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Abstract
In this paper set optimization problems with three types of set order relations are con-
cerned. We introduce various types of Levitin–Polyak (LP) well-posedness for set
optimization problems and survey their relationships. After that, sufficient and neces-
sary conditions for the reference problems to be LP well-posed are given. Furthermore,
using the Kuratowski measure of noncompactness, we study characterizations of well-
posedness for set optimization problems. Moreover, the links between stability and
LP well-posedness of such problems are established via the study on approximating
solutionmappings. Tools and techniques used in this study and our results are different
from existing ones in the literature.
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1 Introduction

The concept of well-posedness was firstly introduced by Tikhonov [36]. Beside the
requirement about the uniqueness of the solution, Tikhonov well-posedness requested
the convergence of each minimizing sequence to the unique solution. Therefore, well-
posedness plays a vital role to make connections between stability properties and
solution methods for problems related to optimization. On this topic, many research
results have been devoted to a lot of important problems such as variational inequalities
[7], equilibrium problems [1], inclusion problems [37] and the references therein.
Several generalizations of Tikhonov well-posedness were introduced and investigated
for various kinds of optimization problems [4,10,30–32]. Levitin–Polyak (LP) well-
posedness is an extension of Tikhonov well-posedness and was originally proposed
in [28]. Every minimizing sequence must belong to the feasible set in Tikhonov well-
posedness, whereas it can be outside of the feasible region but the distance between it
and this set has to approach zero in LP well-posedness. There have been many studies
of LP well-posedness (see, e.g., [18,27] and the references therein).

Kuroiwa et al. [26] proposed set order relations including lower set less relation,
upper set less relation and set less relation (combination of the lower and the upper set
less relation). This gave a new way to formulate the solution of set-valued optimiza-
tion problems which is called solutions concept based on the set approach [25], and
hence the optimization problems in this approach are called set optimization problems
involving set order relations [21,24]. As pointed out in [19], the set less relation is
generalized and more appropriate in practical problems than both the lower and upper
set less relations. Furthermore, the set less relation plays a center role in relationships
with other new order relations for sets proposed in [5,19] which are more useful in
set optimization. Although set optimization is a new direction in the field of optimiza-
tion, it has attracted a great deal of attention of researchers with many important and
interesting results [11,13,17,20]. Useful applications of set optimization in practical
problems were reported, for example, the application in socio-economic [34] (to man-
age noise disturbance in the region surrounding the Frankfurt Airport in Germany),
the application in finance [14] (to evaluate the risk of a multivariate random outcome).
Moreover, relationships between set optimizations and other important problems such
as variational inequalities [8], KyFan inequality problems (so-called equilibriumprob-
lems) [35] were investigated. For further reading and references, we refer to books
[15,21].

The first introduction of well-posedness for set optimization problems was pre-
sented by Zhang et al. [38]. The authors established both sufficient and necessary
conditions for set optimization problems involving the lower set less relation to be
well-posed and obtained criteria as well as characterizations of well-posedness for
these problems by the scalarization method. This research was generalized by Gutiér-
rez et al. [12] under assumptions of cone properness. After that, Dhingra and Lalitha
[9] introduced a concept of well-setness for such problems and proved that it is an
extension of the generalized well-posedness which was considered in [38]. Recently,
well-posedness of set optimization problems involving not only the lower but also
the upper set less relation have been discussed in [16,22,29]. For LP well-posedness,
to the best of our knowledge there is only the paper of Khoshkhabar-amiranloo and
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Khorram [22] which studied set optimization problem involving the lower set less
relation. Of course such an important topic as LP well-posedness for set optimization
problems must be the aim of many works. Moreover, the scalarization method which
is the main tool used in papers mentioned above investigates difficultly set optimiza-
tion problems involving different set order relations, some other approaches to study
well-posedness for such problems should be considered.

Motivated and inspired by works mentioned above, in this paper, without using
the scalarization method, we investigate different types of LP well-posedness for set
optimization problems involving several kinds of set order relations. More precisely,
we concern set optimization problems involving three types of set order relations.
Then, we introduce concepts of LP well-posedness for such problems and discuss
relationships among them. Moreover, necessary and/or sufficient conditions for these
concepts of well-posedness are investigated. Applying Kuratowski measure of non-
compactness, we study characterizations of such concepts. Finally, approximating
solution mappings and their stability are studied to build the connection between
stability of approximating problem and LP well-posedness of the set optimization
problem.

Theoutline of this paper is given as follows. InSect. 2,we recall somedefinitions and
results needed in what follows. Sect. 3 introduces various kinds of LP well-posedness
for set optimization problems and investigates their relationships. Furthermore, suffi-
cient and/or necessary conditions of pointwise LP well-posedness for such problems
are also obtained. In this section, characterizations of these types of pointwise LP
well-posedness are surveyed by using measure of noncompactness. In the last sec-
tion, Sect. 4, we study sufficient conditions for such problem to be metrically LP
well-posed and their relationships.

2 Preliminaries

Let X be a normed space and Y be a real Hausdorff topological linear space. Let K be
a closed convex pointed cone in Y with intK �= ∅, where intK denotes the interior of
K . The space Y is endowed with an order relation induced by cone K in the following
way

x ≤K y ⇔ y − x ∈ K ,

x <K y ⇔ y − x ∈ intK .

The cone K induces various set orderings in Y . These such orderings as the fol-
lowing were presented in [19,21,25]. LetP(Y ) be the family of all nonempty subsets
of Y . For A, B ∈ P(Y ), lower set less relation, upper set less relation and set less
relation, respectively, are defined by

A ≤l B if and only if B ⊂ A + K ,

A ≤u B if and only if A ⊂ B − K ,

A ≤s B if and only if A ⊂ B − K and B ⊂ A + K .
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Remark 2.1 The relationship between the lower set less relation ≤l and the upper set
less relation ≤u was given by Remark 2.6.10 in [21] as the following

A ≤l B ⇔ −B ≤u −A.

Definition 2.1 [19] The binary relation ≤ is said to be

(i) compatible with the addition if and only if A ≤ B and D ≤ E imply A + D ≤
B + E for all A, B, D, E ∈ P(Y );

(ii) compatible with the multiplication with a nonnegative real number if and only
if A ≤ B implies λA ≤ λB for all scalars λ ≥ 0 and all A, B ∈ P(Y );

(iii) compatible with the conlinear structure ofP(Y ) if and only if it is compatible
with both the addition and the multiplication with a nonnegative real number.

Proposition 2.1 [19]

(i) Theorder relations≤l ,≤u and≤s are pre-order (i.e., these relations are reflexive
and transitive).

(ii) The order relations ≤l , ≤u and ≤s are compatible with the conlinear structure
of P(Y ).

(iii) In general, the order relations ≤l , ≤u and ≤s are not antisymmetric; more
precisely, for arbitrary sets A, B ∈ P(Y ) we have

(A ≤l B and B ≤l A) ⇔ A + K = B + K ,

(A ≤u B and B ≤u A) ⇔ A − K = B − K ,

(A ≤s B and B ≤s A) ⇔ (A + K = B + K and A − K = B − K ).

For α ∈ {l, u, s}, we say that

A ∼α B if and only if A ≤α B and B ≤α A.

Let F : X ⇒ Y be a set-valued mapping with nonempty values on X . For each
α ∈ {l, u, s}, we consider the following set optimization problem

(Pα) α-MinF(x)

subject to x ∈ M,

where M is a nonempty closed subset of X . A point x̄ ∈ M is said to be an α-minimal
solution of (Pα) if and only if for any x ∈ M such that F(x) ≤α F(x̄) then F(x̄) ≤α

F(x). The set of all α-minimal solutions of (Pα) is denoted by Sα-MinF .

Remark 2.2 It can be seen that if x̄ ∈ Sα-MinF and F(x̄) ∼α F(x̂) for some x̂ ∈ M ,
then x̂ ∈ Sα-MinF .

We recall the following definitions of semicontinuity for a set-valued mapping and
their properties used in the sequel.

Definition 2.2 ([3], p. 38, 39) Let F : X ⇒ Y be a set-valued mapping.
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(i) F is said to be upper semicontinuous at x0 ∈ X if and only if for any open subset
U of Y with F(x0) ⊂ U , there is a neighborhood N of x0 such that F(x) ⊂ U
for every x ∈ N .

(ii) F is said to be lower semicontinuous at x0 ∈ X if and only if for any open
subset U of Y with F(x0) ∩ U �= ∅, there is a neighborhood N of x0 such that
F(x) ∩U �= ∅ for all x ∈ N .

(iii) F is said to be lower (upper) semicontinuous on a subset S of X if and only if
it is lower (upper) semicontinuous at every x ∈ S.

Lemma 2.1 Let F : X ⇒ Y be a set-valued mapping.

(i) ([3], p. 39) F is lower semicontinuous at x0 ∈ X if and only if for any net
{xα} ⊂ X converging to x0 and for any y ∈ F(x0), there exist yα ∈ F(xα) such
that {yα} converges to y.

(ii) ([2]) If F(x0) is compact, then F is upper semicontinuous at x0 ∈ X if and
only if for any net {xα} converging to x0 and for any yα ∈ F(xα), there exist
y0 ∈ F(x0) and a subnet {yβ} of {yα} such that {yβ} converges to y0. If, in
addition, F(x0) = {y0} is a singleton, then for the above nets, {yβ} converges
to y0.

Now we recall the concepts of Hausdorff distance and Hausdorff convergence of
sequence of sets. If S is a nonempty subset of X and x ∈ X , then the distance d
between x and S is defined by

d(x, S) := inf
u∈S ‖x − u‖ .

If S1 and S2 are two nonempty subsets of X , then Hausdorff distance between S1 and
S2, denoted by H(S1, S2), is defined by

H(S1, S2) := max{H∗(S1, S2), H∗(S2, S1)},

where H∗(S1, S2) := supx∈S1 d(x, S2).

Definition 2.3 ([23], p. 359) Let {An} be a sequence of subsets of X . We say that An

converge to A ⊂ X in the sense of the Hausdorff metric, denoted by An → A, if and
only if H(An, A) → 0 as n → ∞.

Next, we recall the concept of Kuratowski measure of noncompactness and it’s
properties used in the sequel.

Definition 2.4 ([33],Definition 2.1)LetM be a nonempty subset of X . TheKuratowski
measure of noncompactness μ of the set M is defined by

μ(M) := inf

{
ε > 0 | M ⊂

n⋃
i=1

Mi , diamMi < ε, i = 1, · · · , n for some n ∈ N

}
,

where diamMi := sup{d(x, y) | x, y ∈ Mi } is the diameter of Mi .
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Lemma 2.2 ([33], Proposition 2.3) The following assertions are true:

(i) μ(M) = 0 if M is compact;
(ii) μ(M) ≤ μ(N ) whenever M ⊂ N ;
(iii) if {Mn} is a sequence of closed subsets in X satisfying Mn+1 ⊂ Mn for every

n ∈ N and limn→∞ μ(Mn) = 0, then K := ⋂
n∈N Mn is nonempty compact

and limn→∞ H(Mn, K ) = 0.

Lemma 2.3 Let X be a normed space and A, B be subsets of X. If A is compact and
B is closed, then A + B is closed.

Proof Assume that {an + bn}, an ∈ A, bn ∈ B, converges to c for some c ∈ X . We
show that c ∈ A + B. In fact, since A is compact, there exist a subsequence {ank } of
sequence {an} and a ∈ A such that {ank } converges to a. We have∥∥bnk − c + a

∥∥ = ∥∥(bnk + ank ) − c + (a − ank )
∥∥ ≤ ∥∥bnk + ank − c

∥∥ + ∥∥a − ank
∥∥ .

We obtain that {bnk } converges to c − a. Since B is closed, we get c − a ∈ B. Hence,
there exists b ∈ B such that b = c − a. Then, c = a + b ∈ A + B. So, A + B is
closed. ��
Lemma 2.4 Let M be a nonempty subset of a normed space X. Then, for every x, y ∈
X, |d(x, M) −d(y, M)| ≤ ‖x − y‖.
Proof Let x, y ∈ X , we have ‖x − y‖ + d(y, M) = ‖x − y‖ + inf z∈M ‖y − z‖ =
inf z∈M {‖x − y‖ + ‖y − z‖} ≥ inf z∈M ‖x − z‖ = d(x, M). Hence, ‖x − y‖ ≥
d(x, M) − d(y, M). Similarly, we also get ‖x − y‖ ≥ d(y, M) − d(x, M). We con-
clude that |d(x, M) − d(y, M)| ≤ ‖x − y‖. ��

3 Pointwise LP well-posedness and generalized pointwise LP
well-posedness

Motivated by the study [22] on the pointwise LPwell-posedness for (Pl), we are going
to establish characterizations of this type of well-posedness for (Pα)without using the
scalarization method. Consider the problem (Pα), for a given x̄ ∈ Sα-MinF , the LP
approximating solution mapping at x̄ , Sα-MinF (x̄, ·) : {x̄} × R+ ⇒ M is defined by

Sα-MinF (x̄, ε) := {x ∈ X | d(x, M) ≤ ε, F(x) ≤α F(x̄) + εe},

for each ε ∈ R+.
Inspired by ideas in [22] (Definition 5.1), we extend some notions for the problem

(Pl) in [22] to the problem (Pα) and propose some new concepts for the problem (Pα).
Let e ∈ intK .

Definition 3.1 Let x̄ ∈ Sα-MinF be given. A sequence {xn} ⊂ X is said to be a LP-
minimizing sequence for the problem (Pα) at x̄ if and only if there exists a sequence
{εn} ⊂ R+\{0} converging to 0 such that

d(xn, M) ≤ εn, F(xn) ≤α F(x̄) + εne.
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The equivalence of this concept is given by the following result.

Proposition 3.1 {xn} ⊂ X is a LP-minimizing sequence for the problem (Pα) at x̄ ∈
Sα-MinF if and only if there exists a sequence {dn} ⊂ K\{0} converging to 0 such that

d(xn, M) → 0, F(xn) ≤α F(x̄) + dn .

Proof We only prove the assertion for the case α = s; the proofs of the assertion for
the cases α = l and α = u are similar. Let {xn} ⊂ X and {dn} ⊂ K\{0} converging
to 0 such that d(xn, M) → 0 and F(xn) ≤s F(x̄) + dn , i.e.,

F(x̄) + dn ⊂ F(xn) + K , F(xn) ⊂ F(x̄) + dn − K . (1)

Since e−K is a neighborhood of the origin 0 inY , there exists ε > 0 such that εB(0, 1)
⊂ e− K where B(x, r) is the closed ball centered x with radius r . For a given n ∈ N,
we have dn ∈ ‖dn‖ B(0, 1) ⊂ ‖dn‖ ε−1(e − K ) = ‖dn‖ ε−1e − K . For each n ∈ N,
taking εn = ‖dn‖ ε−1, then {εn} ⊂ R+\{0} converges to 0 and εne − dn ∈ K . It
follows from (1) that

F(x̄) + εne ⊂ F(xn) + K , F(xn) ⊂ F(x̄) + εne − K ,

i.e., F(xn) ≤s F(x̄) + εne. So, {xn} is a LP-minimizing sequence for (Ps) at x̄ .
Conversely, it is clear that if {xn} ⊂ X is a LP-minimizing sequence for (Ps) at
x̄ ∈ Ss-MinF , then the assertion is satisfied by setting dn = εne. ��
Definition 3.2 The problem (Pα) is said to be

(i) LP well-posed at x̄ ∈ Sα-MinF if and only if any LP-minimizing sequence for
(Pα) at x̄ converges to x̄ ;

(ii) generalized LP well-posed at x̄ ∈ Sα-MinF if and only if any LP-minimizing
sequence for (Pα) at x̄ has a subsequence converging to an element x̂ ∈
Sα-MinF (x̄, 0).

Remark 3.1 When α = l, the concept of pointwise well-posedness becomes the cor-
responding concepts studied in [22] (Definitions 5.1 and 5.2, respectively), even for
this special case, the concept of generalized well-posedness is a new one.

The following examples illustrate the above-introduced concepts.

Example 3.1 Let X = Y = R, M = R, K = R+. Let F : X ⇒ Y be defined by
F(x) = [0, 1] for all x ∈ X . Let e = 1 ∈ intK and x̄ = 0. We have Sα-MinF (x̄, 0) =
Sα-MinF = R. Setting xn = n, {xn} is a LP-minimizing sequence for (Pα) at x̄ = 0.
Since {xn} admits no convergent subsequence, (Pα) is not both LP well-posed and
generalized LP well-posed at 0.

Example 3.2 Let X = Y = R, M = R, K = R+. Let F : X ⇒ Y be defined by

F(x) =
{ [0, 1], if − 1 ≤ x ≤ 1,

[1, 1 + x2], otherwise.
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Let e = 1 ∈ intK and x̄ = 0. By direct computations, we have Sα-MinF (x̄, 0) =
[−1, 1]. Setting xn = 1 − 1

n , {xn} is a LP-minimizing sequence for (Pα) at x̄ = 0
and converges to 1. Hence, (Pα) is not LP well-posed at 0, but it is generalized LP
well-posed at 0. Indeed, if {x̂n} is a LP-minimizing sequence for (Pα) at x̄ = 0,
then there is a sequence {εn} ⊂ R+\{0} converging to 0 such that d(x̂n, M) ≤ εn
and F(x̂n) ≤α F(0) + εne = [εn, 1 + εn]. This implies that −1 ≤ x̂n ≤ 1 for n
sufficiently large, and hence there exists a subsequence of {x̂n} converging to some
point of Sα-MinF (x̄, 0).

Example 3.3 Let X = R, M = R, K = R+. Let F : X ⇒ Y be defined by F(x) =
[x2, 2x2] for all x ∈ X . Let e = 1 ∈ intK and x̄ = 0. Direct cacullations give us
Sα-MinF (x̄, 0) = {0}. Let {xn} be a LP-minimizing sequence for (Pα) at x̄ = 0. Then,
there exists a sequence {εn} ⊂ R+\{0} converging to 0 such that d(xn, M) ≤ εn and
F(xn) ≤α F(0) + εne = {εn}. It leads to x2n ≤ εn , so {xn} converges to 0. Therefore,
(Pα) is LP well-posed at 0.

Lemma 3.1 If (Pα) is generalized LP well-posed at x̄ ∈ Sα-MinF , then Sα-MinF (x̄, 0)
is compact.

Proof For every sequence {xn} ⊂ Sα-MinF (x̄, 0), we always have d(xn, M) = 0 and

F(xn) ≤α F(x̄) + εne

for any {εn} ⊂ R+\{0} converging to 0. This means that {xn} is a LP-minimizing
sequence for (Pα) at x̄ . By the generalized LP well-posedness of (Pα) at x̄ , there exists
a subsequence {xnk } of {xn} such that {xnk } converges to an element x̂ ∈ Sα-MinF (x̄, 0).
This leads to the compactness of Sα-MinF (x̄, 0). ��

The next results give some properties of themapping Sα-MinF (x̄, ·)which are useful
in the sequel.

Proposition 3.2 Let x̄ ∈ Sα-MinF be given. Then, the following statements are true:

(i) Sα-MinF = ⋃
z∈Sα-MinF

Sα-MinF (z, 0);
(ii) if ε1 ≤ ε2, then Sα-MinF (x̄, ε1) ⊂ Sα-MinF (x̄, ε2);
(iii)

⋂
ε>0 Sα-MinF (x̄, ε) = Sα-MinF (x̄, 0) if F is compact-valued on M.

Proof We only demonstrate the proof of the assertions (i)-(iii) for the case α = s; the
proofs of these assertions for the cases α = l and α = u are similar.

(i) Let z ∈ Ss-MinF be given. Since z ∈ Ss-MinF (z, 0), Ss-MinF ⊂ ⋃
z∈Ss-MinF

Ss-MinF (z, 0). Moreover, let x ∈ ⋃
z∈Ss-MinF

Ss-MinF (z, 0), there exists z ∈ Ss-MinF
such that x ∈ Ss-MinF (z, 0). Therefore, d(x, M) = 0 and F(x) ≤s F(z). Since
z ∈ Ss-MinF , x ∈ Ss-MinF . It implies that

⋃
z∈Ss-MinF

Ss-MinF (z, 0) ⊂ Ss-MinF .
(ii) Assume ε1 ≤ ε2. Let x ∈ Ss-MinF (x̄, ε1), then d(x, M) ≤ ε1 and F(x) ≤s

F(x̄) + ε1e. It follows from the definition of set less relation ≤s that

F(x) ≤l F(x̄) + ε1e and F(x) ≤u F(x̄) + ε1e,
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i.e.,

F(x̄) + ε1e ⊂ F(x) + K and F(x) ⊂ F(x̄) + ε1e − K .

We observe that

F(x̄) + ε2e − K = F(x̄) + ε1e − K + (ε2 − ε1)e.

Combining the convexity of K with Proposition 2.1, we obtain that

F(x̄) + ε2e ⊂ F(x) + K ,

and

F(x) ⊂ F(x̄) + ε1e − K ⊂ F(x̄) + ε2e − K .

Thus, F(x) ≤l F(x̄) + ε2e and F(x) ≤u F(x̄) + ε2e. Since x̄ ∈ Ss-MinF , F(x) ≤s

F(x̄)+ε2e.Moreover, d(x, M) ≤ ε2 as d(x, M) ≤ ε1. Therefore, x ∈ s-MinF(x̄, ε2).
We conclude that Ss-MinF (x̄, ε1) ⊂ Ss-MinF (x̄, ε2).

(iii) Let x ∈ Ss-MinF (x̄, 0). It is clear that x ∈ Ss-MinF (x̄, ε) for any ε > 0.
Therefore, x ∈ ⋂

ε>0 Ss-MinF (x̄, ε). For the converse, let x ∈ ⋂
ε>0 Ss-MinF (x̄, ε), we

have x ∈ Ss-MinF (x̄, ε) for any ε > 0. It follows from definition of Ss-MinF (x̄, ε) that
d(x, M) ≤ ε and F(x) ≤s F(x̄) + εe, i.e.,

d(x, M) ≤ ε, F(x̄) + εe ⊂ F(x) + K and F(x) ⊂ F(x̄) + εe − K . (2)

By the compact-valuedness of F and Lemma 2.3, F(x)−K and F(x̄)−K are closed.
From (2), let ε → 0, we obtain that

d(x, M) = 0, F(x̄) ⊂ F(x) + K and F(x) ⊂ F(x̄) − K ,

i.e.,

d(x, M) = 0, F(x) ≤s F(x̄).

Hence, x ∈ Ss-Min F (x̄, 0). We get
⋂

ε>0 Ss-Min F (x̄, ε) ⊂ Ss-Min F (x̄, 0). ��
Next, using the Kuratowski measure of noncompactness of LP approximating

solution sets, we establish metric characterizations of two types of pointwise LP
well-posedness for (Pα).

Theorem 3.1 (i) If (Pα) is generalized LP well-posed at x̄ ∈ Sα-MinF , then
μ(Sα-MinF (x̄, ε)) → 0 as ε → 0.

(ii) If (Pα) is LP well-posed at x̄ ∈ Sα-MinF , then diam(Sα-MinF (x̄, ε)) → 0 as ε → 0.
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Proof (i) Suppose that (Pα) is generalized LP well-posed at x̄ ∈ Sα-MinF . First of all,
we show that H(Sα-MinF (x̄, ε), Sα-MinF (x̄, 0)) → 0 as ε → 0. Indeed, we observe
that, for each ε > 0, Sα-MinF (x̄, 0) ⊂ Sα-MinF (x̄, ε), and hence

H∗(Sα-MinF (x̄, 0), Sα-MinF (x̄, ε)) = 0.

It is sufficient to show that H∗(Sα-MinF (x̄, ε), Sα-MinF (x̄, 0)) → 0 as ε → 0. Suppose
by contrary that there exist a real number r > 0 and a sequence {εn} ⊂ R+\{0}
converging to 0, and for each n ∈ N there exists xn ∈ Sα-MinF (x̄, εn) such that
d(xn, Sα-MinF (x̄, 0)) ≥ r . We have d(xn, M) ≤ εn and F(xn) ≤α F(x̄) + εne. This
means that {xn} is a LP-minimizing sequence for (Pα) at x̄ , and hence {xn} has a
subsequence {xnk } converging to some point x̂ ∈ Sα-MinF (x̄, 0). Therefore, for nk
sufficiently large, we have

∥∥xnk − x̂
∥∥ < r which is a contradiction.

Next, we prove thatμ(Sα-MinF (x̄, ε)) → 0 as ε → 0. ByLemma 3.1, Sα-MinF (x̄, 0)
is compact. Now, for any ε > 0, there are sets M1, M2, . . . Mn for some n ∈ N

such that Sα-MinF (x̄, 0) ⊂ ∪n
i=1Mi with diamMi ≤ ε for all i = 1, . . . , n. For each

i ∈ {1, . . . , n}, denote

Ni := {x ∈ X | d(x, Mi ) ≤ H(Sα-MinF (x̄, ε), Sα-MinF (x̄, 0))}.

We claim that Sα-MinF (x̄, ε) ⊂ ∪n
i=1Ni . Indeed, let x ∈ Sα-MinF (x̄, ε) be arbitrary, we

have

d(x, Sα-MinF (x̄, 0)) ≤ H(Sα-MinF (x̄, ε), Sα-MinF (x̄, 0)).

Since Sα-MinF (x̄, 0) ⊂ ∪n
i=1Mi , we conclude that

d(x,∪n
i=1Mi ) ≤ H(Sα-MinF (x̄, ε), Sα-MinF (x̄, 0)).

So, there is k0 ∈ {1, 2, . . . , n} such that

d(x, Mk0) ≤ H(Sα-MinF (x̄, ε), Sα-MinF (x̄, 0)).

It means that x ∈ Nk0 . Therefore, Sα-MinF (x̄, ε) ⊂ ∪n
i=1Ni . Notice further that

diamNi = diamMi + 2H(Sα-MinF (x̄, ε), Sα-MinF (x̄, 0))

≤ ε + 2H(Sα-MinF (x̄, ε), Sα-MinF (x̄, 0)).

Hence, we get

μ(Sα-MinF (x̄, ε)) ≤ μ(Sα-MinF (x̄, 0)) + 2H(Sα-MinF (x̄, ε), Sα-MinF (x̄, 0)).

Since Sα-MinF (x̄, 0) is compact, we have μ(Sα-MinF (x̄, 0)) = 0. Therefore,

μ(Sα-MinF (x̄, ε)) ≤ 2H(Sα-MinF (x̄, ε), Sα-MinF (x̄, 0)).
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It follows that μ(Sα-MinF (x̄, ε)) → 0 as ε → 0.
(ii) Suppose, to the contrary, that there exist a sequence {εn} ⊂ R+\{0} and a pos-

itive real number r such that diam(Sα-MinF (x̄, εn)) > r . Because x̄ ∈ Sα-MinF (x̄, εn),
for each n, there exists xn ∈ Sα-MinF (x̄, εn) such that ‖xn − x̄‖ > r

2 . However, since{xn} is a LP-minimizing sequence for (Pα) at x̄ , {xn} converges to x̄ which is a
contradiction. ��

The next result gives sufficient conditions for the closedness of approximating
solution set.

Proposition 3.3 Sα-MinF (x̄, ε) is closed for each ε ≥ 0 if F is continuous and compact-
valued on M.

Proof We only prove the assertion for the case α = s. Taking ε ≥ 0, let {xn} ⊂
Ss-MinF (x̄, ε) converge to x , we need to prove that x ∈ Ss-MinF (x̄, ε). Since xn ∈
Ss-MinF (x̄, ε), d(xn, M) ≤ ε and

F(xn) ≤s F(x̄) + εe. (3)

By the continuity of the function d(., M), d(x, M) ≤ ε. Next, we show that F(x) ≤s

F(x̄) + εe. Indeed, from (3), we have

F(x̄) + εe ⊂ F(xn) + K , (4)

and
F(xn) ⊂ F(x̄) + εe − K . (5)

Let y ∈ F(x) be arbitrary. Since F is lower semicontinuous and {xn} converges to x ,
there exist yn ∈ F(xn) such that {yn} converges to y. Combining this with (5), there
exist wn ∈ F(x̄) such that

yn ∈ wn + εe − K . (6)

Since F(x̄) is compact, we can assume that {wn} converges to somew ∈ F(x̄). By (6),
there exist kn ∈ K such that yn = wn+εe−kn . This leads to limn→∞ kn = w+εe−y.
Moreover, we get w + εe − y ∈ K as K is closed. Therefore, there exists k ∈ K
such that w + εe − y = k. We have y = w + εe − k ∈ w + εe − K . It yields that
y ∈ F(x̄) + εe − K as w ∈ F(x̄). We arrive at the fact that F(x) ⊂ F(x̄) + εe − K ,

i.e., F(x) ≤u F(x̄) + εe.
Similarly, let t ∈ F(x̄) be arbitrary, it follows from (4) that, for each n ∈ N, there

exists vn ∈ F(xn) such that
t ∈ vn − εe + K . (7)

Since F is upper semicontinuous and compact-valued at x , we can assume that {vn}
converges to some element v ∈ F(x). It implies from (7) that there exist kn ∈ K
such that t = vn − εe + kn . Hence, kn = t + εe − vn . This leads to limn→∞ kn =
t + εe − v. Since K is closed, there exists k ∈ K such that t + εe − v = k. We
get t = v − εe + k ∈ v − εe + K . It yields that t ∈ F(x) − εe + K as v ∈ F(x).
We have F(x̄) ⊂ F(x) − εe + K . It means that F(x) ≤l F(x̄) + εe. So, we obtain
F(x) ≤s F(x̄) + εe. The proof is complete. ��
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Theorem 3.2 Suppose that F is continuous and compact-valued on M. Then,

(i) (Pα) is generalized LP well-posed at x̄ ∈ Sα-MinF if μ(Sα-MinF (x̄, ε)) → 0 as
ε → 0.

(ii) (Pα) is L P well-posed at x̄ ∈ Sα-MinF if diam(Sα-MinF (x̄, ε)) → 0 as ε → 0.

Proof (i) Suppose thatμ(Sα-MinF (x̄, ε)) → 0 as ε → 0. Let {xn} be a LP-minimizing
sequence for (Pα) at x̄ . Therefore, there exists a sequence {εn} ⊂ R+\{0} converging
to 0 such that d(xn, M) ≤ εn and F(xn) ≤α F(x̄) + εne. This means that xn ∈
Sα-MinF (x̄, εn). It is clear that μ(Sα-MinF (x̄, εn)) → 0 as n → ∞, and hence by
Lemma 2.2 (iii), we have ∩n∈NSα-MinF (x̄, εn) is a nonempty compact set and

H(Sα-MinF (x̄, εn),∩n∈NSα-MinF (x̄, εn)) → 0

as n → ∞. Note further from Proposition 3.2 (iii) that

Sα-MinF (x̄, 0) = ∩n∈NSα-MinF (x̄, εn).

Hence, we conclude that Sα-MinF (x̄, 0) is compact and

H(Sα-MinF (x̄, εn), Sα-MinF (x̄, 0)) → 0

as n → ∞. Thus,
d(xn, Sα-MinF (x̄, 0)) → 0. (8)

Therefore, there exists a sequence {x̂n} ⊂ Sα-MinF (x̄, 0) such that d(xn, x̂n) → 0 as
n → ∞. Since Sα-MinF (x̄, 0) is compact, there is a subsequence {x̂nk } of {x̂n} con-
verging to some x̂ ∈ Sα-MinF . This implies that {xn} has a corresponding subsequence
{xnk } converging to x̂ . Hence, (Pα) is generalized LP well-posed at x̄ .

(ii) Assume that diam(Sα-MinF (x̄, ε)) → 0 as ε → 0. Then,μ(Sα-MinF (x̄, ε)) → 0
as ε → 0, and hence (Pα) is generalized LP well-posed at x̄ . By Proposition 3.2,
Sα-MinF (x̄, 0) is a singleton. By Lemma 2.1 (ii), (Pα) is LP well-posed at x̄ . ��

The below example shows that Theorem 3.2 is applicable.

Example 3.4 Let X = R, Y = R
2, M = [0, 1], K = R

2+. Let F : X ⇒ Y be defined
by

F(x) = [x, x + 1] × [x, x + 1],∀x ∈ X .

Let e = (1, 1) ∈ intK , x̄ = 0. Clearly, all assumptions of Theroem 3.2 hold.
By direct cacullations, we get Sα-MinF (0, ε) = [0, ε] and Sα-MinF = {0}. So,
diam(Sα-MinF (x̄, ε)) → 0 as ε → 0. Applying Theorem 3.2, the problem (Pα)

is LP well-posed at x̄ = 0. In fact, if {xn} is a LP minimizing sequence for (Pα) at x̄ ,
then there is a sequence {εn} ⊂ R+\{0} converging to 0 such that d(xn, M) ≤ εn and
F(xn) ≤α F(0) + εne = [εn, εn + 1] × [εn, εn + 1]. We get 0 ≤ xn ≤ εn , and hence
{xn} converges to 0. So, (Pα) is LP well-posed at 0.

The following example shows that the continuity of F in Theorem 3.2 is crucial.
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Example 3.5 Let X = R, Y = R
2, M = [−1, 1], K = R

2+. Let F : X ⇒ Y be defined
by

F(x) =
{ [0, 1] × [0, 1], if x < 0,

[1, 2] × [1, 2], if x ≥ 0.

Let e = (1, 1) ∈ intK , x̄ = − 1
2 . Then, F is compact-valued on M . Direct compu-

tations give us that Sα-MinF (x̄, ε) = [−1, 0), and hence μ(Sα-MinF (x̄, ε)) → 0 as
ε → 0. However, the problem (Pα) is not generalized LP well-posed at x̄ . Indeed,
setting xn = − 1

n , we have {xn} is a LP minimizing sequence for (Pα) at x̄ but {xn}
converges to 0 /∈ Sα-MinF (x̄, 0). The reason here is that F is not continuous.

Next, employing properties of the approximating solutionmapping of (Pα), the con-
nection between LP well-posedness of (Pα) and stability of approximating problem
is established.

Theorem 3.3 Let x̄ ∈ Sα-MinF .

(i) Problem (Pα) is generalized LP well-posed at x̄ if and only if Sα-MinF (x̄, ·) is
upper semicontinuous and compact-valued at 0.

(ii) Problem (Pα) is L P well-posed at x̄ if and only if Sα-MinF (x̄, ·) is upper semi-
continuous at 0 and Sα-MinF (x̄, 0) = {x̄}.

Proof (i) Suppose that (Pα) is generalized LP well-posed at x̄ . By Lemma 3.1,
Sα-MinF (x̄, 0) is compact. Suppose by contrary that Sα-MinF (x̄, ·) is not upper semi-
continuous at 0. Then, there exists an open set N ⊃ Sα-MinF (x̄, 0) such that for any
δ > 0, there exists ε ∈ [0, δ), Sα-MinF (x̄, ε) �⊂ N . It means that there exists a sequence
{εn} converging to 0 such that for each n ∈ N, we have Sα-MinF (x̄, εn) �⊂ N . Thus,
for each n ∈ N, there is xn ∈ Sα-MinF (x̄, εn), xn /∈ N . Then, d(xn, M) ≤ εn and
F(xn) ≤α F(x̄) + εne, which imply that {xn} is a LP-minimizing sequence for (Pα)

at x̄ . Because (Pα) is generalized LP well-posed at x̄ , there is a subsequence of {xn},
denoted by {xnk }, converging to an element x̂ ∈ Sα-MinF (x̄, 0) ⊂ N . This is impossible
as xnk /∈ N for all k.

Conversely, let {xn} ⊂ X be a LP-minimizing sequence for (Pα) at x̄ . Then, there
exists a sequence {εn} ⊂ R+\{0} converging to 0 such that

d(xn, M) ≤ εn, F(xn) ≤α F(x̄) + εne.

So, xn ∈ Sα-MinF (x̄, εn). It follows from the upper semicontinuity and compact-
valuedness of Sα-MinF (x̄, ·) at 0, Lemma 2.1 (ii) implies that there exist an element
x̂ ∈ Sα-MinF (x̄, 0) and a subsequence {xnk } of {xn} such that {xnk } converges to x̂ . So,
(Pα) is generalized LP well-posed at x̄ .

(ii) Let {xn} ⊂ X be a LP-minimizing sequence for (Pα) at x̄ , then there exists
a sequence {εn} ⊂ R+\{0} converging to 0 such that d(xn, M) ≤ εn and F(xn) ≤α

F(x̄) + εne. This means that, for each n ∈ N,

xn ∈ Sα-MinF (x̄, εn). (9)

Since Sα-MinF (x̄, ·) is upper semicontinuous at 0, for any open set N , Sα-MinF (x̄, 0) ⊂
N , there is a neighborhood U of 0 such that for all t ∈ U , t ≥ 0, we have
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Sα-MinF (x̄, t) ⊂ N . Since {εn} converges to 0, there exists n0 ∈ N such that εn ∈
B(0, 1

n0
) for all n ≥ n0. Combining this with (9), we obtain xn ∈ Sα-MinF (x̄, εn) ⊂ N

for all n ≥ n0. Therefore, for every neighborhoodW of 0, xn ∈ Sα-MinF (x̄, 0)+W for
all n ≥ n0. Since Sα-MinF (x̄, 0) = {x̄}, {xn} converges to x̄ . So, (Pα) is LP well-posed
at x̄ .

For the converse, suppose that (Pα) is LP well-posed at x̄ . Using (i), Sα-MinF (x̄, ·)
is upper semicontinuous and compact-valued at 0. We show that Sα-MinF (x̄, 0) is
a singleton. Suppose by the contrary that there exist x1, x2 ∈ Sα-MinF (x̄, 0) with
x1 �= x2. Putting x2n+k = xk where k = 1 or k = 2. Clearly, {xn} is a LP-minimizing
sequence for (Pα) at x̄ . However, {xn} is not convergent. This is a contradiction.
Therefore, Sα-MinF (x̄, 0) is a singleton.Moreover, it is obvious that x̄ ∈ Sα-MinF (x̄, 0).
So, Sα-MinF (x̄, 0) = {x̄}. ��

The assumption about the upper semicontinuity of approximating solution map-
ping of (Pα) is used in Theorem 3.3. Next, we give the sufficient conditions for this
assumption.

Proposition 3.4 Suppose that the following conditions hold:

(i) M is compact;
(ii) F is continuous and compact-valued on M.

Then, Sα-MinF (x̄, ·) is upper semicontinuous at 0.
Proof By the similarity, we only focus on the proof of the assertion for the case α = u.
By contradiction, suppose that Su-MinF (x̄, ·) is not upper semicontinuous at 0. Then,
there exist an open set N ⊃ Su-MinF (x̄, 0) and a sequence {εn} ⊂ R

+\{0} converging
to 0 such that for each n, there exists xn satisfying

xn ∈ Su-MinF (x̄, εn)\W0. (10)

Since xn ∈ Su-MinF (x̄, εn),
d(xn, M) ≤ εn (11)

and
F(xn) ⊂ F(x̄) + εne − K . (12)

It implies from (11) that there exist x̂n ∈ M such that d(xn, x̂n) ≤ εn . By the com-
pactness of M , we can assume that {x̂n} converges to an element x0 ∈ M . Hence, {xn}
converges to x0. Next, we prove that

F(x0) ⊂ F(x̄) − K . (13)

Indeed, by the compact-valuedness of F , the closedness of K and Lemma 2.3,
F(x̄) − K is closed. From (12), taking n → ∞, we obtain (13). It means that
x0 ∈ Su-MinF (x̄, 0). Combining this, (10) and the convergence to x0 of {xn}, we
get a contradiction. Therefore, Su-MinF (x̄, ·) is upper semicontinuous at 0. ��
Corollary 3.1 Suppose that the following conditions hold:
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(i) M is compact;
(ii) F is continuous and compact-valued on M.

Then,

(a) (Pα) is generalized LP well-posed at x̄ ∈ Sα-MinF if Sα-MinF (x̄, 0) is closed.
(b) (Pα) is L P well-posed at x̄ ∈ Sα-MinF if Sα-MinF (x̄, 0) = {x̄}.

4 Metrically LP well-posed set optimization problems

Picking up the ideas in [22], we introduce the following new concepts of LP well-
posedness related to metrically approach for the problem (Pα).

Definition 4.1 A sequence {xn} ⊂ X is said to be a

(i) metrically LP-minimizing sequence for problem (Pl) at x̄ ∈ Sl-MinF if and only
if H∗(F(x̄), F(xn)) → 0 and d(xn, M) → 0 as n → ∞.

(ii) metrically LP-minimizing sequence for problem (Pu) at x̄ ∈ Su-MinF if and only
if H∗(F(xn), F(x̄)) → 0 and d(xn, M) → 0 as n → ∞.

(iii) metrically LP-minimizing sequence for problem (Ps) at x̄ ∈ Ss-MinF if and only
if H(F(x̄), F(xn)) → 0 and d(xn, M) → 0 as n → ∞.

Definition 4.2 The problem (Pα) is said to be metrically LP well-posed if and only if
Sα-MinF �= ∅ and for any metrically LP-minimizing sequence {xn} for problem (Pα)

at some x̄ ∈ Sα-MinF , we have d(xn, Sα-MinF ) → 0 as n → ∞.

Remark 4.1 When α = l, concepts introduced in Definitions 4.1 (i) and 4.2 are similar
to the corresponding ones studied in Definitions 4.5 (ii) and 4.6 (ii) in [22].

Example 4.1 (a) Let X = Y = R, M = [0, 1], K = R+, and let F : X ⇒ Y be
defined by F(x) = [1, 2] for all x ∈ X . Obviously, Sα-MinF = [0, 1] = M , and
the problem (Pα) is metrically LP well-posed.

(b) Let X = Y = R, M = K = R+. Let F : X ⇒ Y be defined by F(x) =
[x2, 3x2] for all x ∈ X . Direct cacullations give us Sα-MinF = {0} and the
problem (Pα) is metrically LP well-posed. Indeed, let {xn} be a metrically LP-
minimizing sequence for (Pα) at x̄ = 0, it implies from definition of metrically
LP-minimizing sequence for (Pα) at x̄ = 0 that {xn} converges to x̄ . Therefore,
d(xn, Sα-MinF ) → 0.

Example 4.2 Let X = Y = R, M = [−1, 1], K = R+, and F : X ⇒ Y is defined by

F(x) =
{ [0, 1), if x ≤ 0,

(0, 1], if x > 0.

By direct computations, we get Sα-MinF = [−1, 0]. Taking xn = 1 + 1
n , then {xn} is

a metrically LP-minimizing sequence for the problem (Pα) at x̄ = 0 ∈ Sα-MinF , but
d(xn, Sα-MinF ) → 1. Therefore, the problem (Pα) is not metrically LP well-posed.

Next, we introduce a generalized form of the above concept.
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Definition 4.3 The problem (Pα) is said to be generalized metrically LP well-posed
if and only if Sα-MinF �= ∅ and for any metrically LP-minimizing sequence {xn}
for (Pα) at some x̄ ∈ Sα-MinF , {xn} has a subsequence, denoted by {xnk }, such that
d(xnk , Sα-MinF ) → 0 as k → ∞.

It is clear that if (Pα) is metrically LP well-posed, then it is generalized metrically
LP well-posed.

These following results give the relationships between these kinds of LP well-
posedness considered in this study.

Theorem 4.1 (i) If (Pα) is LP well-posed at all x̄ ∈ Sα-MinF , then (Pα) is metrically
LP well-posed.

(ii) If (Pα) is generalized LP well-posed at all x̄ ∈ Sα-MinF , then (Pα) is generalized
metrically LP well-posed.

Proof (i) By the similarity we verify the assertions (i), (ii) for the case α = s as an
example. Let {xn} be a metrically LP-minimizing sequence for problem (Ps) at some
x̄ ∈ Ss-MinF . We need to prove that d(xn, Ss-MinF ) → 0. In fact, since {xn} is a metri-
cally LP-minimizing sequence for problem (Ps) at some x̄ ∈ Ss-MinF , d(xn, M) → 0
and

H(F(x̄), F(xn)) → 0. (14)

Observe that we can choose a sequence {εn} ⊂ R+\{0} converging to 0 satisfying
d(xn, M) ≤ εn , both −εne + K and εne − K are neighborhoods of the origin in Y .
By (14), there exists n0 ∈ N such that for all n > n0 we have

F(x̄) ⊂ F(xn) − εne + K and F(xn) ⊂ F(x̄) + εne − K .

This implies that F(xn) ≤s F(x̄)+ εne. Hence, {xn} is a LP-minimizing sequence for
(Ps) at x̄ . By the LP well-posedness of (Ps) at x̄ , {xn} converges to x̄ . Moreover, since
x̄ ∈ Ss-MinF , d(xn, Ss-MinF ) ≤ ‖xn − x̄‖ → 0. So, (Ps) is metrically LP well-posed.

(ii) Using a similar argument with one above, we can prove that the statement (ii)
is satisfied. ��
Remark 4.2 When α = l, (Pα) reduces to (Pl) studied in [22]. To obtain the metrically
LP well-posedness for (Pl), the authors used an important assumption about the K -
closed values of F on M , i.e., F(x) + K is closed for all x ∈ M . Using another
approach, as in Theorem 4.1, we can remove this assumption but also obtain the
metrically LP well-posedness for (Pα).

Combining Theorem 4.1 and Corollary 3.1, we obtain the following results.

Theorem 4.2 Suppose that the following conditions are satisfied:

(i) M is compact;
(ii) F is continuous and compact-valued on M.

Then,
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(a) (Pα) is metrically LP well-posed if Sα-MinF (x̄, 0) = {x̄} for every x̄ ∈
Sα-MinF .

(b) (Pα) is generalized metrically L P well-posed if Sα-MinF (x̄, 0) is closed for
every x̄ ∈ Sα-MinF .

Remark 4.3 Very recently, in [6], the authors studied several kinds of well-posedness
for set optimization problems via the lower set less relation, including B-well-
posedness, L-well-posedness, DH -well-posedness, and they obtained many inter-
esting results related to this topic. In this paper, we consider the Levitin–Polyak
well-posedness and the generalized Levitin–Polyak well-posedness for set optimiza-
tion problems involving various kinds of set less relations, and hence the concepts of
well-posedness investigated in this paper are different from those in [6]. Therefore, it
could not compare our results with theirs.
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