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Abstract
In order to find an extension of Brezis–Lieb’s lemma to the case of nets, we replace the
almost everywhere convergence by the unbounded order convergence and introduce
the pre-Brezis–Lieb property in normed lattices. Then we identify a wide class of
Banach lattices in which the Brezis–Lieb lemma holds true. Among other things, it
gives an extension of the Brezis–Lieb lemma for nets in L p for p ∈ [1,∞).

Keywords a.e.-Convergence · Brezis–Lieb lemma · Banach lattice ·
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1 Introduction

Let (�,�,μ) be a measure space in which, for every set A ∈ �, μ(A) > 0, there
exists � � A0 ⊆ A, such that 0 < μ(A0) < ∞. Given p ∈ (0,∞), denote by
Lp = { f : ∫

�

| f |pμ < ∞} the vector space of p-integrable functions from � into C.

The Brezis–Lieb lemma [3, Thm.1] is known as the following useful refinement of
the Fatou lemma.
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Theorem 1 (Brezis–Lieb’s lemma for Lp (0 < p < ∞)) Suppose fn
a.e.−−→ f and∫

�

| fn|pdμ ≤ C < ∞ for all n and some p ∈ (0,∞). Then

lim
n→∞

∫

�

(| fn|p − | fn − f |p)dμ =
∫

�

| f |pdμ. (1.1)

As the following example shows, Theorem 1 does not have a reasonable direct
generalization for nets.

Example 1 Consider [0, 1] ⊂ R with the Lebesgue measure μ. Let � be the family
of all finite subsets of [0, 1] ordered by inclusion, and IF be the indicator function of

F ∈ �. Then IF
a.e.−−→ I[0,1] and

1∫

0
|IF |dμ = 0, however

lim
F→∞

1∫

0

(|IF | − |IF − I[0,1]|)dμ = lim
F→∞

1∫

0

(−|I[0,1]|)dμ = −1 	= 1 =
1∫

0

|I[0,1]|dμ.

In order to avoid the collision, we restate Theorem 1 in the case of 1 ≤ p < ∞ in
terms of the Banach space L p of equivalence classes of functions from Lp(μ) w.r. to
μ (cf. [12, Thm.2]).

Theorem 2 (Brezis–Lieb’s lemma for L p (1 ≤ p < ∞)) Let fn
a.e.−−→ f in L p(μ) and

‖fn‖p → ‖f‖p, where ‖fn‖p :=
[

∫

�

| fn|pdμ

]1/p
with fn ∈ Lp(μ) and fn ∈ fn.

Then ‖fn − f‖p → 0.

Anton Schep kindly provided us with the reference [13, p.59] showing that The-
orem 2 for p > 1 is due to Frigyes Riesz. Although in Theorem 2, we still have
a.e.-convergent sequences in L p, it is possible now (e.g. due to [7, Prop.3.1]) to
replace the a.e.-convergence by the uo-convergence and restate Theorem 1 once more
(cf. also [5, Prop.2.2] and [10, Prop.1.5]) as follows.

Theorem 3 (Brezis–Lieb’s lemma for uo-convergent sequences in L p) Let xn
uo−→ x in

L p, where p ∈ [1,∞). If ‖xn‖p → ‖x‖p then ‖xn − x‖p → 0.

Notice that Theorem 3 is a result of the Banach lattice theory which does not
involve the measure theory directly. This observation motivates us to investigate those
Banach lattices in which the statement of Theorem 3 holds true. We call them by the
σ -Brezis–Lieb spaces. After introducing a geometrical property of normed lattices
in Definition 2, we prove Theorem 4 which is the main result of the present paper.
Theorem 4 gives an internal geometric characterization of σ -Brezis–Lieb’s spaces and
implies immediately the following result.
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Proposition 1 Let fα
uo−→ f in L p(μ) (1 ≤ p < ∞), and ‖fα‖p → ‖f‖p. Then ‖fα −

f‖p → 0.

It is worthmentioning that Proposition 1may serve as a net-extension of the Brezis–
Lieb lemma (in its form of Theorem 3).

2 Brezis–Lieb spaces

In this section all normed lattices are considered over the real field R. Recall that a
net vα in a vector lattice E uo-converges to v ∈ E whenever, for every u ∈ E+, the
net |vα − v| ∧ u converges in order to 0. For the further theory of vector lattices, we
refer to [1,2] and, for the unbounded order convergence, to [7,8].

Definition 1 A normed lattice (E, ‖ · ‖) is said to be a Brezis–Lieb space (shortly,
BL-space) (resp. σ -Brezis–Lieb space σ -BL-space)) if, for any net xα (resp. for any
sequence xn) in X such that ‖xα‖ → ‖x0‖ (resp. ‖xn‖ → ‖x0‖) and xα

uo−→ x0 (resp.
xn

uo−→ x0), we have ‖xα − x0‖ → 0 (resp. ‖xn − x0‖ → 0).

Trivially, any BL-space is a σ -BL-space, and any finite-dimensional normed lattice
is a BL-space. Furthermore, by [7, Thm.3.2], any regular sublattice F of any BL-space
(σ -BL-space) E is itself a BL-space (σ -BL-space). Taking into account the fact
that the a.e.-convergence for sequences in L p coincides with the uo-convergence [7,
Prop.3.1], Theorem 3 says exactly that L p is a σ -BL-space for 1 ≤ p < ∞. The
following result is due toVladimir Troitskywho also kindly provided uswith its proof.

Proposition 2 A Banach lattice E with countable sup property and a weak unit w is
a BL-space iff E is a σ -BL-space.

Proof By [7, Cor.3.5], xα
uo−→ x iff |xα − x | ∧ w

o−→ 0. Suppose that E is a σ -Brezis–
Lieb space. Suppose that xα

uo−→ x and ‖xα‖ → ‖x‖, yet ‖xα − x‖ 	→ 0. Then there
exists ε > 0 such that for every α one can find β ≥ α with ‖xβ − x‖ ≥ ε.

It follows from |xα − x | ∧ w
o−→ 0 that there is a net (uγ )γ∈
 such that uγ ↓ 0 and

for every γ there exists α0 such that |xα − x |∧w ≤ uγ whenever α ≥ α0. Since E has
countable sup property, we can find an increasing sequence γn in 
 such that uγn ↓ 0.
For each n, find αn such that |xα − x | ∧ w ≤ uγn for all α ≥ αn .

Since ‖xα‖ → ‖x‖, we have
∣
∣
∣‖xα‖ − ‖x‖

∣
∣
∣ < 1 for all sufficiently large α. So

we can choose β1 ≥ α1 such that
∣
∣
∣‖xβ1‖ − ‖x‖

∣
∣
∣ < 1 and ‖xβ1 − x‖ ≥ ε. Similarly,

choose β2 such that β2 > β1 and β2 ≥ α2 with
∣
∣
∣‖xβ2‖−‖x‖

∣
∣
∣ < 1

2 and ‖xβ2 − x‖ ≥ ε.

Proceeding inductively, we get a strictly increasing sequence βn such that βn ≥ αn ,

‖xβn − x‖ ≥ ε, and
∣
∣
∣‖xβn‖ − ‖x‖

∣
∣
∣ < 1

n for every n. It follows that ‖xβn‖ → ‖x‖.
Also, it follows from βn ≥ αn that |xβn − x | ∧ w ≤ uγn , so that xβn

uo−→ x . Therefore,
‖xβn − x‖ → 0, which is a contradiction. ��

Now, we consider examples of Banach lattices which are not σ -Brezis–Lieb spaces.
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Example 2 The Banach lattice (c0, ‖ · ‖∞) is not a σ -BL-space. To see this, take
xn = e2n + ∑n

k=1
1
k ek and x = ∑∞

k=1
1
k ek in c0. Clearly, ‖x‖ = ‖xn‖ = 1 for all n

and xn
uo−→ x , however 1 = ‖x − xn‖ does not converge to 0.

We do not know whether or not for an arbitrary lattice norm ‖ · ‖ in c0, which is
equivalent to ‖ · ‖∞, the Banach lattice (c0, ‖ · ‖) is not a σ -BL-space.

Example 3 Since c0 is an order ideal in c and in �∞, c0 is regular there, and hence,
both Banach lattices (c, ‖ · ‖∞) and (�∞, ‖ · ‖∞) are not σ -BL-spaces. Accordingly
to the fact, that c0 is a regular sublattice of c and to the last sentence of Example 2, it
is also unknown whether or not the Banach lattice (c, ‖ · ‖) is not a σ -BL-space for
an arbitrary lattice norm ‖ · ‖ that is equivalent to ‖ · ‖∞.

In opposite to c, the Banach lattice �∞ is Dedekind complete. Let ‖·‖ be any lattice
norm in �∞ that is equivalent to ‖ · ‖∞. Clearly, the norm ‖ · ‖ is not order continuous.
Therefore, by Theorem 4, (�∞, ‖ · ‖) is not a σ -BL-space.

A slight change of an infinite-dimensional BL-space can turn it into a normed
lattice which is not even a σ -BL-space.

Example 4 Let E be an infinite-dimensional normed lattice. Let F = R ⊕∞ E . Take
a disjoint sequence yn in E such that ‖yn‖E = 1 for all n. Then yn

uo−→ 0 in E [7,
Cor.3.6]. Let xn = (1, yn) ∈ F . Then ‖xn‖F = sup(1, ‖yn‖E ) = 1 and xn =
(1, yn)

uo−→(1, 0) =: x in F , however

‖xn − x‖F = ‖(0, yn)‖F = ‖yn‖E = 1,

and so xn does not converge to x in (F, ‖ · ‖F ). Therefore F = R ⊕∞ E is not a
σ -BL-space.

In order to characterize BL-spaces, we introduce the following definition.

Definition 2 A normed lattice (E, ‖ · ‖) is said to have the pre-Brezis–Lieb property
(shortly, pre-BL-property), whenever lim supn→∞ ‖u0 +un‖ > ‖u0‖ for any disjoint
normalized sequence (un)∞n=1 in E+ and for any u0 ∈ E+, u0 > 0.

Every finite dimensional normed lattice E has the pre-BL-property. It is easy to
see that the Banach lattices c0, c, and �∞ w.r. to the supremum norm ‖ · ‖∞ do not
have the pre-BL-property. The modification of the norm in an infinite-dimensional
Banach lattice E with the pre-BL-property, as in Example 4, turns it into the Banach
lattice F = R⊕∞ E without the pre-BL-property. Indeed, take a disjoint normalized
sequence (yn)∞n=1 in E+. Let u0 = (1, 0) and un = (0, yn) for n ≥ 1. Then (un)∞n=0
is a disjoint normalized sequence in F+ with lim supn→∞ ‖u0 + un‖ = 1 = ‖u0‖.

Remarkably, it is not a coincidence. The following theorem identifies BL-spaces
among σ -Dedekind complete Banach lattices.
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Theorem 4 For a σ -Dedekind complete Banach lattice E, the following conditions
are equivalent:

(1) E is a Brezis–Lieb space;
(2) E is a σ -Brezis–Lieb space;
(3) E has the pre-Brezis–Lieb property, and the norm in E is order continuous.

Proof The implication (1) ⇒ (2) is trivial.
(2) ⇒ (3): We show first that E has the pre-BL-property. If not, then there exist a

disjoint normalized sequence (un)∞n=1 in E+ and0 < u0 ∈ E+ with lim supn→∞ ‖u0+
un‖ = ‖u0‖. Since ‖u0 + un‖ ≥ ‖u0‖, then limn→∞ ‖u0 + un‖ = ‖u0‖. Denote
vn := u0 + un . By [7, Cor.3.6], un

uo−→ 0 and hence vn
uo−→ u0. Since E is a σ -BL-

space and limn→∞ ‖vn‖ = ‖u0‖, then ‖vn −u0‖ → 0, a contradiction to ‖vn −u0‖ =
‖u0 + un − u0‖ = ‖un‖ = 1. Notice that, in this part of the proof of (2) ⇒ (3), the
σ -Dedekind completeness of E was not used.

Assume that the norm in E is not order continuous. Then, by the Fremlin–Meyer–
Nieberg theorem (see e.g. [2, Thm.4.14]) there exists y ∈ E+ and a disjoint sequence
ek ∈ [0, y] such that ‖ek‖ 	→ 0. Without lost of generality, we may assume ‖ek‖ = 1
for all k ∈ N. By the σ -Dedekind completeness of E , for any sequence αn ∈ R+,
there exist the following vectors

x0 =
∞∨

k=1

ek, xn = α2ne2n +
∞∨

k=1,k 	=n,k 	=2n

ek (∀n ∈ N). (2.1)

Now, we choose α2n ≥ 1 in (2.1) such that ‖xn‖ = ‖x0‖ for all n ∈ N. Clearly,
xn

uo−→ x0. Since E is a σ -BL-space, then ‖xn − x0‖ → 0, violating

‖xn − x0‖ = ‖(α2n − 1)e2n − en‖ = ‖(α2n − 1)e2n + en‖ ≥ ‖en‖ = 1.

The obtained contradiction shows that the norm in E is order continuous.
(3) ⇒ (1): If E is not aBrezis–Lieb space, then there exists a net (xα)α∈A in E such that
xα

uo−→ x and ‖xα‖ → ‖x‖, but ‖xα − x‖ 	→ 0. Then |xα| uo−→ |x | and ‖|xα|‖ → ‖|x |‖.
Notice that ‖|xα| − |x |‖ 	→ 0. Indeed, if ‖|xα| − |x |‖ → 0, then, for any ε > 0,

(|xα|)α∈A is eventually in [−|x |, |x |]+ εBE . Thus (|xα|)α∈A is almost order bounded.
Since E is order continuous and xα

uo−→ x , then by [8, Pop.3.7.], ‖xα − x‖ → 0, that
is impossible. Therefore, without lost of generality, we may assume xα ∈ E+ and, by
normalizing, also ‖xα‖ = ‖x‖ = 1 for all α.

Passing to a subnet, denoted by xα again, we may assume

‖xα − x‖ > C > 0 (∀α ∈ A). (2.2)

Notice that x ≥ (x − xα)+ = (xα − x)− uo−→ 0, and hence (xα − x)− o−→ 0. The
order continuity of the norm ensures

‖(xα − x)−‖ → 0. (2.3)
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Denoting wα = (xα − x)+ and using (2.2) and (2.3), we may also assume

‖wα‖ = ‖(xα − x)+‖ > C (∀α ∈ A). (2.4)

In view of (2.4), we obtain

2 = ‖xα‖ + ‖x‖ ≥ ‖(xα − x)+‖ = ‖wα‖ > C (∀α ∈ A). (2.5)

From xα
uo−→ x we have wα

uo−→(x − x)+ = 0. It follows from [4, Thm.3.2] that
there exists an increasing sequence of indices αn and a disjoint sequence zn such that

‖wαn − zn‖ → 0 (2.6)

Without loss of generality, replacing zn with |zn|, we may assume zn ≥ 0. Passing
to further increasing sequence of indices, we may assume that

‖wαn‖ → M ∈ [C, 2] (n → ∞).

Now

lim
n→∞

∥
∥
∥
∥M

−1x + ‖zn‖−1zn

∥
∥
∥
∥ = M−1 lim

n→∞ ‖x + zn‖ = [by (2.6)] =
M−1 lim

n→∞ ‖x + wαn‖ = [by (2.3)] = M−1 lim
n→∞ ‖x + (xαn − x)‖ =

M−1 lim
n→∞ ‖xαn‖ = M−1 = ‖M−1x‖,

violating the pre-Brezis–Lieb property for u0 = M−1x and un = ‖zn‖−1zn , n ≥ 1.
The obtained contradiction completes the proof. ��

Anton Schep kindly informed us that a special case of Theorem 4 is due to
Nakano [11, Thm.33.6].

Since every order continuous Banach lattice is Dedekind complete, the following
result is a direct consequence of Theorem 4.

Corollary 1 For an order continuous Banach lattice E, the following conditions are
equivalent:

(1) E is a BL-space;
(2) E is a σ -BL-space;
(3) E has the pre-BL-property.

Corollary 1 applied to the order continuous Banach lattices L p (1 ≤ p < ∞)

gives Proposition 1.
It follows from Theorem 4 that if E is a σ -Dedekind complete Banach lattice,

then E is a σ -BL-space iff E has the pre-BL-property, and the norm in E is order
continuous. This result is related to the following fact mentioned on page 28 of [9],
where the same conditionwithweak convergence replacedwith uo-convergencewhich
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is used in Definition 1: A Banach lattice (E, ‖ · ‖) is order continuous iff there is an
equivalent norm ‖ · ‖1 on E so that

E � xn
w−→ x and ‖xn‖1 → ‖x‖1 ⇒ ‖xn − x‖1 → 0.

Relationship between weak and uo-convergence have been studied in [14].
We do not know whether or not implication (2) ⇒ (3) of Theorem 4 holds true

without the assumption that the Banach lattice E is σ -Dedekind complete. More
precisely:

Question 1 Does every σ -Brezis–Lieb Banach lattice have an order continuous norm?

In the proof of (2) ⇒ (3) of Theorem 4, the σ -Dedekind completeness of E has
been used only for showing that E has an order continuous norm. So, any σ -Brezis–
Lieb Banach lattice has the pre-BL-property. Therefore, for answering in positive the
question of possibility to drop σ -Dedekind completeness assumption in Theorem 4,
it suffices to answer in positive the following question which is formally weaker than
Question 1.

Question 2 Does the pre-BL-property imply order continuity of the norm in the under-
lying Banach lattice?

In the end of the paper, wemention onemore question closely related to the question
in the last sentence of Example 2.

Question 3 Does the pre-BL-property of a Banach lattice E ensure that E is a KB-
space?

Acknowledgements The authors would like to thank the reviewer for many valuable comments and
improvements, especially for the suggestion which makes the Proof of Theorem 4 significantly shorter
than its original version in [6, Thm.4].
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