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Abstract
Within the settingof general realBanach spaces,weprove that the sequenceofmaximal
monotone operators of type (D) graphically converges provided, their corresponding
class of representative functions converge epigraphically.Moreover, we provide a con-
dition to guarantee that the lower limit of a sequence of maximal monotone operators
of type (D) is a maximal monotone operator of type (D) in real Banach spaces.
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1 Introduction

Monotone operators are an important class of operators used in the study of mod-
ern nonlinear analysis and various classes of optimization problems. The theory of
monotone operators (multifunctions) were first introduced by Minty [20] and later it
was used substantially in proving existence results in partial differential equations by
Felix Browder and his school [1,2,4–6,8,14,15,27]. In particular, maximal monotone
operators have found their plethora of applications in partial differential equations,
optimization problems, variational inequalities and mathematical economics.

García and Lassonde [10], first studied the sequential lower limit of maximal mono-
tone operators in reflexive Banach spaces. Further, they have applied it to prove the
representability of the variational sum [3,22,23] and the variational composition [21].
In the recent years, Bueno et al. [7] studied the lower limit of a sequence of maximal
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monotone operators of type (D) in general Banach spaces and they prove that the lower
limit of a sequence of maximal monotone operators of type (D) is representable. The
type (D) operator was first introduced by Gosséz [13]. This operator plays a significant
role to recover most of the results from the reflexive spaces to the non-reflexive spaces.

In the first part of the article, we provide a sufficient condition for graphical conver-
gence of a sequence of maximal monotone operators of type (D). The representability
of the lower limit of a sequence of maximal monotone operators of type (D) was
established by Bueno et al. [7] in general Banach spaces. Here, we generalize the
result of García and Lassonde [11, Theorem 2.2] to general Banach spaces by con-
sidering the sequence of maximal monotone operators of type (D). In Theorem 8, we
prove that the lower limit of a sequence of maximal monotone operators of type (D)
is representable through representative functions of the corresponding sequence of
maximal monotone operators. Indeed, the representative function of the lower limit
of a sequence of maximal monotone operators of type (D) is exactly wherever the
corresponding sequence of representative functions converge epigraphically. Finally,
we have established the maximal monotonicity of type (D) of the lower limit of a
sequence of maximal monotone operators of type (D) provided their representative
functions and conjugate representative functions have epi-convergence.

The remainder of this note is organized as follows. In Sect. 2, we present some basic
notions and axillary results from convex analysis and monotone operator theory. A
sufficient condition for convergence of a sequence of maximal monotone operators of
type (D) is established in Sect. 3. Finally, the representability andmaximal monotonic-
ity of type (D) of the lower limit of a sequence of maximal monotone operators of type
(D) through the convergence (in the sense of epi-convergence) of their representative
functions are presented in Sect. 4.

2 Basic notations and auxiliary results

In this note, X will be denoted as a real Banach space with the norm, ‖.‖. X∗ is the
topological dual of X . X and X∗ are paired by 〈x, x∗〉 = x∗(x) for x ∈ X and x∗ ∈ X∗.
The norm on the product space X × X∗ is defined as ‖(x, x∗)‖ = ‖x‖ + ‖x∗‖, for
every (x, x∗) ∈ X × X∗.Weak and weak star convergence are denoted by the notation
w→ and

w∗→ respectively. The dual of X × X∗ is defined as X∗ × X∗∗ and the dual
pairing is defined as x∗(x) + x∗∗(x∗).

Let f : X →]− ∞,+∞] be a function, its domain is defined as dom f := f −1(R)

and epi f := {(x, r) ∈ X × R : f (x) ≤ r}. f is said to be proper if dom f 
= φ.

We denote �(X) as the set of all lower semi-continuous convex functions from X into
] − ∞,+∞]. The Fenchel-conjugate of f is f ∗ := X∗ → [−∞,+∞], given by

f ∗(x∗) = sup
x∈X

[〈x, x∗〉 − f (x)].

Let f be any proper convex function then the subdifferential operator of f is defined
as ∂ f : X ⇒ X∗ : x �→ {x∗ ∈ X∗| 〈y − x, x∗〉 + f (x) ≤ f (y),∀y ∈ X}. Similarly,
for ε ≥ 0, the ε-subdifferetial of f is defined by
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∂ε f = {(x, x∗) : f (y) ≥ f (x) + 〈y − x, x∗〉 − ε,∀y ∈ X}.

The duality map J : X → X∗ is defined as J := ∂( 12‖.‖2) and Jε := ∂ε(
1
2‖.‖2).

Using f (x) = 1
2‖x‖2 in the above definitions, we get

x∗ ∈ J (x) ⇔ 1

2
‖x‖2 + 1

2
‖x∗‖2 = 〈x, x∗〉

or equivalently,

J (x) = {x∗ ∈ X∗|〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}

and

Jε(x) =
{
x∗ ∈ X∗| 1

2
‖x‖2 + 1

2
‖x∗‖2 ≤ 〈x, x∗〉 + ε

}
.

Let A : X ⇒ X∗ be a set-valued operator (also known as multifunction or point-to-set
mapping) from X to X∗, i.e., for every x ∈ X , Ax ⊆ X∗. The domain of A is denoted
as domA := {x ∈ X | Ax 
= φ} and the range of A is ranA := {x∗ ∈ Ax | x ∈ domA}.
The graph of A is denoted as graA = {(x, x∗) ∈ X × X∗| x∗ ∈ Ax}. The set-valued
mapping A : X ⇒ X∗ is said to be monotone if

〈x − y, x∗ − y∗〉 ≥ 0, ∀(x, x∗), (y, y∗) ∈ graA.

Let A : X ⇒ X∗ be monotone and (x, x∗) ∈ X × X∗. We say that (x, x∗) is
monotonically related to graA if

〈x − y, x∗ − y∗〉 ≥ 0, ∀(y, y∗) ∈ graA.

And a set-valued mapping A is said to maximal monotone if A is monotone and A has
no proper monotone extension (in the sense of graph inclusion). In the other words
A is maximal monotone if any (x, x∗) ∈ X × X∗ is monotonically related to graA
belongs to gra A. A monotone operator A : X ⇒ X∗ is representable [19] if there
exists a function f ∈ �(X × X∗) such that

f (x, x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X × X∗

and

f (x, x∗) = 〈x, x∗〉 ⇐⇒ (x, x∗) ∈ gra A.

In this case, f is called as a representative function of the operator A.We denoteH(A)

as the class of all representative functions for monotone operator A.

For our convenience, we recall some fundamental properties of maximal monotone
operators. Let A : X ⇒ X∗ be maximally monotone. We say A is of dense type or
type (D) [12] if for every (x∗∗, x∗) ∈ X∗∗ × X∗ with
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inf
(a,a∗)∈gra A〈a − x∗∗, a∗ − x∗〉 ≥ 0,

there exists a bounded net (aα, a∗
α)α∈� in gra A such that (aα, a∗

α)α∈� converges to
(x∗∗, x∗)with respect to (weak∗× strong) and A is said to be of type negative infimum
(NI) [25] if

inf
(a,a∗)∈gra A〈a − x∗∗, a∗ − x∗〉 ≤ 0, ∀ (x∗∗, x∗) ∈ X∗∗ × X∗.

BySimons [26,Theorem36.3(a)] andMarquesAlves andSvaiter [16,Theorem4.4]we
see that these two operators coincide. For a maximal monotone operator A : X ⇒ X∗
we will define Ã : X∗∗ ⇒ X∗ as

Ã = {(x∗∗, x∗) ∈ X∗∗ × X∗ : (x∗∗, x∗) is monotonically related to gra A}.

When A is of type (D) Ã is the unique maximal monotone extension on X∗∗ × X∗.
A sequence of sets {Sn}n∈N is said to be converge to a set S, denoted as Sn −→ S if

1. for every x ∈ S, there exists a sequence {xn} with lim xn = x and xn ∈ Sn for n
sufficiently large;

2. the cluster points of every sequence {xn}n∈N with xn ∈ Sn for n sufficiently large
belongs to S.

A sequence of functions { fn} is said to epi-converge to f , if epi fn −→ epi f or
equivalently, if for any x ∈ X ,

1. lim infn fn(xn) ≥ f (x) for every sequence xn → x;
2. lim supn fn(xn) ≤ f (x) for some sequence xn → x .

For more on epi-convergence, one may refer [24]. Let us collect some fundamental
facts required for proving main results.

Fact 1 ([9], Theorem 3.10) Let A : X ⇒ X∗ be a maximal monotone operator. Then
the Fitzpatrick function associated with A is defined as

FA : X × X∗ →] − ∞,+∞] : (x, x∗) �→ sup
(a,a∗)∈gra A

(〈x, a∗〉 + 〈a, x∗〉 − 〈a, a∗〉)

is the minimal convex function f on X × X∗ such that f (x, x∗) ≥ 〈x, x∗〉,∀(x, x∗) ∈
X × X∗ and f (x, x∗) = 〈x, x∗〉 for (x, x∗) ∈ gra A.

Fact 2 ([16], Theorem 3.6) Let A : X ⇒ X∗ be a maximal monotone operator. Then
A is of type (D) if and only if ran(A + Jε(. − x0)) = X∗, for all x0 ∈ X and ε > 0.

Fact 3 ([7], Proposition 3.2) Let X be a real Banach space, {An : X ⇒ X∗} be a
sequence of maximal monotone operators of type (D) and let (εn) be any sequence of
positive numbers convergent to zero. If A = lim inf An then (x, x∗) ∈ gra A if and
only if x = lim xn, where xn is a solution of

x∗ ∈ An(xn) + Jεn (xn − x).
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Fact 4 ([17], Theorem 4.2) Let f : X × X∗ → R ∪ {∞} be proper lower-
semicontinuous convex function such that

f (x, x∗) ≥ 〈x, x∗〉

and

f ∗(x∗, x∗∗) ≥ 〈x∗x∗∗)〉.

Define

M f = {(x, x∗) ∈ X × X∗ : f (x, x∗) = 〈x, x∗〉}.

Then,

1. M f := {(x, x∗) ∈ X × X∗ : f ∗(x∗, x) = 〈x, x∗〉}.
2. M f is maximal monotone.
3. Let FM f be the Fitzpatrick function of M f that is

FM f (x, x
∗) = sup

(y,y∗)∈M f

[〈x, y∗〉 + 〈y, x∗〉 − 〈y, y∗〉].

Then

FM f (x, x
∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X × X∗

and

F∗
M f

(x∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ × X∗∗.

Fact 5 ([18], Theorem 1.2) Let X be a real Banach space and A : X ⇒ X∗, Then the
following conditions are equivalent:

1. A is type MA, that is A is maximal monotone and there exists some h ∈ H(A) such
that h∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉 (and h ≥ 〈x, .x∗〉) for all (x∗, x∗∗) ∈ X∗ × X∗∗
(and for all (x, x∗) ∈ (X × X∗)).

2. A is of type NI.

Fact 6 ([7], Lemma 3.1) Let An : X ⇒ X∗ be a sequence of maximal monotone
operators of type (D). For any (x, x∗) ∈ X×X∗, let (xn)n be the sequence of solutions
of the inclusion

x∗ ∈ An(xn) + Jεn (xn − x),

for any εn > 0 converging to 0. Then (xn)n, (x∗
n )n and (w∗

n)n are bounded, where
x∗
n ∈ An(xn) and w∗

n ∈ Jεn (xn − x).
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3 A sufficient condition for convergence of sequence of maximal
monotone operators of type (D)

In the following theorem, we establish a sufficient condition for the convergence of a
sequence of maximal monotone operators of type (D) in Banach spaces.

Theorem 7 Let An : X ⇒ X∗ be a sequence of maximal monotone operator of type
(D), A : X ⇒ X∗ be a maximal monotone operator of type (D) and fn ∈ H(An), f ∈
H(A). If fn epi-converges to f then An converges to A.

Proof Suppose fn epi-converges to f . In order to prove An → A, we need to verify
the following:

1. for any (x, x∗) ∈ gra A, there exists a sequence (xn, x∗
n ) with lim(xn, x∗

n ) =
(x, x∗) and (xn, x∗

n ) ∈ gra An for n sufficiently large;
2. the cluster points of every sequence (xn, x∗

n ) ∈ gra An for n sufficiently large
belongs to gra A.

Let (x, x∗) ∈ gra A, we will find a sequence (xn, x∗
n ) ∈ gra An such that

limn(xn, x∗
n ) = (x, x∗).Since f ∈ H(A), f (x, x∗) = 〈x, x∗〉.Thus, ((x, x∗), 〈x, x∗〉)

∈ epi f . By definition of epi-convergence of fn, there exist a sequence (yn, y∗
n , tn) ∈

epi fn such that
(yn, y

∗
n ) → (x, x∗) (1)

and
tn → 〈x, x∗〉. (2)

Since An is maximal monotone operator of type (D). Then by Fact 2,

ran
(
An + J 1

n
(. − y)

)
= X∗,∀n ∈ N,∀y ∈ X .

Since, (yn, y∗
n )n∈N ∈ X × X∗,

y∗
n ∈ ran

(
An + J 1

n
(. − yn)

)
,∀n ∈ N.

Thence, there exists zn ∈ X such that y∗
n = z∗n + w∗

n, where z∗n ∈ An(zn) and
w∗
n ∈ J 1

n
(zn − yn). Thus, y∗

n − z∗n ∈ J 1
n
(zn − yn) ∀n ∈ N. Therefore, by definition of

J 1
n
, we get

1

2
‖zn − yn‖2 + 1

2
‖y∗

n − z∗n‖2 ≤ 〈zn − yn, y
∗
n − z∗n〉 + 1

n

≤ 〈zn, y∗
n 〉 + 〈yn, z∗n〉 − 〈zn, z∗n〉 − 〈yn, y∗

n 〉 + 1

n
.

≤ FAn (yn, y
∗
n ) − 〈yn, y∗

n 〉 + 1

n

≤ fn(yn, y
∗
n ) − 〈yn, y∗

n 〉 + 1

n
, (by maximality of An).
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Since (yn, y∗
n , tn) ∈ epi fn,

1

2
‖yn − zn‖2 + 1

2
‖y∗

n − z∗n‖2 ≤ tn − 〈yn, y∗
n 〉 + 1

n
(3)

Note that,

|tn − 〈yn, y∗
n 〉| = |tn − 〈x, x∗〉 + 〈x, x∗〉 − 〈yn, y∗

n 〉|
≤ |tn − 〈x, x∗〉| + |〈yn, y∗

n 〉 − 〈x, x∗〉|.

By (1) and (2),

|tn − 〈yn, y∗
n 〉| → 0.

Thus, from (3), ‖yn − zn‖ → 0 and ‖y∗
n − z∗n‖ → 0. Therefore,

‖zn − x‖ = ‖zn − yn + yn − x‖
≤ ‖zn − yn‖ + ‖yn − x‖ → 0.

Similarly, ‖z∗n−x∗‖ → 0.Which proves that there exists a sequence (zn, z∗n) ∈ gra An

such that (zn, z∗n) → (x, x∗).
Finally, let (x, x∗) ∈ X × X∗ be a cluster point of every sequence (xn, x∗

n ) ∈
gra An .Thenwe prove that (x, x∗) ∈ gra A.By assumption, there exists a subsequence
(xnk , x

∗
nk ) ∈ gra Ank such that

(xnk , x
∗
nk ) → (x, x∗).

Let us take nk = n for our simplicity. Then, fn(xn, x∗
n ) = 〈xn, x∗

n 〉.
Thus, ((xn, x∗

n ), 〈xn, x∗
n 〉) ∈ epi fn . Since, (xn, x∗

n ) → (x, x∗) and epi fn → epi f ,
we have ((x, x∗), 〈x, x∗〉) ∈ epi f , i.e., f (x, x∗) ≤ 〈x, x∗〉.Since f is a representative
function of A we conclude that (x, x∗) ∈ gra A. ��

4 Lower limit of sequence ofmaximalmonotone operators of type (D)

Let us denote,

F(X × X∗) := { f ∈ �(X × X∗) : f (x, x∗) ≥ 〈x, x∗〉,∀(x, x∗) ∈ X × X∗},

and

F∗(X∗ × X∗∗) := { f ∈ F(X × X∗) : f ∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉,
∀(x∗, x∗∗) ∈ X∗ × X∗∗}.
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Also we denote,

M f := {(x, x∗) ∈ X × X∗ : f (x, x∗) = 〈x, x∗〉}.

Proposition 1 Let X be a real Banach space. Then

1. Let fn ∈ F(X × X∗). If fn epi-converges to f , then f ∈ F(X × X∗).
2. Let fn ∈ F∗(X∗ × X∗∗). If f ∗

n epi-converges to f ∗, then f ∈ F∗(X∗ × X∗∗).
Proof (1) Let fn ∈ F(X × X∗) and fn epi-converge to f . First, we will show that
f is convex. Let (x, x∗), (y, y∗) ∈ X × X∗ and let α ∈ [0, 1]. Then by definition of
epi-convergence, there exists sequences (xn, x∗

n ) and (yn, y∗
n ) such that (xn, x∗

n ) →
(x, x∗), (yn, y∗

n ) → (y, y∗) and

lim sup
n

fn(xn, x
∗
n ) ≤ f (x, x∗);

lim sup
n

fn(yn, y
∗
n ) ≤ f (y, y∗).

Note that (α(xn, x∗
n ) + (1 − α)(yn, y∗

n )) → (α(x, x∗) + (1 − α)(y, y∗)),

f ((α(x, x∗) + (1 − α)(y, y∗))) ≤ lim inf
n

fn((α(xn, x
∗
n ) + (1 − α)(yn, y

∗
n ))).

Therefore,

f ((α(x, x∗) + (1 − α)(y, y∗))) ≤ lim sup
n

fn((α(xn, x
∗
n ) + (1 − α)(yn, y

∗
n ))).

Since fn is convex for each n ∈ N, we get

f ((α(x, x∗) + (1 − α)(y, y∗))) ≤ α f (x, x∗) + (1 − α) f (y, y∗).

This proves that f is convex and by definition of epi-convergence, f ∈ �(X × X∗).
Now, by definition of epi-convergence, for any (x, x∗) ∈ X×X∗ there exists (xn, x∗

n ) ∈
X × X∗ such that (xn, x∗

n ) → (x, x∗) and

lim sup
n

fn(xn, x
∗
n ) ≤ f (x, x∗).

Thus,

f (x, x∗) = lim
n

fn(xn, x
∗
n ) ≥ 〈xn, x∗

n 〉.

Hence, f (x, x∗) ≥ 〈x, x∗〉. This shows that f ∈ F(X × X∗).
The proof of (2) is same as the proof of (1). ��

The following theorem states that the lower limit of a sequence of maximal monotone
operators of type (D) is representable, and the representable function is the epi-limit
of the corresponding representative functions of the sequence of maximal monotone
operators.
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Theorem 8 Let fn ∈ �(X × X∗) with An = M fn a maximal monotone of type (D). If
fn epi-converges to f then M f = lim inf An .

Proof Since fn epi-converges to f , by Proposition 1, f ∈ F(X × X∗). Let gra A =
lim inf An . First we show that gra A ⊆ M f . Let (x, x∗) ∈ gra A. By definition of
lim inf An, for every n ∈ N, there exists (xn, x∗

n ) ∈ An such that (xn, x∗
n ) → (x, x∗).

Since, gra An = M fn , for every n ∈ N. Thus, fn(xn, x∗
n ) = 〈xn, x∗

n 〉. By definition of
epi-converges of fn,

lim inf
n

fn(xn, x
∗
n ) ≥ f (x, x∗).

Therefore, using the definition of representable function, we get

f (x, x∗) ≤ lim inf〈xn, x∗
n 〉 = 〈x, x∗〉.

Hence, (x, x∗) ∈ M f .

Finally, we show that M f ⊆ gra A. Let (x, x∗) ∈ M f . For each n ∈ N, let (xn) is
a solution of x∗ ∈ An(xn) + J 1

n
(xn − x). According to Fact 3, it is sufficient to show

that lim xn = x . Since (xn) is a solution of x∗ ∈ An(xn) + J 1
n
(xn − x), there exists

x∗
n ∈ An(xn) and w∗

n ∈ J 1
n
(xn − x) such that x∗ = x∗

n + w∗
n, ∀n ∈ N. Let (yn, y∗

n ) be

a sequence in X × X∗ such that (yn, y∗
n ) → (x, x∗) and

f (x, x∗) ≥ lim sup
n

fn(yn, y
∗
n ).

Since fn is representative function of An and An is maximal monotone for each n ∈ N,

then by Fact 1

FAn (yn, y
∗
n ) ≤ fn(yn, y

∗
n ).

Thus,
lim sup FAn (yn, y

∗
n ) ≤ lim sup fn(yn, y

∗
n ) ≤ f (x, x∗). (4)

Since x∗ = x∗
n + w∗

n, x
∗ − w∗

n = x∗
n ∈ An(xn), by definition of FAn , we get

FAn (yn, y
∗
n ) = sup

(an ,a∗
n )∈gra An

[〈yn, a∗
n 〉 + 〈an, y∗

n 〉 − 〈an, a∗
n 〉]

≥ 〈yn, x∗
n 〉 + 〈xn, y∗

n 〉 − 〈xn, x∗
n 〉

= 〈yn − xn, x
∗
n 〉 + 〈xn, y∗

n 〉
= 〈yn − xn, x

∗
n 〉 − 〈yn − xn, y

∗
n 〉 + 〈yn − xn, y

∗
n 〉 + 〈xn, y∗

n 〉
= 〈yn − xn, x

∗
n − y∗

n 〉 + 〈yn, y∗
n 〉

= 〈yn − xn, x
∗ − w∗

n − y∗
n 〉 + 〈yn, y∗

n 〉
= 〈yn − xn, x

∗ − y∗
n 〉 + 〈xn − x, w∗

n〉 + 〈x − yn, w
∗
n〉 + 〈yn, y∗

n 〉.
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1018 S. R. Pattanaik, D. K. Pradhan

Since w∗
n ∈ J 1

n
(xn − x),

1

2
‖xn − x‖2 + 1

2
‖w∗

n‖2 ≤ 〈xn − x, w∗
n〉 + 1

n
.

Note that

1

2
‖xn − x‖2 ≤ 1

2
‖xn − x‖2 + 1

2
‖w∗

n‖2 ≤ 〈xn − x, w∗
n〉 + 1

n
.

Thus,

FAn (yn y
∗
n ) ≥ − ‖yn − xn‖‖x∗ − y∗

n‖ + 1

2
‖xn − x‖2 − 1

n
− ‖x − yn‖‖w∗

n‖ + 〈yn, y∗
n 〉.

By Fact 6, (xn) and (w∗
n) are bounded. Therefore,

lim sup FAn (yn, y
∗
n ) ≥ lim sup

(
1

2
‖xn − x‖2

)
+ 〈x, x∗〉.

By appealing Eq. (4),

〈x, x∗〉 ≥ lim sup
1

2
‖xn − x‖2 + 〈x, x∗〉.

Hence, lim sup 1
2‖xn − x‖2 ≤ 0. This proves that xn → x . ��

Remark 1 The representability of the lower limit of a sequence of maximal monotone
operators of type (D) was established by Bueno et al. [7] in general Banach spaces.
In the above Theorem 8, we establish that the lower limit of a sequence of maximal
monotone operators of type (D) is representable, and the representable function is the
epi-limit of the corresponding representative functions of the sequence of maximal
monotone operators.

Finally, we prove that the limit of a sequence of maximal monotone operators of type
(D) is a maximal monotone operator and moreover, we prove that it is of type (D).

Corollary 1 Let An : X ⇒ X∗ be a sequence of maximal monotone operators of type
(D) and let fn ∈ F(X × X∗) with An = M fn . If fn epi-converges to f and f ∗

n epi-
converges to f ∗, then M f = lim inf An is a maximal monotone operator. Moreover,
M f is of type (D).

Proof By Theorem 8, M f = lim inf An . Since f ∗
n epi-converges to f ∗, by

Proposition 1,

f ∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉.
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Again by epi-converges of fn and Proposition 1, we get

f (x, x∗) ≥ 〈x, x∗〉.

Hence, by Fact 4, M f is a maximal monotone. Again, by Fact 4, we have

F∗
M f

(x∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ × X∗∗.

By Fact 5, M f is of type (NI) and hence, of type (D). ��

5 Conclusion

Theorem 7 establishes a sufficient condition for convergence of a sequence ofmaximal
monotone operators of type (D) in general Banach spaces. Theorem 8 and Corollary
1 are the generalization of the results of [11, Theorem 2.2] to a Banach spaces by
assuming that the sequence of maximal monotone operators is of type (D).
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