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Abstract
In this paper the stability and the perturbation bounds of Markov operators acting
on abstract state spaces are investigated. Here, an abstract state space is an ordered
Banach space where the norm has an additivity property on the cone of positive ele-
ments. We basically study uniform ergodic properties of Markov operators by means
of so-called a generalized Dobrushin’s ergodicity coefficient. This allows us to get
several convergence results with rates. Some results on quasi-compactness of Markov
operators are proved in terms of the ergodicity coefficient. Furthermore, a characteri-
zation of uniformly P-ergodic Markov operators is given which enable us to construct
plenty examples of such types of operators. The uniform mean ergodicity of Markov
operators is established in terms of the Dobrushin ergodicity coefficient. The obtained
results are even new in the classical and quantum settings.

Keywords Uniform P-ergodic · Markov operator · Projection · Ergodicity
coefficient · Uniform mean ergodic · Perturbation bound

Mathematics Subject Classification 47A35 · 60J10 · 28D05

1 Introduction

It is known that Doeblin and Dobrushin [9,21] characterized the contraction rate of
Markov operators which act on a space of measures equipped with the total variation
normas follows: Let us consider a finiteMarkov chainwith a transition (row stochastic)
matrix P = (pi j ) ∈ R

n×n . It defines a Markov operator P : R
n → R

n such that
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Px = xP, where the elements of Rn are row vectors. The set of probability measures
can be identified with the standard simplexK = {(xi ) ∈ R

n : xi ≥ 0,
∑n

i=1 xi = 1}.
The total variation norm is nothing but one half of the �1 norm ‖ · ‖1 on Rn . One can
introduce the following coefficient

δ(P) = sup
μ,ν∈K,μ�=ν

‖Pμ − Pν‖1
‖μ − ν‖1 .

This coefficient is characterized by Doeblin and Dobrushin [9] as follows:

δ(P) = 1

2
max
i< j

n∑

k=1

|pik − p jk | (1)

= 1 − min
i< j

n∑

k=1

min{pik, p jk}. (2)

It is known that if δ(P) < 1 (this condition is often called Dobrushin condition)
then Pn converges to its invariant distribution with exponential rate [9,42]. Moreover,
this condition also gives the spectral gap of the operator P (see [42]). The Dobrushin
condition played a major role as a source of inspiration for many mathematicians to
do interesting work on the theory of Markov processes (see for example [21,31,42]).

Let us consider the following example: Let T : R3 → R
3 be the Markov operator

which is given by the matrix

⎛

⎝
1 0 0
0 1 0
0 1

2
1
2

⎞

⎠ .

It is clear that T n converges to P , where

P =
⎛

⎝
1 0 0
0 1 0
0 1 0

⎞

⎠ .

One can calculate that δ(T ) = 1. From this, we infer that T n converges, but δ(T ) = 1.
Hence, the investigation of the sequence {T n} in terms of δ(T ) is not effective. Hartfiel
et al. [18,19] introduced a generalized coefficient which covers the mentioned type of
convergence in the finite-dimensional setting. To the best knowledge of the authors,
such coefficient is not studied even in the classical L1-spaces. Therefore, the main
aim of this paper is to define an analogue of the coefficient mentioned above in a
more general setting, i.e. for ordered Banach spaces, such that it will cover all known
classical spaces as particular cases. Moreover, we are going to investigate uniform
asymptotic stabilities of Markov operators on ordered Banach spaces. We notice that
the consideration of these types of Banach spaces is convenient and important for
the study of several properties of physical and probabilistic processes in an abstract
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framework which covers the classical and quantum cases (see [2,11]). In this setting,
certain limiting behaviors of Markov operators were investigated in [3,5,12,15,41].

Our purpose is to investigate stability and perturbation bounds of Markov operators
acting on abstract state spaces. More precisely, an abstract state space is an ordered
Banach space where the norm has an additivity property on the cone of positive
elements. Examples of these spaces include all classical L1-spaces and the space of
density operators acting on some Hilbert spaces [2,24]. Moreover, any Banach space
can be embedded into some abstract spaces (see Example 2.3(c)). There are a few
results in the literature on uniform convergence of iterates of bounded linear operators
on Banach spaces (see, e.g. [11,23,27,29,30,40,44]). In the present paper, we study
the asymptotic stability (in the sense of uniform topology) of Markov operators based
on the so-called generalized Dobrushin’s ergodicity coefficient. This allows us to get
several convergence results with rates.We notice that theDobrushin coefficient (which
extends δ(P) to abstract state spaces) has been introduced and studied in [15,36,37],
for Markov operators acting on abstract state spaces.

The paper is organized as follows. In Sect. 2, we provide preliminary definitions
and results on properties of abstract state spaces. In Sect. 3, we define a generalized
Dobrushin ergodicity coefficient δP (T ) of Markov operators with respect to a pro-
jection P and study its properties. Some results on quasi-compactness of Markov
operators are proved in terms of this coefficient. At the end of that section, we give
some connection of δP (T ) to the spectral gap of T . Furthermore, in Sect. 4, the uniform
P-ergodicity of Markov operators is studied in terms of the generalized Dobrushin
ergodicity coefficient. This allows us to establish certain category results for the set
of uniformly P-ergodic Markov operators. An application of the main result of this
section is to get results on uniform ergodicities of linear bounded operators on Banach
spaces. In Sect. 5, we give a characterization of uniformly P-ergodicMarkov operators
which enables us to explicitly construct such operators. Finally, in Sect. 6, we estab-
lish perturbation bounds for the uniform P-ergodic Markov operators. It is noticed
that perturbation bounds have important applications in the theory of probability and
quantum information (see, [14,32,33,43]). Moreover, the results are even new in the
classical and quantum settings.

2 Preliminaries

In this section, we recall some necessary definitions and results about abstract state
spaces.

Let X be an ordered vector space with a cone X+ = {x ∈ X : x ≥ 0}. A subset
K is called a base for X , if K = {x ∈ X+: f (x) = 1} for some strictly positive
(i.e. f (x) > 0 for x > 0) linear functional f on X . An ordered vector space X with
generating cone X+ (i.e. X = X+ − X+) and a fixed base K, defined by a functional
f , is called an ordered vector space with a base [2]. Let U be the convex hull of the
set K ∪ (−K), and let

‖x‖K = inf{λ ∈ R+: x ∈ λU }.
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Then one can see that ‖ · ‖K is a seminorm on X . Moreover, one has K = {x ∈
X+: ‖x‖K = 1}, f (x) = ‖x‖K for x ∈ X+. Assume that the seminorm becomes
a norm, and X is complete space w.r.t. this norm and X+ is closed subset, then
(X , X+,K, f ) is called abstract state space. In this case,K is a closed face of the unit
ball of X , and U contains the open unit ball of X . If the set U is radially compact [2],
i.e. � ∩ U is a closed and bounded segment for every line � through the origin of X ,
then ‖ · ‖K is a norm. The radial compactness is equivalent to the coincidence of U
with the closed unit ball of X . In this case, X is called a strong abstract state space.
In the sequel, for the sake of simplicity, instead of ‖ · ‖K, the standard notation ‖ · ‖
is used. To better understand the difference between a strong abstract state space and
a more general class of base norm spaces, the reader is referred to [46].

A positive cone X+ of an ordered Banach space X is said to be λ-generating if,
given x ∈ X , we can find y, z ∈ X+ such that x = y − z and ‖y‖ + ‖z‖ ≤ λ‖x‖. The
norm on X is called regular (respectively, strongly regular) if, given x in the open
(respectively, closed) unit ball of X , y can be found in the closed unit ball with y ≥ x
and y ≥ −x . The norm is said to be additive on X+ if ‖x + y‖ = ‖x‖ + ‖y‖ for
all x, y ∈ X+. If X+ is 1-generating, then X can be shown to be strongly regular.
Similarly, if X+ is λ-generating for all λ > 1, then X is regular [46]. The following
results are well-known.

Theorem 2.1 [45, p. 90] Let X be an ordered Banach space with closed positive cone
X+. Then te following statements are equivalent:

(i) X is an abstract state space;
(ii) X is regular, and the norm is additive on X+;
(iii) X+ is λ-generating for all λ > 1, and the norm is additive on X+.

Theorem 2.2 [46] Let X be an ordered Banach space with closed positive cone X+.
Then the following statements are equivalent:

(i) X is a strong abstract state space;
(ii) X is strongly regular, and the norm is additive on X+;
(iii) X+ is 1-generating and the norm is additive on X+.

In this paper, we consider a general abstract state space for which the convex
hull of the base K and −K is not assumed to be radially compact (in our previous
papers [13,36,37] this condition was essential). This consideration has an important
advantage: whenever X is an ordered Banach space with a generating cone X+ whose
norm is additive on X+, then X admits an equivalent norm that coincides with the
original norm on X+ and renders X that base norm space. Hence, to apply the results
of the paper one would then only have to check that if the norm is additive on X+.

Example 2.3 Let us provide some examples of abstract state spaces.

(a) Let M be a von Neumann algebra. Let Mh,∗ be the Hermitian part of the predual
space M∗ of M . As a base K we define the set of normal states of M . Then
(Mh,∗, M∗,+,K, 1I) is a strong abstract state spaces, where M∗,+ is the set of
all positive functionals taken from M∗, and 1I is the unit in M . In particular, if
M = L∞(E, μ), then M∗ = L1(E, μ) is an abstract state space.
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(b) Let A be a real ordered linear space and, as before, let A+ denote the set of positive
elements of A. An element e ∈ A+ is called order unit if for every a ∈ A there
exists a number λ ∈ R+ such that −λe ≤ a ≤ λe. If the order is Archimedean,
then the mapping a → ‖a‖e = inf{λ > 0: −λe ≤ a ≤ λe} is a norm. If A is
a Banach space with respect to this norm, the pair (A, e) is called an order-unit
space with the order unit e. An element ρ ∈ A∗ is called positive if ρ(x) ≥ 0 for
all a ∈ A+. By A∗+ we denote the set of all positive functionals. A positive linear
functional is called a state if ρ(e) = 1. The set of all states is denoted by S(A).
Then it is well-known that (A∗, A∗+, S(A), e) is a strong abstract state space [2].
In particular, if Asa is the self-adjoint part of an unital C∗-algebra, Asa becomes
order-unit spaces, hence (A∗

sa,A∗
sa,+, S(Asa), 1I) is a strong abstract state space.

(c) Let X be a Banach space overR. Consider a newBanach spaceX = R⊕ X with a
norm ‖(α, x)‖ = max{|α|, ‖x‖}. Define a coneX+ = {(α, x): ‖x‖ ≤ α, α ∈ R+}
and a positive functional f (α, x) = α. Then one can define a baseK = {(α, x) ∈
X : f (α, x) = 1}. Clearly, we have K = {(1, x): ‖x‖ ≤ 1}. Then (X ,X+,K, f )

is an abstract state space [24]. Moreover, X can be isometrically embedded into
X . Using this construction one can study several interesting examples of abstract
state spaces.

(d) Let A be the disc algebra, i.e. the sup-normed space of complex-valued functions
which are continuous on the closed unit disc, and analytic on the open unit disc.
Let X = { f ∈ A: f (1) ∈ R}. Then X is a real Banach space with the following
positive cone X+ = { f ∈ X : f (1) = ‖ f ‖} = { f ∈ X : f (1) ≥ ‖ f ‖}. The space
X is an abstract state space, but not strong one (see [46] for details).

Let (X , X+,K, f ) be an abstract state space. A linear operator T :X → X is called
positive, if T x ≥ 0 whenever x ≥ 0. A positive linear operator T :X → X is said to be
Markov, if T (K) ⊂ K. It is clear that ‖T ‖ = 1, and its adjoint operator T ∗:X∗ → X∗
acts an ordered Banach space X∗ with unit f , and moreover, T ∗ f = f . Now for each
y ∈ X we define a linear operator Ty :X → X by Ty(x) = f (x)y.

From the definition of Markov operator, one can prove the following auxiliary fact.

Lemma 2.4 Let (X , X+,K, f ) be an abstract state space and let T be a Markov
operator on X. Then for any x ∈ X, we have f (T x) = f (x).

Example 2.5 Let us consider several examples of Markov operators.

1. Let X = L1(E, μ) be the classical L1-space. Then any transition probability
P(x, A) defines a Markov operator T on X , whose dual T ∗ acts on L∞(E, μ) as
follows

(T ∗ f )(x) =
∫

f (y)P(x, dy), f ∈ L∞.

2. Let M be a von Neumann algebra, and consider (Mh,∗, M∗,+,K, 1I) as in (a)
Example 2.3. Let �:M → M be a positive, unital (�(1I) = 1I) linear mapping.
Then the operator given by (T f )(x) = f (�(x)), where f ∈ Mh,∗, x ∈ M , is a
Markov operator.

123



860 F. Mukhamedov, A. Al-Rawashdeh

3. Let X = C[0, 1] be the space of real-valued continuous functions on [0, 1]. Denote

X+ = {
x ∈ X : max

0≤t≤1
|x(t) − x(1)| ≤ 2x(1)

}
.

Then X+ is a generating cone for X , and f (x) = x(1) is a strictly positive linear
functional. ThenK = {x ∈ X+: f (x) = 1} is a base corresponding to f . One can
check that the base norm ‖x‖ is equivalent to the usual one ‖x‖∞ = max

0≤t≤1
|x(t)|.

Due to closedness of X+ we conclude that (X , X+,K, f ) is an abstract state space.
Let us define a mapping T on X as follows:

(T x)(t) = t x(t).

It is clear that T is a Markov operator on X .
4. Let X be a Banach space over R. Consider the abstract state space (X ,X+, K̃, f )

constructed in (c) Example 2.3. Let T :X → X be a linear bounded operator with
‖T ‖ ≤ 1. Then the operator T :X → X defined by T (α, x) = (α, T x) is aMarkov
operator.

5. Let A be the disc algebra, and let X be the abstract state space as in (d) Example
2.3. A mapping T given by T f (z) = z f (z) is clearly a Markov operator on X .

Definition 2.6 [36] Let (X , X+,K, f ) be an abstract state space, and let T :X → X
be a Markov operator. Then the Dobrushin’s ergodicity coefficient of T is given by

δ(T ) = sup
x∈N , x �=0

‖T x‖
‖x‖ , (3)

where
N = {x ∈ X : f (x) = 0}. (4)

Remark 2.7 We note that if X = L1(E, μ), the notion of the Dobrushin ergodicity
coefficient was studied in [7] and [9]. In a non-commutative setting, i.e. when X∗ is
a von Neumann algebra, such a notion was introduced in [34]. We should stress that
this coefficient has been independently defined in [15].

3 Generalized Dobrushin ergodicity coefficient

In this section, we introduce a generalized notion of the Dobrushin’s ergodicity coef-
ficient (3), and investigate its properties.

Definition 3.1 Let (X , X+,K, f ) be an abstract state space and let T :X → X be a
linear bounded operator. Consider a non-trivial projection operator P:X → X (i.e.
P2 = P). Then we define

δP (T ) = sup
x∈NP , x �=0

‖T x‖
‖x‖ , (5)
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where
NP = {x ∈ X : Px = 0}. (6)

If P = I , we put δP (T ) = 1. The quantity δP (T ) is called the generalized Dobrushin
ergodicity coefficient of T with respect to P .

We notice that if X = R
n , then there are some formulas to calculate this coefficient

(see [18,19]).
In the following remarks, let us have a brief comparison between the coefficients

δP (T ) and δ(T ).

Remark 3.2 Let y0 ∈ K and consider the projection Px = f (x)y0. Then one can see
that NP coincides with

N = {x ∈ X; f (x) = 0},

and in this case δP (T ) = δ(T ). Hence, δP (T ) indeed is a generalization of δ(T ).

Remark 3.3 Let P be a Markov projection on X . Then, for any Markov operator
T :X → X

δP (T ) ≤ δ(T ).

Indeed, it is enough to show that NP ⊆ N . Let x ∈ NP , so Px = 0. Due to Lemma
2.4, we have

N = {x ∈ X; f (Px) = 0},

which yields x ∈ N , so NP ⊆ N .

In what follows, we examine main properties of δP (T ).

Proposition 3.4 Let T :X → X be a linear bounded operator. If P and Q are two
projections on X such that Q ≤ P (i.e. Q P = P Q = Q), then δP (T ) ≤ δQ(T ).

Proof Assume that Q ≤ P . Then for every x ∈ NP we get Qx = Q Px = 0, therefore
NP ⊆ NQ . Hence, we get the desired inequality. ��
Corollary 3.5 If P and Q are orthogonal projections on X, then δP+Q(T ) ≤ δP (T ).

Proof As P and Q are orthogonal projections, P + Q is a projection which dominates
P , hence the corollary follows directly from the previous proposition. ��

Before establishing our main result of this section, we need the following auxiliary
fact.

Lemma 3.6 Let (X , X+,K, f ) be an abstract state space and let P be a Markov
projection. Then for every x ∈ NP there exist u, v ∈ K with u − v ∈ NP such that

x = α(x)(u − v),

where α(x) ∈ R+ and α(x) ≤ λ
2‖x‖.
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Proof Given any x ∈ NP , we have Px = 0. As X+ is λ-generating of X , there exist
x+, x− ∈ X+ such that x = x+−x− with ‖x+‖+‖x−‖ ≤ λ‖x‖. Clearly Px+ = Px−.
As P a Markov projection

‖Px+‖ = f (Px+) = f (x+) = ‖x+‖,

which yields ‖x+‖ = ‖x−‖. Therefore,

x = x+
‖x+‖‖x+‖ − x−

‖x−‖‖x+‖

= ‖x+‖
(

x+
‖x+‖ − x−

‖x−‖
)

.

letting u = x+
‖x+‖ and v = x−

‖x−‖ , so u, v ∈ K. Moreover, Pu = Pv, then u − v ∈ NP ,

and letting α(x) := ‖x+‖ ≤ λ
2‖x‖, hence the lemma is proved. ��

Let us denote by	(X) the set of all Markov operators defined on X , and by	P (X)

we denote the set of all Markov operators T on X with PT = T P .
Now, we prove the following essential result about main properties of δP .

Theorem 3.7 Let (X , X+,K, f ) be an abstract state space, P be a projection on X
and let T , S ∈ 	(X). Then:

(i) 0 ≤ δP (T ) ≤ 1;
(ii) |δP (T ) − δP (S)| ≤ δP (T − S) ≤ ‖T − S‖;
(iii) if P ∈ 	(X), one has

δP (T ) ≤ λ

2
sup{‖T u − T v‖; u, v ∈ K with u − v ∈ NP }. (7)

(iv) if H :X → X is a bounded linear operator such that H P = P H, then

δP (T H) ≤ δP (T )‖H‖;

(v) if H :X → X is a bounded linear operator such that P H = 0, then

‖T H‖ ≤ δP (T )‖H‖;

(vi) if S ∈ 	P (X), then

δP (T S) ≤ δP (T )δP (S).

Proof (i) As T is aMarkov operator and by the definition of δP one gets 0 ≤ δP (T ) ≤
‖T ‖ = 1. (ii) The second inequality is immediately obtained from (5). To establish
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the first one, take any ε > 0. Then there exists an xε ∈ NP , with ‖xε‖ = 1 such
that δP (T ) ≤ ‖T xε‖ + ε. Hence,

δP (T ) − δP (S) ≤ ‖T xε‖ + ε − sup
x∈NP ,‖x‖=1

‖Sx‖
≤ ‖T xε‖ − ‖Sxε‖ + ε

≤ ‖(T − S)xε‖ + ε

≤ sup
x∈NP : ‖x‖=1

‖(T − S)x‖ + ε

= δP (T − S) + ε

which implies the assertion.
(iii) For all x ∈ NP , by Lemma 3.6 there exist u, v ∈ K with u − v ∈ NP such that

x = α(x)(u − v), where α(x) ∈ R+ with α(x) ≤ λ

2
‖x‖.

Therefore,

‖T (x)‖
‖x‖ = α(x)

‖x‖ ‖T (u) − T (v)‖

≤ λ

2
‖T (u) − T (v)‖.

Hence, by the definition of δp and the previous inequality, we obtain (7).
(iv) Suppose that H is a bounded linear operator on X which commutes with P . For

all x ∈ NP , we have

P H x = H Px = 0,

then H x ∈ NP . Therefore,

‖T H x‖ ≤ δP (T )‖H x‖
≤ δP (T )‖H‖‖x‖,

which implies that

‖T H x‖
‖x‖ ≤ δP (T )‖H‖, ∀ x ∈ NP

and hence we have δP (T H) ≤ δP (T )‖H‖.
(v) if H is a bounded linear operator on X with P H = 0, then for all x ∈ X ,

H x ∈ NP . Therefore,

‖T H x‖ ≤ δP (T )‖H x‖
≤ δP (T )‖H‖‖x‖,
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which yields

‖T H x‖
‖x‖ ≤ δP (T )‖H‖, ∀ x ∈ X .

(vi) As S ∈ 	P (X), we have Sx ∈ NP , for all x ∈ NP . Then

‖T (Sx)‖ ≤ δP (T )‖Sx‖
≤ δP (T )δP (S)‖x‖,

which implies

‖T Sx‖
‖x‖ ≤ δP (T )δP (S), ∀ x ∈ NP ,

then we get

δP (T S) ≤ δP (T )δP (S),

and hence the theorem is proved. ��
Now, let us consider the case of strong abstract state spaces. In this setting, by

Theorem (2.2), X+ is 1-generating and the norm is additive on X+. Following the
arguments of the proof of Lemma 3.6, one can prove the next result.

Lemma 3.8 Let (X , X+,K, f ) be a strong abstract state space and let P be a Markov
projection. Then for every x, y ∈ X with x − y ∈ NP there exist u, v ∈ K with
u − v ∈ NP such that

x − y = ‖x − y‖
2

(u − v).

Consequently, (7) can be modified as follows:

Proposition 3.9 Let (X , X+,K, f ) be a strong abstract state space, P be a Markov
projection on X and let T ∈ 	(X). Then:

δP (T ) = 1

2
sup{‖T u − T v‖; u, v ∈ K with u − v ∈ NP }. (8)

Hence, we have the following result.

Corollary 3.10 Let (X , X+,K, f ) be a strong abstract state space, P be a Markov
projection on X and T ∈ 	(X). If δP (T ) = 0, then T = T P.

Proof If δP (T ) = 0, then by (8) we have T u = T v, for all u, v ∈ K with u −v ∈ NP .
As P is a Markov projection, we have Pu − u ∈ NP . Then

T u = T Pu, ∀u ∈ K.
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If x ∈ X+, then

T x = ‖x‖T

(
x

‖x‖
)

= ‖x‖T P

(
x

‖x‖
)

= T Px .

Now, for all x ∈ X , x = x+ − x−, (x+, x− ∈ X+). Therefore,

T x = T Px+ − T Px− = T Px,

which proves the assertion. ��
From now, we consider general abstract state spaces. The following proposition is

crucial in our investigations.

Proposition 3.11 Let (X , X+,K, f ) be an abstract state space, and let P be a projec-
tion on X. If T ∈ 	P (X) and δP (T n0) < 1 for some n0 ∈ N, then ‖T n(I − P)‖ → 0.

Proof Given such n0 ∈ N and let ρ = δP (T n0). Then for a large n ∈ N, we write
n = kn0 + r (k, r ∈ N and r < n0) and by (vi) of Theorem 3.7

δP (T n) = δP (T kn0T r ) ≤ ρkδP (T r ).

Again using (v) of the same theorem, we have

‖T n(I − P)‖ ≤ δP (T n)‖I − P‖ ≤ 2ρkδP (T r ) ≤ 2ρ
� n

n0
� → 0 (as n → ∞),

which proves the assertion. ��
It is clear that if T ∈ 	P (X), then T ∈ 	I−P (X). Therefore, it would be interesting

to know a relation between δP (T ) and δI−P (T ). Next result clarifies this question.

Proposition 3.12 Let T ∈ 	P (X). Then at most one of the following statements is
valid:

(i) there exists n0 ∈ N such that δP (T n0) < 1;
(ii) there exists n0 ∈ N such that δI−P (T n0) < 1.

Proof Suppose that there exist n0, m0 ∈ N such that

δP (T n0) < 1 and dI−P (T m0) < 1.

Then by Proposition 3.11

‖T n(I − P)‖ → 0.

As T ∈ 	I−P(X) and using the same argument

‖T n P‖ → 0.
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Then

‖T n‖ = ‖T n(P + (I − P))‖ ≤ ‖T n(P)| + ‖T n(I − P)‖ → 0,

which contradicts the Markovianity of T . ��
Corollary 3.13 If T ∈ 	P (X) and δP (T n0) < 1 for some n0 ∈ N, then δI−P (T n) = 1,
for all n ∈ N.

Let us recall that a bounded linear operator T on a Banach space X is called quasi-
compact if there exists an n0 ∈ N such that ‖T n0 − K‖ < 1, for some compact
operator K on X . Quasi-compact operators have been extensively studied in [20,28].

It is natural to ask: whether T would be a quasi-compact in terms of δP? Next result
sheds some light on this question.

Theorem 3.14 Let T ∈ 	P (X) and T P be quasi-compact on X. If there exists an
n0 ∈ N such that δP (T n0) < 1, then T is quasi-compact.

Proof The quasi-compactness of T P yields the existence of m0 ∈ N and a compact
operator K such that

‖(T P)m0 − K‖ < 1.

On the other hand, the existence of n0 ∈ N with δP (T n0) < 1, due to Proposition
3.11 implies

‖T n(I − P)‖ = ‖T n − T n P‖ → 0. (9)

Then, for any positive ε with 0 < ε < 1 − ‖(T P)m0 − K‖, by (9) one finds n1 ∈ N

(we may assume that n1 > m0) such that

‖T n1 − T n1 P‖ < ε.

Let K1 = T n1−m0 K , which is clearly compact. Then

‖T n1 − K1‖ ≤ ‖T n1 − T n1 P‖ + ‖T n1 P − K1‖
< ε + ‖T n1−m0(T m0 − K )‖
≤ ε + ‖T m0 − K‖ < 1,

which means that T is quasi-compact. ��
From this proposition we immediately get the following one.

Corollary 3.15 Let T ∈ 	P (X) and P be compact on X. If there exists an n0 ∈ N

such that δP (T n0) < 1, then T is quasi-compact.

Let X be an abstract state space. Its complexification X̃ is defined by X̃ = X + i X
with a reasonable norm ‖ · ‖C (see [38] for details). In this setting, X is called the real
part of X̃ . The positive cone of X̃ is defined as X+. A vector f ∈ X̃ is called positive,
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which we denote by f ≥ 0, if f ∈ X+. For two elements f , g ∈ X̃ we write, as usual,
f ≤ g if g − f ≥ 0. In the dual space X̃∗ of X̃ , one can introduce an order as follows:
a functional ϕ ∈ X̃∗ fulfils ϕ ≥ 0 if and only if 〈ϕ, x〉 ≥ 0 for all x ∈ X+; we denote
the positive cone in X̃∗ by X̃∗+ := (X̃∗)+. In what follows, we assume that the norm
‖ · ‖C is taken as

‖x + iy‖∞ = sup
0≤t≤2π

‖x cos t − y sin t‖.

We note that all other complexification norms on X̃ are equivalent to ‖ · ‖∞, and
moreover, ‖ · ‖∞ is the smallest one among all reasonable norms.

A linearmapping T :X → X can be uniquely extended to T̃ :X̃ → X̃ by T̃ (x+iy) =
T x + iT y. The operator T̃ is called the extension of T and it is well-known that
‖T̃ ‖ = ‖T ‖. In what follows, a mapping T̃ :X̃ → X̃ is called Markov if it is the
extension of a Markov operator T . Let P̃ be the extension of a projection P:X → X ,
and define

δ̃P̃ (T̃ ) = sup
x∈NP̃

‖T̃ x‖∞
‖x‖∞

,

where NP̃ = {x ∈ X̃; P̃x = 0}.

Lemma 3.16 Let X be a normed space, T :X → X be an operator and let T̃ be its
extension. Then

δ̃P̃ (T̃ ) = δP (T ).

Proof As T̃ is the extension of T , δ̃P̃ (T̃ ) ≥ δP (T ). On the other hand, if x̃ ∈ NP̃ (x̃ =
x + iy), then Px = Py = 0, i.e. both x and y belong to NP . Therefore,

‖T̃ (x + iy)‖∞ = ‖T x + iT y‖∞
= sup

0≤t≤2π
‖T (x) cos t − T (y) sin t‖

= sup
0≤t≤2π

‖T (x cos t − y sin t)‖
≤ δP (T ) sup

0≤t≤2π
‖x cos t − y sin t‖ (by (v) of Theorem 3.7)

= δP (T )‖x + iy‖∞,

hence δ̃P̃ (T̃ ) ≤ δP (T ), which completes the proof. ��

Now, let S ∈ 	(X) and let P be a projection on X . Recall that X = P X ⊕(I − P)X
and so the dual X∗ = (P X)∗ ⊕ ((I − P)X)∗. Assume that λ is an eigenvalue of S, in
the following we discuss the comparison between |λ| and δP (T ).
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Theorem 3.17 Let P be a Markov projection on a complex space X and let S ∈ 	P (X).
If one of the following conditions is satisfied:

(i) λ �= 1 is an eigenvalue of S in (I − P̃)X̃ ; or
(ii) λ �= 1 is an eigenvalue of S∗ in ((I − P̃)X̃)∗,

then |λ| ≤ δP (S).

Proof If (i) is satisfied and x ∈ (1 − P̃)X̃ is a corresponding eigenvector to λ with
‖x‖∞ = 1, then x ∈ NP̃ and

|λ| = ‖λx‖∞ = ‖S̃x‖∞ ≤ sup
x∈NP̃

‖S̃x‖∞ ≤ δ̃P̃ (S̃) = δP (S).

Assume that (ii) is satisfied. Notice that for y ∈ X̃∗, the set

{|y(x̃)|; x̃ ∈ NP̃ and ‖x̃‖∞ ≤ 1}

is bounded by ‖y‖. Let G:X̃∗ → R be defined as follows:

G(y) = sup{|y(x̃)|; x̃ ∈ NP̃ and ‖x̃‖∞ ≤ 1}, y ∈ X̃∗.

Now, S̃∗y ∈ X̃∗ and

G(S̃∗y) = sup{|S̃∗y(x̃)|; x̃ ∈ NP̃ and ‖x̃‖∞ ≤ 1}
= sup{|y(S̃(x̃))|; x̃ ∈ NP̃ and ‖x̃‖∞ ≤ 1}

= sup

{∣
∣
∣
∣
∣
‖S̃(x̃)‖∞y

(
S̃(x̃)

‖S̃(x̃)‖∞

)∣
∣
∣
∣
∣
; x̃ ∈ NP̃ and ‖x̃‖∞ ≤ 1

}

≤ δ̃P̃ (S̃) sup

{∣
∣
∣
∣
∣
y

(
S̃(x̃)

‖S̃(x̃)‖∞

)∣
∣
∣
∣
∣
; x̃ ∈ NP and ‖x̃‖∞ ≤ 1

}

≤ δP (S) sup
{|y(ṽ)|; ṽ ∈ NP̃ and ‖ṽ‖∞ ≤ 1

}
(since S̃(NP̃ ) ⊆ NP̃ ))

= δP (S)G(y).

If λ is an eigenvalue of S̃∗ in ((I − P̃)X̃)∗, then for a corresponding eigenvector
ỹ ∈ ((I − P̃)X̃)∗ we have

|λ|G(ỹ) = G(λỹ) = G(S̃∗ ỹ) ≤ δP (S)G(ỹ).

As ỹ is a non-zero eigenvector of S̃∗ which belongs to ((I − P̃)X̃)∗, there exists
x0 ∈ (1− P̃)X̃ (consequently x0 ∈ NP̃ ) such that ỹ(x0) �= 0. Then we get G(ỹ) �= 0
and hence the proof is completed. ��
Remark 3.18 We notice that there are many works devoted to the spectral properties of
Markov operators (see for example, [1,16]). One of them is its spectral gap. Namely,
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we say that a Markov operator T on X (here X is a complex abstract state space) has
a spectral gap, if one has ‖T (I − P)‖ < 1, where P is a Markov projection such
that PT = T P = P . This is clearly equivalent to δP (T ) < 1. When X is taken as a
non-commutative L p-spaces, the spectral gap of Markov operator has been recently
studied in [8]. In the classical setting, this gap has been extensively investigated by
many authors (see for example, [25]).

We can stress that if T has a spectral gap, then 1 has to be an isolated point of the
spectrum. Indeed, choose an arbitrary ε > 0 with ε < 1− δP (T ). Assume that λ is an
element of the spectrum of T such that |1 − λ| < ε with corresponding eigenvector
x . Then, it is clear that y = x − Px belongs to NP , therefore, one gets

T y = T x − T Px = T x − PT x = λ(x − Px) = λy

hence, y is an eigenvector with eigenvalue of λ, and we have

‖T y‖ = |λ|‖y‖ > δp(T )‖y‖,

which contradicts to δP (T ) < 1.
Going further, we just emphasize that if T has a spectral gap, then one has ‖T n −

P‖ → 0, which is called as a uniform P-ergodicity. Next sections will be devoted to
this notion.

4 Uniformly P-ergodic operators

In this section, we study uniform P-ergodicities of Markov operators on abstract state
spaces.

Definition 4.1 Let P be a projection on X . A bounded operator T :X → X is called
uniformly P-ergodic if ‖T n − P‖ → 0, as n → ∞.

Let us prove the following results for uniform P-ergodicity.

Proposition 4.2 Let P and Q be two projection operators on X with Q ≤ P and let
T ∈ 	Q(X). If T is uniformly P-ergodic, then T Q is uniformly Q-ergodic.

Proof Suppose that T is uniformly P-ergodic. Then T n → P as n → ∞, therefore
we have (T Q)n = QT n → Q P = Q, which proves the statement. ��
Proposition 4.3 If T is uniformly P-ergodic operator on X, then T P = PT = P,
and in addition, if T ∈ 	(X), then P ∈ 	(X).

Proof Assume that T is uniformly P-ergodic. Then

T n+1 = T T n → T P,

similarly

T n+1 = T nT → PT ,
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so PT = T P = P .
As T ∈ 	(X), T n ∈ 	(X), for all n ∈ N. Therefore, for every x ∈ K, one has

f (Px) = lim
n→∞ f (T n x) = 1, hence P ∈ 	(X). ��

Consequently, in the case of strong abstract state spaces, we deduce the following
result.

Corollary 4.4 Let (X , X+,K, f ) be a strong abstract state space, P be a projection
on X and let T ∈ 	(X). If T is uniformly P-ergodic and δP (T ) = 0, then T = P.

Proof Directly follows by combining the previous proposition and Theorem 3.10. ��
Proposition 4.5 Let (X , X+,K, f ) be an abstract state space (i.e. λ-generating). If
T is uniformly P-ergodic, then there exists an n0 ∈ N such that δP (T n0) < 1.

Proof The uniformly P-ergodicity of T implies the existence of an n0 ∈ N such that

‖T n0 − P‖ <
1

2λ
.

By (iii) of Theorem 3.7, we have

δP (T n0) ≤ λ

2
sup ‖T n0u − T n0v‖ ( u, v ∈ K, and Pu = Pv)

= λ

2
sup ‖T n0u − Pu + Pv − T n0v‖

≤ λ

2
(sup ‖T n0u − Pu‖ + sup ‖T n0v − Pv‖)

≤ λ

2
(‖T n0 − P‖ + ‖T n0 − P‖)

< 1,

which is the desired assertion. ��
Conversely, we have the following theorem:

Theorem 4.6 Let T ∈ 	P (X) be such that T P = P. If there exists an n0 ∈ N such
that δP (T n0) < 1, then T is uniformly P-ergodic.

Proof Assume that there exists an n0 ∈ N such that δP (T n0) < 1. By Proposition
3.11

‖T n(I − P)‖ → 0, as n → ∞.

Therefore,

‖T n − P‖ = ‖T n − T n P‖ = ‖T n(I − P)‖ → 0,

hence T is uniformly P-ergodic. ��
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Corollary 4.7 Let T ∈ 	P (X). Then T is uniformly P-ergodic if and only if

T P = P and ∃n0 ∈ N such that δP (T n0) < 1.

Moreover, there are constants C, α ∈ R+ and n0 ∈ N such that

∥
∥T n − P

∥
∥ ≤ Ce−αn, ∀n ≥ n0.

Now, we would like to provide an application of the deduced results above to the
case of linear operators which are defined on arbitrary Banach spaces.

Theorem 4.8 Let X be any Banach space over R. Assume that T :X → X is a linear
bounded operator with ‖T ‖ ≤ 1 and P:X → X is a projection operator with T P =
PT = P. Then the following statements are equivalent:

(i) T is uniformly P-ergodic;
(ii) there is an n0 ∈ N such that ‖T n0|I−P

‖ < 1, where T|I−P denotes the restriction of
T to the subspace (I − P)(X).

Proof The implication (i)⇒(ii) is obvious. Let us prove (ii)⇒(i). First consider the
abstract state space (X ,X+,K, f ) which was introduced in Example 2.3-c. Define
the operators T ,P:X → X , respectively by

T (α, x) = (α, T x), P(α, x) = (α, Px).

It is clear that T andP are Markov operators. To prove that T is uniformlyP-ergodic,
first we notice that

NP = {(α, x) ∈ X : P(α, x) = 0} = {(0, x): x ∈ ker(P)}.

Therefore,

δP (T ) = sup{‖T (α, x)‖; ‖(α, x)‖ ≤ 1 and (α, x) ∈ NP }
= sup{‖(0, T x)‖; ‖x‖ ≤ 1 and x ∈ ker(P)}
= sup{‖T x‖; ‖x‖ ≤ 1 and x ∈ (1 − P)X}
= ‖T|I−P ‖.

Hence, from the condition we infer that δP (T n0) < 1, then Theorem 4.6 implies T is
uniformly P-ergodic. Using the definition of the norm on X , we obtain the required
assertion. ��

Remark 4.9 A similar kind of result has been proved in [23]. An advantage of our
approach is that we are working only with δP , which will allow us to establish some
category results for uniformly P-ergodic operators (see Theorem 4.12).
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We now define a weaker condition than uniform P-ergodicity. Namely, a bounded
linear operator T :X → X is called weakly P-ergodic if

δP (T n) → 0, as n → ∞.

The following result characterizes the concept of weak P-ergodicity of T .

Proposition 4.10 Let T ∈ 	P (X). Then the following conditions are equivalent:

(i) T is weakly P-ergodic;
(ii) there exists an n0 ∈ N such that δP (T n0) < 1.

Proof (i)⇒ (ii) If T is weakly P-ergodic, then it is obvious that there exists n0 ∈ N

such that δP (T n0) < 1.
(ii) ⇒ (i) Assume that such an n0 ∈ N exists and let ρ = δP (T n0). Then for a
large n ∈ N, we write n = kn0 + r (k, r ∈ N and r < n0) and by (vi) of Theorem
3.7, we have

δP (T n) = δP (T kn0T r ) ≤ ρkδP (T r ).

As n tends to 0, k also tends to 0, and hence the proof is completed. ��
Using Corollary 3.13, we immediately get the following fact.

Proposition 4.11 Let T ∈ 	P (X). If T is weakly P-ergodic, then T is not weakly
(1 − P)-ergodic.

Let us now fix the following notations:

	u
P (X) = {T ∈ 	P(X): T is uniformly P-ergodic},

	w
P (X) = {T ∈ 	P(X): T is weakly P-ergodic},

	inv
P (X) = {T ∈ 	P(X): T P = P}.

Then, it is clear that

	u
P (X) ⊆ 	w

P (X), 	u
P (X) ⊆ 	inv

P (X)

Moreover,

	u
P (X) = 	w

P (X) ∩ 	inv
P (X).

Theorem 4.12 Let (X , X+,K, f ) be an abstract state space and let P be a Markov
projection on X. Then the set 	u

P (X) is a norm dense and open subset of 	inv
P (X).

Proof Given any T ∈ 	inv
P (X), 0 < ε < 2, and let us denote

T (ε) =
(

1 − ε

2

)

T + ε

2
P.
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It is clear that T (ε) ∈ 	inv
P (X) and

‖T − T (ε)‖ =
∥
∥
∥
∥
ε

2
P − ε

2
T

∥
∥
∥
∥ = ε

2
‖P − T ‖ < ε.

Now we show that T (ε) ∈ 	u
P (X). For all x ∈ NP by Lemma 3.6, x = α(x)(u −

v), u, v ∈ K with u − v ∈ NP , and 0 < α(x) ≤ λ
2‖x‖. Therefore,

‖T (ε)(x)‖ = α(x)‖T (ε)(u − v)‖
= α(x)

∥
∥
∥
∥

(

1 − ε

2

)

T (u − v) + ε

2
P(u − v)

∥
∥
∥
∥

= α(x)

(

1 − ε

2

)∥
∥
∥
∥T (u − v)

∥
∥
∥
∥

=
(

1 − ε

2

)

‖T x‖

≤
(

1 − ε

2

)

‖x‖,

which implies δP (T (ε)) ≤ 1 − ε
2 . Hence, by Theorem 4.6 T (ε) ∈ 	u

P (X).
Now let us show that 	u

P (X) is a norm open subset of 	inv
P (X). First we establish

that for every n ∈ N, the set

	inv
P,n(X) =

{

T ∈ 	inv
P (X): δP (T n) < 1

}

is an open subset of 	inv
P (X). Indeed, take any T ∈ 	inv

P,n(X) and letting α :=
δP (T n) < 1, we choose β such that 0 < β < 1 and α + β < 1. Then, for any
H ∈ 	inv

P (X) with ‖H − T ‖ < β/n and using (ii) of Theorem 3.7, we obtain

|δP (Hn) − δP (T n)| ≤ ‖Hn − T n‖
≤ ‖Hn−1(H − T )‖ + ‖(Hn−1 − T n−1)T ‖
≤ ‖H − T ‖ + ‖Hn−1 − T n−1‖
...

≤ n‖H − T ‖ < β.

Hence, the above inequality yields that δP (Hn) < α + β < 1, i.e. H ∈ 	inv
P,n(X). As

	u
P (X) =

⋃

n∈N
	inv

P,n(X),

we find that 	u
P(X) is an open subset of 	inv

P (X), which completes the proof. ��
Using the same arguments, one can prove the following theorem.
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Theorem 4.13 Let (X , X+,K, f ) be an abstract state space and let P be a Markov
projection on X. Then the set 	w

P (X) is a norm dense and open subset of 	P (X).

Remark 4.14 We notice that the Baire category theorem has a long history in ergodic
theory [17], and it has many applications [4,22]. Baire type considerations usually
bring easy answers to existence problems. In [6] a particular case of Theorem 4.12
has been established for Markov operators, acting on the Schatten class C1. We aim
that our results in this direction will open new perspectives in the non-commutative
ergodic theory.

5 Characterizations of uniformly P-ergodic Markov operators

In this section, we provide a large class of examples of uniformly P-ergodic operators
on abstract state spaces. Precisely, we describe those uniformly P-ergodic operators in
terms of the projection P . Afterwards, we use this characterization to deduce examples
of uniformly P-ergodic on R

n , on �1 and on L1- spaces.
Let X be an abstract state space. For an operator Q on X , let Rang(Q) and Fix(Q)

denote the range and the fixed points of Q, respectively. We now prove the following
auxiliary fact.

Lemma 5.1 Let X be a vector space, P be a projection operator on X and let Q be
any operator on X. Then the following statements are equivalent:

(i) Rang(Q) ∩ Fix(P) = {0} and P Q = Q P;
(ii) P Q = Q P = 0.

Proof (i) ⇒ (i i) For every x ∈ X , Q Px ∈ Rang(Q). As

P(Q Px) = Q P2x = Q Px,

we get Q Px ∈ Fix(P), then by the assumption Q Px = 0, and hence assertion
(ii) follows.
(i i) ⇒ (i) Suppose that P Q = Q P = 0. If x ∈ Rang(Q) ∩ Fix(P), then, for
some s ∈ X , one has

x = Qs and Px = x .

Therefore,

x = Px = P(Qs) = 0,

which means the assertion (i). ��
Now, let us prove the following characterization result.
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Theorem 5.2 Let P be a projection on X. Then T is uniformly P-ergodic if and only if
T can be written as T = P+Q, where Q is an operator on X such that P Q = Q P = 0
and ‖Qn0‖ < 1, for some n0 ∈ N. Moreover, if T ∈ 	(X), then

δP (T ) ≤ ‖Q‖ ≤ 2δP (T ).

Proof Suppose that T is uniformly P-ergodic. Put Q = T − P , then Proposition 4.3
implies P Q = Q P = 0. Therefore, T n = P + Qn . Hence, the uniform P-ergodicity
implies the existence of n0 ∈ N such that

‖Qn0‖ = ‖T n0 − P‖ < 1.

Conversely, suppose that T = P + Q and Q satisfies the given hypotheses. Then for
every n ∈ N, we have

T n = P + Qn .

Therefore,

‖T n − P‖ = ‖Qn‖ ≤ ‖Qn0‖[n/n0] → 0 as n → ∞,

so T is uniformly P-ergodic.
Now assume that T is a Markov operator. Then

δP (T ) = sup
x∈NP , x �=0

‖Px + Qx‖
‖x‖ = sup

x∈NP , x �=0

‖Qx‖
‖x‖ = δP (Q) ≤ ‖Q‖.

Also, as T ∈ 	(X) we get P ∈ 	(X), Therefore, by Proposition 4.3

‖Q‖ = ‖T − P‖
= ‖T − T P‖
= ‖T (I − P)‖
≤ δP (T )‖I − P‖ (using (v) of Theorem 3.7)

≤ 2δP (T ),

This completes the proof. ��
From this theorem, we immediately get the following result.

Corollary 5.3 Let X be a normed space and let P be a projection on X. If Q is an
operator on X such that P Q = Q P = 0, then T = P+ r

‖Q‖ Q is uniformly P-ergodic,
for all r ∈ (−1, 1).

The deduced results above enable us to produce several examples of uniformly
P-ergodic operators.
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Example 5.4 Let us considerRn and we denote by Ei (1 ≤ i ≤ n) the diagonal matrix
units inMn(R). Then the operator

T =
m∑

i=1

Ei +
n∑

k=m+1

rk Ek, rk ∈ R and |rk | < 1,

is uniformly P-ergodic, where P = ∑m
i=1 Ei . As in Theorem 5.2, we have Q =∑n

k=m+1 rk Ek . Indeed, P Q = Q P = 0 and ‖Q‖ < 1.

Next example shows that the commutativity of P and Q in Theorem 5.2 is a nec-
essary condition.

Example 5.5 Let us consider the following operators

Q =
⎛

⎝
0 0 0
0 0 0
0 1

2
1
4

⎞

⎠ and P =
⎛

⎝
1 0 0
0 1 0
0 0 0

⎞

⎠ .

Then P is a projection, ‖Q‖ < 1, P Q = 0 but Q P �= 0. Letting T = P + Q, we get
that

T n =
⎛

⎝
1 0 0
0 1 0

0 4n+1−1
6·4n

1
4n

⎞

⎠

converges to

P̃ =
⎛

⎝
1 0 0
0 1 0
0 2

3 0

⎞

⎠ .

Hence, T is uniformly P̃-ergodic, but not uniformly P-ergodic. Indeed, T = P̃ + Q̃,
where

Q̃ =
⎛

⎝
0 0 0
0 0 0
0 − 1

6
1
4

⎞

⎠ .

Next example shows that uniform P-ergodicity does not imply quasi-compactness.

Example 5.6 Consider the space �1, the subspaces A = {x ∈ �1; x2n = 0} and the
operator P:�1 → A defined by

P(x) = (x1 + x2, 0, x3 + x4, 0, . . .).

Then P is a projection on A. We construct a class of uniformly P-ergodic operators
on �1 as follows:
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Let Q:�1 → �1 be the operator defined by

x �→
(−x2

2
,

x2
2

,
−x4
2

,
x4
2

, . . .

)

.

It is clear that Qn → 0, so for some n0 ∈ N, we have ‖Qn0‖ < 1. Also, PQ =
QP = 0. Then by Theorem 5.2, we have that the operator T = P + Q is uniformly
P-ergodic, but one can see that T is not quasi-compact [20].

Now in the following example we construct uniformly P-ergodic operators on
L1-space:

Example 5.7 Let (S,B, μ) be a probability measure space and consider the space
X = L1(S,B, μ). We construct a class of uniformly P-ergodic operators on X as
follows:

Let fi (t) ∈ L∞(μ), for 1 ≤ i ≤ n, and let E1 denote the subspace generated by
span{ fi }. If P is a projection operator from X onto E1, then the operator P can be
written as follows

(P f )(t) :=
n∑

i=1

�i ( f ) fi (t),

where �i are linear functionals on X , which can be represented as

�i ( f ) =
∫

S
f (t)γi (t)dμ, ∀ f ∈ X

with

γi ∈ L∞(μ), such that
∫

S
γi (t) f j (t)dμ = δi, j .

Similarly, let us construct another projection Q on X : Let gi (t) ∈ L∞(μ), for
1 ≤ i ≤ m, and let E2 denote the subspace generated by span{gi }. Let Q be a
projection operator from X onto E2 which is defined by

(Q f )(t) :=
m∑

i=1

�i ( f )gi (t),

where �i are linear functionals on X , which can be represented as

�i ( f ) =
∫

S
f (t)λi (t)dμ, ∀ f ∈ X

with

λi ∈ L∞(μ), such that
∫

S
λi (t)g j (t)dμ = δi, j .
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In addition, we assume that the choice of λ j (t) and γi (t) satisfying

λ j (t) fi (t) = 0 μ a.e. and γ j (t)gi (t) = 0 μ a.e. (10)

Then P and Q are projections from X onto E1 and E2, respectively. To show that
Q P = 0, let f ∈ X then we have

Q P( f ) = Q

(
n∑

i=1

�i ( f ) fi (t)

)

=
n∑

i=1

�i ( f )Q( fi (t))

=
n∑

i=1

�i ( f )

m∑

j=1

� j ( fi )g j (t)

=
n∑

i=1

m∑

j=1

�i ( f )� j ( fi )g j (t)

= 0,

since� j ( fi ) = 0 (see, (10)). Similarly, by the second part of (10) we get P Q( f ) = 0,
for all f ∈ X . Therefore, Corollary 5.3 implies that T = P + r Q is a uniformly P-
ergodic operator on X , for all r ∈ (−1, 1).

6 On uniform andweakmean ergodicities

In this section, we are going to investigate uniform mean ergodicities of Markov
operator.

Given a bounded linear operator T :X → X , we set

An(T ) = 1

n

n∑

k=1

T k .

Recall that T :X → X is said to be

(a) mean ergodic if for every x ∈ X

lim
n→∞ An(T )x = Qx;

(b) uniformly mean ergodic if

lim
n→∞ ‖An(T ) − Q‖ = 0;
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for some operator Q on X .
In this setting, it is well-known that Q is a projection [26], which is called the

limiting projection of T , and denoted by QT . Moreover, if T ∈ 	(X), then QT is
also Markov.

By analogy with the weak P-ergodicity, one may introduce the following notion.
A linear operator T is called weakly P-mean ergodic if

lim
n→∞ δP (An(T )) = 0.

It is clear that any uniformly mean ergodic operator is weakly QT -mean ergodic.
By Theorem 4.6, we obtain the following result.

Corollary 6.1 Assume that T ∈ 	(X) and T is mean ergodic with its limiting pro-
jection QT . If there exists an n0 ∈ N such that δQT (T n0) < 1, then T is uniformly
QT -ergodic.

Theorem 6.2 Assume that T ∈ 	(X) and T is mean ergodic with its limiting projec-
tion QT . If T ∈ 	w

P (X), for some P, then QT ≤ P.

Proof Suppose that T ∈ 	w
P (X), so δP (T n0) < 1 for some n0 ∈ N. Then by Propo-

sition 3.11, we have

‖T n(I − P)‖ → 0.

As T QT = QT , An(T )QT = QT An(T ) = QT . Then

‖QT (I − P)‖ = ‖QT An(T )(I − P)‖
≤ ‖An(T )(I − P)‖
≤ 1

n

n∑

k=1

‖T k(I − P)‖ → 0,

so QT (I − P) = 0 which implies QT = QT P .
On the other hand,

‖(I − P)QT ‖ = ‖(I − P)An(T )QT ‖
≤ ‖(I − P)An(T )‖‖QT ‖
≤ ‖An(T )(I − P)‖ → 0,

so (I − P)QT = 0 which implies QT = QT P , and hence QT ≤ P . ��

It is natural to ask: when mean ergodic operator would be uniformly mean ergodic?
Next result clarifies this question in terms of δP .
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Theorem 6.3 Assume that T ∈ 	(X) and T is mean ergodic with its limiting projec-
tion QT . Then the following statements are equivalent:

(i) T is uniformly mean ergodic;
(ii) there exists an n0 ∈ N such that δQT (An0(T )) < 1. Moreover,

‖An(T ) − QT ‖ ≤ 2(n0 + 1)

1 − δQT (An0(T ))
· 1

n
.

Proof Wenote that if T = I , then QT = I and according to the definition δQT (T ) = 1,
hence the statement of the theorem follows. Therefore, in what follows it is always
assumed T �= I . The implications (i)⇒ (ii) directly follows using the same arguments
as in the proof of Proposition 4.5, replacing T n by An(T ) and P by QT .

(ii) ⇒ (i). Assume that ρ = δQT (An0(T )) < 1, for some n0 ∈ N. Then

An(T )(I − T ) = An(T ) − An(T )T

= 1

n

n−1∑

k=0

T k − 1

n

n−1∑

k=0

T k+1

= 1

n
(I − T n),

so, ‖An(T )(I − T )‖ ≤ 2
n , and then

‖An(T )(I − T k)‖ ≤ 2k

n
, k ∈ N

which implies

‖An(T )(I − An0(T ))‖ =
∥
∥
∥
∥An(T )

(
1

n0

n0∑

k=1

(I − T k)

)∥
∥
∥
∥

≤ 1

n0

n0∑

k=1

‖An(T )(I − T k)‖

≤ n0 + 1

n
.

Therefore,

δQT (An(T )(I − An0(T ))) ≤ n0 + 1

n
. (11)

Using Properties (ii) and (vi) of Theorem 3.7, we have

δQT (An(T )(I − An0(T ))) ≥ δQT (An(T )) − δQT (An(T )An0(T ))

≥ δQT (An(T )) − δQT (An(T ))δQT (An0(T ))

= δQT (An(T ))(1 − ρ).
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By (11) and as ρ < 1, we have

δQT (An(T )) ≤ n0 + 1

1 − ρ
· 1

n
. (12)

Now,

δQT (An(T )) = sup
y∈NQT

‖An(T )y‖
‖y‖

≥ sup
x∈X

‖An(T )x − An(T )QT x‖
‖x − QT x‖ (for y = x − QT x)

= sup
x∈X

‖An(T )x − QT x‖
‖x − QT x‖ (since An(T )QT = QT )

≥ 1

2
sup
x∈X

‖An(T )x − QT x‖
‖x‖

= 1

2
‖An(T ) − QT ‖.

Then by (12)

‖An(T ) − QT ‖ ≤ 2(n0 + 1)

1 − ρ
· 1

n

which yields the desired assertion. ��
Now, we are going to introduce an abstract analogue of the well-known Doeblin’s

Condition [39].

Definition 6.4 Let (X , X+,K, f ) be an abstract state space, whose cone X+ is λ-
generating, let P be a Markov projection on X , and let T ∈ 	P (X). We say that T
satisfies condition Dm if there exists a constant τ ∈ (0, 1] and an integer n0 ∈ N and
for every x, y ∈ K with x − y ∈ NP , there exists zxy ∈ K and ϕxy ∈ X+ with

sup
xy

‖ϕxy‖ ≤ η,

where

0 ≤ η < τ + 1

λ
− 1, (13)

such that
An0(T )x + ϕxy ≥ τ zxy, An0(T )y + ϕxy ≥ τ zxy . (14)

The next result characterize the weakly P-mean ergodic Markov operators in terms
of the above condition Dm .

Theorem 6.5 Let (X , X+,K, f ) be an abstract state space whose cone X+ is λ-
generating, and let P be a Markov projection on X. Assume that T ∈ 	P (X). Then
the following conditions are equivalent:
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(i) T satisfies condition Dm;
(ii) there is an n0 ∈ N such that δP (An0(T )) < 1;
(iii) T is weakly P-mean ergodic.

Proof (i) ⇒ (ii). By condition Dm , there is a τ ∈ (0, 1], n0 ∈ N and for any two
elements x, y ∈ K with x − y ∈ NP , there exist zxy ∈ K, ϕxy ∈ X+ with

sup
xy

‖ϕxy‖ ≤ η (15)

such that
An0(T )x + ϕxy ≥ τ zxy, An0(T )y + ϕxy ≥ τ zxy . (16)

Using the Markovianity of T , and the inequalities (16) with (15), we obtain

‖An0(T )x + ϕxy − τ zxy‖ = f (An0(T )x + ϕxy − τ zk)

= 1 − (τ − f (ϕxy)
︸ ︷︷ ︸

c

)

= 1 − c ≤ 1 − (τ − η).

By the same argument, one finds

‖An0(T )y + ϕxy − τ zxy‖ = 1 − c ≤ 1 − (τ − η)

Let us denote

x1 = 1

1 − c
(An0(T )x + ϕxy − τ zxy),

y1 = 1

1 − c
(An0(T )y + ϕxy − τ zxy).

It is clear that both x1, y1 ∈ K.
So,

‖An0(T )x − An0(T )y‖ = (1 − c)‖x1 − y1‖ ≤ 2

(

1 − (τ − η)

)

.

Hence,
λ

2
‖An0(T )x − An0(T )y‖ ≤ λ

(

1 − (τ − η)

)

. (17)

By (13) and (iii) of Theorem 3.7, and using (17) we obtain,

δP (An0(T )) ≤ μ < 1,

where μ = λ(1 − τ + η), hence (ii) follows.
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The implication (ii) ⇒ (iii) immediately follows from the proof of the implication
(ii) ⇒ (i) of Theorem 6.3. Therefore, it is enough to establish (iii) ⇒ (i). Assume that
T is weakly P-mean ergodic. Then

sup
x,y∈K,x−y∈NP

‖An(T )x − An(T )y‖ → 0 as n → ∞.

Therefore, one can find n0 ∈ N such that

‖An0(T )x − An0(T )y‖ ≤ 1

4λ2
, for all x, y ∈ K, x − y ∈ NP . (18)

Now pick any y0 ∈ K with x − y0 ∈ Np and y − y0 ∈ NP . Due to Lemma 3.6 we
decompose

An0(T )x − An0(T )y0 = (An0(T )x − An0(T )y0)+ − (An0(T )x − An0(T )y0)−
An0(T )y − An0(T )y0 = (An0(T )y − An0(T )y0)+ − (An0(T )y − An0(T )y0)−.

(19)

Denote

ϕx = (An0(T )x − An0(T )y0)−, ϕy = (An0(T )y − An0(T )y0)−

and define

ϕxy = ϕx + ϕy .

It is clear that ϕxy ∈ X+ and from (18) with Lemma 3.6, one gets

sup
x,y∈K,x−y∈NP

‖ϕxy‖ ≤ 1

4λ
.

Moreover, by (19) we obtain

An0(T )x + ϕxy ≥ An0(T )x + ϕx

= An0(T )y0 + An0(T )x − An0(T )y0 + ϕx

= An0(T )y0 + (An0(T )x − An0(T )y0)+
≥ An0(T )y0.

Similarly, one gets

An0(T )x + ϕxy ≥ An0(T )y0.

Now, by denoting τ = 1, η = 1
4λ and zxy = An0(T )y0, we infer that the operator T

satisfies the condition Dm . This completes the proof. ��
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Remark 6.6 We notice that if in the condition Dm one replaces An(T ) with some
power of T , then we obtain the Deoblin’s condition for T which has been investigated
in [10,35,37,41]. We think that such type of result is even a new in the classical, i.e.
X is taken as an L1-space.

In the next example bymeans of Theorem6.5,we show thatweakly P-mean ergodic
operator is not necessary to be uniformly mean ergodic.

Example 6.7 Recall Example 2.5(3). Namely, X = C[0, 1] with the cone

X+ = {
x ∈ X : max

0≤t≤1
|x(t) − x(1)| ≤ 2x(1)

}
.

Consider the Markov operator T :X → X given by (T x)(t) = t x(t).
Let us establish that T satisfies the condition Dm . First, it is noted that

(An(T )x)(t) = 1

n

t − tn+1

1 − t
x(t).

We assume that Px = x(1). Now take x, y ∈ K. Put ϕxy ≡ 0, τ = 1 and zxy = c,
c ∈ (0, 1/2). Then the inequalities An0x ≥ τ zxy , An0 y ≥ τ zxy are equivalent to
An0x − τ zxy, An0 y − τ zxy ∈ X+, which is equivalent to

max
0≤t≤1

|(An0x)(t) − (An0x)(1)| ≤ 2
(
(An0x)(1) − zxy

)
,

max
0≤t≤1

|(An0 y)(t) − (An0 y)(1)| ≤ 2
(
(An0 y)(1) − zk

)
.

The last one can be rewritten as follows:

max
0≤t≤1

∣
∣
∣
∣
1

n0

t − tn0+1

1 − t
x(t) − x(1)

∣
∣
∣
∣ ≤ 2(x(1) − c),

max
0≤t≤1

∣
∣
∣
∣
1

n0

t − tn0+1

1 − t
y(t) − y(1)

∣
∣
∣
∣ ≤ 2(y(1) − c).

Taking into account x, y ∈ K, from the last ones, we have

max
0≤t≤1

∣
∣
∣
∣
1

n0

t − tn0+1

1 − t
x(t) − 1)

∣
∣
∣
∣ ≤ 2(1 − c), (20)

max
0≤t≤1

∣
∣
∣
∣
1

n0

t − tn0+1

1 − t
y(t) − 1

∣
∣
∣
∣ ≤ 2(1 − c). (21)

From the last expressions, we infer the existence of n0 such that inequalities (20) and
(21) are satisfied. This, due to Theorem 6.5, yields that T satisfies the condition Dm .
Hence, T is weakly P-mean ergodic. However, one can see that T is not uniformly
means ergodic.

Now, we give an application of Theorem 6.3.
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Theorem 6.8 Let X be a Banach space, T :X → X be a mean ergodic operator on X
with ‖T ‖ ≤ 1 and let P be a Markov projection on X. Then the following statements
are equivalent:

(i) there exists an n0 ∈ N such that ‖An0(T )|I−P ‖ < 1;
(ii) T is uniformly mean ergodic.

Proof (i)⇒(ii). Now consider the abstract state space (X ,X+,K, f ) and the linear
operator T (α, x) = (α, T (x)). Due to Theorem 4.8, the operator T is Markov. More-
over, for every (α, x) ∈ X , one has

An(T )(α, x) = 1

n

n∑

k=1

T k(α, x)

= 1

n

n∑

k=1

(α, T k(x))

= (α, An(T )(x)).

Hence, the mean ergodicity of T implies the convergence of {An(T )(α, x)}, which
shows that T is mean ergodic with its limiting projection P . By the proof of the
implication (ii)⇒(i) in Theorem 4.8, we have

δP (An(T )) = ‖An(T )|I−P ‖,

hence, from the hypothesis of the theorem, for some n0 ∈ N, one has

δP (An0(T )) < 1.

So, Theorem 6.3 yields that T is uniformly mean ergodic, which implies the uniform
mean ergodicity of T .

The implication (ii)⇒(i) can be proved in the reverse order. ��
Remark 6.9 We notice that in [29] relations between the uniform mean ergodicity and
uniform convergence of the Abel averages have been studied.

7 Perturbation bounds and uniform P-ergodicity ofMarkov operators

This section is devoted to perturbation bounds for uniformly P-ergodic Markov oper-
ators. The case when P is a one-dimensional projection, this type of questions have
been studied in [14,32,43]. For general projections, these kinds of bounds have not
been investigated. Therefore, results of this section are new even in the classical case
as well.

Recall that if T is uniformly P-ergodic, then by Corollary 4.7 there are constants
C, α ∈ R+, n0 ∈ N such that

∥
∥T n − P

∥
∥ ≤ Ce−αn, ∀n ≥ n0.
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In this section, we prove perturbation bounds in terms of C and eα . Moreover, we
also give several bounds in terms of the Dobrushin’s ergodicity coefficient.

Theorem 7.1 Let (X , X+,K, f ) be an abstract state space (i.e. λ-generating), P be
a projection on X and let T , S ∈ 	inv

P (X). If T ∈ 	u
P (X), then

∥
∥T n x − Snz

∥
∥ ≤

{
‖x − z‖ + n ‖T − S‖ , ∀n ≤ ñ,

λCe−αn ‖x − z‖ + (
ñ + λC e−αñ−e−αn

1−e−α

) ‖T − S‖ , ∀n ≥ ñ + 1

where ñ :=
[
log(1/C)

log e−α

]

, C, α ∈ R+, x, z ∈ K and x − z ∈ NP .

Proof For every n ∈ N, by induction, we have

Sn = T n +
n−1∑

i=0

T n−i−1 ◦ (S − T ) ◦ Si . (22)

Let x, z ∈ K and x − z ∈ NP . Then it follows from (22) that

T n x − Snz = T n x − T nz −
n−1∑

i=0

T n−i−1 ◦ (S − T ) ◦ Si z

= T n(x − z) −
n−1∑

i=0

T n−i−1 ◦ (S − T )(zi ),

where zi = Si z. Hence,

∥
∥T n x − Snz

∥
∥ ≤ ∥

∥T n(x − z)
∥
∥ +

n−1∑

i=0

∥
∥
∥T n−i−1 ◦ (S − T )(zi )

∥
∥
∥ .

As T , S ∈ 	inv
p (X), we have P(S − T ) = 0 and due to (v) of Theorem (3.7), one

finds ∥
∥
∥T n−i−1(S − T )(zi )

∥
∥
∥ ≤ δP (T n−i−1) ‖S − T ‖ ,

and

∥
∥T n(x − z)

∥
∥ ≤ δP (T n) ‖x − z‖ .

Hence,

∥
∥T n x − Snz

∥
∥ ≤ δP (T n) ‖x − z‖ +

n−1∑

i=0

δP (T n−i−1) ‖S − T ‖

= δP (T n) ‖x − z‖ + ‖S − T ‖
n−1∑

i=0

δP (T i ). (23)
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By

∥
∥
∥T i u − T iv

∥
∥
∥ ≤

∥
∥
∥T i u − Pu

∥
∥
∥ +

∥
∥
∥Pv − T iv

∥
∥
∥ ,

with the fact Pu = Pv, and due to (iii) of Theorem (3.7), one gets

δP (T i ) ≤ λ

2
sup

u,v∈K,u−v∈NP

∥
∥
∥T i u − T iv

∥
∥
∥ ≤ λ sup

u∈K

∥
∥
∥T i u − Pu

∥
∥
∥ .

Therefore,

δP (T n) ≤
{
1, ∀n ≤ ñ,

λCe−αn, ∀n ≥ ñ + 1
(24)

where ñ =
[
log(1/C)

log e−α

]

.

From (24) we obtain

n−1∑

i=0

δP (T i ) =
ñ−1∑

i=0

δP (T i ) +
n−1∑

i=ñ

δP (T i )

≤ ñ +
n−1∑

i=ñ

λCe−αi

= ñ + λCe−αñ 1 − e−α(n−ñ)

1 − e−α
, ∀n ≥ ñ + 1. (25)

Hence, we get the required assertion. ��
Corollary 7.2 Assume that the same hypotheses of Theorem 7.1 are satisfied. Then, for
all x ∈ K

∥
∥T n x − Sn x

∥
∥ ≤

{
n ‖T − S‖ , ∀n ≤ ñ,
(
ñ + λC e−αñ−e−αn

1−e−α

) ‖T − S‖ , ∀n ≥ ñ + 1

here as before, ñ :=
[
log(1/C)

log e−α

]

, C, α ∈ R+.

The following theoremgives an alternativemethodof obtainingperturbationbounds
in terms of δp(T m).

Theorem 7.3 Let (X , X+,K, f ) be an abstract state space, P be a projection on X
and let S, T ∈ 	inv

P (X). If δP (T m) < 1 holds for some m ∈ N, then for every x, z ∈ K
with x − z ∈ NP one has
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∥
∥T n x − Snz

∥
∥ ≤ δP (T m)�n/m�( ‖x − z‖ + max

0<i<m

∥
∥
∥T i − Si

∥
∥
∥

)

+1 − δP (T m)�n/m�

1 − δP (T m)

∥
∥T m − Sm

∥
∥ , n ∈ N. (26)

Proof For any n ≤ m, due to T n x − Snz = Sn(x − z) + (T n − Sn)x , we get

∥
∥T n x − Snz

∥
∥ ≤ ‖x − z‖ + ∥

∥T n − Sn
∥
∥

≤ ‖x − z‖ + max
0<i<m

∥
∥
∥T i − Si

∥
∥
∥ . (27)

If n < m, then Eq. (26) reduces to (27). If n ≥ m, we obtain

T n x − Snz = T m(T n−m x) − Sm(Sn−m z)

= T m(T n−m x − Sn−m z) + (T m − Sm)Sn−m z.

Therefore, keeping in mind S, T ∈ 	inv
P (X) one finds

∥
∥T n x − Snz

∥
∥ ≤ δP (T m)

∥
∥T n−m x − Sn−m z

∥
∥ + ∥

∥T m − Sm
∥
∥ .

Applying this relation to

∥
∥T n−m x − Sn−m z

∥
∥ , . . . ,

∥
∥
∥T n−m(�n/m�−1)x − Sn−m(�n/m�−1)z

∥
∥
∥

and using (27) to bound
∥
∥T n−m�n/m�x − Sn−m�n/m�z

∥
∥, we obtain

∥
∥T n x − Snz

∥
∥ ≤ δP (T m)�n/m�(‖x − z‖ + max

0<i<m

∥
∥
∥T i − Si

∥
∥
∥)

+
(

δP (T m)�n/m�−1 + δP (T m)�n/m�−2 + · · · + 1

)
∥
∥T m − Sm

∥
∥ ,

= δP (T m)�n/m�(‖x − z‖ + max
0<i<m

∥
∥
∥T i − Si

∥
∥
∥)

+1 − δP (T m)�n/m�

1 − δP (T m)

∥
∥T m − Sm

∥
∥ .

The proof is completed. ��
Consequently, we get the following corollarywhich allows to estimate the dynamics

of S to its fixed points set.

Corollary 7.4 Assume that the same hypotheses of Theorem 7.3 are satisfied. Then, for
every x ∈ K

∥
∥Sn x − Px

∥
∥ ≤ δP (T m)�n/m�( ‖x − Px‖ + max

0<i<m

∥
∥
∥T i − Si

∥
∥
∥

)

+ 1 − δP (T m)�n/m�

1 − δP (T m)

∥
∥T m − Sm

∥
∥ , n ∈ N.
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