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Abstract
We deal with a multiparameter Dirichlet system having the form

⎧
⎨

⎩

M(u) + λ1μ1(|x |) f1(u, v) = 0 in B(R),

M(v) + λ2μ2(|x |) f2(u, v) = 0 in B(R),

u|∂B(R) = 0 = v|∂B(R),

whereM stands for the mean curvature operator inMinkowski space,B(R) is an open
ball of radius R in R

N , the parameters λ1, λ2 are positive, the functions μ1, μ2 :
[0, R] → [0,∞) are continuous and positive and the continuous functions f1, f2
satisfy some sign, growth and monotonicity conditions. Among others, these type of
nonlinearities, include the Lane-Emden ones. For this systemwe show that there exists
a continuous curve Γ splitting the first quadrant into two disjoint unbounded, open
setsO1 andO2 such that the system has zero, at least one or at least two positive radial
solutions according to (λ1, λ2) ∈ O1, (λ1, λ2) ∈ Γ or (λ1, λ2) ∈ O2, respectively.
The setO1 is adjacent to the coordinates axes 0λ1 and 0λ2 and the curve Γ approaches
asymptotically to two lines parallel to the axes 0λ1 and0λ2.Actually, this result extends
to more general radial systems the recent existence/non-existence and multiplicity
result obtained in the case of Lane-Emden systems.
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110 D. Gurban

1 Introduction

In this paper we study non-existence, existence and multiplicity of positive solutions
for systems having the form

⎧
⎨

⎩

M(u) + λ1μ1(|x |) f1(u, v) = 0 in B(R),

M(v) + λ2μ2(|x |) f2(u, v) = 0 in B(R),

u|∂B(R) = 0 = v|∂B(R),

(1.1)

whereB(R) = {x ∈ R
N : |x | < R} (R > 0, N ≥ 2),M stands for themean curvature

operator in Minkowski space

M(w) = div

(
∇w

√
1 − |∇w|2

)

,

the parameters λ1, λ2 are positive, the functions μ1, μ2 : [0, R] → [0,∞) are
continuous withμ1(r) > 0 < μ2(r) for all r ∈ (0, R], under the following hypothesis
on the continuous functions f1, f2 : [0,+∞)2 → [0,+∞) :

(H) (i) f1(s, t), f2(s, t) are quasi-monotone nondecreasing with respect to both s and
t ;
(i i) there exist constants c > 0, p1, q2 > 1 and q1, p2 > 0 such that

0 < f1(s, t) ≤ cs p1 tq1,
0 < f2(s, t) ≤ cs p2 tq2 ,

(1.2)

for all s, t > 0.

Recall, a function g(s, t) : [0,∞)2 → [0,∞) is said to be quasi-monotone non-
decreasing with respect to t (resp. s) if for fixed s (resp. t) one has

g(s, t1) ≤ g(s, t2) as t1 ≤ t2 (resp. g(s1, t) ≤ g(s2, t) as s1 ≤ s2).

In recent years, many papers were devoted to the study of Dirichlet problems for
a single equation with operator M in a ball in R

N [1–3,5,7,8,13], while at our best
knowledge, for systems with such an operator the study was recently initiated in [9].
So, in [7], for systems involving Lane-Emden type perturbations of the operator M
and having a variational structure:

⎧
⎨

⎩

M(u) + λμ(|x |)(p + 1)upvq+1 = 0, in B(R),

M(v) + λμ(|x |)(q + 1)up+1vq = 0, in B(R),

u|∂B(R) = 0 = v|∂B(R),

(1.3)

where the positive exponents p, q satisfy max{p, q} > 1 and the function μ :
[0, R] → [0,∞) is continuous andμ(r) > 0 for all r ∈ (0, R], it was shown that there
exists Λ > 0 such that (1.3) has zero, at least one or at least two positive solutions
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Radial non-potential Dirichlet systems 111

according to λ ∈ (0,Λ), λ = Λ or λ > Λ. This result extends the corresponding one
obtained in [3] in the case of a single equation.

Then, in the recent paper [8] are considered non-potential radial systems having
the form

⎧
⎨

⎩

M(u) + λ1μ1(|x |)up1vq1 = 0, in B(R),

M(v) + λ2μ2(|x |)up2vq2 = 0, in B(R),

u|∂B(R) = 0 = v|∂B(R),

(1.4)

where λ1, λ2 are two positive parameters, p1, p2, q1, q2 are positive exponents with
min{p1, q2} > 1 and the weight functions μ1, μ2 : [0, R] → [0,∞) are assumed
to be continuous with μ1(r) > 0 < μ2(r) for all r ∈ (0, R]. Using fixed point index
estimations and lower and upper solutions method, it was proved the existence of a
continuous curve Γ splitting the first quadrant into two disjoint open sets O1 and O2
such that the system (1.4) has zero, at least one or at least two positive, radial solutions
according to (λ1, λ2) ∈ O1, (λ1, λ2) ∈ Γ or (λ1, λ2) ∈ O2, respectively.

On the other hand, in paper [10] are studied multiparameter Dirichlet systems
having the form

⎧
⎨

⎩

M(u) + λ1 f1(u, v) = 0, in Ω,

M(v) + λ2 f2(u, v) = 0, in Ω,

u|∂Ω = 0 = v|∂Ω,

where Ω is a general bounded smooth domain in R
N and the continuous functions

f1, f2 satisfy some sign, growth and quasi-monotonicity conditions. For such systems
it has been obtained the existence of a hyperbola like curve which separates the first
quadrant in twodisjoint sets, an openoneO and a closedoneF , such that the systemhas
zero or at least one strictly positive solution, according to (λ1, λ2) ∈ O or (λ1, λ2) ∈ F .
Moreover, it has been showed that inside of F there exists an infinite rectangle in
which the parameters being, the system has at least two strictly positive solutions.
The approaches are based on a lower and upper solutions method and topological
degree type arguments. This result extends, in some sense, to non-radial systems the
existence/non-existence and multiplicity result obtained in [8] for the radial case.

In view of the above, the aim of this paper is two fold: firstly to complete the result
obtained in [8] by showing that this still remains valid for more general systems of
type (1.1) and secondly, to show that, at least in the radial case, a sharper result as the
one in [8] can be obtained for such more general nonlinearities.

Since the solvability of (1.1) is guaranteed by [8, Corrolary 2.1], the main interest
concerns the non-existence, existence and multiplicity of positive radial solutions. In
this direction, the techniques employed in [8] for Lane-Emden systemswill be adapted
for system (1.1); we point out that the growth conditions on f1, f2 from hypothesis
(H) play a key role in the proof of the main result.

Therefore, we show that there exists a continuous curveΓ splitting the first quadrant
into two disjoint unbounded, open setsO1 andO2 such that the system (1.1) has zero,
at least one or at least two positive radial solutions according to (λ1, λ2) ∈ O1,

(λ1, λ2) ∈ Γ or (λ1, λ2) ∈ O2, respectively. The setO1 is adjacent to the coordinates
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112 D. Gurban

axes 0λ1 and 0λ2 and the curve Γ approaches asymptotically to two lines parallel to
the axes 0λ1 and 0λ2 (Theorem 3.1).

Also, notice that, at least when speaking about radial solutions, this result is sharper
then the one obtained in [10] due to the fact that here, the curve Γ which delimitates
the multiplicity of solutions is the optimal one. Moreover, the conditions in hypothesis
(H) are satisfied by Lane-Emden nonlinearities, so the result in [8] is recovered.

The rest of the paper is organized as follows. In Section 2 we reduce problem
(1.1) to a homogeneous mixed boundary value problem and also we recall some
results concerning lower (and upper) solutions method and some fixed point index
estimations proved in [8]. The main non-existence, existence and multiplicity result
for the multiparameter system (1.1) is stated and proved in Section 3. An example of
nonlinearities different from the ones in [8] is provided.

2 Preliminaries

As usual, when we are seeking for radial solutions of (1.1), by setting r = |x | and
u(x) = u(r), v(x) = v(r), the Dirichlet problem (1.1) reduces to the homogeneous
mixed boundary value problem:

⎧
⎪⎨

⎪⎩

[r N−1ϕ(u′)]′ + r N−1λ1μ1(r) f1(u, v) = 0,

[r N−1ϕ(v′)]′ + r N−1λ2μ2(r) f2(u, v) = 0,

u′(0) = u(R) = 0 = v(R) = v′(0).
(2.1)

where

ϕ(y) = y
√
1 − y2

(y ∈ R, |y| < 1).

By a solution of (2.1) we mean a couple of nonnegative functions (u, v) ∈ C1[0, R]×
C1[0, R] with ||u′||∞ < 1, ||v′||∞ < 1 and r 	→ r N−1ϕ(u′(r)), r 	→ r N−1ϕ(v′(r))
of class C1 on [0, R], which satisfies problem (2.1). Here and below, ‖ · ‖∞ stands
for the usual sup-norm on C := C[0, R]. We say that u ∈ C is positive if u > 0 on
[0, R). By a positive solution of (2.1) we understand a solution (u, v) with both u and
v positive.

Throughout this paper, the space C1 := C1[0, R]will be understood with the norm
‖u‖1 = ‖u‖∞ + ‖u′‖∞, while the product space C1 × C1 will be endowed with
the norm ||(u, v)|| = max{||u||∞, ||v||∞} + max{||u′||∞, ||v′||∞}. We consider the
closed subspace

C1
M := {(u, v) ∈ C1 × C1 : u′(0) = u(R) = 0 = v(R) = v′(0)}

and its closed, convex cone

K := {(u, v) ∈ C1
M : u ≥ 0 ≤ v on [0, R]}.
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Radial non-potential Dirichlet systems 113

Also we denote B(ρ) := {(u, v) ∈ K : ‖(u, v)‖ < ρ}.
Let us define the linear operators

S : C → C, Su(r) = 1

r N−1

∫ r

0
t N−1u(t)dt (r ∈ (0, R]), Su(0) = 0;

P : C → C1, Pu(r) =
∫ R

r
u(t)dt (r ∈ [0, R]).

It is easy to see that P is bounded and S is compact. Hence, the nonlinear operator
P ◦ϕ−1◦S : C → C1 is compact. Denoting by Nλi the Nemytskii operator associated
to λiμi fi (i = 1, 2), i.e.,

Nλi : C × C → C, Nλi (u, v) = λiμi (·) fi (u+(·), v+(·)) (u, v ∈ C),

(s+ := max{s, 0})we have that Nλi is continuous and takes bounded sets into bounded
sets.

If A is a subset of K , we set

K(A) := {T | T : A → K is a compact operator}.

Also, given a bounded open (in K ) subset O of K , we denote by i(T ,O) the fixed
point index of the operator T ∈ K(O) on O with respect to K [6].

The following proposition follows from Propositions 2.1 and 2.2 in [8].

Proposition 2.1 (i) A couple of functions (u, v) ∈ K is a solution of (2.1) iff it is a
fixed point of the compact nonlinear operator

Dλ1,λ2 : K → K , Dλ1,λ2 =
(
P ◦ ϕ−1 ◦ S ◦ Nλ1 , P ◦ ϕ−1 ◦ S ◦ Nλ2

)
.

In addition, for all (u, v) ∈ K , it holds

‖Dλ1,λ2(u, v)‖ < R + 1. (2.2)

(ii) For all d ≥ R + 1 it holds

i(Dλ1,λ2 , B(d)) = 1. (2.3)

In particular, problem (2.1) always has a solution.

The following two lemmas are immediate consequences of [8, Lemma 3.2] and [7,
Lemma 2.4 ].

Lemma 2.1 Assume (H). If there is some M > 0 such that either

lim
s→0+

f1(s, t)

s
= 0 uniformly with t ∈ [0, M], (2.4)
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114 D. Gurban

or

lim
t→0+

f2(s, t)

t
= 0 uniformly with s ∈ [0, M], (2.5)

then there exists ρ0 = ρ0(λ1, λ2) > 0 such that

i(Dλ1,λ2 , B(ρ)) = 1 for all 0 < ρ ≤ ρ0.

Lemma 2.2 Under assumption (H), if (u, v) is a nontrivial solution of problem (2.1),
then (u, v) is a positive solution with both u and v strictly decreasing.

Definition 2.1 A lower solution of (2.1) is a couple of nonnegative functions
(αu, αv) ∈ C1 × C1, such that ‖α′

u‖∞ < 1, ‖α′
v‖∞ < 1, the mappings r 	→

r N−1ϕ(α′
u(r)), r 	→ r N−1ϕ(α′

v(r)) are of class C
1 on [0, R] and satisfies

⎧
⎪⎨

⎪⎩

[r N−1ϕ(α′
u)]′ + r N−1λ1μ1(r) f1(αu, αv) ≥ 0,

[r N−1ϕ(α′
v)]′ + r N−1λ2μ2(r) f2(αu, αv) ≥ 0,

αu(R) = 0, αv(R) = 0.

(2.6)

An upper solution (βu, βv) ∈ C1×C1 is defined by reversing the first two inequalities
in (2.6) and asking βu(R) ≥ 0, βv(R) ≥ 0 instead of αu(R) = 0, αv(R) = 0.

The following lemma is an immediate consequence of [8, Lemma 3.1].

Lemma 2.3 Assume that (2.1) has a lower solution (αu, αv) and f1(s, t) (resp.
f2(s, t)) is quasi-monotone nondecreasing with respect to t (resp. s) and let

Aα = A(αu ,αv) := {(u, v) ∈ K : αu ≤ u, αv ≤ v}.

Then, the following hold true:

(i) problem (2.1) has always a solution in Aα;
(ii) if (2.1) has an unique solution (u0, v0) in Aα and there exists ρ0 > 0 such that

B((u0, v0), ρ0) := {(u, v) ∈ K : ‖(u − u0, v − v0)‖ ≤ ρ0} ⊂ Aα, then

i(Dλ1,λ2 , B((u0, v0), ρ)) = 1, for all 0 < ρ ≤ ρ0.

3 Non-existence, existence andmultiplicity

In this section, under hypothesis (H), we study the existence and multiplicity of
positive solutions for system (1.1). We employ here the technique used in [8] for the
study of a system involving Lane-Emden nonlinearities to the more general system
(1.1). For this, we consider the corresponding radial problem (2.1).
Setting

S := {(λ1, λ2) : λ1, λ2 > 0 and (2.1) has at least one positive solution},
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Radial non-potential Dirichlet systems 115

we know that S is nonempty and unbounded in both directions of the axes 0λ1 and
0λ2 (see [8, Theorem 2.3]).

Lemma 3.1 Assume (H). Then, the followings are true:

(i) There exist λ∗
1, λ

∗
2 > 0, such that S ⊂ [λ∗

1,+∞) × [λ∗
2,+∞) and for all

(λ1, λ2) ∈ (0,+∞)2\([λ∗
1,+∞)×[λ∗

2,+∞)), problem (2.1) has only the trivial
solution.

(ii) If (λ1, λ2) ∈ S, then [λ1,+∞) × [λ2,+∞) ⊂ S.

(iii) If (λ1, λ2) ∈ S, then for all (λ1, λ2) ∈ (λ1,+∞) × (λ2,+∞), problem (2.1)
has at least two positive solutions.

Proof This follows the outline of the proof of Lemma 4.1 in [8].
(i) Let λ1, λ2 > 0 and (u, v) be a positive solution of (2.1). It follows from Lemma
2.2 that u and v are both strictly decreasing. Integrating the first equation in (2.1) on
[0, r ], one obtains

−r N−1ϕ(u′(r)) = λ1

∫ r

0
t N−1μ1(t) f1(u(t), v(t))dt, for all r ∈ [0, R].

Since u, v are strictly decreasing on [0, R] and using (1.2), we deduce

−r N−1u′(r) ≤ −r N−1ϕ(u′(r))

≤ λ1

∫ r

0
t N−1μ1(t)cu

p1(t)vq1(t)dt

≤ λ1μ
M
1 cu p1(0)vq1(0)r N/N ,

where μM
i := max[0,R] μi (i = 1, 2). Integrating on [0, R] we get

u(0) ≤ λ1μ
M
1 cu p1(0)vq1(0)R2/(2N ). (3.1)

Analogously, one has

v(0) ≤ λ2μ
M
2 cu p2(0)vq2(0)R2/(2N ). (3.2)

From 0 < u(0), v(0) < R and p1, q2 > 1 we obtain

λi > 2N/(μM
i cR pi+qi+1) > 0 (i = 1, 2). (3.3)

Consider now the nonempty sets

S1 :={λ1 > 0 : ∃ λ2 > 0 such that (λ1, λ2) ∈ S},
S2 :={λ2 > 0 : ∃ λ1 > 0 such that (λ1, λ2) ∈ S}

and let

(0 <) λ∗
i := inf Si (< +∞) (i = 1, 2).
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116 D. Gurban

It follows that S ⊂ [λ∗
1,+∞)×[λ∗

2,+∞) and for all λ1, λ2 ∈ (0,+∞)2\([λ∗
1,+∞)

×[λ∗
2,+∞)), problem (2.1) has only the trivial solution (see Lemma 2.2).

(ii) Let (λ01, λ
0
2) ∈ [λ1,+∞)×[λ2,+∞) be arbitrarily chosen and (u, v) be a positive

solution for (2.1) with λ1 = λ1 and λ2 = λ2. Then, (u, v) is a lower solution of (2.1)
with λ1 = λ01 and λ2 = λ02. From Proposition 2.3 (i) and the fact that (u, v) is positive,
we obtain (λ01, λ

0
2) ∈ S.

(iii) From (ii) we get that (λ1,+∞) × (λ2,+∞) ⊂ S and let (λ01, λ
0
2) ∈ (λ1,+∞) ×

(λ2,+∞). It remains to show that problem (2.1) with λ1 = λ01 and λ2 = λ02 has
a second positive solution. For this, let (u, v) be the lower solution constructed as
above. We fix (u0, v0) a positive solution of (2.1) with λ1 = λ01 and λ2 = λ02 such that
(u0, v0) ∈ A := A(u,v).

Now, we claim that there exists ε > 0 such that B((u0, v0), ε) ⊂ A. By using the
quasi-monotonicity of the functions f1 and f2, for all r ∈ [0, R/2], we have

u(r) =
∫ R

r
ϕ−1

(
1

t N−1

∫ t

0
sN−1[λ1μ1(s) f1(u(s), v(s))]ds

)

dt

<

∫ R

r
ϕ−1

(
1

t N−1

∫ t

0
sN−1[λ01μ1(s) f1(u0(s), v0(s))]ds

)

dt

= u0(r).

Analogously we obtain that v(r) < v0(r) on [0, R/2]. So, we can find ε1 > 0 such
that if (u, v) ∈ K then

‖u − u0‖∞ ≤ ε1 ⇒ u ≤ u and ‖v − v0‖∞ ≤ ε1 ⇒ v ≤ v on [0, R/2]. (3.4)

On the other hand, for r ∈ [R/2, R] one obtains u′
0(r) < u′(r) and v′

0(r) < v′(r).
Thus, there is some ε2 ∈ (0, ε1) such that if (u, v) ∈ K , then

‖u′ − u′
0‖∞ ≤ ε2 ⇒ u′ > u′ and ‖v′ − v′

0‖∞ ≤ ε2 ⇒ v′ > v′ on [R/2, R].

From

u(r) = −
∫ R

r
u′(s)ds > −

∫ R

r
ū′(s)ds = ū(r)

we have that u > u (and, similarly v > v) on [R/2, R). This means that

‖u′ − u′
0‖∞ ≤ ε2 ⇒ u ≤ u and ‖v′ − v′

0‖∞ ≤ ε2 ⇒ v ≤ v on [R/2, R]. (3.5)

The claim follows from (3.4) and (3.5), by taking ε ∈ (0, ε2).
Next, if (2.1) has a second solution contained in A, then it is nontrivial and the

proof is complete. If not, by Lemma 2.3 we infer that

i(Dλ01,λ
0
2
, B((u0, v0), ρ)) = 1 for all 0 < ρ ≤ ε,
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Radial non-potential Dirichlet systems 117

where Dλ01,λ
0
2
stands for the fixed point operator associated to problem (2.1) with

λ1 = λ01 and λ2 = λ02. Also, from Proposition 2.1 (ii) we have

i(Dλ01,λ
0
2
, B(ρ)) = 1 for all ρ ≥ R + 1,

and from Lemma 2.1 we get

i(Dλ01,λ
0
2
, B(ρ)) = 1 for all ρ > 0 sufficiently small.

Let ρ1, ρ2 > 0 be sufficiently small and ρ3 ≥ R + 1 be such that B((u0, v0), ρ1) ∩
B(ρ2) = ∅ and B((u0, v0), ρ1) ∪ B(ρ2) ⊂ B(ρ3). From the additivity-excision prop-
erty of the fixed point index it follows that

i(Dλ01,λ
0
2
, B(ρ3)\[B((u0, v0), ρ1) ∪ B(ρ2)]) = −1.

Therefore, Dλ01,λ
0
2
has a fixed point (u, v) ∈ B(ρ3)\[B((u0, v0), ρ1) ∪ B(ρ2)]. But

this means that (2.1) has a second positive solution. ��
Now, for θ ∈ (0, π/2), we denote

L(θ) := {λ > 0 : (λ cos θ, λ sin θ) ∈ S},

which is a nonempty set, and we rewrite problem (2.1) in the form

⎧
⎪⎨

⎪⎩

[r N−1ϕ(u′)]′ + r N−1λ cos θ μ1(r) f1(u, v) = 0,

[r N−1ϕ(v′)]′ + r N−1λ sin θ μ2(r) f2(u, v) = 0,

u′(0) = u(R) = 0 = v(R) = v′(0),
(3.6)

where λ > 0 is a real parameter.

Proposition 3.1 There exists a continuous function Λ : (0, π/2) → (0,∞) such that

lim
θ→0

Λ(θ) sin θ − λ∗
2 = 0 = lim

θ→π/2
Λ(θ) cos θ − λ∗

1 (3.7)

and the followings hold true:

(i) Λ(θ) ∈ L(θ), for every θ ∈ (0, π/2);
(ii) system (2.1) has at least two positive solutions, for all (λ1, λ2) ∈ (Λ(θ) cos θ,

+∞) × (Λ(θ) sin θ,+∞).

Proof This follows the outline of the proof of Proposition 4.1 in [8]. For each θ ∈
(0, π/2), let

Λ(θ) := inf L(θ). (3.8)
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118 D. Gurban

Note that Λ(θ) is < ∞ because L(θ) �= ∅ and > 0 by Lemma 3.1 (i). We first prove
statements (i) and (ii).
(i) Let {λk} ⊂ L(θ) be a decreasing sequence converging to Λ(θ) and (uk, vk) ∈ K
with uk > 0 < vk on [0, R) be such that

uk = P ◦ ϕ−1 ◦ S ◦ [λk cos θ μ1 f1(uk, vk)],
vk = P ◦ ϕ−1 ◦ S ◦ [λk sin θ μ2 f2(uk, vk)].

From (2.2) and Arzela-Ascoli theorem we obtain that there exists (u, v) ∈ K such
that, passing eventually to a subsequence, {(uk, vk)} converges to (u, v) in C × C –
with the usual product topology. Hence, u ≥ 0 ≤ v and

u = P ◦ ϕ−1 ◦ S ◦ [Λ(θ) cos θ μ1 f1(u, v)],
v = P ◦ ϕ−1 ◦ S ◦ [Λ(θ) sin θ μ2 f2(u, v)].

From (3.1) and (3.2) we have that

uk(0) ≤ λk cos θ μM
1 cu p1

k (0)vq1k (0)R2/(2N )

and

vk(0) ≤ λk sin θ μM
2 cu p2

k (0)vq2k (0)R2/(2N ),

which, taking into account that 0 < uk(0), vk(0) < R, imply

u p1−1
k (0) >

2N

λkμM
1 cRq1+2 cos θ

and

v
q2−1
k (0) >

2N

λkμM
2 cR p2+2 sin θ

.

These ensure that there is a constant c1 > 0 such that uk(0), vk(0) > c1 for all k.
This leads to u(0), v(0) ≥ c1, hence by Lemma 2.2 we get u > 0 < v on [0, R).

Consequently, Λ(θ) ∈ L(θ).

(i i) This follows from statement (iii) in Lemma 3.1.
The continuity of Λ and the equalities in (3.7) can be proved in the same manner

as it is done in the proof of Proposition 4.1 in [8]. ��
Theorem 3.1 Assume (H). Then, there exist λ∗

1, λ
∗
2 > 0 and a continuous function

Λ : (0, π/2) → (0,+∞), generating the curve

(Γ )

{
λ1(θ) = Λ(θ) cos θ

λ2(θ) = Λ(θ) sin θ
, θ ∈ (0, π/2)

such that
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(i) Γ ⊂ [λ∗
1,+∞) × [λ∗

2,+∞);
(ii) the following asymptotic behaviors hold

lim
θ→π/2

λ2(θ) = +∞ = lim
θ→0

λ1(θ), (3.9)

lim
θ→0

λ2(θ) − λ∗
2 = 0 = lim

θ→π/2
λ1(θ) − λ∗

1; (3.10)

(iii) Γ separates the first quadrant (0,+∞) × (0,+∞) in two disjoint sets O1 and
O2 such that problem (1.1) has zero, at least one or at least two radial positive
solutions, according to (λ1, λ2) ∈ O1, (λ1, λ2) ∈ Γ or (λ1, λ2) ∈ O2.

Proof This follows from Lemma 3.1 and Proposition 3.1. ��
Example 3.1 Let p1, q2 > 1 and q1, p2 > 0. The conclusion of Theorem 3.1 is
obtained for the following choices of f1 and f2 in problem (1.1):

(i) f1(u,v) = up1vq1 and f2(u,v) = up2vq2 – Lane-Emden type nonlinearities;
(ii) f1(u,v) = up1 ln(1 + vq1) and f2(u,v) = vq2 ln(1 + up2);
(iii) f1(u,v) = up1vq1arctg(v) and f2(u,v) = up2vq2arctg(u).
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