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Abstract
We deal with a multiparameter Dirichlet system having the form

M) + Ay (Ix]) fi(u, v) =0 in B(R),
M) + opa(lx]) f2(u, v) =0 in B(R),
ulspr) = 0= Vv[388R),

where M stands for the mean curvature operator in Minkowski space, B(R) is an open
ball of radius R in RY, the parameters A1, Ay are positive, the functions w1, us :
[0, R] — [0, co) are continuous and positive and the continuous functions fi, f>
satisfy some sign, growth and monotonicity conditions. Among others, these type of
nonlinearities, include the Lane-Emden ones. For this system we show that there exists
a continuous curve I splitting the first quadrant into two disjoint unbounded, open
sets O1 and O such that the system has zero, at least one or at least two positive radial
solutions according to (A1, Ap) € O, (A1, A2) € I" or (A, Ap) € O,, respectively.
The set O is adjacent to the coordinates axes OX and OA, and the curve I" approaches
asymptotically to two lines parallel to the axes OA 1 and OX,. Actually, this result extends
to more general radial systems the recent existence/non-existence and multiplicity
result obtained in the case of Lane-Emden systems.
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1 Introduction

In this paper we study non-existence, existence and multiplicity of positive solutions
for systems having the form

M@) + A (Ix]) fi(u, v) =0 in B(R),
M) + Xopa(lx]) f2(u, v) =0 in B(R), (LD
ulpBr) = 0= V|38®R).

where B(R) = {x e RY : |x| < R} (R > 0, N > 2), M stands for the mean curvature
operator in Minkowski space

Vw
M =div| —— |,
) v ( 1-— |VW|2)

the parameters A1, Ao are positive, the functions w;, uo : [0, R] — [0, c0) are
continuous with w1 (r) > 0 < ua(r) forallr € (0, R], under the following hypothesis
on the continuous functions fi, f2 : [0, +oo)2 — [0, +00) :

(H) (i) fi(s, 1), fo(s, t) are quasi-monotone nondecreasing with respect to both s and
t;
(ii) there exist constants ¢ > 0, p1, g2 > 1 and g1, p2 > 0 such that

0 < fi(s,t) < csPit', (1.2)
0 < fa(s,t) < csP9?, ’

forall s,z > 0.

Recall, a function g(s, t) : [0, 00)2 = [0, 0o) is said to be quasi-monotone non-
decreasing with respect to ¢ (resp. s) if for fixed s (resp. #) one has

g(s, 1) < g(s,n)asty <1 (resp. g(s1,1) < g(s2,1) as sy < s2).

In recent years, many papers were devoted to the study of Dirichlet problems for
a single equation with operator M in a ball in R¥ [1-3,5,7,8,13], while at our best
knowledge, for systems with such an operator the study was recently initiated in [9].
So, in [7], for systems involving Lane-Emden type perturbations of the operator M
and having a variational structure:

M) + rp(jx)(p + DuPvit! =0, in B(R),
M) + r(jx)(g + DuPTve =0, in B(R), (1.3)
ulaBr) = 0=V38r)

where the positive exponents p, ¢ satisfy max{p,q} > 1 and the function p :

[0, R] — [0, c0) is continuous and w(r) > Oforall r € (0, R], it was shown that there
exists A > 0 such that (1.3) has zero, at least one or at least two positive solutions
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Radial non-potential Dirichlet systems 1M1

according to A € (0, A), A = A or A > A. This result extends the corresponding one
obtained in [3] in the case of a single equation.

Then, in the recent paper [8] are considered non-potential radial systems having
the form

M@) + A (IxPuPvd! =0, in B(R),
M) + Apua(|x])uP2v2 = 0, in B(R), (1.4)
ulaBry =0 =v3B&)

where A1, Ap are two positive parameters, p1, p2, g1, g2 are positive exponents with
min{p1, g2} > 1 and the weight functions 1, w2 : [0, R] — [0, co) are assumed
to be continuous with p1(r) > 0 < u(r) for all » € (0, R]. Using fixed point index
estimations and lower and upper solutions method, it was proved the existence of a
continuous curve I splitting the first quadrant into two disjoint open sets O; and O,
such that the system (1.4) has zero, at least one or at least two positive, radial solutions
according to (A1, 22) € Oy, (A1, X2) € I or (A1, X2) € O», respectively.

On the other hand, in paper [10] are studied multiparameter Dirichlet systems
having the form

M(u) + 1y fi(u, v) =0, in £2,
M) + A fo(u,v) =0, in £2,
ulpe =0="1v)h0,

where £2 is a general bounded smooth domain in R" and the continuous functions
f1, f2 satisfy some sign, growth and quasi-monotonicity conditions. For such systems
it has been obtained the existence of a hyperbola like curve which separates the first
quadrant in two disjoint sets, an open one O and a closed one F, such that the system has
zero or at least one strictly positive solution, according to (A1, 12) € Qor (A1, X2) € F.
Moreover, it has been showed that inside of F there exists an infinite rectangle in
which the parameters being, the system has at least two strictly positive solutions.
The approaches are based on a lower and upper solutions method and topological
degree type arguments. This result extends, in some sense, to non-radial systems the
existence/non-existence and multiplicity result obtained in [8] for the radial case.

In view of the above, the aim of this paper is two fold: firstly to complete the result
obtained in [8] by showing that this still remains valid for more general systems of
type (1.1) and secondly, to show that, at least in the radial case, a sharper result as the
one in [8] can be obtained for such more general nonlinearities.

Since the solvability of (1.1) is guaranteed by [8, Corrolary 2.1], the main interest
concerns the non-existence, existence and multiplicity of positive radial solutions. In
this direction, the techniques employed in [8] for Lane-Emden systems will be adapted
for system (1.1); we point out that the growth conditions on fi, f> from hypothesis
(H) play a key role in the proof of the main result.

Therefore, we show that there exists a continuous curve I splitting the first quadrant
into two disjoint unbounded, open sets @ and O, such that the system (1.1) has zero,
at least one or at least two positive radial solutions according to (A1, A2) € Oy,
(A1, X2) € I' or (A1, ) € Oy, respectively. The set O is adjacent to the coordinates
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112 D. Gurban

axes 011 and OA, and the curve I" approaches asymptotically to two lines parallel to
the axes OA; and O\, (Theorem 3.1).

Also, notice that, at least when speaking about radial solutions, this result is sharper
then the one obtained in [10] due to the fact that here, the curve I" which delimitates
the multiplicity of solutions is the optimal one. Moreover, the conditions in hypothesis
(H) are satisfied by Lane-Emden nonlinearities, so the result in [8] is recovered.

The rest of the paper is organized as follows. In Section 2 we reduce problem
(1.1) to a homogeneous mixed boundary value problem and also we recall some
results concerning lower (and upper) solutions method and some fixed point index
estimations proved in [8]. The main non-existence, existence and multiplicity result
for the multiparameter system (1.1) is stated and proved in Section 3. An example of
nonlinearities different from the ones in [8] is provided.

2 Preliminaries

As usual, when we are seeking for radial solutions of (1.1), by setting r = |x| and
u(x) = u(r), v(x) = v(r), the Dirichlet problem (1.1) reduces to the homogeneous
mixed boundary value problem:

PN o) + NI (r) fi(u, v) = 0,
PN+ rV " Naua(r) f2(u, v) =0, (2.1)
' (0) =u(R) =0 =1v(R) = (0).

where

eR, [yl <D.

<p(y)=L
N

By a solution of (2.1) we mean a couple of nonnegative functions (u, v) € C'[0, R] x
C'10, R with ||t ||oc < 1, |[V/]leo < 1 and r = rN=lo@W/(r)), r = rN 1o (r))
of class C! on [0, R], which satisfies problem (2.1). Here and below, || - ||oo stands
for the usual sup-norm on C := C[0, R]. We say that u € C is positive if u > 0 on
[0, R). By a positive solution of (2.1) we understand a solution (u, v) with both «# and
v positive.

Throughout this paper, the space C! := C'[0, R] will be understood with the norm
lulli = llulloo + |l lloo, While the product space C! x C! will be endowed with
the norm ||(u, v)|| = max{||u|]sc, ||V|loc} + Mmax{||u||cc, ||V ||oc}. We consider the
closed subspace

Chyi={w,v)eC' x C':u'(0) =u(R) =0 =1v(R) = v (0)}
and its closed, convex cone

K :={(u,v) € C};:u=>0<wvonl0,R]}.
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Radial non-potential Dirichlet systems 113

Also we denote B(p) := {(u,v) € K : ||[(u, v)| < p}.
Let us define the linear operators

S:C—)C, Su(r):

T /rtN_lu(t)dt (r € (0, R]), Su(0) =0;
0

R
P:C—C, Pu(r):/ u(®)dt (r € [0, R]).

It is easy to see that P is bounded and S is compact. Hence, the nonlinear operator
Pop~'oS:C — C!iscompact. Denoting by N ; the Nemytskii operator associated
toAiui fi i =1,2),1e.,

NA.i :CxC— Ca N)L,' (l/l, U) = )\'l/"l'l()‘fl(uﬁ’()’ U+()) (M, v e C)7
(s+ := max{s, 0}) we have that Ny, is continuous and takes bounded sets into bounded
sets.
If A is a subset of K, we set
K(A):={T | T : A — K is acompact operator}.
Also, given a bounded open (in K) subset O of K, we denote by i (7', O) the fixed

point index of the operator T € K(O) on O with respect to K [6].
The following proposition follows from Propositions 2.1 and 2.2 in [8].

Proposition 2.1 (i) A couple of functions (u,v) € K is a solution of (2.1) iff it is a
fixed point of the compact nonlinear operator

Disy K — K, D s = (Poq)_l 0SoN,,Pog™! oSoN)LZ).
In addition, for all (u, v) € K, it holds
1Dy, 20, V)| < R+ 1. (2.2)
(ii) Foralld > R + 1 it holds
i(Diy .04, B(d) = 1. (2.3)

In particular, problem (2.1) always has a solution.

The following two lemmas are immediate consequences of [8, Lemma 3.2] and [7,
Lemma 2.4 ].

Lemma 2.1 Assume (H). If there is some M > O such that either

. fi(s, 1)
1m

S‘>0+ S

= 0 uniformly with t € [0, M], 2.4)
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or

. fals, 1)
m

t—04 t

= 0 uniformly with s € [0, M], 2.5)

then there exists pg = po(ri, A2) > 0 such that

i(D)»],)Lzs B(p)) = 1f0rallo < p = po.
Lemma 2.2 Under assumption (H), if (u, v) is a nontrivial solution of problem (2.1),
then (u, v) is a positive solution with both u and v strictly decreasing.

Definition 2.1 A lower solution of (2.1) is a couple of nonnegative functions
(oty, o) € Cl x CL, such that lolloo < 1, lle)llc < 1, the mappings r +>
rN_lgo(a,; ), r— rN_lgo(a;(r)) are of class C! on [0, R] and satisfies

PN o)l + rV =g wi () fi (o, ) > 0,
PN o)l + rV e (r) folaw, ay) > 0, (2.6)
o, (R) =0, ay(R)=0.

An upper solution (B, B,) € C' x C! is defined by reversing the first two inequalities
in (2.6) and asking B,(R) > 0, B,(R) > 0 instead of «,(R) = 0, ay(R) = 0.
The following lemma is an immediate consequence of [8, Lemma 3.1].

Lemma 2.3 Assume that (2.1) has a lower solution (o, ay) and fi(s,t) (resp.
fa(s, 1)) is quasi-monotone nondecreasing with respect to t (resp. s) and let

Ay = Aoy =, v) € Kty <u, oy < v}

Then, the following hold true:

(1) problem (2.1) has always a solution in Ay;
(i1) z (2.1) has an unique solution (uq, vo) in Ay, and there exists py > 0 such that
B((u0, v0), po) := {(u,v) € K : [[(u —up,v—vo)ll < po} C Aq, then

i (D 3a> B((1o, v0), p)) =1, forall0 < p < po.

3 Non-existence, existence and multiplicity

In this section, under hypothesis (H), we study the existence and multiplicity of
positive solutions for system (1.1). We employ here the technique used in [8] for the
study of a system involving Lane-Emden nonlinearities to the more general system
(1.1). For this, we consider the corresponding radial problem (2.1).

Setting

S :={(A1,A2) : A1, A2 > 0and (2.1) has at least one positive solution},
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Radial non-potential Dirichlet systems 115

we know that S is nonempty and unbounded in both directions of the axes OA; and
0OA, (see [8, Theorem 2.3]).

Lemma 3.1 Assume (H). Then, the followings are true:

(i) There exist A,7; > 0, such that S C [A],+00) X [A}, +00) and for all
(A1, 12) € (0, +00)2\([A*, +00) X [A3, +00)), problem (2.1) has only the trivial
solution.

(i) If (A1, A2) € S, then [A1, +00) X [A2, +00) C S.

(iii) If (A1, A2) € S, then for all (A1, A2) € (A1, +00) X (A2, +00), problem (2.1)
has at least two positive solutions.

Proof This follows the outline of the proof of Lemma 4.1 in [8].

(i) Let A1, A2 > 0 and (u, v) be a positive solution of (2.1). It follows from Lemma
2.2 that u and v are both strictly decreasing. Integrating the first equation in (2.1) on
[0, r], one obtains

N lowW' (r) = M fortN_lul(t)fl(u(t),v(t))dt, for all r € [0, R).
Since u, v are strictly decreasing on [0, R] and using (1.2), we deduce
V) = =N/ ()
< /Or N O cuP (v (dt
< haptleu? O (O)r"/N,
where Mf"’ :=maxjo,g) #i (i = 1,2). Integrating on [0, R] we get
1(0) < Ay’ cu” (O (0)R*/(2N). 3.1
Analogously, one has
v(0) < roud cuP?(0)v92 (0)R?/(2N). (3.2)
From 0 < u(0), v(0) < R and p1, g2 > 1 we obtain
A > 2N/(uMeRPITETYy S 0 (i =1,2). (3.3)
Consider now the nonempty sets

Sy :={r1 > 0: 3 Ay > Osuchthat (A1, 1) € S},
Sy :={A2 > 0: 3 Ay > Osuch that (A1, Ap) € S}

and let

(0 <) A7 :=infS; (< +00) (i =1,2).
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116 D. Gurban

It follows that S C [A}, +00) x [A}, +-00) and for all 1, A, € (0, +oo)2\([kT, +00)
x[A3, +00)), problem (2.1) has only the trivial solution (see Lemma 2.2).
(ii) Let (1Y, Ag) € [A1, +00) x [A2, +00) be arbitrarily chosen and (i, D) be a positive
solution for (2.1) with A = 21 and A2 = Ap. Then, (u, v) is a lower solution of (2.1)
with A = )‘(1) and 1) = Ag. From Proposition 2.3 (i) and the fact that (u, v) is positive,
we obtain (1Y, Ag) eS.
(iii) From (ii) we get that (A1, +00) x (A2, +00) C S and let (A9, 19) € (A1, +00) x
(A2, +00). It remains to show that problem (2.1) with A1 = A? and A, = Ag has
a second positive solution. For this, let (&, v) be the lower solution constructed as
above. We fix (ug, vp) a positive solution of (2.1) with A} = )‘(1) and Ay = kg such that
(ug, vo) € A= A(ﬁj). -

Now, we claim that there exists ¢ > 0 such that B((ug, vg), ¢) C A. By using the
quasi-monotonicity of the functions f; and f>, for all r € [0, R/2], we have

— N K —1 1 AR — N =
ury=| ¢\ F7 - (A1 (s) fi(u(s), v(s)lds ) dr
R 1 t
< f o <;N_—1 /0 sN1[A?m(s)f1(uo(s>,vo(s))]ds) dt
= ug(r).

Analogously we obtain that v(r) < vo(r) on [0, R/2]. So, we can find ¢; > 0 such
that if (1, v) € K then

lu —uplloo < €1 = u <u and ||[v — vollec < €1 = v <vonl0, R/2]. (3.4)

On the other hand, for » € [R/2, R] one obtains u((r) < u'(r) and vj(r) < v'(r).
Thus, there is some &> € (0, 1) such that if (1, v) € K, then

lu' —ugllo < 2= >u" and V" — vyllec < &2 =V > v on[R/2, R].

From

R R
u(r) = — / W (s)ds > — / 7 (s)ds — ()

we have that u > u (and, similarly v > v) on [R/2, R). This means that

lu' — uflloo < £2 =7 < u and ' = vjlloc < &2 =T < von[R/2, R]. (3.5)
The claim follows from (3.4) and (3.5), by taking ¢ € (0, 7).

Next, if (2.1) has a second solution contained in A, then it is nontrivial and the
proof is complete. If not, by Lemma 2.3 we infer that

{(D;9 39 B((uo, vo), p)) = 1forall0 < p <,
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Radial non-potential Dirichlet systems 17

where DA?’ 2 stands for the fixed point operator associated to problem (2.1) with

A= A? and Ay = Ag. Also, from Proposition 2.1 (ii) we have
’(Dx?,xg’ B(p)) =1forallp > R+ 1,
and from Lemma 2.1 we get

i(Dx?,Ag’ B(p)) = 1 for all p > 0 sufficiently small.

Let p1, p2 > OEe sufficiently small and p3 > R + 1 be such that B((uo, vo), p1) N
B(p2) = ¥ and B((ug, vo), p1) U B(p2) C B(p3). From the additivity-excision prop-
erty of the fixed point index it follows that

i((D;0 59 B(p3)\[B((o, v9), p1) U B(p2)]) = —1.

Therefore, DA?’A(Z) has a fixed point (u, v) € B(pg)\[E((uo, vg), p1) U E(,oz)]. But
this means that (2.1) has a second positive solution. O

Now, for 6 € (0, w/2), we denote
LO):={A>0: (LcosH, Asinh) € S},

which is a nonempty set, and we rewrite problem (2.1) in the form

[Nl + V=1 hcos 8 i (r) fi(u, v) =0,
PNl 4+ rV=1asin€ wa(r) fo(u, v) = 0, (3.6)
u'(0) = u(R) =0 =v(R) =v'(0),

where A > 0 is a real parameter.
Proposition 3.1 There exists a continuous function A : (0, 7/2) — (0, 0o) such that

lim A(0)sin® — 35 =0= lim_A(§)cosd — A} 3.7
gty A@)sin6 = A o Limy AO) oSO =2 G7)

and the followings hold true:

(1) A) € L(O), forevery0 € (0,7/2);
(ii) system (2.1) has at least two positive solutions, for all (A1, r2) € (A(@)cos0,
+00) x (A(0)sinb, +00).

Proof This follows the outline of the proof of Proposition 4.1 in [8]. For each 6 €
0, /2), let

A(0) :=inf L(0). (3.8)
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118 D. Gurban

Note that A(6) is < oo because L(0) # ¢ and > 0 by Lemma 3.1 (i). We first prove
statements (i) and (ii).

(i) Let {Ak} C L(0) be a decreasing sequence converging to A(6) and (ug, vx) € K
with u; > 0 < vg on [0, R) be such that

up =Pogp loSoikcost i fiur, vi)l,

vp=Po (p_l oSo [kk sin@ wo fa(uk, vi)l.
From (2.2) and Arzela-Ascoli theorem we obtain that there exists (u, v) € K such
that, passing eventually to a subsequence, {(ux, vi)} converges to (u,v) in C x C —

with the usual product topology. Hence, u > 0 < v and

u=Pog 'oSo[A®)cosO i fi(u,v)l,
v=Pop oSo[A®)sinb usfr(u, v)l.

From (3.1) and (3.2) we have that

ug(0) < A* cos @ puifcul (0)v{' (0)R*/(2N)
and

ve(0) < AFsin @ wd cuf? (0)vf? (0)R?/(2N),
which, taking into account that 0 < ux(0), v (0) < R, imply

pi—1 2N
u 0) >
e O MM eRa+2 cos o

and

2N
MM cRP2H25in 6

v271(0) >

These ensure that there is a constant ¢; > 0 such that u;(0), vi(0) > ¢; for all k.
This leads to u(0), v(0) > c1, hence by Lemma 2.2 we get u > 0 < v on [0, R).
Consequently, A(0) € L(0).
(ii) This follows from statement (iii) in Lemma 3.1.

The continuity of A and the equalities in (3.7) can be proved in the same manner
as it is done in the proof of Proposition 4.1 in [8]. O

Theorem 3.1 Assume (H). Then, there exist A%, k; > 0 and a continuous function
A:(0,7/2) — (0, 400), generating the curve

M (6) = AO)cosb

" {12(9) — A@)sing © €072

such that
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(i) I' C [A], +00) x [A3, +00);
(ii) the following asymptotic behaviors hold

l' 9 == = l. 0 9 3.9
) lm/ M (6) +o0 im Aq(0) 3.9)
lim A;(0) — A5 =0= lim A1(0) —AT; 3.10
91 2(0) 2 1 e 1(0) 13 ( )

(iii) I" separates the first quadrant (0, +00) x (0, +00) in two disjoint sets O and

Oy such that problem (1.1) has zero, at least one or at least two radial positive

solutions, according to (71, A2) € O1, (A1, A2) € I" or (A1, A2) € O,.

Proof This follows from Lemma 3.1 and Proposition 3.1. O

Example 3.1 Let p1,q> > 1 and g1, p» > 0. The conclusion of Theorem 3.1 is
obtained for the following choices of f| and f> in problem (1.1):

1) fi(u,v) = uP'v? and f>(u,v) = uP2v%2 — Lane-Emden type nonlinearities;
(i) fi(u,v) =uP'In(1l + v¥') and fr(u,v) = v?2 In(1 + u??);
(iii) f1(u,v) = uP'v@arctg(v) and fr(u,v) = uP2v42arctg(u).

References

11.

12.

13.

. Bereanu, C., Jebelean, P., Mawhin, J.: Radial solutions for systems involving mean curvature operators

in Euclidean and Minkowski spaces. In: Cabada, A., Liz, E., Nieto, J.J. (eds.) Mathematical Models
in Engineering, Biology and Medicine, AIP Conf. Proc. 1124, Am. Inst. Phys., Melville, pp. 50-59
(2009)

. Bereanu, C., Jebelean, P., Torres, PJ.: Positive radial solutions for Dirichlet problems with mean

curvature operators in Minkowski space. J. Funct. Anal. 264, 270-287 (2013)

. Bereanu, C., Jebelean, P., Torres, P.J.: Multiple positive radial solutions for Dirichlet problem involving

the mean curvature operator in Minkowski space. J. Funct. Anal. 265, 644-659 (2013)

. Cheng, X., Lii, H.: Multiplicity of positive solutions for a (p, pp)— Laplacian system and its appli-

cations. Nonlinear Anal. Real World Appl. 13, 2375-2390 (2012)

. Coelho, I., Corsato, C., Rivetti, S.: Positive radial solutions of the Dirichlet problem for the Minkowski-

curvature equation in a ball. Topol. Methods Nonlinear Anal. 44, 23-39 (2014)

. Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)
. Gurban, D., Jebelean, P.: Positive radial solutions for systems with mean curvature operator in

Minkowski space. Rend. Instit. Mat. Univ. Trieste 49, 245-264 (2017)

. Gurban, D., Jebelean, P.: Positive radial solutions for multiparameter Dirichlet systems with mean

curvature operator in Minkowski space and Lane-Emden type nonlinearities. J. Differ. Equ. 266,
5377-5396 (2019)

. Gurban, D., Jebelean, P., Serban, C.: Nontrivial solutions for potential systems involving the mean

curvature operator in Minkowski space. Adv. Nonlinear Stud. 17, 769-780 (2017)

. Gurban, D., Jebelean, P., Serban, C.: Non-potential and non-radial Dirichlet systems with mean cur-

vature operator in Minkowski space. Discrete Contin. Dyn. Syst. 40, 133-151 (2020)

Lee, Y.-H.: Existence of multiple positive radial solutions for a semilinear elliptic system on an
unbounded domain. Nonlinear Anal. 47, 3649-3660 (2001)

Ma, R., Chen, T., Gao, H.: On positive solutions of the Dirichlet problem involving the extrinsic mean
curvature operator. Electron. J. Qual. Theory Differ. Equ. 98, 1-10 (2016)

Ma, R., Gao, H., Lu, Y.: Global structure of radial positive solutions for a prescribed mean curvature
problem in a ball. J. Funct. Anal. 270, 2430-2455 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer



	Radial non-potential Dirichlet systems with mean curvature operator in Minkowski space
	Abstract
	1 Introduction
	2 Preliminaries
	3 Non-existence, existence and multiplicity
	References




