
Positivity (2020) 24:313–337
https://doi.org/10.1007/s11117-019-00679-z Positivity

Locally Lipschitz vector optimization problems:
second-order constraint qualifications, regularity condition
and KKT necessary optimality conditions

Yi-Bin Xiao1 · Nguyen Van Tuyen1,2 · Jen-Chih Yao3 · Ching-Feng Wen4,5

Received: 26 June 2018 / Accepted: 11 May 2019 / Published online: 1 June 2019
© Springer Nature Switzerland AG 2019

Abstract
In the present paper, we are concerned with a class of constrained vector optimization
problems,where the objective functions and active constraint functions are locally Lip-
schitz at the referee point. Some second-order constraint qualifications of Zangwill
type, Abadie type and Mangasarian–Fromovitz type as well as a regularity condi-
tion of Abadie type are proposed in a nonsmooth setting. The connections between
these proposed conditions are established. They are applied to develop second-order
Karush–Kuhn–Tucker necessary optimality conditions for local (weak, Geoffrion
properly) efficient solutions to the considered problem. Examples are also given to
illustrate the obtained results.

Keywords Locally Lipschitz vector optimization · Second-order constraint
qualification · Abadie second-order regularity condition · Second-order KKT
necessary optimality conditions
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1 Introduction

In this paper, we are interested in second-order optimality conditions for the following
constrained vector optimization problem

min f (x) (VP)

subject to x ∈ Q0 := {x ∈ X : g(x) � 0},

B Ching-Feng Wen
cfwen@kmu.edu.tw

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11117-019-00679-z&domain=pdf
http://orcid.org/0000-0001-8900-761X


314 Y.-B. Xiao et al.

where f := ( fi ), i ∈ I := {1, . . . , p}, and g := (g j ), j ∈ J := {1, . . . ,m} are
vector-valued functions defined on a Banach space X .

As a mainstream in the study of vector optimization problems, optimality condition
for vector optimization problems has attracted the attention of many researchers in
the field of optimization due to their important applications in many disciplines, such
as variational inequalities, equilibrium problems and fixed pointed problems; see, for
example, [1–9].

It is well-known that if fi , g j are differentiable at x̄ ∈ Q0 and x̄ is a local weak
efficient solution of (VP), then there exist Lagrange multipliers (λ, μ) ∈ R

p × R
m

satisfying

p∑

i=1

λi∇ fi (x̄) +
m∑

j=1

μ j∇g j (x̄) = 0, (1)

μ = (μ1, . . . , μm) � 0, μ j g j (x̄) = 0, (2)

λ = (λ1, . . . , λp) � 0, (λ, μ) �= 0; (3)

see [10, Theorem 7.4]. Conditions (1)–(3) are called the first-order F.-John necessary
optimality conditions. If λ is nonzero, then these conditions are called the first-order
Karush–Kuhn–Tucker (KKT ) optimality conditions. By Motzkin’s theorem of the
alternative [11, p. 28], the existence of KKT multipliers is equivalent to the inconsis-
tency of the following system

∇ fi (x̄)(v) < 0, i ∈ I , (4)

∇g j (x̄)(v) � 0, j ∈ J (x̄), (5)

with unknown v ∈ X , where J (x̄) is the active index set at x̄ . Conditions (4)–(5) are
called the first-order KKT necessary conditions in primal form.

The first-order KKT optimality conditions are needed to find optimal solutions
of constrained optimization problems. In order to obtain these optimality conditions,
constraint qualifications and regularity conditions are indispensable; see, for example,
[12–20]. We recall here that these assumptions are called constraint qualifications
(CQ) when they have to be fulfilled by the constraints of the problem, and they are
called regularity conditions (RC)when they have to be fulfilled by both the objectives
and the constraints of the problem; see [21] for more details.

Second-order necessary optimality conditions play an important role in both the
theory and practice of constrained optimization problems. These conditions are used
to eliminate nonoptimal KKT points of optimization problems. Moreover, the second-
order optimality condition is a key tool of numerical analysis in proving convergence
and deriving error estimates for numerical discretizations of optimization problems;
see, for example, [22–24].

Oneof thefirst investigations to obtain second-order optimality conditions of KKT -
type for smooth vector optimization problems was carried out by Wang [25]. Then,
by introducing a new second-order constraint qualification in the sense of Abadie,
Aghezzaf et al. [26] extended Wang’s results to the nonconvex case. Maeda [27] was
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the first to propose an Abadie regularity condition and established second-order KKT
necessary optimality conditions for C1,1 vector optimization problems. By using the
second-order directional derivatives and introducing a new second-order constraint
qualification of Zangwill-type, Ivanov [28] introduced some optimality conditions
for C1 vector optimization problems with inequality constraints. Very recently, by
proposing some types of the second-order Abadie regularity conditions, Huy et al.
[29,30] have obtained some second-order KKT necessary optimality conditions for
C1,1 vector optimization problems in terms of second-order symmetric subdifferen-
tials. For other contributions to second-order KKT optimality conditions for vector
optimization, the reader is invited to see the papers [31–38] with the references therein.

Our aim is to weaken the hypotheses of the optimality conditions in [25–28,30,31,
36]. To obtain second-order KKT necessary conditions, by using second-order upper
generalized directional derivatives and second-order tangent sets, we introduce some
second-order constraint qualifications ofZangwill type,Abadie type andMangasarian-
Fromovitz type as well as a regularity condition of Abadie type. Our obtained results
improve and generalize the corresponding results in [25–28,30,31,36], because the
objective functions and the active constraint functions are only locally Lipschitz at the
referee point and the required constraint qualifications are also weaker. Moreover, the
connections between these proposed conditions are established.

The organization of the paper is as follows. In Sect. 2, we recall some notations,
definitions and preliminary material. Section 3 is devoted to investigate second-order
constraint qualifications and regularity conditions in a nonsmooth setting for vector
optimization problems. In Sects. 4 and 5, we establish some second-order necessary
optimality conditions of KKT -type for a local (weak, Geoffrion properly) efficient
solution of (VP). Section 6 draws some conclusions.

2 Preliminaries

In this section, we recall some definitions and introduce basic results, which are useful
in our study.

Let R
p be the p-dimensional Euclidean space. For a, b ∈ R

p, by a � b, we mean
ai � bi for all i ∈ I ; by a ≤ b, we mean a � b and a �= b; and by a < b, we mean
ai < bi for all i ∈ I .

We first recall the definition of local (weak, Geoffrion properly) efficient solutions
for the considered problem (VP). Note that the concept of properly efficient solution
has been introduced at first to eliminate the efficient solutions with unbounded trade-
offs. This concept was introduced initially by Kuhn and Tucker [39] and was followed
thereafter by Geoffrion [40]. Geoffrion’s concept enjoys economical interpretations,
while Kuhn and Tucker’s one is useful for numerical and algorithmic purposes.

Definition 2.1 Let Q0 be the feasible set of (VP) and x̄ ∈ Q0. We say that:

(i) x̄ is an efficient solution (resp., a weak efficient solution) of (VP) iff there is no
x ∈ Q0 satisfying f (x) ≤ f (x̄) (resp., f (x) < f (x̄)).
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(ii) x̄ is a Geoffrion properly efficient solution of (VP) iff it is efficient and there
exists M > 0 and such that, for each i ,

fi (x) − fi (x̄)

f j (x̄) − f j (x)
� M,

for some j such that f j (x̄) < f j (x) whenever x ∈ Q0 and fi (x̄) > fi (x).
(iii) x̄ is a local efficient solution (resp., local weak efficient solution, local Geoffrion

properly efficient solution) of (VP) iff it is an efficient solution (resp., weak
efficient solution, Geoffrion properly efficient solution) in U ∩ Q0, where U is
some neighborhood of x̄ .

Hereafter, we assume that X is a Banach space equipped with the norm ‖ · ‖. Let Ω
be a nonempty subset in X . The closure, convex hull and conic hull of Ω are denoted
by clΩ , convΩ and coneΩ , respectively.

Definition 2.2 Let x̄ ∈ Ω and u ∈ X .

(i) The tangent cone to Ω at x̄ ∈ Ω is defined by

T (Ω; x̄) := {d ∈ X : ∃tk ↓ 0, ∃dk → d, x̄ + tkd
k ∈ Ω, ∀k ∈ N}.

(ii) The second-order tangent set to Ω at x̄ with respect to the direction u is defined
by

T 2(Ω; x̄, u) :=
{
v ∈ X : ∃tk ↓ 0, ∃vk → v, x̄ + tku + 1

2
t2k vk ∈ Ω, ∀k ∈ N

}
.

Clearly, T ( · ; x̄) and T 2( · ; x̄, u) are isotone, i.e., if Ω1 ⊂ Ω2, then

T (Ω1; x̄) ⊂ T (Ω2; x̄),
T 2(Ω1; x̄, u) ⊂ T 2(Ω2; x̄, u).

It is well-known that T (Ω; x̄) is a nonempty closed cone. For each u ∈ X , the set
T 2(Ω; x̄, u) is closed, but may be empty. However, we see that the set T 2(Ω; x̄, 0) =
T (Ω; x̄) is always nonempty.

Let F : X → R be a real-valued function defined on X and x̄ ∈ X . The function
F is said to be locally Lipschitz at x̄ iff there exist a neighborhood U of x̄ and L � 0
such that

|F(x) − F(y)| � L‖x − y‖, ∀x, y ∈ U .

Definition 2.3 Assume that F : X → R is locally Lipschitz at x̄ ∈ X . Then:

(i) (See [41]) The Clarke’s generalized derivative of F at x̄ is defined by

F◦(x̄, u) := lim sup
x→x̄
t↓0

F(x + tu) − F(x)

t
, u ∈ X .
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(ii) (See [42]) The second-order upper generalized directional derivative of F at x̄ is
defined by

F◦◦(x̄, u) := lim sup
t↓0

F(x̄ + tu) − F(x̄) − t F◦(x̄, u)
1
2 t

2
, u ∈ X .

It is easily seen that F◦(x̄, 0) = 0 and F◦◦(x̄, 0) = 0. Furthermore, the function
u �→ F◦(x̄, u) is finite, positively homogeneous, and subadditive on X ; see, for
example, [41,43,44].

The following lemmas will be useful in our study.

Lemma 2.1 Suppose that F : X → R is locally Lipschitz at x̄ ∈ X. Let u ∈ X and let
{(tk, uk)} be a sequence converging to (0+, u). If

F
(
x̄ + tku

k
)

� F(x̄) for all k ∈ N,

then F◦(x̄, u) � 0.

Proof Since F is locally Lipschitz at x̄ and

lim
k→∞(x̄ + tku

k) = lim
k→∞(x̄ + tku) = x̄,

there exist L � 0 and k0 ∈ N such that

|F(x̄ + tku
k) − F(x̄ + tku)| � Ltk‖uk − u‖ for all k � k0.

Thus,

0 � F(x̄ + tku
k) − F(x̄)

= [F(x̄ + tku
k) − F(x̄ + tku)] + [F(x̄ + tku) − F(x̄)]

� Ltk‖uk − u‖ + F(x̄ + tku) − F(x̄)

for all k � k0. This implies that

0 � lim
k→∞ L‖uk − u‖ + lim sup

k→∞
F(x̄ + tku) − F(x̄)

tk

� lim sup
x→x̄
t↓0

F(x + tu) − F(x)

t
.

Therefore, F◦(x̄, u) � 0, as required. ��
Lemma 2.2 Suppose that F : X → R is locally Lipschitz at x̄ ∈ X. Let (u, v) be a
vector in X × X and let {(tk, vk)} be a sequence converging to (0+, v) satisfying

F

(
x̄ + tku + 1

2
t2k vk

)
� F(x̄) for all k ∈ N.
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If F◦(x̄, u) = 0, then F◦(x̄, v) + F◦◦(x̄, u) � 0.

Proof For each k ∈ N, put xk := x̄ + tku + 1
2 t

2
k vk and yk := x̄ + tku + 1

2 t
2
k v. Since

F is locally Lipschitz at x̄ and

lim
k→∞ xk = lim

k→∞ yk = x̄,

there exist L � 0 and k0 ∈ N such that

|F(xk) − F
(
yk

)
| � 1

2
t2k L‖vk − v‖ for all k � k0.

Thus,

0 � F(xk) − F(x̄)

= [F(xk) − F(yk)] + [F(yk) − F(x̄ + tku)]
+ [F(x̄ + tku) − F(x̄) − tk F

◦(x̄, u)]
� 1

2
t2k L‖vk − v‖ + [F(yk) − F(x̄ + tku)] + [F(x̄ + tku) − F(x̄) − tk F

◦(x̄, u)]

for all k � k0. This implies that

0 � lim
k→∞ L‖vk − v‖ + lim sup

k→∞
F(x̄ + tku + 1

2 t
2
k v) − F(x̄ + tku)

1
2 t

2
k

+ lim sup
k→∞

F(x̄ + tku) − F(x̄) − tk F◦(x̄, u)
1
2 t

2
k

� lim sup
x→x̄
t↓0

F(x + tv) − F(x)

t
+ lim sup

t↓0
F(x̄ + tu) − F(x̄) − t F◦(x̄, u)

1
2 t

2

= F◦(x̄, v) + F◦◦(x̄, u).

Therefore, F◦(x̄, v) + F◦◦(x̄, u) � 0. The proof is complete. ��

3 Second-order constraint qualification and regularity condition

From now on, we consider problem (VP) under the following assumptions:

{
The functions fi , i ∈ I , g j , j ∈ J (x̄), are locally Lipschitz at x̄,

The functions g j , j ∈ J \ J (x̄), are continuous at x̄,

where x̄ is a feasible point of (VP) and J (x̄) is the active index set at x̄ , that is,

J (x̄) := { j ∈ J : g j (x̄) = 0}.
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For any vectors a = (a1, a2) and b = (b1, b2) in R
2, we denote the lexicographic

order by

a �lex b, iff a1 < b1 or (a1 = b1 and a2 � b2),

a <lex b, iff a1 < b1 or (a1 = b1 and a2 < b2).

Let us introduce some notations which are used in the sequel. For each x̄ ∈ Q0 and
u ∈ X , put

Q := Q0 ∩ {x ∈ X : fi (x) � fi (x̄), i ∈ I },
J (x̄; u) := { j ∈ J (x̄) : g◦

j (x̄, u) = 0},
I (x̄; u) := {i ∈ I : f ◦

i (x̄, u) = 0}.

We say that u is a critical direction of (VP) at x̄ iff

f ◦
i (x̄, u) � 0, ∀i ∈ I ,

f ◦
i (x̄, u) = 0, at least one i ∈ I ,

g◦
j (x̄, u) � 0, ∀ j ∈ J (x̄).

The set of all critical directions of (VP) at x̄ is denoted by C(x̄). Obviously, 0 ∈ C(x̄).
We now use the following second-order approximation sets for Q and Q0 to intro-

duce second-order constraint qualifications and regularity condition. For each x̄ ∈ Q0
and u ∈ X , set

L2(Q; x̄, u) :=
{
v ∈ X : F2

i (x̄; u, v) �lex (0, 0), i ∈ I

and G2
j (x̄; u, v) �lex (0, 0), j ∈ J (x̄)

}
,

L2(Q0; x̄, u) :=
{
v ∈ X : G2

j (x̄; u, v) �lex (0, 0), j ∈ J (x̄)

}
,

L2
0(Q0; x̄, u) :=

{
v ∈ X : G2

j (x̄; u, v) <lex (0, 0), j ∈ J (x̄)

}
,

A(x̄; u) :=
{
v ∈ X : ∀ j ∈ J (x̄; u) ∃δ j > 0 with g j

(
x̄ + tu + 1

2
t2v

)
� 0

∀t ∈ (0, δ j )

}
,

B(x̄; u) :=
{
v ∈ X : g◦

j (x̄, v) + g◦◦
j (x̄, u) � 0, ∀ j ∈ J (x̄; u)

}
,
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where

F2
i (x̄; u, v) := (

f ◦
i (x̄, u), f ◦

i (x̄, v) + f ◦◦
i (x̄, u)

)
, i ∈ I , v ∈ X ,

G2
j (x̄; u, v) :=

(
g◦
j (x̄, u), g◦

j (x̄, v) + g◦◦
j (x̄, u)

)
, j ∈ J (x̄), v ∈ X .

For brevity, we denote L(Q; x̄) := L2(Q; x̄, 0). It is easily seen that, for each u ∈
C(x̄), we have

L2
0(Q0; x̄, u) =

{
v ∈ X : g◦

j (x̄, v) + g◦◦
j (x̄, u) < 0, j ∈ J (x̄, u)

}
.

Definition 3.1 Let x̄ ∈ Q0 and u ∈ X . We say that:

(i) The Zangwill second-order constraint qualification holds at x̄ for the direction
u iff

B(x̄; u) ⊂ cl A(x̄; u). (ZSCQ)

(ii) The Abadie second-order constraint qualification holds at x̄ for the direction u
iff

L2(Q0; x̄, u) ⊂ T 2(Q0; x̄, u). (ASCQ)

(iii) The Mangasarian–Fromovitz second-order constraint qualification holds at x̄
for the direction u iff

L2
0(Q0; x̄, u) �= ∅. (MFSCQ)

(iv) The weak Abadie second-order regularity condition holds at x̄ for the direction
u iff

L2(Q; x̄, u) ⊂ T 2(Q0; x̄, u). (WASRC)

The (ZSCQ) type was first introduced by Ivanov [28, Definition 3.2] for C1 func-
tions. The (ASCQ) type was proposed by Aghezzaf and Hachimi for (VP) with C2

data; see [26, p.40]. The (MFSCQ) type was first introduced in [45] for C2 scalar
optimization problems. The (WASRC) type was used for C1,1 vector optimization
problems in [30]. For problems with only locally Lipschitz active constraints and
objective functions, these conditions are new.

Definition 3.2 Let x̄ ∈ Q0. We say that the Zangwill constraint qualification (ZCQ)

(resp., Abadie constraint qualification (ACQ), Mangasarian–Fromovitz constraint
qualification (MFCQ), weak Abadie regularity condition (W ARC)) holds at x̄ iff
the (ZSCQ) (resp., (ASCQ), (MFSCQ), (WASRC)) holds at x̄ for the direction 0.

The following result shows that the (WASRC) is weaker than other constraint qual-
ification conditions in Definition 3.1.
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Proposition 3.1 Let x̄ ∈ Q0 and u ∈ X. Then the following implications hold:

(i) ( B(x̄; u) ⊂ cl A(x̄; u) )⇒ ( L2(Q0; x̄, u) ⊂ T 2(Q0; x̄, u) )⇒ ( L2(Q; x̄, u) ⊂
T 2(Q0; x̄, u) ), i .e.,

(ZSCQ) ⇒ (ASCQ) ⇒ (WASRC).

(ii) ( L2
0(Q0; x̄, u) �= ∅ ) ⇒ ( L2(Q0; x̄, u) ⊂ T 2(Q0; x̄, u) ), i .e.,

(MFSCQ) ⇒ (ASCQ).

(iii) ( L2
0(Q0; x̄, 0) �= ∅ ) ⇒ ( L2

0(Q0; x̄, u) �= ∅, ∀ u ∈ C(x̄) ).

Proof (i) Clearly, L2(Q; x̄, u) ⊂ L2(Q0; x̄, u). Thus the second implication of (i)
is trivial. We now assume that the (ZSCQ) holds at x̄ for the direction u ∈ X . Fix
v ∈ L2(Q0; x̄, u). Then,

G2
j (x̄; u, v) �lex (0, 0), ∀ j ∈ J (x̄).

This implies that

g◦
j (x̄, u) � 0, ∀ j ∈ J (x̄),

g◦
j (x̄, v) + g◦◦

j (x̄, u) � 0, ∀ j ∈ J (x̄; u).

Thus, v ∈ B(x̄; u). Since the (ZSCQ) holds at x̄ for the direction u, we have v ∈
cl A(x̄; u). Thus there exists a sequence {vk} ⊂ A(x̄; u) converging to v. Let {th} be
an arbitrary positive sequence converging to 0. We claim that there is a subsequence
{thk } ⊂ {th} such that

x̄ + thk u + 1

2
t2hkv

k ∈ Q0, ∀k ∈ N.

We will prove this claim by induction on k.
In case of k = 1, let {xh} be a sequence defined by

xh := x̄ + thu + 1

2
t2hv1 for all h ∈ N.

Let us consider the following possible cases for j ∈ J .
Case 1. j /∈ J (x̄). This means that g j (x̄) < 0. Since g j is continuous at x̄ and

lim
h→∞ xh = x̄ , there is H1 ∈ N such that g j

(
xh

)
< 0 for all h � H1.

Case 2. j ∈ J (x̄)\ J (x̄; u). This means that g j (x̄) = 0 and g◦
j (x̄, u) < 0.We claim

that there exists H2 ∈ N such that g j
(
xh

)
< 0 for all h � H2. Indeed, if otherwise,

there is a subsequence {thl } ⊂ {th} satisfying

g j

(
x̄ + thl u + 1

2
t2hlv

1
)

� g j (x̄) = 0, ∀l ∈ N,
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or, equivalently,

g j

(
x̄ + thl

(
u + 1

2
thlv

1
))

� g j (x̄), ∀l ∈ N.

Clearly, lim
l→∞

(
u + 1

2 thlv
1
) = u. By Lemma 2.1, g◦

j (x̄, u) � 0, and which contradicts

with the fact that g◦
j (x̄, u) < 0.

Case 3. j ∈ J (x̄; u). Since v1 ∈ A(x̄; u) and j ∈ J (x̄; u), there exists δ j > 0 such
that

g j

(
x̄ + tu + 1

2
t2v1

)
� 0, ∀t ∈ (0, δ j ).

From lim
h→∞ th = 0 it follows that there is H3 ∈ N such that th ∈ (0, δ j ) for all h � H3.

Thus, g j
(
xh

)
� 0 for all h � H3.

Put h1 := max{H1, H2, H3}. Then, we have g j
(
xh

)
� 0 for all h � h1 and j ∈ J .

This implies that

x̄ + thu + 1

2
t2hv1 ∈ Q0 ∀h � h1.

Thus, by induction on k, there exists a subsequence {thk } ⊂ {th} such that

x̄ + thk u + 1

2
t2hkv

k ∈ Q0, ∀k ∈ N.

From this, lim
k→∞ thk = 0, and lim

k→∞ vk = v, it follows that v ∈ T 2(Q0; x̄, u). Since v

is arbitrary in L2(Q0; x̄, u), we have

L2(Q0; x̄, u) ⊂ T 2(Q0; x̄, u).

Thus the (ASCQ) holds at x̄ for the direction u.
(ii) We now assume that the (MFSCQ) holds at x̄ for the direction u ∈ X and

v0 ∈ L2
0(Q0; x̄, u). Fix v ∈ L2(Q0; x̄, u). Then,

g◦
j (x̄, u) � 0, ∀ j ∈ J (x̄),

g◦
j (x̄, v) + g◦◦

j (x̄, u) � 0, ∀ j ∈ J (x̄; u).

Let {sk} and {th} be any positive sequences converging to zero. For each k ∈ N,
put vk := skv0 + (1 − sk)v. Then, limk→∞ vk = v. We claim that there exists a
subsequence {thk } of {th} such that

x̄ + thk u + 1

2
t2hkv

k ∈ Q0, ∀k ∈ N.
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Consequently, v ∈ T 2(Q0; x̄, u) and we therefore get the (ASCQ).
Indeed, for k = 1, we have that v1 = s1v0+(1−s1)v. Fix j ∈ J . If j ∈ J \ J (x̄; u),

then, we prove as in Case 1 and Case 2 of the proof of assertion (i) that there exists
H1 ∈ N such that

g j

(
xh

)
< 0, ∀h � H1,

where xh := x̄ + thu + 1
2 t

2
hv1. If j ∈ J (x̄; u), then

g◦
j (x̄, v

0) + g◦◦
j (x̄, u) < 0.

Hence,

g◦
j (x̄, v

1) + g◦◦
j (x̄, u) � s1g

◦
j (x̄, v

0) + (1 − s1)g
◦
j (x̄, v) + g◦◦

j (x̄, u)

= s1[g◦
j (x̄, v

0) + g◦◦
j (x̄, u)] + (1 − s1)[g◦

j (x̄, v) + g◦◦
j (x̄, u)]

< 0.

Thus,

lim sup
h→∞

g j (xh)
1
2 t

2
h

= lim sup
h→∞

g j (xh) − g j (x̄) − thg◦
j (x̄; u)

1
2 t

2
h

� lim sup
h→∞

g j ((x̄ + thu) + 1
2 t

2
hv1) − g j (x̄ + thu)

1
2 t

2
h

+ lim sup
h→∞

g j (x̄ + thu) − g j (x̄) − thg◦
j (x̄; u)

1
2 t

2
h

� g◦
j (x̄; v1) + g◦◦

j (x̄; u)

< 0.

This implies that there exists H2 ∈ N such that g j (xh) < 0 for all h � H2. Put
h1 := max{H1, H2}. Then we have g j (xh) < 0 for all h � h1 and j ∈ J . Thus,

x̄ + thu + 1

2
t2hv1 ∈ Q0 ∀h � h1,

and the assertion follows by induction on k.
(iii) Assume that there exists v0 ∈ L2

0(Q0; x̄, 0). Then g◦
j (x̄, v

0) < 0 for all

j ∈ J (x̄). Let u ∈ C(x̄). For each t > 0, put v(t) := u + tv0. We claim that there
exists t > 0 such that v(t) ∈ L2

0(Q0; x̄, u). Indeed, for each j ∈ J (x̄; u), one has

g◦
j (x̄, v(t)) + g◦◦

j (x̄, u) � g◦
j (x̄, u) + tg◦

j (x̄, v
0) + g◦◦

j (x̄, u)

= tg◦
j (x̄, v

0) + g◦◦
j (x̄, u)

< 0
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Fig. 1 Relations between second-order constraint qualifications

for t large enough. This implies that v(t) ∈ L2
0(Q0; x̄, u) for t large enough, as

required. ��
The relations between second-order constraint qualifications are summarized in

Fig. 1.

Remark 3.1 The forthcoming Examples 4.1 and 4.2 show that (WASRC) �(ZSCQ)
and (WASRC) �(MFSCQ).

For the remainder of this paper, we apply the (WASRC) to establish some second-
order KKT necessary optimality conditions for efficient solutions of (VP). We point
out that, by Proposition 3.1, these results still valid when the (WASRC) is replaced by
one of (ZSCQ), (ASCQ) and (MFSCQ).

4 Second-order optimality conditions for efficiencies

In this section, we apply the (WASRC) to establish some second-order KKT necessary
optimality conditions in primal form for local (weak) efficient solutions of (VP).

The following theorem gives a first-order necessary optimality condition for (VP)
under the regularity condition (W ARC).

Theorem 4.1 If x̄ ∈ Q0 is a local (weak) efficient solution of (VP) and (W ARC)

holds at x̄ , then the system

f ◦
i (x̄, u) < 0, i ∈ I , (6)

g◦
j (x̄, u) � 0, j ∈ J (x̄), (7)

has no solution u ∈ X.

Proof Arguing by contradiction, assume that there exists u ∈ X satisfying conditions
(6) and (7). This implies that u ∈ L(Q; x̄). Since the (W ARC) holds at x̄ , one has

L(Q; x̄) ⊂ T (Q0; x̄).
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Consequently, u ∈ T (Q0; x̄). Thus there exist tk → 0+ and uk → u such that

x̄ + tku
k ∈ Q0

for all k ∈ N. We claim that, for each i ∈ I , there exists Ki ∈ N satisfying

fi (x̄ + tku
k) < fi (x̄), ∀k � Ki .

Indeed, if otherwise, there exist i ∈ I and a sequence {kl} ⊂ N such that

fi (x̄ + tkl u
kl ) � fi (x̄), ∀l ∈ N.

By Lemma 2.1, we have f ◦
i (x̄, u) � 0, contrary to (6).

Put K0 := max {K1, . . . , Kp}. Then,

fi ((x̄ + tku
k) < fi (x̄)

for all k � K0 and i ∈ I , which contradicts the hypothesis of the theorem. ��
Remark 4.1 (i) Recently, Gupta et al. [46, Theorems 3.1] showed that “If x̄ is an

efficient solution of (VP), X = R
n , for each i ∈ I , fi is ∂c-quasiconcave at x̄ ,

and there exists i ∈ I such that

L(Mi ; x̄) ⊂ T (Mi ; x̄), (8)

where

Mi := {x ∈ Q0 : fi (x) � fi (x̄)},
L(Mi ; x̄) := {u ∈ X : f ◦

i (x̄; u) � 0, g◦
j (x̄; u) � 0, j ∈ J (x̄)},

then the system (6)–(7) has no solution”.
Clearly,

T (Mi ; x̄) ⊂ T (Q0; x̄),
L(Q; x̄) ⊂ L(Mi ; x̄).

This implies that if condition (8) holds at x̄ , then so does the (W ARC). Thus,
Theorem 4.1 improves [46, Theorems 3.1]. We note here that the assumption that
fi is ∂c-quasiconcave at x̄ is not necessary in our result.

(ii) Theorem 4.1 also improves [46, Theorems 3.3]. Theorem 3.3 in [46] is as follows:
“If x̄ is a weak efficient solution of (VP), X = R

n , Q0 is convex, for each i ∈ I ,
fi is ∂c-quasiconcave at x̄ , and there exists i ∈ I such that

L(Mi ; x̄) ⊂ cl conv T (Mi ; x̄), (9)
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then the system (6)–(7) has no solution”.
Since T (Mi ; x̄) ⊂ T (Q0; x̄) and Q0 is a closed convex set, we have

cl conv T (Mi ; x̄) ⊂ T (Q0; x̄).

This implies the (W ARC) is weaker than condition (9) and so Theorem 4.1 sharp-
ens [46, Theorems 3.3]. We would like to remark that our result does not require
any convexity assumptions.

Nowwe are ready to present our result of second-order KKT optimality conditions
for local (weak) efficient solutions of (VP) under the (WASRC).

Theorem 4.2 Let x̄ be a local (weak) efficient solution of (VP). Suppose that the
(WASRC) holds at x̄ for any critical direction. Then, the system

F2
i (x̄; u, v) <lex (0, 0), i ∈ I , (10)

G2
j (x̄; u, v) �lex (0, 0), j ∈ J (x̄). (11)

has no solution (u, v) ∈ X × X.

Proof Arguing by contradiction, assume that there exists (u, v) ∈ X × X satisfying
conditions (10) and (11). It follows that v ∈ L2(Q; x̄, u) and

f ◦
i (x̄, u) � 0, i ∈ I ,

g◦
j (x̄, u) � 0, j ∈ J (x̄).

Since the (WASRC) holds at x̄ , so does the (W ARC). By Theorem 4.1, there exists
i ∈ I such that f ◦

i (x̄, u) = 0. This means that u is a critical direction of (VP) at x̄ .
Since the (WASRC) holds at x̄ for the critical direction u, we have

v ∈ T 2(Q0; x̄, u).

Thus there exist a sequence {vk} converging to v and a positive sequence {tk} converg-
ing to 0 such that

xk := x̄ + tku + 1

2
t2k vk ∈ Q0, ∀k ∈ N.

We claim that, for each i ∈ I , there exists Ki ∈ N such that

fi (x
k) < fi (x̄)

for all k � Ki . Indeed, if otherwise, there exist i0 ∈ I and a sequence {kl} ⊂ N

satisfying

fi0

(
x̄ + tkl u + 1

2
t2klv

kl

)
� fi0(x̄), ∀l ∈ N. (12)
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We consider the following possible cases for i0.
Case 1. i0 ∈ I (x̄; u). This means that f ◦

i0
(x̄, u) = 0. From (10) it follows that

f ◦
i0(x̄, v) + f ◦◦

i0 (x̄, u) < 0. (13)

From (12), liml→∞ tkl = 0, liml→∞ vkl = v, and Lemma 2.2, it follows that

f ◦
i (x̄, v) + f ◦◦

i (x̄, u) � 0,

contrary to (13).
Case 2. i0 /∈ I (x̄; u). This means that f ◦

i0
(x̄, u) < 0. In this case we now rewrite

(12) as

fi0

(
x̄ + tkl

(
u + 1

2
tklv

kl

))
� fi0(x̄), ∀l ∈ N.

From lim
l→∞ tkl = 0, lim

l→∞
(
u + 1

2 tklv
kl
) = u, and Lemma 2.1, it follows that f ◦

i0
(x̄, u) �

0. This contradicts the fact that f ◦
i0
(x̄, u) < 0.

Put K0 := max{Ki : i ∈ I }. Then, we have

fi (x
k) < fi (x̄)

for all k � K0 and i ∈ I , which contradicts the hypothesis of the theorem. ��

An immediate consequence of the above theorem is the following corollary.

Corollary 4.1 Let x̄ be a local (weak) efficient solution of (VP) and u ∈ C(x̄). Suppose
that the (WASRC) holds at x̄ for the direction u. Then the following system

f ◦
i (x̄, v) + f ◦◦

i (x̄, u) < 0, i ∈ I (x̄; u), (14)

g◦
j (x̄, v) + g◦◦

j (x̄, u) � 0, j ∈ J (x̄, u), (15)

has no solution v ∈ X.

Remark 4.2 Suppose that F : X → R is of class C1(X), i.e., F is Fréchet differen-
tiable and its gradient mapping is continuous on X . If F is second-order directionally
differentiable at x̄ , i.e., there exists

F ′′(x̄, u) := lim
t↓0

F(x̄ + tu) − F(x̄) − t〈∇F(x̄), u〉
1
2 t

2
, u ∈ X ,
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then F ′′(x̄, u) = F◦◦(x̄, u) for all u ∈ X . In [28], Ivanov considered problem (VP)
under the following conditions:

The functions g j , j /∈ J (x̄) are continuous at x̄;
The functions fi , i ∈ I , g j , j ∈ J (x̄) are of class C1(X);
If 〈∇ fi (x̄), u〉 = 0, then there exists f ′′

i (x̄, u);
If 〈∇g j (x̄), u〉 = 0, j ∈ J (x̄), then there exists g′′

j (x̄, u).

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(C)

If condition (C) holds at x̄ for the direction u, then the system (14)–(15) becomes

〈∇ fi (x̄), v〉 + f ′′
i (x̄, u) < 0, i ∈ I (x̄, u),

〈∇g j (x̄), v〉 + g′′
j (x̄, u) � 0, j ∈ J (x̄, u).

Since the (WASRC) is weaker than the (ZSCQ), Corollary 4.1 improves and extends
result of Ivanov [28, Theorem 4.1] and of Huy et al. [30, Theorem 3.2]. To illustrate,
we consider the following example.

Example 4.1 Let f : R
2 → R

3 and g : R
2 → R be two maps defined by

f (x) := ( f1(x), f2(x), f3(x)) = (x2, x1 + x22 ,−x1 − x1|x1| + x22 )

g(x) := |x1| + x32 − x21 , ∀x = (x1, x2) ∈ R
2.

Then the feasible set of (VP) is

Q0 = {(x1, x2) ∈ R
2 : |x1| + x32 − x21 � 0}.

Let x̄ = (0, 0) ∈ Q0. It is easy to check that x̄ is an efficient solution of (VP). For
each u = (u1, u2) ∈ R

2, we have

f ◦
1 (x̄, u) = 〈∇ f1(x̄), u〉 = u2, f ◦

2 (x̄, u) = 〈∇ f2(x̄), u〉 = u1
f ◦
3 (x̄, u) = 〈∇ f3(x̄), u〉 = −u1, g

◦(x̄, u) = |u1|.

Thus,

C(x̄) = {(u1, u2) ∈ R
2 : u1 = 0, u2 � 0}.

Clearly, 0R2 := (0, 0) is a critical direction at x̄ . We claim that the (WASRC) holds at
x̄ for the direction 0R2 . Indeed, we have

L2(Q; x̄, 0R2) = {(v1, v2) ∈ R
2 : v1 = 0, v2 � 0}.

An easy computation shows that

T 2(Q0; x̄, 0R2) = T (Q0; x̄) = {(v1, v2) ∈ R
2 : v1 = 0, v2 � 0}.
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This implies that the (WASRC) holds at x̄ for the direction 0R2 . By Corollary 4.1, the
system

f ◦
i (x̄, v) + f ◦◦

i (x̄, 0R2) < 0, i ∈ I (x̄; 0R2),

g◦(x̄, v) + g◦◦(x̄, 0R2) � 0,

has no solution v ∈ R
2. The second-order necessary conditions of Huy et al. [30,

Theorem 3.2] and of Ivanov [28, Theorem 4.1] are not applicable to this example as
the constraint function g is not Fréchet differentiable at x̄ . Furthermore, the (ZSCQ)
does not hold at x̄ for the direction 0R2 . Indeed, we have

B(x̄; 0R2) = {(v1, v2) ∈ R
2 : v1 = 0, v2 ∈ R}.

Let v = (v1, v2) ∈ R
2. We have v ∈ A(x̄; 0R2) if and only if there exists δ > 0 such

that

g

(
x̄ + t0R2 + 1

2
t2v

)
� 0, ∀t ∈ (0, δ),

or, equivalently,

|v1| − 1

2
t2v21 + 1

4
t4v32 � 0, ∀t ∈ (0, δ). (16)

It is easy to check that (16) is true if and only if v1 = 0 and v2 � 0. Thus,

A(x̄; 0R2) = {(v1, v2) ∈ R
2 : v1 = 0, v2 � 0}.

Clearly, B(x̄; 0R2) � cl A(x̄; 0R2). This means that the (ZSCQ) does not hold at x̄ for
the direction 0R2 .

Remark 4.3 Recently, by using the (MFSCQ), Luu [36, Corollary 5.2] derived some
second-order KKT necessary conditions for weak efficient solutions of differentiable
vector problems in terms of the second-order upper generalized directional derivatives.
By Proposition 3.1, the (WASRC) is weaker than the (MFSCQ). Thus, Corollary 4.1
improves [36, Corollary 5.2]. To see this, let us consider the following example.

Example 4.2 Let f : R
2 → R

2 and g : R
2 → R

2 be two maps defined by

f (x) := ( f1(x), f2(x)) = (x1 + x22 ,−x1 − x1|x1| + x22 )

g(x) := (g1(x), g2(x)) = (x1 − x22 ,−x1 − x22 ), ∀x = (x1, x2) ∈ R
2.

Then the feasible set of (VP) is

Q0 = {(x1, x2) ∈ R
2 : −x22 � x1 � x22 }.

Let x̄ = (0, 0) ∈ Q0. Clearly, x̄ is an efficient solution of (VP). It is easy to check
that the (WASRC) holds at x̄ for the critical direction 0R2 but not the (MFSCQ). Thus
Corollary 4.1 can be applied for this example, but not [36, Corollary 5.2].

123



330 Y.-B. Xiao et al.

5 Strong second-order optimality condition for local Geoffrion
properly efficiencies

In this section, we apply the (WASRC) to establish a strong second-order KKT nec-
essary optimality condition for a local Geoffrion properly efficient solution of (VP).

Theorem 5.1 Let x̄ ∈ Q0 be a local Geoffrion properly efficient solution of (VP).
Suppose that the (WASRC) holds at x̄ for any critical direction. Then the system

F2
i (x̄; u, v) �lex (0, 0), i ∈ I , (17)

F2
i (x̄; u, v) <lex (0, 0), at least one i ∈ I (x̄; u), (18)

G2
j (x̄; u, v) �lex (0, 0), j ∈ J (x̄) (19)

has no solution (u, v) ∈ X × X.

Proof Arguing by contradiction, assume that the system (17)–(19) admits a solution
(u, v) ∈ X × X . Without any loss of generality we may assume that

F2
1 (x̄; u, v) <lex (0, 0),

where 1 ∈ I (x̄; u). This implies that

f ◦
1 (x̄, v) + f ◦◦

1 (x̄, u) < 0. (20)

From (17) and (19) it follows that v ∈ L2(Q; x̄, u) and

f ◦
i (x̄, u) � 0, i ∈ I ,

g◦
j (x̄, u) � 0, j ∈ J (x̄).

This and 1 ∈ I (x̄; u) imply that u is a critical direction at x̄ . Since the (WASRC) holds
at x̄ for the critical direction u, we have v ∈ T 2(Q0; x̄, u). Thus there exist a sequence
{vk} converging to v and a positive sequence {tk} converging to 0 such that

xk := x̄ + tku + 1

2
t2k vk ∈ Q0, ∀k ∈ N.

Since 1 ∈ I (x̄; u) and (20), as in the proof of Case 1 of Theorem 4.2, there exists
K1 ∈ N such that

f1(x
k) < f1(x̄)

for all k � K1.
For each i ∈ I \ I (x̄; u), we have f ◦

i (x̄, u) < 0. As in the proof of Case 2 of
Theorem 4.2, there exists Ki ∈ N such that

fi (x
k) < fi (x̄)
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for all k � Ki . Without any loss of generality we may assume that

fi (x
k) < fi (x̄)

for all k ∈ N and i ∈ {1} ∪ [I \ I (x̄; u)]. For each k ∈ N, put

Ik := {i ∈ I (x̄; u) \ {1} : fi (x
k) > fi (x̄)}.

We claim that Ik is nonempty for all k ∈ N. Indeed, if Ik = ∅ for some k ∈ N, then
we have

fi (x
k) � fi (x̄) ∀i ∈ I (x̄; u) \ {1}.

Using also the fact that fi (xk) < fi (x̄) for all i ∈ {1} ∪ [I \ I (x̄; u)], we arrive at a
contradiction with the efficiency of x̄ .

Since Ik ⊂ I (x̄; u) \ {1} for all k ∈ N, without any loss of generality, we may
assume that Ik = Ī is constant for all k ∈ N. Thus, for each i ∈ Ī , we have

fi (x
k) > fi (x̄), ∀k ∈ N.

By Lemma 2.2, we have

f ◦
i (x̄, v) + f ◦◦

i (x̄, u) � 0, i ∈ Ī .

Since (17), for each i ∈ Ī ⊂ I (x̄; u)\{1}, we have

f ◦
i (x̄, v) + f ◦◦

i (x̄, u) � 0.

Thus,
f ◦
i (x̄, v) + f ◦◦

i (x̄, u) = 0, i ∈ Ī . (21)

Let δ be a real number satisfying

f ◦
1 (x̄, v) + f ◦◦

1 (x̄, u) < δ < 0,

or, equivalently,
−[ f ◦

1 (x̄, v) + f ◦◦
1 (x̄, u)] > −δ > 0.

It is easily seen that

lim sup
k→∞

f1(xk) − f1(x̄)
1
2 t

2
k

� f ◦
1 (x̄, v) + f ◦◦

1 (x̄, u).

Thus there exists k0 ∈ N such that

f1(x̄) − f1(x
k) > −1

2
δt2k > 0
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for all k � k0. Then, for any i ∈ Ī and k � k0, we have

0 <
fi (xk) − fi (x̄)

f1(x̄) − f1(xk)
� fi (xk) − fi (x̄)

− 1
2δt

2
k

.

From this and (21), we have

0 � lim
k→∞

fi (xk) − fi (x̄)

f1(x̄) − f1(xk)
� lim sup

k→∞
fi (xk) − fi (x̄)

− 1
2δt

2
k

� lim sup
k→∞

fi (xk) − fi (x̄ + tku)

− 1
2δt

2
k

+ lim sup
k→∞

fi (x̄ + tku) − fi (x̄) − tk f ◦
i (x̄; u)

− 1
2δt

2
k

� −1

δ
[ f ◦

i (x̄, v) + f ◦◦
i (x̄, u)]

= 0.

Thus,

lim
k→∞

f1(xk) − f1(x̄)

fi (x̄) − fi (xk)
= +∞,

contrary to the fact that x̄ is a local Geoffrion properly efficient solution of (VP). The
proof is complete. ��

The following corollary is immediate from Theorem 5.1.

Corollary 5.1 Let x̄ ∈ Q0 be a local Geoffrion properly efficient solution of (VP) and
u ∈ C(x̄). Suppose that the (WASRC) holds at x̄ for the direction u. Then the system

f ◦
i (x̄, v) + f ◦◦

i (x̄, u) � 0, i ∈ I (x̄; u),

f ◦
i (x̄, v) + f ◦◦

i (x̄, u) < 0, at leats one i ∈ I (x̄; u),

g◦
j (x̄, v) + g◦◦

j (x̄, u) � 0, j ∈ J (x̄, u),

has no solution v ∈ X.

The next corollary shows that if the (W ARC) holds at x̄ , then every Geoffrion
properly efficient solution of (VP) is also proper in the sense of Kuhn and Tucker
[39].

Corollary 5.2 Let x̄ ∈ Q0 be a local Geoffrion properly efficient solution of (VP).
Suppose that the (W ARC) holds at x̄ . Then the system

f ◦
i (x̄, u) � 0, i ∈ I , (22)

f ◦
i (x̄, u) < 0, at leats one i ∈ I , (23)

g◦
j (x̄, u) � 0, j ∈ J (x̄), (24)
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has no solution u ∈ X.

Proof Since the (W ARC) holds at x̄ , the (WASRC) holds at x̄ for the critical direction
0. Clearly, I (x̄; 0) = I and J (x̄; 0) = J (x̄). Thus, applying Corollary 5.1, the system
(22)–(24) has no solution u ∈ X . ��
Remark 5.1 Conditions (22)–(24) are alsoknownas strongfirst-order KKT (SFK KT )
necessary conditions in primal form. In [21], Burachik et al. introduced a generalized
Abadie regularity condition (GARC) and established SFK KT necessary condi-
tions for Geoffrion properly efficient solutions of differentiable vector optimization
problems. Later on, Zhao [47] proposed an extended generalized Abadie regularity
condition (EGARC) and then obtained SFK KT necessary conditions for problems
with locally Lipschitz data in terms of Clarke’s directional derivatives. Recall that the
(EGARC) holds at x̄ ∈ Q0 if

L(Q; x̄) ⊂
l⋂

i=1

T (Mi ; x̄), (25)

for all i ∈ I ; see [47, Definition 3.1]. If fi and g j are of class C1(X), then condition
(25) is called by the generalizedAbadie regularity condition (GARC); see [21, p.483].
By the isotony of T ( · ; x̄) and the fact that Mi ⊂ Q0, we have

T (Mi ; x̄) ⊂ T (Q0; x̄) for all i ∈ I .

Thus the (W ARC) is weaker than the (EGARC) ((GARC)). The following example
illustrates our results in which the condition (W ARC) is satisfied, but the condition
(EGARC) ((GARC)) is not fulfilled. It turns out that Corollary 5.2 improves and
extends results of Zhao [47, Theorem 4.1] and Burachik et al. [21, Theorem 4.3].

Example 5.1 Consider the following problem:

min f (x) := ( f1(x), f2(x))

subject to x ∈ Q0 := {x ∈ R
2 | g(x) � 0},

where

f1(x) := |x1| + x22 , f2(x) := − f1(x), g(x) := x2 for all x = (x1, x2) ∈ R
2.

Clearly, x̄ = (0, 0) is aGeoffrion properly efficient solution. The optimality conditions
of Burachik et al. [21, Theorem 4.3] cannot be used for this problem as the functions
f1 and f2 are not differentiable at x̄ .
For each u = (u1, u2) ∈ R

2, we have

f ◦
1 (x̄, u) = |u1|, f ◦

2 (x̄, u) = −|u1|, g◦(x̄, u) = 〈∇g(x̄), u〉 = u2.
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It is easy to check that

C(x̄) = L(Q; x̄) = {(u1, u2) ∈ R
2 : u1 = 0, u2 � 0}.

We claim that the (EGARC) does not hold at x̄ . Indeed, since

M1 = {(x1, x2) ∈ R
2 : f1(x1, x2) � 0, g(x1, x2) � 0} = {x̄},

M2 = {(x1, x2) ∈ R
2 : f2(x1, x2) � 0, g(x1, x2) � 0} = Q0,

we have T (M1; x̄) = {x̄} and T (M2; x̄) = Q0. Thus, T (Q0; x̄) = Q0 and

2⋂

i=1

T (Mi ; x̄) = {x̄}.

Consequently,

L(Q; x̄) �

2⋂

i=1

T (Mi ; x̄),

as required. This shows that the result of Zhao [47, Theorem 4.1] cannot be applied
for this example.

Next we check the first-order necessary optimality conditions of our Corollary 5.2.
Since T (Q0; x̄) = Q0, we have

L(Q; x̄) ⊂ T (Q0; x̄).

This means that the (W ARC) holds at x̄ . By Corollary 5.2, the system (22)–(24) has
no solution u ∈ R

2.

6 Concluding remarks

In this paper we obtain primal second-order KKT necessary conditions for vec-
tor optimization problems with inequality constraints in a nonsmooth setting using
second-order upper generalized directional derivatives. We suppose that the objective
functions and active constraints are only locally Lipschitz. Some second-order con-
straint qualifications of Zangwill type, Abadie type and Mangasarian-Fromovitz type
as well as a regularity condition of Abadie type are proposed. They are applied in the
optimality conditions. Our results improve and generalize the corresponding results
of Aghezza et al. [26, Theorem 3.3], Gupta et al. [46, Theorems 3.1 and 3.3], Huy et
al. [30, Theorem 3.2], Ivanov [28, Theorem 4.1], Constantin [31, Theorem 2], Luu
[36, Corollary 5.2] Zhao [47, Theorem 4.1], and Burachik et al. [21, Theorem 4.3].

To obtain second-order KKT necessary conditions in dual form, we need assume
that the objective functions and constraint functions are of class C1(X). Then one can
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follow the scheme of the proof of [26, Theorem 3.4] and we leave the details to the
reader.
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