Positivity

Radial non-potential Dirichlet systems with mean curvature operator in Minkowski space

Daniela Gurban¹

Received: 6 November 2019 / Accepted: 27 March 2020 / Published online: 6 April 2020 © Springer Nature Switzerland AG 2020

Abstract

We deal with a multiparameter Dirichlet system having the form

 $\begin{cases} \mathcal{M}(\mathbf{u}) + \lambda_1 \mu_1(|x|) f_1(\mathbf{u}, \mathbf{v}) = 0 \text{ in } \mathcal{B}(R),\\ \mathcal{M}(\mathbf{v}) + \lambda_2 \mu_2(|x|) f_2(\mathbf{u}, \mathbf{v}) = 0 \text{ in } \mathcal{B}(R),\\ \mathbf{u}|_{\partial \mathcal{B}(R)} = 0 = \mathbf{v}|_{\partial \mathcal{B}(R)}, \end{cases}$

where \mathcal{M} stands for the mean curvature operator in Minkowski space, $\mathcal{B}(R)$ is an open ball of radius R in \mathbb{R}^N , the parameters λ_1, λ_2 are positive, the functions μ_1, μ_2 : $[0, R] \rightarrow [0, \infty)$ are continuous and positive and the continuous functions f_1, f_2 satisfy some sign, growth and monotonicity conditions. Among others, these type of nonlinearities, include the Lane-Emden ones. For this system we show that there exists a continuous curve Γ splitting the first quadrant into two disjoint unbounded, open sets \mathcal{O}_1 and \mathcal{O}_2 such that the system has zero, at least one or at least two positive radial solutions according to $(\lambda_1, \lambda_2) \in \mathcal{O}_1$, $(\lambda_1, \lambda_2) \in \Gamma$ or $(\lambda_1, \lambda_2) \in \mathcal{O}_2$, respectively. The set \mathcal{O}_1 is adjacent to the coordinates axes $0\lambda_1$ and $0\lambda_2$ and the curve Γ approaches asymptotically to two lines parallel to the axes $0\lambda_1$ and $0\lambda_2$. Actually, this result extends to more general radial systems the recent existence/non-existence and multiplicity result obtained in the case of Lane-Emden systems.

Keywords Minkowski curvature operator \cdot Multiparameter system \cdot Positive solution \cdot Non-existence/existence \cdot Multiplicity

Mathematics Subject Classification $~35J66\cdot 34B15\cdot 34B18$

[☑] Daniela Gurban gurbandaniela@yahoo.com

¹ Department of Computers and Information Technology, Politehnica University of Timişoara, Blvd. V. Pârvan, No. 2, 300223 Timişoara, Romania

1 Introduction

In this paper we study non-existence, existence and multiplicity of positive solutions for systems having the form

$$\begin{aligned} \mathcal{M}(\mathbf{u}) &+ \lambda_1 \mu_1(|\mathbf{x}|) f_1(\mathbf{u}, \mathbf{v}) = 0 \quad \text{in } \mathcal{B}(R), \\ \mathcal{M}(\mathbf{v}) &+ \lambda_2 \mu_2(|\mathbf{x}|) f_2(\mathbf{u}, \mathbf{v}) = 0 \quad \text{in } \mathcal{B}(R), \\ \mathbf{u}|_{\partial \mathcal{B}(R)} &= 0 = \mathbf{v}|_{\partial \mathcal{B}(R)}. \end{aligned}$$
(1.1)

where $\mathcal{B}(R) = \{x \in \mathbb{R}^N : |x| < R\}$ $(R > 0, N \ge 2)$, \mathcal{M} stands for the mean curvature operator in Minkowski space

$$\mathcal{M}(\mathbf{w}) = \operatorname{div}\left(\frac{\nabla \mathbf{w}}{\sqrt{1 - |\nabla \mathbf{w}|^2}}\right),$$

the parameters λ_1, λ_2 are positive, the functions $\mu_1, \ \mu_2 : [0, R] \rightarrow [0, \infty)$ are continuous with $\mu_1(r) > 0 < \mu_2(r)$ for all $r \in (0, R]$, under the following hypothesis on the continuous functions $f_1, f_2 : [0, +\infty)^2 \rightarrow [0, +\infty)$:

(*H*) (*i*) $f_1(s, t)$, $f_2(s, t)$ are quasi-monotone nondecreasing with respect to both s and t;

(*ii*) there exist constants c > 0, $p_1, q_2 > 1$ and $q_1, p_2 > 0$ such that

$$\begin{array}{l}
0 < f_1(s,t) \le c s^{p_1} t^{q_1}, \\
0 < f_2(s,t) \le c s^{p_2} t^{q_2},
\end{array}$$
(1.2)

for all s, t > 0.

Recall, a function $g(s, t) : [0, \infty)^2 \to [0, \infty)$ is said to be *quasi-monotone non*decreasing with respect to t (resp. s) if for fixed s (resp. t) one has

$$g(s, t_1) \le g(s, t_2)$$
 as $t_1 \le t_2$ (resp. $g(s_1, t) \le g(s_2, t)$ as $s_1 \le s_2$).

In recent years, many papers were devoted to the study of Dirichlet problems for a single equation with operator \mathcal{M} in a ball in \mathbb{R}^N [1–3,5,7,8,13], while at our best knowledge, for systems with such an operator the study was recently initiated in [9]. So, in [7], for systems involving Lane-Emden type perturbations of the operator \mathcal{M} and having a variational structure:

$$\begin{cases} \mathcal{M}(u) + \lambda \mu(|x|)(p+1)u^{p}v^{q+1} = 0, \text{ in } \mathcal{B}(R), \\ \mathcal{M}(v) + \lambda \mu(|x|)(q+1)u^{p+1}v^{q} = 0, \text{ in } \mathcal{B}(R), \\ u|_{\partial \mathcal{B}(R)} = 0 = v|_{\partial \mathcal{B}(R)}, \end{cases}$$
(1.3)

where the positive exponents p, q satisfy $\max\{p,q\} > 1$ and the function μ : [0, R] \rightarrow [0, ∞) is continuous and $\mu(r) > 0$ for all $r \in (0, R]$, it was shown that there exists $\Lambda > 0$ such that (1.3) has zero, at least one or at least two positive solutions according to $\lambda \in (0, \Lambda)$, $\lambda = \Lambda$ or $\lambda > \Lambda$. This result extends the corresponding one obtained in [3] in the case of a single equation.

Then, in the recent paper [8] are considered non-potential radial systems having the form

$$\begin{cases} \mathcal{M}(\mathbf{u}) + \lambda_1 \mu_1(|x|) \mathbf{u}^{p_1} \mathbf{v}^{q_1} = 0, & \text{in } \mathcal{B}(R), \\ \mathcal{M}(\mathbf{v}) + \lambda_2 \mu_2(|x|) \mathbf{u}^{p_2} \mathbf{v}^{q_2} = 0, & \text{in } \mathcal{B}(R), \\ u|_{\partial \mathcal{B}(R)} = 0 = v|_{\partial \mathcal{B}(R)}, \end{cases}$$
(1.4)

where λ_1, λ_2 are two positive parameters, p_1, p_2, q_1, q_2 are positive exponents with $\min\{p_1, q_2\} > 1$ and the weight functions $\mu_1, \mu_2 : [0, R] \rightarrow [0, \infty)$ are assumed to be continuous with $\mu_1(r) > 0 < \mu_2(r)$ for all $r \in (0, R]$. Using fixed point index estimations and lower and upper solutions method, it was proved the existence of a continuous curve Γ splitting the first quadrant into two disjoint open sets \mathcal{O}_1 and \mathcal{O}_2 such that the system (1.4) has zero, at least one or at least two positive, radial solutions according to $(\lambda_1, \lambda_2) \in \mathcal{O}_1, (\lambda_1, \lambda_2) \in \Gamma$ or $(\lambda_1, \lambda_2) \in \mathcal{O}_2$, respectively.

On the other hand, in paper [10] are studied multiparameter Dirichlet systems having the form

$$\begin{cases} \mathcal{M}(u) + \lambda_1 f_1(u, v) = 0, \text{ in } \Omega, \\ \mathcal{M}(v) + \lambda_2 f_2(u, v) = 0, \text{ in } \Omega, \\ u|_{\partial\Omega} = 0 = v|_{\partial\Omega}, \end{cases}$$

where Ω is a general bounded smooth domain in \mathbb{R}^N and the continuous functions f_1, f_2 satisfy some sign, growth and quasi-monotonicity conditions. For such systems it has been obtained the existence of a hyperbola like curve which separates the first quadrant in two disjoint sets, an open one \mathcal{O} and a closed one \mathcal{F} , such that the system has zero or at least one strictly positive solution, according to $(\lambda_1, \lambda_2) \in \mathcal{O}$ or $(\lambda_1, \lambda_2) \in \mathcal{F}$. Moreover, it has been showed that inside of \mathcal{F} there exists an infinite rectangle in which the parameters being, the system has at least two strictly positive solutions. The approaches are based on a lower and upper solutions method and topological degree type arguments. This result extends, in some sense, to non-radial systems the existence/non-existence and multiplicity result obtained in [8] for the radial case.

In view of the above, the aim of this paper is two fold: firstly to complete the result obtained in [8] by showing that this still remains valid for more general systems of type (1.1) and secondly, to show that, at least in the radial case, a sharper result as the one in [8] can be obtained for such more general nonlinearities.

Since the solvability of (1.1) is guaranteed by [8, Corrolary 2.1], the main interest concerns the non-existence, existence and multiplicity of positive radial solutions. In this direction, the techniques employed in [8] for Lane-Emden systems will be adapted for system (1.1); we point out that the growth conditions on f_1 , f_2 from hypothesis (*H*) play a key role in the proof of the main result.

Therefore, we show that there exists a continuous curve Γ splitting the first quadrant into two disjoint unbounded, open sets \mathcal{O}_1 and \mathcal{O}_2 such that the system (1.1) has zero, at least one or at least two positive radial solutions according to $(\lambda_1, \lambda_2) \in \mathcal{O}_1$, $(\lambda_1, \lambda_2) \in \Gamma$ or $(\lambda_1, \lambda_2) \in \mathcal{O}_2$, respectively. The set \mathcal{O}_1 is adjacent to the coordinates axes $0\lambda_1$ and $0\lambda_2$ and the curve Γ approaches asymptotically to two lines parallel to the axes $0\lambda_1$ and $0\lambda_2$ (Theorem 3.1).

Also, notice that, at least when speaking about radial solutions, this result is sharper then the one obtained in [10] due to the fact that here, the curve Γ which delimitates the multiplicity of solutions is the optimal one. Moreover, the conditions in hypothesis (*H*) are satisfied by Lane-Emden nonlinearities, so the result in [8] is recovered.

The rest of the paper is organized as follows. In Section 2 we reduce problem (1.1) to a homogeneous mixed boundary value problem and also we recall some results concerning lower (and upper) solutions method and some fixed point index estimations proved in [8]. The main non-existence, existence and multiplicity result for the multiparameter system (1.1) is stated and proved in Section 3. An example of nonlinearities different from the ones in [8] is provided.

2 Preliminaries

As usual, when we are seeking for radial solutions of (1.1), by setting r = |x| and u(x) = u(r), v(x) = v(r), the Dirichlet problem (1.1) reduces to the homogeneous mixed boundary value problem:

$$\begin{cases} [r^{N-1}\varphi(u')]' + r^{N-1}\lambda_1\mu_1(r)f_1(u,v) = 0, \\ [r^{N-1}\varphi(v')]' + r^{N-1}\lambda_2\mu_2(r)f_2(u,v) = 0, \\ u'(0) = u(R) = 0 = v(R) = v'(0). \end{cases}$$
(2.1)

where

$$\varphi(y) = \frac{y}{\sqrt{1 - y^2}} \quad (y \in \mathbb{R}, \ |y| < 1).$$

By a *solution* of (2.1) we mean a couple of nonnegative functions $(u, v) \in C^1[0, R] \times C^1[0, R]$ with $||u'||_{\infty} < 1$, $||v'||_{\infty} < 1$ and $r \mapsto r^{N-1}\varphi(u'(r))$, $r \mapsto r^{N-1}\varphi(v'(r))$ of class C^1 on [0, R], which satisfies problem (2.1). Here and below, $\|\cdot\|_{\infty}$ stands for the usual sup-norm on C := C[0, R]. We say that $u \in C$ is *positive* if u > 0 on [0, R). By a *positive solution* of (2.1) we understand a solution (u, v) with both u and v positive.

Throughout this paper, the space $C^1 := C^1[0, R]$ will be understood with the norm $||u||_1 = ||u||_{\infty} + ||u'||_{\infty}$, while the product space $C^1 \times C^1$ will be endowed with the norm $||(u, v)|| = \max\{||u||_{\infty}, ||v||_{\infty}\} + \max\{||u'||_{\infty}, ||v'||_{\infty}\}$. We consider the closed subspace

$$C_M^1 := \{(u, v) \in C^1 \times C^1 : u'(0) = u(R) = 0 = v(R) = v'(0)\}$$

and its closed, convex cone

$$K := \{ (u, v) \in C_M^1 : u \ge 0 \le v \text{ on } [0, R] \}.$$

Also we denote $B(\rho) := \{(u, v) \in K : ||(u, v)|| < \rho\}.$

Let us define the linear operators

$$S: C \to C, \quad Su(r) = \frac{1}{r^{N-1}} \int_0^r t^{N-1} u(t) dt \quad (r \in (0, R]), \quad Su(0) = 0.$$
$$P: C \to C^1, \quad Pu(r) = \int_r^R u(t) dt \quad (r \in [0, R]).$$

It is easy to see that *P* is bounded and *S* is compact. Hence, the nonlinear operator $P \circ \varphi^{-1} \circ S : C \to C^1$ is compact. Denoting by N_{λ_i} the Nemytskii operator associated to $\lambda_i \mu_i f_i$ (i = 1, 2), i.e.,

$$N_{\lambda_i}: C \times C \to C, \ N_{\lambda_i}(u, v) = \lambda_i \mu_i(\cdot) f_i(u_+(\cdot), v_+(\cdot)) \quad (u, v \in C),$$

 $(s_+ := \max\{s, 0\})$ we have that N_{λ_i} is continuous and takes bounded sets into bounded sets.

If A is a subset of K, we set

 $\mathcal{K}(A) := \{T \mid T : A \to K \text{ is a compact operator}\}.$

Also, given a bounded open (in *K*) subset \mathcal{O} of *K*, we denote by $i(T, \mathcal{O})$ the fixed point index of the operator $T \in \mathcal{K}(\overline{\mathcal{O}})$ on \mathcal{O} with respect to *K* [6].

The following proposition follows from Propositions 2.1 and 2.2 in [8].

Proposition 2.1 (i) A couple of functions $(u, v) \in K$ is a solution of (2.1) iff it is a fixed point of the compact nonlinear operator

$$\mathcal{D}_{\lambda_1,\lambda_2}: K \to K, \quad \mathcal{D}_{\lambda_1,\lambda_2} = \left(P \circ \varphi^{-1} \circ S \circ N_{\lambda_1}, P \circ \varphi^{-1} \circ S \circ N_{\lambda_2} \right).$$

In addition, for all $(u, v) \in K$, it holds

$$\|\mathcal{D}_{\lambda_1,\lambda_2}(u,v)\| < R+1.$$
(2.2)

(ii) For all $d \ge R + 1$ it holds

$$i(\mathcal{D}_{\lambda_1,\lambda_2}, B(d)) = 1. \tag{2.3}$$

In particular, problem (2.1) always has a solution.

The following two lemmas are immediate consequences of [8, Lemma 3.2] and [7, Lemma 2.4].

Lemma 2.1 Assume (H). If there is some M > 0 such that either

$$\lim_{s \to 0_+} \frac{f_1(s, t)}{s} = 0 \text{ uniformly with } t \in [0, M],$$
(2.4)

or

114

$$\lim_{t \to 0_+} \frac{f_2(s,t)}{t} = 0 \text{ uniformly with } s \in [0, M],$$
(2.5)

then there exists $\rho_0 = \rho_0(\lambda_1, \lambda_2) > 0$ such that

$$i(\mathcal{D}_{\lambda_1,\lambda_2}, B(\rho)) = 1$$
 for all $0 < \rho \leq \rho_0$.

Lemma 2.2 Under assumption (H), if (u, v) is a nontrivial solution of problem (2.1), then (u, v) is a positive solution with both u and v strictly decreasing.

Definition 2.1 A *lower solution* of (2.1) is a couple of nonnegative functions $(\alpha_u, \alpha_v) \in C^1 \times C^1$, such that $\|\alpha'_u\|_{\infty} < 1$, $\|\alpha'_v\|_{\infty} < 1$, the mappings $r \mapsto r^{N-1}\varphi(\alpha'_u(r)), r \mapsto r^{N-1}\varphi(\alpha'_v(r))$ are of class C^1 on [0, R] and satisfies

$$\begin{cases} [r^{N-1}\varphi(\alpha'_{u})]' + r^{N-1}\lambda_{1}\mu_{1}(r)f_{1}(\alpha_{u},\alpha_{v}) \geq 0, \\ [r^{N-1}\varphi(\alpha'_{v})]' + r^{N-1}\lambda_{2}\mu_{2}(r)f_{2}(\alpha_{u},\alpha_{v}) \geq 0, \\ \alpha_{u}(R) = 0, \quad \alpha_{v}(R) = 0. \end{cases}$$
(2.6)

An *upper solution* $(\beta_u, \beta_v) \in C^1 \times C^1$ is defined by reversing the first two inequalities in (2.6) and asking $\beta_u(R) \ge 0$, $\beta_v(R) \ge 0$ instead of $\alpha_u(R) = 0$, $\alpha_v(R) = 0$.

The following lemma is an immediate consequence of [8, Lemma 3.1].

Lemma 2.3 Assume that (2.1) has a lower solution (α_u, α_v) and $f_1(s, t)$ (resp. $f_2(s, t)$) is quasi-monotone nondecreasing with respect to t (resp. s) and let

$$\mathcal{A}_{\alpha} = \mathcal{A}_{(\alpha_u, \alpha_v)} := \{(u, v) \in K : \alpha_u \leq u, \ \alpha_v \leq v\}.$$

Then, the following hold true:

- (i) problem (2.1) has always a solution in \mathcal{A}_{α} ;
- (ii) if (2.1) has an unique solution (u_0, v_0) in \mathcal{A}_{α} and there exists $\rho_0 > 0$ such that $\overline{B}((u_0, v_0), \rho_0) := \{(u, v) \in K : ||(u u_0, v v_0)|| \le \rho_0\} \subset \mathcal{A}_{\alpha}$, then

$$i(\mathcal{D}_{\lambda_1,\lambda_2}, B((u_0, v_0), \rho)) = 1, \text{ for all } 0 < \rho \le \rho_0.$$

3 Non-existence, existence and multiplicity

In this section, under hypothesis (H), we study the existence and multiplicity of positive solutions for system (1.1). We employ here the technique used in [8] for the study of a system involving Lane-Emden nonlinearities to the more general system (1.1). For this, we consider the corresponding radial problem (2.1). Setting

 $S := \{(\lambda_1, \lambda_2) : \lambda_1, \lambda_2 > 0 \text{ and } (2.1) \text{ has at least one positive solution}\},\$

we know that S is nonempty and unbounded in both directions of the axes $0\lambda_1$ and $0\lambda_2$ (see [8, Theorem 2.3]).

Lemma 3.1 Assume (H). Then, the followings are true:

- (i) There exist $\lambda_1^*, \lambda_2^* > 0$, such that $S \subset [\lambda_1^*, +\infty) \times [\lambda_2^*, +\infty)$ and for all $(\lambda_1, \lambda_2) \in (0, +\infty)^2 \setminus ([\lambda_1^*, +\infty) \times [\lambda_2^*, +\infty))$, problem (2.1) has only the trivial solution.
- (ii) If $(\overline{\lambda}_1, \overline{\lambda}_2) \in S$, then $[\overline{\lambda}_1, +\infty) \times [\overline{\lambda}_2, +\infty) \subset S$.
- (iii) If $(\overline{\lambda}_1, \overline{\lambda}_2) \in S$, then for all $(\lambda_1, \lambda_2) \in (\overline{\lambda}_1, +\infty) \times (\overline{\lambda}_2, +\infty)$, problem (2.1) has at least two positive solutions.

Proof This follows the outline of the proof of Lemma 4.1 in [8].

(i) Let $\lambda_1, \lambda_2 > 0$ and (u, v) be a positive solution of (2.1). It follows from Lemma 2.2 that *u* and *v* are both strictly decreasing. Integrating the first equation in (2.1) on [0, r], one obtains

$$-r^{N-1}\varphi(u'(r)) = \lambda_1 \int_0^r t^{N-1} \mu_1(t) f_1(u(t), v(t)) dt, \text{ for all } r \in [0, R].$$

Since u, v are strictly decreasing on [0, R] and using (1.2), we deduce

$$-r^{N-1}u'(r) \leq -r^{N-1}\varphi(u'(r))$$

$$\leq \lambda_1 \int_0^r t^{N-1}\mu_1(t)cu^{p_1}(t)v^{q_1}(t)dt$$

$$\leq \lambda_1 \mu_1^M cu^{p_1}(0)v^{q_1}(0)r^N/N,$$

where $\mu_i^M := \max_{[0,R]} \mu_i$ (i = 1, 2). Integrating on [0, R] we get

$$u(0) \le \lambda_1 \mu_1^M c u^{p_1}(0) v^{q_1}(0) R^2 / (2N).$$
(3.1)

Analogously, one has

$$v(0) \le \lambda_2 \mu_2^M c u^{p_2}(0) v^{q_2}(0) R^2 / (2N).$$
(3.2)

From 0 < u(0), v(0) < R and $p_1, q_2 > 1$ we obtain

$$\lambda_i > 2N/(\mu_i^M c R^{p_i + q_i + 1}) > 0 \quad (i = 1, 2).$$
(3.3)

Consider now the nonempty sets

$$S_1 := \{\lambda_1 > 0 : \exists \lambda_2 > 0 \text{ such that } (\lambda_1, \lambda_2) \in S\},\$$

$$S_2 := \{\lambda_2 > 0 : \exists \lambda_1 > 0 \text{ such that } (\lambda_1, \lambda_2) \in S\}$$

and let

$$(0 <) \lambda_i^* := \inf \mathcal{S}_i \ (< +\infty) \ (i = 1, 2).$$

It follows that $S \subset [\lambda_1^*, +\infty) \times [\lambda_2^*, +\infty)$ and for all $\lambda_1, \lambda_2 \in (0, +\infty)^2 \setminus ([\lambda_1^*, +\infty) \times [\lambda_2^*, +\infty))$, problem (2.1) has only the trivial solution (see Lemma 2.2).

(ii) Let $(\lambda_1^0, \lambda_2^0) \in [\overline{\lambda}_1, +\infty) \times [\overline{\lambda}_2, +\infty)$ be arbitrarily chosen and $(\overline{u}, \overline{v})$ be a positive solution for (2.1) with $\lambda_1 = \overline{\lambda}_1$ and $\lambda_2 = \overline{\lambda}_2$. Then, $(\overline{u}, \overline{v})$ is a lower solution of (2.1) with $\lambda_1 = \lambda_1^0$ and $\lambda_2 = \lambda_2^0$. From Proposition 2.3 (i) and the fact that $(\overline{u}, \overline{v})$ is positive, we obtain $(\lambda_1^0, \lambda_2^0) \in S$.

(iii) From (ii) we get that $(\overline{\lambda}_1, +\infty) \times (\overline{\lambda}_2, +\infty) \subset S$ and let $(\lambda_1^0, \lambda_2^0) \in (\overline{\lambda}_1, +\infty) \times (\overline{\lambda}_2, +\infty)$. It remains to show that problem (2.1) with $\lambda_1 = \lambda_1^0$ and $\lambda_2 = \lambda_2^0$ has a second positive solution. For this, let $(\overline{u}, \overline{v})$ be the lower solution constructed as above. We fix (u_0, v_0) a positive solution of (2.1) with $\lambda_1 = \lambda_1^0$ and $\lambda_2 = \lambda_2^0$ such that $(u_0, v_0) \in \mathcal{A} := \mathcal{A}_{(\overline{u}, \overline{v})}$.

Now, we *claim* that there exists $\varepsilon > 0$ such that $\overline{B}((u_0, v_0), \varepsilon) \subset A$. By using the quasi-monotonicity of the functions f_1 and f_2 , for all $r \in [0, R/2]$, we have

$$\begin{split} \overline{u}(r) &= \int_{r}^{R} \varphi^{-1} \left(\frac{1}{t^{N-1}} \int_{0}^{t} s^{N-1} [\overline{\lambda}_{1} \mu_{1}(s) f_{1}(\overline{u}(s), \overline{v}(s))] ds \right) dt \\ &< \int_{r}^{R} \varphi^{-1} \left(\frac{1}{t^{N-1}} \int_{0}^{t} s^{N-1} [\lambda_{1}^{0} \mu_{1}(s) f_{1}(u_{0}(s), v_{0}(s))] ds \right) dt \\ &= u_{0}(r). \end{split}$$

Analogously we obtain that $\overline{v}(r) < v_0(r)$ on [0, R/2]. So, we can find $\varepsilon_1 > 0$ such that if $(u, v) \in K$ then

$$||u - u_0||_{\infty} \le \varepsilon_1 \Rightarrow \overline{u} \le u$$
 and $||v - v_0||_{\infty} \le \varepsilon_1 \Rightarrow \overline{v} \le v$ on $[0, R/2]$. (3.4)

On the other hand, for $r \in [R/2, R]$ one obtains $u'_0(r) < \overline{u}'(r)$ and $v'_0(r) < \overline{v}'(r)$. Thus, there is some $\varepsilon_2 \in (0, \varepsilon_1)$ such that if $(u, v) \in K$, then

$$\|u' - u'_0\|_{\infty} \le \varepsilon_2 \Rightarrow \overline{u}' > u' \text{ and } \|v' - v'_0\|_{\infty} \le \varepsilon_2 \Rightarrow \overline{v}' > v' \text{ on } [R/2, R].$$

From

$$u(r) = -\int_{r}^{R} u'(s)ds > -\int_{r}^{R} \bar{u}'(s)ds = \bar{u}(r)$$

we have that $u > \overline{u}$ (and, similarly $v > \overline{v}$) on [R/2, R). This means that

$$\|u' - u'_0\|_{\infty} \le \varepsilon_2 \Rightarrow \overline{u} \le u \text{ and } \|v' - v'_0\|_{\infty} \le \varepsilon_2 \Rightarrow \overline{v} \le v \text{ on } [R/2, R].$$
 (3.5)

The claim follows from (3.4) and (3.5), by taking $\varepsilon \in (0, \varepsilon_2)$.

Next, if (2.1) has a second solution contained in A, then it is nontrivial and the proof is complete. If not, by Lemma 2.3 we infer that

$$i(\mathcal{D}_{\lambda_1^0,\lambda_2^0}, B((u_0, v_0), \rho)) = 1 \text{ for all } 0 < \rho \le \varepsilon,$$

where $\mathcal{D}_{\lambda_1^0,\lambda_2^0}$ stands for the fixed point operator associated to problem (2.1) with $\lambda_1 = \lambda_1^0$ and $\lambda_2 = \lambda_2^0$. Also, from Proposition 2.1 (ii) we have

$$i(\mathcal{D}_{\lambda_1^0,\lambda_2^0}, B(\rho)) = 1 \text{ for all } \rho \ge R+1,$$

and from Lemma 2.1 we get

$$i(\mathcal{D}_{\lambda_1^0,\lambda_2^0}, B(\rho)) = 1$$
 for all $\rho > 0$ sufficiently small.

Let $\rho_1, \rho_2 > 0$ be sufficiently small and $\rho_3 \ge R + 1$ be such that $\overline{B}((u_0, v_0), \rho_1) \cap \overline{B}(\rho_2) = \emptyset$ and $\overline{B}((u_0, v_0), \rho_1) \cup \overline{B}(\rho_2) \subset B(\rho_3)$. From the additivity-excision property of the fixed point index it follows that

$$i(\mathcal{D}_{\lambda_1^0,\lambda_2^0}, B(\rho_3) \setminus [\overline{B}((u_0, v_0), \rho_1) \cup \overline{B}(\rho_2)]) = -1.$$

Therefore, $\mathcal{D}_{\lambda_1^0,\lambda_2^0}$ has a fixed point $(u, v) \in B(\rho_3) \setminus [\overline{B}((u_0, v_0), \rho_1) \cup \overline{B}(\rho_2)]$. But this means that (2.1) has a second positive solution.

Now, for $\theta \in (0, \pi/2)$, we denote

$$\mathcal{L}(\theta) := \{\lambda > 0 : (\lambda \cos \theta, \lambda \sin \theta) \in \mathcal{S}\},\$$

which is a nonempty set, and we rewrite problem (2.1) in the form

$$\begin{cases} [r^{N-1}\varphi(u')]' + r^{N-1}\lambda\cos\theta\;\mu_1(r)\,f_1(u,v) = 0, \\ [r^{N-1}\varphi(v')]' + r^{N-1}\lambda\sin\theta\;\mu_2(r)\,f_2(u,v) = 0, \\ u'(0) = u(R) = 0 = v(R) = v'(0), \end{cases}$$
(3.6)

where $\lambda > 0$ is a real parameter.

Proposition 3.1 There exists a continuous function $\Lambda : (0, \pi/2) \to (0, \infty)$ such that

$$\lim_{\theta \to 0} \Lambda(\theta) \sin \theta - \lambda_2^* = 0 = \lim_{\theta \to \pi/2} \Lambda(\theta) \cos \theta - \lambda_1^*$$
(3.7)

and the followings hold true:

- (i) $\Lambda(\theta) \in \mathcal{L}(\theta)$, for every $\theta \in (0, \pi/2)$;
- (ii) system (2.1) has at least two positive solutions, for all $(\lambda_1, \lambda_2) \in (\Lambda(\theta) \cos \theta, +\infty) \times (\Lambda(\theta) \sin \theta, +\infty)$.

Proof This follows the outline of the proof of Proposition 4.1 in [8]. For each $\theta \in (0, \pi/2)$, let

$$\Lambda(\theta) := \inf \mathcal{L}(\theta). \tag{3.8}$$

🖄 Springer

Note that $\Lambda(\theta)$ is $< \infty$ because $\mathcal{L}(\theta) \neq \emptyset$ and > 0 by Lemma 3.1 (i). We first prove statements (i) and (ii).

(*i*) Let $\{\lambda^k\} \subset \mathcal{L}(\theta)$ be a decreasing sequence converging to $\Lambda(\theta)$ and $(u_k, v_k) \in K$ with $u_k > 0 < v_k$ on [0, R) be such that

$$u_k = P \circ \varphi^{-1} \circ S \circ [\lambda^k \cos \theta \ \mu_1 f_1(u_k, v_k)],$$
$$v_k = P \circ \varphi^{-1} \circ S \circ [\lambda^k \sin \theta \ \mu_2 f_2(u_k, v_k)].$$

From (2.2) and Arzela-Ascoli theorem we obtain that there exists $(u, v) \in K$ such that, passing eventually to a subsequence, $\{(u_k, v_k)\}$ converges to (u, v) in $C \times C$ – with the usual product topology. Hence, $u \ge 0 \le v$ and

$$u = P \circ \varphi^{-1} \circ S \circ [\Lambda(\theta) \cos \theta \ \mu_1 f_1(u, v)],$$

$$v = P \circ \varphi^{-1} \circ S \circ [\Lambda(\theta) \sin \theta \ \mu_2 f_2(u, v)].$$

From (3.1) and (3.2) we have that

$$u_k(0) \le \lambda^k \cos \theta \ \mu_1^M c u_k^{p_1}(0) v_k^{q_1}(0) R^2 / (2N)$$

and

$$v_k(0) \le \lambda^k \sin \theta \ \mu_2^M c u_k^{p_2}(0) v_k^{q_2}(0) R^2 / (2N),$$

which, taking into account that $0 < u_k(0), v_k(0) < R$, imply

$$u_k^{p_1-1}(0) > \frac{2N}{\lambda^k \mu_1^M c R^{q_1+2} \cos \theta}$$

and

$$v_k^{q_2-1}(0) > \frac{2N}{\lambda^k \mu_2^M c R^{p_2+2} \sin \theta}$$

These ensure that there is a constant $c_1 > 0$ such that $u_k(0)$, $v_k(0) > c_1$ for all k. This leads to u(0), $v(0) \ge c_1$, hence by Lemma 2.2 we get u > 0 < v on [0, R). Consequently, $\Lambda(\theta) \in \mathcal{L}(\theta)$.

(*ii*) This follows from statement (*iii*) in Lemma 3.1.

The continuity of Λ and the equalities in (3.7) can be proved in the same manner as it is done in the proof of Proposition 4.1 in [8].

Theorem 3.1 Assume (H). Then, there exist $\lambda_1^*, \lambda_2^* > 0$ and a continuous function $\Lambda : (0, \pi/2) \to (0, +\infty)$, generating the curve

$$(\Gamma) \begin{cases} \lambda_1(\theta) = \Lambda(\theta) \cos \theta \\ \lambda_2(\theta) = \Lambda(\theta) \sin \theta \end{cases}, \quad \theta \in (0, \pi/2) \end{cases}$$

such that

🖄 Springer

- (i) $\Gamma \subset [\lambda_1^*, +\infty) \times [\lambda_2^*, +\infty);$
- (ii) the following asymptotic behaviors hold

$$\lim_{\theta \to \pi/2} \lambda_2(\theta) = +\infty = \lim_{\theta \to 0} \lambda_1(\theta), \tag{3.9}$$

$$\lim_{\theta \to 0} \lambda_2(\theta) - \lambda_2^* = 0 = \lim_{\theta \to \pi/2} \lambda_1(\theta) - \lambda_1^*;$$
(3.10)

(iii) Γ separates the first quadrant $(0, +\infty) \times (0, +\infty)$ in two disjoint sets \mathcal{O}_1 and \mathcal{O}_2 such that problem (1.1) has zero, at least one or at least two radial positive solutions, according to $(\lambda_1, \lambda_2) \in \mathcal{O}_1$, $(\lambda_1, \lambda_2) \in \Gamma$ or $(\lambda_1, \lambda_2) \in \mathcal{O}_2$.

Proof This follows from Lemma 3.1 and Proposition 3.1.

Example 3.1 Let $p_1, q_2 > 1$ and $q_1, p_2 > 0$. The conclusion of Theorem 3.1 is obtained for the following choices of f_1 and f_2 in problem (1.1):

- (i) $f_1(u,v) = u^{p_1}v^{q_1}$ and $f_2(u,v) = u^{p_2}v^{q_2}$ Lane-Emden type nonlinearities;
- (ii) $f_1(u,v) = u^{p_1} \ln(1 + v^{q_1})$ and $f_2(u,v) = v^{q_2} \ln(1 + u^{p_2})$;
- (iii) $f_1(u,v) = u^{p_1}v^{q_1} \operatorname{arctg}(v)$ and $f_2(u,v) = u^{p_2}v^{q_2} \operatorname{arctg}(u)$.

References

- Bereanu, C., Jebelean, P., Mawhin, J.: Radial solutions for systems involving mean curvature operators in Euclidean and Minkowski spaces. In: Cabada, A., Liz, E., Nieto, J.J. (eds.) Mathematical Models in Engineering, Biology and Medicine, AIP Conf. Proc. 1124, Am. Inst. Phys., Melville, pp. 50–59 (2009)
- Bereanu, C., Jebelean, P., Torres, P.J.: Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space. J. Funct. Anal. 264, 270–287 (2013)
- Bereanu, C., Jebelean, P., Torres, P.J.: Multiple positive radial solutions for Dirichlet problem involving the mean curvature operator in Minkowski space. J. Funct. Anal. 265, 644–659 (2013)
- Cheng, X., Lü, H.: Multiplicity of positive solutions for a (p1, p2) Laplacian system and its applications. Nonlinear Anal. Real World Appl. 13, 2375–2390 (2012)
- Coelho, I., Corsato, C., Rivetti, S.: Positive radial solutions of the Dirichlet problem for the Minkowskicurvature equation in a ball. Topol. Methods Nonlinear Anal. 44, 23–39 (2014)
- 6. Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)
- Gurban, D., Jebelean, P.: Positive radial solutions for systems with mean curvature operator in Minkowski space. Rend. Instit. Mat. Univ. Trieste 49, 245–264 (2017)
- Gurban, D., Jebelean, P.: Positive radial solutions for multiparameter Dirichlet systems with mean curvature operator in Minkowski space and Lane-Emden type nonlinearities. J. Differ. Equ. 266, 5377–5396 (2019)
- Gurban, D., Jebelean, P., Şerban, C.: Nontrivial solutions for potential systems involving the mean curvature operator in Minkowski space. Adv. Nonlinear Stud. 17, 769–780 (2017)
- Gurban, D., Jebelean, P., Şerban, C.: Non-potential and non-radial Dirichlet systems with mean curvature operator in Minkowski space. Discrete Contin. Dyn. Syst. 40, 133–151 (2020)
- 11. Lee, Y.-H.: Existence of multiple positive radial solutions for a semilinear elliptic system on an unbounded domain. Nonlinear Anal. 47, 3649–3660 (2001)
- Ma, R., Chen, T., Gao, H.: On positive solutions of the Dirichlet problem involving the extrinsic mean curvature operator. Electron. J. Qual. Theory Differ. Equ. 98, 1–10 (2016)
- Ma, R., Gao, H., Lu, Y.: Global structure of radial positive solutions for a prescribed mean curvature problem in a ball. J. Funct. Anal. 270, 2430–2455 (2016)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.