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Abstract
In the paper, we develop sum and chain rules of the generalized contingent derivative
for set-valuedmappings. Then, their applications to sensitivity analysis and optimality
conditions for some particular optimization problems are given. Our results extend
some recent existing ones in the literature.

Keywords Generalized contingent derivative · Sum rule · Chain rule · Set-valued
optimization · Optimality conditions · Sensitivity analysis

Mathematics Subject Classification 49J53 · 90C29 · 90C46

1 Introduction and notation

The concept of derivative plays an important role in optimality conditions. One of the
first and most popular derivative of set-valued mappings is the contingent derivative,
see [13]. In the last decades, many other kinds of generalized derivatives have been
proposed with their applications to optimality conditions and duality. Each of them is
compatible with some classes of problems, but not all. Recently, the higher-order con-
tingent derivative, inspired by the contingent derivative, for set-valued mappings was
introduced and applied to optimality conditions in [15]. The advantage of this deriva-
tive is that corresponding optimality conditions are established without assumptions
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of convexity and domination. Some properties of the generalized contingent derivative
were also discussed. However, its calculus rules have not been provided yet.

The above observation motivates us to study calculus rules of the generalized con-
tingent derivative to ensure that it can be employed in practice. Although these results
are different fromcalculus of the contingent derivative in the primal approach (see [13])
and coderivatives in the dual approach (see [10,11]), it turns out that the generalized
contingent derivative has some fundamental calculus rules. Then, we consider rela-
tionships between its calculus rules and their applications to some topics in set-valued
optimization. In detail, we apply sum rules to sensitivity analysis in parameterized
optimization. Besides, optimality conditions for weakly efficient solutions of some
particular optimization problems are obtained by virtue of chain and sum rules.

The organization of the paper is as follows. The rest of this section is devoted to
giving some preliminaries and notations needed for the paper. In Sect. 2, sum rules
and chain rules for the generalized contingent derivative are established. We obtain in
Sect. 3 applications of these rules to sensitivity analysis and optimality conditions in
set-valued optimization.

Let X , Y be normed spaces, and C be a closed pointed convex cone in Y . For
A ⊆ X , intA and clA denote its interior and closure, respectively (resp, for short). For
A ⊆ X , we recall the following cone

coneA := {ta : t ≥ 0, a ∈ A}.

The domain, image, and graph of a given set-valued mapping F : X → 2Y are
denoted by, resp,

domF := {x ∈ X : F(x) �= ∅}, ImF := {y ∈ Y : y ∈ F(x)},
grF := {(x, y) ∈ X × Y : y ∈ F(x)}.

Let intC �= ∅, a point (x0, y0) ∈ grF is said to be a weakly efficient solution of F
if (F(X) − y0) ∩ −intC = ∅.

Definition 1.1 ([15]) The mth-order generalized contingent set of a subset K in X at
x0 ∈ K with respect to u1, . . . , um−1 ∈ X is defined by

G-Tm
K (x0, u1, . . . , um−1) := Limsup

t→0+

1

tm
(cone(K − x0) − tu1 − · · · − tm−1um−1).

Definition 1.2 ([15]) Themth-order generalized contingent derivative of F at (x0, y0)
with respect to (ui , vi ) is the set-valued mapping G-DmF(x0, y0, u1, v1, . . . ,
um−1, vm−1) : X → 2Y defined by

grG-DmF(x0, y0, u1, v1, . . . , um−1, vm−1)

:= G-Tm
grF (x0, y0, u1, v1, . . . , um−1, vm−1).
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The above definitions can be expressed equivalently by

G-Tm
K (x0, u1, . . . , um−1) = {u ∈ X : ∃tn → 0+, ∃hn > 0, ∃un → u,

x0 + hn(tnu1 + · · · + tm−1
n um−1 + tmn un) ∈ K },

G-DmF(x0, y0, u1, v1, . . . , um−1, vm−1)(u)

=
{
v ∈ Y : ∃tn → 0+, ∃hn > 0, ∃(un, vn) → (u, v),

y0 + hn(tnv1 + · · · + tm−1
n vm−1 + tmn vn)

∈ F(x0 + hn(tnu1 + · · · + tm−1
n um−1 + tmn un))

}
.

When m = 1, Definitions 1.1, 1.2 coincide with the radial cone and the radial
derivative introduced in [14], resp. Note that the radial cone carries global information.
Hence, the corresponding radial derivative is considered to be suitable for global
optimal solutions. To get more informations in optimality conditions, a kind of higher-
order radial derivativewas proposed in [1,2] as follows. Themth-order radial derivative
of F at (x0, y0) with respect to (ui , vi ), i = 1, . . . ,m − 1, is

Dm
R F(x0, y0, u1, v1, . . . , um−1, vm−1)(u) = {v ∈ Y : ∃tn > 0, ∃(un, vn) → (u, v),

y0 + tnv1+ · · · + tm−1
n vm−1+tmn vn ∈ F(x0+tnu1 + · · · + tm−1

n um−1 + tmn un)}.

Since the generalized contingent derivative has a global character, it can be consid-
ered as another kindof higher-order radial derivative.Whenm = 1,G-D1F(x0, y0)(u)
and D1

RF(x0, y0)(u) coincide, but for higher orders, these derivatives are differ-
ent. We can check that G-DmF(x0, y0, u1, v1, . . . , um−1, vm−1)(u) is empty if
one of the following conditions (u1, v1) ∈ grG-D1F(x0, y0), . . . , (um−1, vm−1) ∈
grG-Dm−1F(x0, y0, u1, v1, . . . , um−2, vm−2) is violated. However, this property is
not valid for Dm

R F(x0, y0, u1, v1, . . . , um−1, vm−1)(u). Indeed, the simple exam-
ple with X = Y = R, F : X → 2Y be defined by F(x) = {0} for x ∈ {0, 2}
shows that (2,−2) /∈ grD1

RF((0, 0))(= grG-D1F((0, 0))) and G-D2F((0, 0),
(2,−2))(0) = ∅, while 2 ∈ D2

RF((0, 0), (2,−2))(0).
With the above remark, Corollary 4.1 in [15] should be stated for global weakly

efficient solutions instead of local ones. On the other hand, by the proof of Theorem
4.1 in [15], we can see that Corollary 4.1, which was implied from Theorem 4.1,
may be invalid for local weakly efficient solutions. Indeed, in the rest of the proof of
Theorem 4.1, the authors showed the existence of a sequence {xn} in K for their con-
clusions, but this sequencemay not be contained in any neighborhoodU (U � domF)
of x0.

To illustrate the above assertion, we consider the following example.

Example 1.3 Suppose that X = Y = R, C = R+, and F : X → Y is defined by

F(x) :=
{ |x |, if x ∈ (−1, 1),

−|x |, otherwise.

123



84 N. L. H. Anh, N. T. Thoa

Let (x0, y0) = (0, 0). We can see that (x0, y0) is a local weakly efficient solution
of F with respect to the neighborhood (−1, 1) of x0. However, the conclusion of
Corollary 4.1 in [15] does not hold since −1 ∈ G-D1F(x0, y0)(1). The reason is that
(x0, y0) is not a global weakly efficient solution.

Several examples and other properties of the higher-order generalized contingent
derivative were discussed in [15].

2 Calculus rules

The generalized contingent derivatvie is proved to be a useful concept for establish-
ing optimality conditions without convexity assumptions. However, its calculus rules
have not been provided yet. In this section, we develop chain and sum rules for this
derivative. Without loss of generality, we consider only the second-order generalized
contingent derivatives.

Let G : X → 2Y and F : Y → 2Z . The following result gives us an inclusion for
the chain rule of F ◦ G, where (F ◦ G)(x) := ⋃

y∈G(x) F(y).

Proposition 2.1 Let (x, z) ∈ gr(F◦G), y ∈ R(x, z), where R(x, z) := G(x)∩F−1(z),
and (u1, v1, w1) ∈ X × Y × Z. Suppose that, for (u, w) ∈ X × Z,

G-D2G(x, y, u1, v1)(u) ∩ G-D2F−1(z, y, w1, v1)(w)

⊆ G-D2R((x, z), y, (u1, w1), v1)(u, w). (1)

Then,

G-D2F(y, z, v1, w1)[G-D2G(x, y, u1, v1)(u)] ⊆ G-D2(F ◦ G)(x, z, u1, w1)(u).

Proof Let w ∈ G-D2F(y, z, v1, w1)[G-D2G(x, y, u1, v1)(u)], i.e., there exists y ∈
G-D2G(x, y, u1, v1)(u) such that y ∈ G-D2F−1(z, y, w1, v1)(w). It follows from
(1) that y ∈ G-D2R((x, z), y, (u1, w1), v1)(u, w), i.e., there exist tn → 0+, hn > 0,
(un, yn, wn) → (u, y, w) with

y + hn(tnv1 + t2n yn) ∈ R(x + hn(tnu1 + t2n un), z + hn(tnw1 + t2nwn)),

which implies that w ∈ G-D2(F ◦ G)(x, z, u1, w1)(u). ��
The following example shows that the assumption (1) in Proposition 2.1 is essential.

Example 2.2 Let X = Y = Z = R, and F : Y → 2Z , G : X → 2Y be defined by

F(y) =
{ {2}, if y = 2,

{1}, if y = 0,

G(x) =
{ {1, 2}, if x = 2,

{0}, if x = 0.
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Then,

(F ◦ G)(x) =
{ {2}, if x = 2,

{1}, if x = 0,

F−1(z) =
{ {0}, if z = 1,

{2}, if z = 2,

R(x, z) = G(x) ∩ F−1(z) =
{ {0}, if (x, z) = (0, 1),

{2}, if (x, z) = (2, 2).

Direct calculations yield

G-D1(F ◦ G)(0, 1)(1) = {1/2}, G-D1G(0, 0)(1) = {1/2, 1},
G-D1F(0, 1)(1) = {1/2}, G-D1F(0, 1)(1/2) = {1/4},

G-D1F−1(1, 0)(1/4) = {1/2}, G-D1R((0, 1), 0)(1, 1/4) = ∅.

Thus, G-D1F(0, 1)[G-D1G(0, 0)(1)] = {1/4, 1/2}, and

G-D1F(0, 1)[G-D1G(0, 0)(1)] � G-D1(F ◦ G)(0, 1)(1).

The reason is that G-DG1(0, 0)(1) ∩ G-DF−1(1, 0)(1/4) � G-D1R((0, 1), 0)
(1, 1/4).

On the other hand, by the similar calculations, we get

G-D2(F ◦ G)((0, 1), (1, 1/2))(1) = {1/2}, G-D2G((0, 0), (1, 1))(1) = {1},
G-D2F((0, 1), (1, 1/2))(1) = {1/2}, G-D2F−1((1, 0), (1/2, 1))(1/2) = {1},

G-D2R((0, 1), 0, (1, 1/2), 1)(1, 1/2) = {1}.

Thus,

G-D2G((0, 0), (1, 1))(1) ∩ G-D2F−1((1, 0), (1/2, 1))(1/2)

⊆ G-D2R((0, 1), 0, (1, 1/2), 1)(1, 1/2)

and

G-D2F((0, 1), (1, 1/2))[G-D2G((0, 0), (1, 1))(1)]
⊆ G-D2(F ◦ G)((0, 1), (1, 1/2))(1).

Definition 2.3 Let F : X → 2Y , (x, y) ∈ grF , and (u1, v1) ∈ X ×Y . The asymptotic
second-order radial derivative of F at (x, y) in the direction (u1, v1) is the set-valued
mapping Dp(2)

r F(x, y, u1, v1) : X → 2Y defined by

Dp(2)
R F(x, y, u1, v1)(u) := {v ∈ Y : ∃tn, hn > 0, ∃(un, vn) → (u, v),

y + tnv1 + tnhnvn ∈ F(x + tnu1 + tnhnun)}.
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By taking (u1, v1) = (0, 0), Dp(2)
R F(x, y, 0, 0)(u) reduces to the first-order radial

derivaive D1
RF(x, y) (≡ G-D1F(x, y)).

Via the asymptotic second-order radial derivative, we get the converse inclusion
for the chain rule in Proposition 2.1 as follows.

Proposition 2.4 Let (x, z) ∈ gr(F ◦ G), y ∈ R(x, z), where R is defined as in Propo-
sition 2.1, and (u1, v1, w1) ∈ X × Y × Z. Suppose that Y is finite dimensional and

Dp(2)
R R((x, z), y, (u1, w1), v1)(0, 0) = {0}. (2)

Then,

G-D2(F ◦ G)(x, z, u1, w1)(u) ⊆ G-D2F(y, z, v1, w1)[G-D2G(x, y, u1, v1)(u)].
(3)

If, additionally, (1) holds for y ∈ R(x, z)with respect to (u1, v1, w1), then (3) becomes
an equality.

Proof Let w ∈ G-D2(F ◦ G)(x, z, u1, w1)(u), i.e., there exist tn → 0+, hn > 0, and
(un, wn) → (u, v) such that

z + hn(tnw1 + t2nwn) ∈ F(G(x + hn(tnu1 + t2n un))).

Thus, there exists yn ∈ G(x + hn(tnu1 + t2n un)) with z + hn(tnw1 + t2nwn) ∈ F(yn),
i.e., yn ∈ R(x + hn(tnu1 + t2n un), z + hn(tnw1 + t2nwn)). By setting

kn := yn − y − tnhnv1
tnhn

, vn := kn
||kn||

(
= yn − y − tnhnv1

tnhn||kn||
)
,

it is obvious to see that

yn = y + tnhnv1 + tnhn||kn||vn, (4)

and vn has a convergent subsequence tending to v with ||v|| = 1. Without loss of
generality, we denote vn → v.

If
tn

||kn|| → 0+, it follows from (4) that

y1 + tnhnv1 + tnhn||kn||vn
= yn ∈ R

(
x + tnhnu1 + (tnhn)||kn||

(
tn

||kn||un
)
, z + tnhnw1

+ (tnhn)||kn||
(

tn
||kn||wn

))
.
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With ln := tnhn , sn := ||kn||, un := tn
||kn||un , and wn := tn

||kn||wn , then un → 0,

wn → 0+, and

y + lnv1 + lnsnvn ∈ R(x + lnu1 + lnsnun, z + lnw1 + lnsnwn),

i.e., v ∈ Dp(2)
R R((x, z), y, (u1, w1), v1)(0, 0), which contradicts (2). Thus, we may

assume that
||kn||
tn

tends to q ≥ 0. From (4), ones get

y1 + tnhnv1 + t2n hn

( ||kn||
tn

vn

)

= yn ∈ R(x + tnhnu1 + t2n hnun, z + tnhnw1 + t2n hnwn),

which implies that qv ∈ G-D2G(x, y, u1, v1)(u) andw ∈ G-D2F(y, z, v1, w1)(qv).
Hence, (3) is fulfilled. If, additionally, (1) holds, then it follows from Proposition 2.1
that (3) becomes an equality. ��

For Example 2.2, we can check that all assumptions of Proposition 2.4 are fulfilled
and

G-D1(F ◦ G)(0, 1)(0) = G-D1F(0, 1)[G-D1G(0, 0)(0)].

In some existing results, authors also used conditons similar to (2) for establishing
calculus rules for other kinds of generalized derivatives, such as coderivatives in [9],
contingent epiderivatives in [7], and variational sets of type 1 in [3]. These results (in
forms of equality) were stated only for the first order, while the equality expression in
the paper is established for the second order.

For sum rules of M, N : X → 2Y , we have

Proposition 2.5 Let (x, z) ∈ gr(M + N ), y ∈ S(x, z), where S(x, z) := M(x)∩ (z −
N (x)), and (u1, v1, w1) ∈ X × Y × Y . Suppose that, for (u, v) ∈ X × Y ,

G-D2M(x, y, u1, v1)(u) ∩ [v − G-D2N (x, z − y, u1, w1)(u)]
⊆ G-D2S((x, z), y, (u1, v1 + w1), v1)(u, v). (5)

Then,

G-D2M(x, y, u1, v1)(u) + G-D2N (x, z − y, u1, w1)(u)

⊆ G-D2(M + N )(x, z, u1, v1 + w1)(u).

Proof Let v ∈ G-D2M(x, y, u1, v1)(u) + G-D2N (x, z − y, u1, w1)(u), i.e., there
exists y ∈ G-D2M(x, y, u1, v1)(u) such that y ∈ v − G-D2N (x, z − y, u1, w1)(u).
By (5), we get that y ∈ G-D2S((x, z), y, (u1, v1 + w1), v1)(u, v), i.e., there exist
tn → 0+, hn > 0, and (un, yn, vn) → (u, y, v) such that

y + hn(tnv1 + t2n yn) ∈ S(x + hn(tnu1 + t2n un), z + hn(tn(v1 + w1) + t2nvn)),
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so v ∈ G-D2(M + N )(x, z, u1, v1 + w1)(u). ��
To illustrate Proposition 2.5, we consider the following examples.

Example 2.6 Let X = Y = R and M, N : X → 2Y be given by

M(x) =
{

R+, if x = 1

n
, n = 1, 2, . . . ,

{0}, if x = 0,

N (x) =
{

{0}, if x = 1

n
, n = 1, 2, . . . ,

R+, if x = 0.

Then,

(M + N )(x) =
{

R+, if x ∈ {0, 1/n}n∈N,
∅, otherwise,

S(x, z) = M(x) ∩ (z − N (x))

=

⎧⎪⎪⎨
⎪⎪⎩

{0}, if (x, z) ∈ {(0, a)}a∈R+ ,

{z}, if (x, z) ∈
{(

1

n
, a

)}

a∈R+
, n = 1, 2, . . . ,

∅, otherwise.

Choose x = 0, z = 1, y = 0 ∈ S(x, z) and u = v = 0. Then,

G-D1M(x, y)(u) = R+, G-D1N (x, z − y)(u) = R,

G-D1S((x, z), y)(u, v) = R+.

Thus,

G-D1M(x, y)(u) ∩ [v − G-D1N (x, z − y)(u)] ⊆ G-D1S((x, z), y)(u, v).

Direct calculations show that the conclusion of Proposition 2.5 holds since

G-D1M(x, y)(u) + G-D1N (x, z − y)(u) ⊆ G-D1(M + N )(x, z)(u) (= R).

Example 2.7 Let X = R, and Y = l2 := {
(yi )i∈N : yi ∈ R,

∑+∞
i=1 y2i < +∞}

. Con-
sider F,G : X → 2Y be defined by

M(x) := {(yi )i∈N ∈ Y : y1 ≥ x2, yi = 0,∀i ∈ N\{1}},

and

N (x) := {(yi )i∈N ∈ Y : y1 ≥ x4, yi = 0,∀i ∈ N\{1}}.
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Then,

(M + N ) = {(yi )i∈N ∈ Y : y1 ≥ x2 + x4, yi = 0,∀i ∈ N\{1}},

and S(x, z) is the set {(yi )i∈N ∈ Y : x2 ≤ y1 ≤ z1 − x4, yi = 0,∀i ∈ N\{1}} if
(x, z) ∈ {(x, z) ∈ X × Y : z1 − x4 ≥ x2, zi = 0,∀i ∈ N\{1}}, and is emptyset
otherwise. Let (x0, y0) = (0, 0), (u1, v1, w1) = (1, 0, 0). By calculating, we get

G-D2M((0, 0), (1, 0))(0) = G-D2N ((0, 0), (1, 0))(0)
= G-D2(M + N )((0, 0), (1, 0))(0)
= {(yi )i∈N ∈ Y |y1 ≥ 0, yi = 0,∀i ∈ N\{1}}.

It is easy to check that

G-D2M((0, 0), (1, 0))(0) ∩ [0 − G-D2N ((0, 0), (1, 0))(0)] = {0}
⊆ G-D2S((0, 0, 0), (1, 0, 0))(0, 0),

and

G-D2M((0, 0), (1, 0))(0) + G-D2N ((0, 0), (1, 0))(0)

⊆ G-D2(M + N )((0, 0), (1, 0))(0).

To get an equality for the sum rule, we propose the following result.

Proposition 2.8 Let (x, z) ∈ gr(M + N ), y ∈ S(x, z), where S is defined as in
Proposition 2.5, and (u1, v1, w1) ∈ X × Y × Y . Suppose that Y is finite dimensional
and

Dp(2)
R S((x, z), y, (u1, v1 + w1), v1)(0, 0) = {0}. (6)

Then,

G-D2(M + N )(x, z, u1, v1 + w1)(u)

⊆ G-D2M(x, y, u1, v1)(u) + G-D2N (x, z − y, u1, w1)(u). (7)

If, additionally, (5) holds for y ∈ S(x, z)with respect to (u1, v1, w1), then (7) becomes
an equality.

Proof Letw ∈ G-D2(M+N )(x, z, u1, v1+w1)(u), i.e., there exist tn → 0+, hn > 0,
(un, wn) → (u, w) with

z + hn(tn(v1 + w1) + t2nwn) ∈ (M + N )(x + hn(tnu1 + t2n un)),

which implies that there is a sequence yn ∈ M(x + hn(tnu1 + t2n un)) and yn ∈
z + hn(tn(v1 +w1)+ t2nwn)− N (x + hn(tnu1 + t2n un)). Thus, yn ∈ S(x + hn(tnu1 +
t2n un), z + hn(tn(v1 + w1) + t2nwn)). By setting
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kn := yn − y − tnhnv1
tnhn

, vn := kn
||kn||

(
= yn − y − tnhnv1

tnhn||kn||
)
,

then vn (taking its subsequence if necessary) converges to v with ||v|| = 1 and

yn = y + tnhnv1 + tnhn||kn||vn (8)

If ||kn||/tn → q, some q ≥ 0, then we get

y + tnhnv1 + t2n hn

( ||kn||
tn

vn

)

= yn ∈ S(x + hn(tnu1 + t2n un), z + hn(tn(v1 + w1) + t2nwn)).

It follows from the definition of S that qv ∈ G-D2M(x, y, u1, v1)(u), w − qv ∈
G-D2N (x, z − y, u1, w1)(u), and we are done. Hence, it is enough to prove that the
sequence {||kn||/tn} (or its subsequence) is convergent. Suppose to the contrary, i.e.,
||kn||/tn → +∞, it follows from (8) that

y + (tnhn)v1 + (tnhn)(||kn||)vn ∈ S

(
x + (tnhn)u1 + (tnhn)(||kn||)

(
tn

||kn||un
)
,

z + (tnhn)(v1 + w1) + (tnhn)(||kn||)
(

tn
||kn||wn

))
.

It is easy to see that (tn/||kn||)un → 0 and (tn/||kn||)wn → 0, so v ∈ Dp(2)
R S(x, z, y,

u1, (v1 + w2), v1)(0, 0), which contradicts (6).
The rest of the proof follows from Proposition 2.5. ��

3 Applications

3.1 Sensitivity analysis

Suppose that F : P × X → 2Z and N : X → 2Z are set-valued mappings between
normed spaces, and K is a subset of X . Let

M(p, z) := {x ∈ K : z ∈ F(p, x) + N (x)}. (9)

When K is convex, N (x) is the normal cone to K at x , and p is a parameter, M is
known as the solution mapping of a parameterized variational inequality.

The solution mapping (9) was studied in [8] and in [3] in terms of the contingent
derivatives and variational sets of type 1, resp, but only for the first order.We now apply
sum rules of the second-order generalized contingent derivative to get the second-order
sensitivity analysis for (9).
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Let NK : P × X → 2Z be defined by

NK (p, x) :=
{
N (x), for (p, x) ∈ P × K ,

∅, for (p, x) ∈ P × (X\K ).

Then, by setting Q := F + NK , we get a relationship between M and Q as follows

x ∈ M(p, z) ⇐⇒ z ∈ Q(p, x). (10)

Let Ŝ : P × X × Z → 2Z be defined by

Ŝ(p, x, z) := F(p, x) ∩ (z − NK (p, x)).

The following theoremgives us a relationship between the second-order generalized
contingent derivative of M and those of F, NK .

Proposition 3.1 For the solution mapping M(p, z) given by (9), let x0 ∈ M(p0, z0),
y0 ∈ Ŝ(p0, x0, z0), (p1, u1) ∈ P × X and v1, w1 ∈ Z. Suppose that Z is finite
dimensional and the following condition is satisfied

Dp(2)
R Ŝ((p0, x0, z0), y0, (p1, u1, v1 + w1), v1)(0, 0, 0) = {0} .

Then,

G-D2M((p0, z0), x0, (p1, v1 + w1), u1)(p, z)

⊆ {x ∈ X : z ∈ G-D2F((p0, x0), y0, (p1, u1), v1)(p, x)

+G-D2NK ((p0, x0), z0 − y0, (p1, u1), w1)(p, x)}. (11)

If, additionally,

G-D2F((p0, x0), y0, (p1, u1), v1)(p, x)

∩[z − G-D2NK ((p0, x0), z0 − y0, (p1, u1), w1)(p, x)]
⊆ G-D2 Ŝ((p0, x0, z0), y0, (p1, u1, v1 + w1), v1)(p, x, z), (12)

then (11) becomes an equality.

Proof It follows from (10) that

x ∈ G-D2M((p0, z0), x0, (p1, v1 + w1), u1)(p, z)

⇐⇒ z ∈ G-D2Q((p0, x0), z0, (p1, u1), v1 + w1)(p, x). (13)

Let x ∈ G-D2M((p0, z0), x0, (p1, v1+w1), u1)(p, z), then z ∈ G-D2Q((p0, x0), z0,
(p1, u1), v1 + w1)(p, x). By the proof similar to that of Proposition 2.8, we have

z ∈ G-D2F((p0, x0), y0, (p1, u1), v1)(p, x)

+ G-D2NK ((p0, x0), z0 − y0, (p1, u1), w1)(p, x),

which implies (11).
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We now suppose, additionally, that (12) holds and x belongs to the set on the
right-hand side of (11). Then, there exists z ∈ Z satisfying

z ∈ G-D2F((p0, x0), y0, (p1, u1), v1)(p, x)

+G-D2NK ((p0, x0), z0 − y0, (p1, u1), w1)(p, x).

By Proposition 2.5, we get that z ∈ G-D2Q((p0, x0), z0, (p1, u1), v1 +w1)(p, x). It
follows from (13) that x ∈ G-D2M((p0, z0), x0, (p1, v1 + w1), u1)(p, z). ��

3.2 Optimality conditions for particular optimization problems

In the rest of the paper, we apply chain and sum rules in Sect. 2 to establish optimality
conditions for weakly efficient solutions of two particular optimization problems.

Suppose that X ,Y are normed spaces, and Y is partially order by a closed pointed
convex cone C . For a given set-valued map F : X → 2Y , we denote F+(.) :=
F(x) + C .

Lemma 3.2 Let F : X → 2Y , (x0, y0) ∈ grF, and (u1, v1) ∈ X × Y . Suppose that
(x0, y0) is a weakly efficient solution of F and (u1, v1) ∈ X ×(−C). Then, for u ∈ X,

G-D2F+(x0, y0, u1, v1)(u) ∩ −intC = ∅. (14)

If (14) holds for (u1, v1) ∈ {0} × C, then (x0, y0) is a weakly efficient solution of F.

Proof If (x0, y0) is a weakly efficient solution of F , the proof of (14) is similar to that
of Theorem 4.1 in [15].

Suppose that (14) holds for (u1, v1) ∈ {0} × C , by Proposition 3.2 in [15], we get
that (F(X) − y0) ∩ −intC = ∅, i.e., (x0, y0) is a weakly efficient solution of F . ��

Let F : X → 2Y and G : X → 2X . Consider the following problem

(P1) Min F(x ′) subject to x ∈ X and x ′ ∈ G(x).

The above problem can be expressed as the unconstrained problemMin (F ◦G)(x).
Optimality conditions for weakly efficient solutions of (P1) are established as follows.

Proposition 3.3 For the problem (P1), let (x0, z0) ∈ gr(F ◦G), y0 ∈ R(x0, z0), where
R(x, z) := G(x) ∩ F−1+ (z), and (u1, v1, w1) ∈ X × X × Y .

(i) (Necessary condition) Suppose that (x0, z0) is a weakly efficient solution, and (1)
inProposition 2.1 holds for ((x0, z0), y0)with respect to (u1, v1, w1) ∈ X×X×(−C).
Then,

G-D2F+(y0, z0, v1, w1)[G-D2G(x0, y0, u1, v1)(u)] ∩ −intC = ∅. (15)

(ii) (Sufficient condition) Assume that X is finite dimensional and (2) is fulfilled for
((x0, z0), y0) with respect to (u1, v1, w1) ∈ {0} × X × C. Then, (x0, z0) is a weakly
efficient solution if (15) holds.
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Proof It follows from Propositions 2.1, 2.4, and Lemma 3.2. ��

For the application of sum rule, we consider the problem as follows

(P2) Min F(x) subject to g(x) ∈ −C,

where g : X → Y . By setting S := {x ∈ X |g(x) ∈ −C} (the feasible set) and
G : X → 2Y by

G(x) :=
{ {0}, if x ∈ S,

{g(x)}, otherwise.

For an arbitrary positive s, consider the following unconstrained set-valued optimiza-
tion problem

(PC) Min (F + sG)(x).

We now give optimality conditions for (PC) in the following proposition.

Proposition 3.4 For the problem (PC), let (x0, z0) ∈ gr(F + sG), y0 ∈ S(x0, z0),
where S(x, z) := F+(x) ∩ (z − (sG)+(x)), and u1, v1, w1 ∈ X × Y × Y .

(i) (Necessary condition) Suppose that (x0, z0) is a weakly efficient solution and (5)
in Proposition 2.5 holds for ((x0, z0), y0) with respect to (u1, v1, w1) ∈ X × (−C)×
(−C). Then,

(G-D2F+(x0, y0, u1, v1)(u)+G-D2(sG)+(x0, z0 − y0, u1, w1)(u)) ∩ −intC = ∅.
(16)

(ii) (Sufficient condition) Assume that Y is finite dimensional and (6) is fulfilled for
((x0, z0), y0) with respect to (u1, v1, w1) ∈ {0} × C × C. Then, (x0, z0) is a weakly
efficient solution if (16) holds.

Proof It follows from Propositions 2.5, 2.8, and Lemma 3.2. ��

Optimality conditions for weakly efficient solutions of these above problems were
established in terms of other generalized derivatives, such as contingent epiderivatives
in [7], variational sets in [3], radial derivatives in [1,4], and radial-contingent deriva-
tives in [6]. In these papers, authors used some concepts in assumptions of their results,
like the proto-variational set in [3], the proto-radial set, the proto-radial derivative in
[1], the radial semi-derivative in [6] (inspired by the semi-differentiablity proposed
in [12]) and the epi-Lipschitz-like property in [5]. These assumptions are not directly
comparable to ours. However, in the paper, we have obtained not only necessary opti-
mality conditions but also sufficient optimality conditions for the second order, while
the above-mentioned results give us only necessary optimality conditions.
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4 Perspectives

In [10,11], Mordukhovich introduced other kinds of generalized derivatives, called
coderivatives, according to dual approach; while the derivative employed in our results
are based on the primal one. Thus, studying connections between our results and those
using coderivatives may be a promising development.
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