed, convex cone

$$
K := \{(u, v) \in C_M^1 : u \ge 0 \le v \text{ on } [0, R] \}.
$$

Also we denote $B(\rho) := \{(u, v) \in K : ||(u, v)|| < \rho\}.$

Let us define the linear operators

$$
S: C \to C, \quad Su(r) = \frac{1}{r^{N-1}} \int_0^r t^{N-1} u(t) dt \quad (r \in (0, R]), \quad Su(0) = 0;
$$

$$
P: C \to C^1, \quad Pu(r) = \int_r^R u(t) dt \quad (r \in [0, R]).
$$

It is easy to see that *P* is bounded and *S* is compact. Hence, the nonlinear operator $P \circ \varphi^{-1} \circ S : C \to C^1$ is compact. Denoting by N_{λ_i} the Nemytskii operator associated to $\lambda_i \mu_i f_i$ (*i* = 1, 2), i.e.,

$$
N_{\lambda_i}: C \times C \to C, N_{\lambda_i}(u, v) = \lambda_i \mu_i(\cdot) f_i(u_+(\cdot), v_+(\cdot)) \quad (u, v \in C),
$$

 $(s_+ := \max\{s, 0\})$ we have that N_{λ_i} is continuous and takes bounded sets into bounded sets.

If *A* is a subset of *K*, we set

 $K(A) := \{T \mid T : A \rightarrow K \text{ is a compact operator}\}.$

Also, given a bounded open (in *K*) subset O of *K*, we denote by $i(T, O)$ the fixed point index of the operator $T \in \mathcal{K}(\mathcal{O})$ on \mathcal{O} with respect to K [\[6\]](#page-10-8).

The following proposition follows from Propositions 2.1 and 2.2 in [\[8\]](#page-10-4).

Proposition 2.1 (i) *A couple of functions* $(u, v) \in K$ *is a solution of* [\(2.1\)](#page-3-1) *iff it is a fixed point of the compact nonlinear operator*

$$
\mathcal{D}_{\lambda_1,\lambda_2}: K \to K, \quad \mathcal{D}_{\lambda_1,\lambda_2} = \left(P \circ \varphi^{-1} \circ S \circ N_{\lambda_1}, P \circ \varphi^{-1} \circ S \circ N_{\lambda_2}\right).
$$

In addition, for all $(u, v) \in K$ *, it holds*

$$
\|\mathcal{D}_{\lambda_1,\lambda_2}(u,v)\| < R+1. \tag{2.2}
$$

(ii) *For all* $d > R + 1$ *it holds*

$$
i(\mathcal{D}_{\lambda_1,\lambda_2}, B(d)) = 1.
$$
 (2.3)

In particular, problem [\(2.1\)](#page-3-1) *always has a solution.*

The following two lemmas are immediate consequences of [\[8](#page-10-4), Lemma 3.2] and [\[7,](#page-10-3) Lemma 2.4].

Lemma 2.1 *Assume* (*H*)*. If there is some* $M > 0$ *such that either*

$$
\lim_{s \to 0+} \frac{f_1(s, t)}{s} = 0 \text{ uniformly with } t \in [0, M],
$$
\n(2.4)

 \mathcal{D} Springer

or

$$
\lim_{t \to 0+} \frac{f_2(s, t)}{t} = 0 \text{ uniformly with } s \in [0, M],
$$
\n(2.5)

then there exists $\rho_0 = \rho_0(\lambda_1, \lambda_2) > 0$ *such that*

$$
i(\mathcal{D}_{\lambda_1,\lambda_2},B(\rho))=1 \text{ for all } 0<\rho\leq\rho_0.
$$

Lemma 2.2 *Under assumption* (H) *, if* (u, v) *is a nontrivial solution of problem* (2.1) *, then* (*u*, v) *is a positive solution with both u and* v *strictly decreasing.*

Definition 2.1 A *lower solution* of [\(2.1\)](#page-3-1) is a couple of nonnegative functions $(\alpha_u, \alpha_v) \in C^1 \times C^1$, such that $\|\alpha_u'\|_{\infty} < 1$, $\|\alpha_v'\|_{\infty} < 1$, the mappings $r \mapsto$ $r^{N-1}\varphi(\alpha'_u(r)), r \mapsto r^{N-1}\varphi(\alpha'_v(r))$ are of class C^1 on [0, *R*] and satisfies

$$
\begin{cases}\n[r^{N-1}\varphi(\alpha_u')]' + r^{N-1}\lambda_1\mu_1(r)f_1(\alpha_u, \alpha_v) \ge 0, \\
[r^{N-1}\varphi(\alpha_v')]' + r^{N-1}\lambda_2\mu_2(r)f_2(\alpha_u, \alpha_v) \ge 0, \\
\alpha_u(R) = 0, \quad \alpha_v(R) = 0.\n\end{cases}
$$
\n(2.6)

An *upper solution* $(\beta_u, \beta_v) \in C^1 \times C^1$ is defined by reversing the first two inequalities in [\(2.6\)](#page-5-1) and asking $\beta_u(R) \geq 0$, $\beta_v(R) \geq 0$ instead of $\alpha_u(R) = 0$, $\alpha_v(R) = 0$.

The following lemma is an immediate consequence of [\[8,](#page-10-4) Lemma 3.1].

Lemma 2.3 *Assume that* [\(2.1\)](#page-3-1) *has a lower solution* (α_u, α_v) *and* $f_1(s, t)$ *(resp. f*2(*s*, *t*)) *is quasi-monotone nondecreasing with respect to t (resp. s) and let*

$$
\mathcal{A}_{\alpha}=\mathcal{A}_{(\alpha_u,\alpha_v)}:=\{(u,v)\in K:\alpha_u\leq u,\ \alpha_v\leq v\}.
$$

Then, the following hold true:

- (i) *problem* [\(2.1\)](#page-3-1) *has always a solution in* A_{α} ;
- (ii) *if* [\(2.1\)](#page-3-1) has an unique solution (u_0, v_0) *in* A_α and there exists $\rho_0 > 0$ such that $B((u_0, v_0), \rho_0) := \{(u, v) \in K : ||(u - u_0, v - v_0)|| \le \rho_0\} \subset \mathcal{A}_{\alpha},$ then

$$
i(\mathcal{D}_{\lambda_1,\lambda_2}, B((u_0,v_0),\rho)) = 1, \quad \text{for all } 0 < \rho \le \rho_0.
$$

3 Non-existence, existence and multiplicity

In this section, under hypothesis (*H*), we study the existence and multiplicity of positive solutions for system (1.1) . We employ here the technique used in [\[8\]](#page-10-4) for the study of a system involving Lane-Emden nonlinearities to the more general system (1.1) . For this, we consider the corresponding radial problem (2.1) . Setting

 $S := \{(\lambda_1, \lambda_2) : \lambda_1, \lambda_2 > 0 \text{ and } (2.1) \text{ has at least one positive solution}\},\$ $S := \{(\lambda_1, \lambda_2) : \lambda_1, \lambda_2 > 0 \text{ and } (2.1) \text{ has at least one positive solution}\},\$ $S := \{(\lambda_1, \lambda_2) : \lambda_1, \lambda_2 > 0 \text{ and } (2.1) \text{ has at least one positive solution}\},\$

we know that *S* is nonempty and unbounded in both directions of the axes $0\lambda_1$ and $0\lambda_2$ (see [\[8,](#page-10-4) Theorem 2.3]).

Lemma 3.1 *Assume* (*H*). *Then, the followings are true:*

- (i) *There exist* $\lambda_1^*, \lambda_2^* > 0$, *such that* $S \subset [\lambda_1^*, +\infty) \times [\lambda_2^*, +\infty)$ *and for all* $(\lambda_1, \lambda_2) \in (0, +\infty)^2 \setminus ([\lambda_1^*, +\infty) \times [\lambda_2^*, +\infty))$, *problem* [\(2.1\)](#page-3-1) *has only the trivial solution.*
- (ii) *If* $(\overline{\lambda}_1, \overline{\lambda}_2) \in S$, *then* $[\overline{\lambda}_1, +\infty) \times [\overline{\lambda}_2, +\infty) \subset S$.
- (iii) *If* $(\overline{\lambda}_1, \overline{\lambda}_2) \in S$, *then for all* $(\lambda_1, \lambda_2) \in (\overline{\lambda}_1, +\infty) \times (\overline{\lambda}_2, +\infty)$, *problem* [\(2.1\)](#page-3-1) *has at least two positive solutions.*

Proof This follows the outline of the proof of Lemma 4.1 in [\[8\]](#page-10-4).

(i) Let $\lambda_1, \lambda_2 > 0$ and (u, v) be a positive solution of (2.1) . It follows from Lemma [2.2](#page-5-2) that *u* and *v* are both strictly decreasing. Integrating the first equation in (2.1) on $[0, r]$, one obtains

$$
-r^{N-1}\varphi(u'(r)) = \lambda_1 \int_0^r t^{N-1}\mu_1(t) f_1(u(t), v(t))dt, \text{ for all } r \in [0, R].
$$

Since u , v are strictly decreasing on [0, R] and using (1.2) , we deduce

$$
-r^{N-1}u'(r) \leq -r^{N-1}\varphi(u'(r))
$$

\n
$$
\leq \lambda_1 \int_0^r t^{N-1} \mu_1(t) c u^{p_1}(t) v^{q_1}(t) dt
$$

\n
$$
\leq \lambda_1 \mu_1^M c u^{p_1}(0) v^{q_1}(0) r^N/N,
$$

where $\mu_i^M := \max_{[0,R]} \mu_i$ (*i* = 1, 2). Integrating on [0, *R*] we get

$$
u(0) \leq \lambda_1 \mu_1^M c u^{p_1}(0) v^{q_1}(0) R^2 / (2N). \tag{3.1}
$$

Analogously, one has

$$
v(0) \le \lambda_2 \mu_2^M c u^{p_2}(0) v^{q_2}(0) R^2 / (2N). \tag{3.2}
$$

From $0 < u(0), v(0) < R$ and $p_1, q_2 > 1$ we obtain

$$
\lambda_i > 2N/(\mu_i^M c R^{p_i+q_i+1}) > 0 \quad (i = 1, 2). \tag{3.3}
$$

Consider now the nonempty sets

$$
S_1 := {\lambda_1 > 0 : \exists \lambda_2 > 0 \text{ such that } (\lambda_1, \lambda_2) \in S},
$$

$$
S_2 := {\lambda_2 > 0 : \exists \lambda_1 > 0 \text{ such that } (\lambda_1, \lambda_2) \in S}
$$

and let

$$
(0 <) \lambda_i^* := \inf \mathcal{S}_i \ (< +\infty) \quad (i = 1, 2).
$$

It follows that $S \subset [\lambda_1^*, +\infty) \times [\lambda_2^*, +\infty)$ and for all $\lambda_1, \lambda_2 \in (0, +\infty)^2 \setminus ([\lambda_1^*, +\infty)$ \times [$\lambda_2^*, +\infty$)), problem [\(2.1\)](#page-3-1) has only the trivial solution (see Lemma [2.2\)](#page-5-2).

(ii) Let $(\lambda_1^0, \lambda_2^0) \in [\overline{\lambda}_1, +\infty) \times [\overline{\lambda}_2, +\infty)$ be arbitrarily chosen and $(\overline{u}, \overline{v})$ be a positive solution for [\(2.1\)](#page-3-1) with $\lambda_1 = \overline{\lambda}_1$ and $\lambda_2 = \overline{\lambda}_2$. Then, $(\overline{u}, \overline{v})$ is a lower solution of (2.1) with $\lambda_1 = \lambda_1^0$ and $\lambda_2 = \lambda_2^0$. From Proposition [2.3](#page-5-3) (i) and the fact that $(\overline{u}, \overline{v})$ is positive, we obtain $(\lambda_1^0, \lambda_2^0) \in S$.

(iii) From (ii) we get that $(\overline{\lambda}_1, +\infty) \times (\overline{\lambda}_2, +\infty) \subset S$ and let $(\lambda_1^0, \lambda_2^0) \in (\overline{\lambda}_1, +\infty) \times$ $(\overline{\lambda}_2, +\infty)$. It remains to show that problem [\(2.1\)](#page-3-1) with $\lambda_1 = \lambda_1^0$ and $\lambda_2 = \lambda_2^0$ has a second positive solution. For this, let $(\overline{u}, \overline{v})$ be the lower solution constructed as above. We fix (u_0, v_0) a positive solution of [\(2.1\)](#page-3-1) with $\lambda_1 = \lambda_1^0$ and $\lambda_2 = \lambda_2^0$ such that $(u_0, v_0) \in \mathcal{A} := \mathcal{A}_{(\overline{u}, \overline{v})}.$

Now, we *claim* that there exists $\varepsilon > 0$ such that $\overline{B}((u_0, v_0), \varepsilon) \subset A$. By using the quasi-monotonicity of the functions f_1 and f_2 , for all $r \in [0, R/2]$, we have

$$
\overline{u}(r) = \int_{r}^{R} \varphi^{-1} \left(\frac{1}{t^{N-1}} \int_{0}^{t} s^{N-1} [\overline{\lambda}_{1} \mu_{1}(s) f_{1}(\overline{u}(s), \overline{v}(s))] ds \right) dt
$$

<
$$
< \int_{r}^{R} \varphi^{-1} \left(\frac{1}{t^{N-1}} \int_{0}^{t} s^{N-1} [\lambda_{1}^{0} \mu_{1}(s) f_{1}(u_{0}(s), v_{0}(s))] ds \right) dt
$$

= $u_{0}(r).$

Analogously we obtain that $\overline{v}(r) < v_0(r)$ on [0, *R*/2]. So, we can find $\varepsilon_1 > 0$ such that if $(u, v) \in K$ then

$$
||u - u_0||_{\infty} \le \varepsilon_1 \Rightarrow \overline{u} \le u \text{ and } ||v - v_0||_{\infty} \le \varepsilon_1 \Rightarrow \overline{v} \le v \text{ on } [0, R/2]. \quad (3.4)
$$

On the other hand, for $r \in [R/2, R]$ one obtains $u'_0(r) < \overline{u}'(r)$ and $v'_0(r) < \overline{v}'(r)$. Thus, there is some $\varepsilon_2 \in (0, \varepsilon_1)$ such that if $(u, v) \in K$, then

$$
||u'-u'_0||_{\infty} \leq \varepsilon_2 \Rightarrow \overline{u}' > u' \text{ and } ||v'-v'_0||_{\infty} \leq \varepsilon_2 \Rightarrow \overline{v}' > v' \text{ on } [R/2, R].
$$

From

$$
u(r) = -\int_r^R u'(s)ds > -\int_r^R \bar{u}'(s)ds = \bar{u}(r)
$$

we have that $u > \overline{u}$ (and, similarly $v > \overline{v}$) on $\left[\frac{R}{2}, R\right]$. This means that

$$
||u' - u'_0||_{\infty} \le \varepsilon_2 \Rightarrow \overline{u} \le u \text{ and } ||v' - v'_0||_{\infty} \le \varepsilon_2 \Rightarrow \overline{v} \le v \text{ on } [R/2, R]. \tag{3.5}
$$

The claim follows from [\(3.4\)](#page-7-0) and [\(3.5\)](#page-7-1), by taking $\varepsilon \in (0, \varepsilon_2)$.

Next, if (2.1) has a second solution contained in A , then it is nontrivial and the proof is complete. If not, by Lemma [2.3](#page-5-3) we infer that

$$
i(\mathcal{D}_{\lambda_1^0,\lambda_2^0}, B((u_0, v_0), \rho)) = 1 \text{ for all } 0 < \rho \le \varepsilon,
$$

where $\mathcal{D}_{\lambda_1^0,\lambda_2^0}$ stands for the fixed point operator associated to problem [\(2.1\)](#page-3-1) with $\lambda_1 = \lambda_1^0$ and $\lambda_2 = \lambda_2^0$. Also, from Proposition [2.1](#page-4-0) (ii) we have

$$
i(\mathcal{D}_{\lambda_1^0, \lambda_2^0}, B(\rho)) = 1 \text{ for all } \rho \ge R + 1,
$$

and from Lemma [2.1](#page-4-1) we get

$$
i(\mathcal{D}_{\lambda_1^0, \lambda_2^0}, B(\rho)) = 1
$$
 for all $\rho > 0$ sufficiently small.

Let $\rho_1, \rho_2 > 0$ be sufficiently small and $\rho_3 \geq R + 1$ be such that $\overline{B}((u_0, v_0), \rho_1) \cap$ $\overline{B}(\rho_2) = \emptyset$ and $\overline{B}((u_0, v_0), \rho_1) \cup \overline{B}(\rho_2) \subset B(\rho_3)$. From the additivity-excision property of the fixed point index it follows that

$$
i(\mathcal{D}_{\lambda_1^0,\lambda_2^0}, B(\rho_3)\backslash[\overline{B}((u_0,v_0),\rho_1)\cup\overline{B}(\rho_2)])=-1.
$$

Therefore, $\mathcal{D}_{\lambda_1^0, \lambda_2^0}$ has a fixed point $(u, v) \in B(\rho_3) \setminus [B((u_0, v_0), \rho_1) \cup B(\rho_2)]$. But this means that $(\bar{2}.1)$ has a second positive solution.

Now, for $\theta \in (0, \pi/2)$, we denote

$$
\mathcal{L}(\theta) := \{ \lambda > 0 : (\lambda \cos \theta, \lambda \sin \theta) \in \mathcal{S} \},
$$

which is a nonempty set, and we rewrite problem (2.1) in the form

$$
\begin{cases}\n[r^{N-1}\varphi(u')] + r^{N-1}\lambda\cos\theta \mu_1(r)f_1(u,v) = 0, \\
[r^{N-1}\varphi(v')] + r^{N-1}\lambda\sin\theta \mu_2(r)f_2(u,v) = 0, \\
u'(0) = u(R) = 0 = v(R) = v'(0),\n\end{cases}
$$
\n(3.6)

where $\lambda > 0$ is a real parameter.

Proposition 3.1 *There exists a continuous function* Λ : $(0, \pi/2) \rightarrow (0, \infty)$ *such that*

$$
\lim_{\theta \to 0} \Lambda(\theta) \sin \theta - \lambda_2^* = 0 = \lim_{\theta \to \pi/2} \Lambda(\theta) \cos \theta - \lambda_1^*
$$
\n(3.7)

and the followings hold true:

- (i) $\Lambda(\theta) \in \mathcal{L}(\theta)$ *, for every* $\theta \in (0, \pi/2)$ *;*
- (ii) *system* [\(2.1\)](#page-3-1) has at least two positive solutions, for all $(\lambda_1, \lambda_2) \in (\Lambda(\theta) \cos \theta,$ $+\infty$) × ($\Lambda(\theta)$ sin θ , $+\infty$).

Proof This follows the outline of the proof of Proposition 4.1 in [\[8\]](#page-10-4). For each $\theta \in$ $(0, \pi/2)$, let

$$
\Lambda(\theta) := \inf \mathcal{L}(\theta). \tag{3.8}
$$

 \mathcal{D} Springer

Note that $\Lambda(\theta)$ is $\lt \infty$ because $\mathcal{L}(\theta) \neq \emptyset$ and > 0 by Lemma [3.1](#page-6-0) (i). We first prove statements (i) and (ii).

(*i*) Let $\{\lambda^k\} \subset \mathcal{L}(\theta)$ be a decreasing sequence converging to $\Lambda(\theta)$ and $(u_k, v_k) \in K$ with $u_k > 0 < v_k$ on [0, *R*) be such that

$$
u_k = P \circ \varphi^{-1} \circ S \circ [\lambda^k \cos \theta \mu_1 f_1(u_k, v_k)],
$$

$$
v_k = P \circ \varphi^{-1} \circ S \circ [\lambda^k \sin \theta \mu_2 f_2(u_k, v_k)].
$$

From [\(2.2\)](#page-4-2) and Arzela-Ascoli theorem we obtain that there exists $(u, v) \in K$ such that, passing eventually to a subsequence, $\{(u_k, v_k)\}$ converges to (u, v) in $C \times C$ with the usual product topology. Hence, $u \geq 0 \leq v$ and

$$
u = P \circ \varphi^{-1} \circ S \circ [A(\theta) \cos \theta \mu_1 f_1(u, v)],
$$

$$
v = P \circ \varphi^{-1} \circ S \circ [A(\theta) \sin \theta \mu_2 f_2(u, v)].
$$

From (3.1) and (3.2) we have that

$$
u_k(0) \le \lambda^k \cos \theta \mu_1^M c u_k^{p_1}(0) v_k^{q_1}(0) R^2 / (2N)
$$

and

$$
v_k(0) \le \lambda^k \sin \theta \, \mu_2^M c u_k^{p_2}(0) v_k^{q_2}(0) R^2 / (2N),
$$

which, taking into account that $0 < u_k(0)$, $v_k(0) < R$, imply

$$
u_k^{p_1-1}(0) > \frac{2N}{\lambda^k \mu_1^M c R^{q_1+2} \cos \theta}
$$

and

$$
v_k^{q_2-1}(0) > \frac{2N}{\lambda^k \mu_2^M c R^{p_2+2} \sin \theta}.
$$

These ensure that there is a constant $c_1 > 0$ such that $u_k(0), v_k(0) > c_1$ for all k. This leads to $u(0), v(0) \geq c_1$, hence by Lemma [2.2](#page-5-2) we get $u > 0 < v$ on [0, R). Consequently, $\Lambda(\theta) \in \mathcal{L}(\theta)$.

(*ii*) This follows from statement (iii) in Lemma [3.1.](#page-6-0)

The continuity of Λ and the equalities in [\(3.7\)](#page-8-0) can be proved in the same manner as it is done in the proof of Proposition 4.1 in [\[8](#page-10-4)].

Theorem 3.1 *Assume (H). Then, there exist* λ_1^*, λ_2^* > 0 *and a continuous function* Λ : $(0, \pi/2) \rightarrow (0, +\infty)$, generating the curve

$$
(T)\begin{cases} \lambda_1(\theta) = \Lambda(\theta)\cos\theta \\ \lambda_2(\theta) = \Lambda(\theta)\sin\theta \end{cases}, \quad \theta \in (0, \pi/2)
$$

such that

 $\textcircled{2}$ Springer

- (i) $\Gamma \subset [\lambda_1^*, +\infty) \times [\lambda_2^*, +\infty);$
- (ii) *the following asymptotic behaviors hold*

$$
\lim_{\theta \to \pi/2} \lambda_2(\theta) = +\infty = \lim_{\theta \to 0} \lambda_1(\theta),
$$
\n(3.9)

$$
\lim_{\theta \to 0} \lambda_2(\theta) - \lambda_2^* = 0 = \lim_{\theta \to \pi/2} \lambda_1(\theta) - \lambda_1^*;
$$
\n(3.10)

(iii) *Γ separates the first quadrant* $(0, +\infty) \times (0, +\infty)$ *in two disjoint sets* \mathcal{O}_1 *and O*² *such that problem [\(1.1\)](#page-1-1) has zero, at least one or at least two radial positive solutions, according to* $(\lambda_1, \lambda_2) \in \mathcal{O}_1$, $(\lambda_1, \lambda_2) \in \Gamma$ *or* $(\lambda_1, \lambda_2) \in \mathcal{O}_2$.

Proof This follows from Lemma [3.1](#page-6-0) and Proposition [3.1.](#page-8-1)

Example [3.1](#page-9-0) Let $p_1, q_2 > 1$ and $q_1, p_2 > 0$. The conclusion of Theorem 3.1 is obtained for the following choices of f_1 and f_2 in problem [\(1.1\)](#page-1-1):

- (i) $f_1(u, v) = u^{p_1}v^{q_1}$ and $f_2(u, v) = u^{p_2}v^{q_2}$ Lane-Emden type nonlinearities;
- (ii) $f_1(u, v) = u^{p_1} \ln(1 + v^{q_1})$ and $f_2(u, v) = v^{q_2} \ln(1 + u^{p_2})$;
- (iii) $f_1(u,v) = u^{p_1}v^{q_1}arctg(v)$ and $f_2(u,v) = u^{p_2}v^{q_2}arctg(u)$.

References

- 1. Bereanu, C., Jebelean, P., Mawhin, J.: Radial solutions for systems involving mean curvature operators in Euclidean and Minkowski spaces. In: Cabada, A., Liz, E., Nieto, J.J. (eds.) Mathematical Models in Engineering, Biology and Medicine, AIP Conf. Proc. 1124, Am. Inst. Phys., Melville, pp. 50–59 (2009)
- 2. Bereanu, C., Jebelean, P., Torres, P.J.: Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space. J. Funct. Anal. **264**, 270–287 (2013)
- 3. Bereanu, C., Jebelean, P., Torres, P.J.: Multiple positive radial solutions for Dirichlet problem involving the mean curvature operator in Minkowski space. J. Funct. Anal. **265**, 644–659 (2013)
- 4. Cheng, X., Lü, H.: Multiplicity of positive solutions for a (*p*1, *p*2)− Laplacian system and its applications. Nonlinear Anal. Real World Appl. **13**, 2375–2390 (2012)
- 5. Coelho, I., Corsato, C., Rivetti, S.: Positive radial solutions of the Dirichlet problem for the Minkowskicurvature equation in a ball. Topol. Methods Nonlinear Anal. **44**, 23–39 (2014)
- 6. Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)
- 7. Gurban, D., Jebelean, P.: Positive radial solutions for systems with mean curvature operator in Minkowski space. Rend. Instit. Mat. Univ. Trieste **49**, 245–264 (2017)
- 8. Gurban, D., Jebelean, P.: Positive radial solutions for multiparameter Dirichlet systems with mean curvature operator in Minkowski space and Lane-Emden type nonlinearities. J. Differ. Equ. **266**, 5377–5396 (2019)
- 9. Gurban, D., Jebelean, P., Şerban, C.: Nontrivial solutions for potential systems involving the mean curvature operator in Minkowski space. Adv. Nonlinear Stud. **17**, 769–780 (2017)
- 10. Gurban, D., Jebelean, P., Şerban, C.: Non-potential and non-radial Dirichlet systems with mean curvature operator in Minkowski space. Discrete Contin. Dyn. Syst. **40**, 133–151 (2020)
- 11. Lee, Y.-H.: Existence of multiple positive radial solutions for a semilinear elliptic system on an unbounded domain. Nonlinear Anal. **47**, 3649–3660 (2001)
- 12. Ma, R., Chen, T., Gao, H.: On positive solutions of the Dirichlet problem involving the extrinsic mean curvature operator. Electron. J. Qual. Theory Differ. Equ. **98**, 1–10 (2016)
- 13. Ma, R., Gao, H., Lu, Y.: Global structure of radial positive solutions for a prescribed mean curvature problem in a ball. J. Funct. Anal. **270**, 2430–2455 (2016)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.