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Abstract
We introduce the free Banach lattice generated by a lattice L. We give an explicit
description of it and we study some of its properties for the case when L is a linear
order, like the countable chain condition.
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1 Introduction

The purpose of this paper is to introduce the free Banach lattice generated by a lattice
and investigate some of its properties. The free Banach lattice generated by a set Awith
no extra structure, which is denoted by FBL(A), has been recently introduced and
analyzed by de Pagter and Wickstead in [4], while the free Banach lattice generated
by a Banach space E has been studied by Avilés, Rodríguez and Tradacete in [2].

If A is a set with no extra structure, FBL(A) is a Banach lattice together with
a bounded map u : A −→ FBL(A) having the following universal property: for
every Banach lattice Y and every bounded map v : A −→ Y there is a unique lattice
homomorphism S : FBL(A) −→ Y such that S◦u = v and‖S‖ = sup {‖a‖ : a ∈ A}.
The same idea is applied by A. Avilés, J. Rodríguez and P. Tradacete to define the
concept of the free Banach lattice generated by a Banach space E , FBL[E]. This is
a Banach lattice together with a bounded operator u : E −→ FBL[E] such that for
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582 A. Avilés, J. D. Rodríguez Abellán

every Banach lattice Y and every bounded operator T : E −→ Y there is a unique
lattice homomorphism S : FBL[E] −→ Y such that S ◦ u = v and ‖S‖ = ‖T ‖.

We can consider a similar idea using lattices instead of Banach spaces. Remember
that a lattice is a set L together with two operations ∧ and ∨ that are the infimum
and supremum of some partial order relation on L, and a lattice homomorphism is a
function between lattices that commutes with the two operations.

Definition 1.1 Given a lattice L, the free Banach lattice generated by L is a Banach
lattice F together with a lattice homomorphism φ : L −→ F such that for every
Banach lattice X and every bounded lattice homomorphism T : L −→ X , there exists
a unique Banach lattice homomorphism T̂ : F −→ X such that ||T̂ || = ||T || and
makes the following diagram commutative, that is to say, T = T̂ ◦ φ.

L

φ

T
X

F
T̂

Here, the norm of T is ‖T ‖ := sup {‖T (x)‖X : x ∈ L}, while the norm of T̂ is the
usual for Banach spaces.

This definition determines a Banach lattice that we denote by FBL〈L〉 in an essen-
tially unique way. When L is a distributive lattice (which is a natural assumption in
this context, see Sect. 3) the function φ is injective and, loosely speaking, we can view
FBL〈L〉 as a Banach lattice which contains a subset lattice-isomorphic to L in a way
that its elements work as free generators modulo the lattice relations on L.

One of the main results in [2] is an explicit description of FBL[E] as a space of
functions. The main result of this paper is also a description of FBL〈L〉 similar to
that FBL[E]. In order to state this, define

L
∗ = {

x∗ : L −→ [−1, 1] : x∗ is a lattice-homomorphism
}
.

For every x ∈ L consider the evaluation map δ̇x : L∗ −→ [−1, 1] given by δ̇x (x∗)
= x∗(x). And for f ∈ R

L
∗
, define

‖ f ‖∗ = sup

{
n∑

i=1

∣∣ f (x∗
i )
∣∣ : n ∈ N, x∗

1 , . . . , x
∗
n ∈ L

∗, sup
x∈L

n∑

i=1

∣∣x∗
i (x)

∣∣ ≤ 1

}

.

Theorem 1.2 Consider F to be the Banach lattice generated by
{
δ̇x : x ∈ L

}
inside

the Banach lattice of all functions f ∈ R
L

∗
with ‖ f ‖∗ < ∞, endowed with the norm

‖ · ‖∗ and the pointwise operations. Then F, together with the assignment φ(x) = δ̇x
is the free Banach lattice generated by L.

In spite of the similarity to the Banach space case from [2], our proof requires
completely different techniques. Section 4 is entirely devoted to this. In Sect. 5 we
focus on the case when L is linearly ordered. Our main result in that section is that, for
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The free Banach lattice generated by a lattice 583

L linearly ordered, FBL〈L〉 has the countable chain condition (ccc) if and only if L is
order-isomorphic to a subset of the real line. Remember that a Banach lattice has the
countable chain condition if in every uncountable family of positive elements there
are two whose infimum is zero. This in contrast with the recent result that FBL[E]
has the ccc for every Banach space E [1]. In Sect. 6 we check, also when L is linearly
ordered, that the elements of L inside FBL〈L〉 behave like the summing basis of c0
from a linear point of view.

2 The Banach lattice FBL〈L〉 as a quotient of a space of functions
Throughout this section L is a fixed lattice. Let us start by checking that Definition 1.1
provides a uniquely determined object. If φ : L −→ F and φ′ : L −→ F ′ satisfy
this definition, then we can get a Banach lattice homomorphism φ̂′ : F −→ F ′ with
φ′ = φ̂′ ◦ φ. Reversing the roles, we also get φ̂ : F ′ −→ F with φ = φ̂ ◦ φ′. The
function φ̂ ◦ φ̂′ and the identity function idF on F both satisfy Definition 1.1 as T̂
when T = φ. So φ̂ ◦ φ̂′ = idF . Similarly, reversing roles, φ̂′ ◦ φ̂ = idF ′ . Thus, we
obtained inverse lattice homomorphism of norm 1 between F and F ′ that commute
with φ and φ′.

Now, we are going to construct a Banach lattice F that satisfies Definition 1.1.
We will show later that the Banach lattice described in Theorem 1.2 also satisfies
Definition 1.1. We take as a starting point that, when we view L as a set with no extra
structure, we have the free Banach lattice FBL(L), together with u : L −→ FBL(L),
constructed by de Pagter and Wickstead, whose universal property was described in
the introduction. Take I the closed ideal of FBL(L) generated by

{u(x) ∨ u(y) − u(x ∨ y), u(x) ∧ u(y) − u(x ∧ y) : x, y ∈ L} .

We take F = FBL(L)/I, and φ : L −→ FBL(L)/I given by φ(x) = u(x) + I.
The very definition of I provides that φ is a lattice homomorphism. Now, let X be
a Banach lattice and T : L −→ X a bounded lattice homomorphism. We know that
FBL(L) satisfies the universal property of free Banach lattices. Therefore, there exists
a Banach lattice homomorphism T̂ 1 : FBL(L) −→ X such that T̂ 1 ◦ u = T and
‖T̂ 1‖ = ‖T ‖. The fact that T was a lattice homomorphism implies that T̂ 1 vanishes
on I. Thus, we can have a Banach lattice homomorphism T̂ : FBL(L)/I −→ X
given by T̂ ( f + I) = T̂ 1( f ). It is clear that T̂ ◦ φ = T . Let us see that ‖T ‖ = ‖T̂ ‖.
We only need to check that ‖T ‖ ≥ ‖T̂ ‖. Let f + I ∈ FBL(L)/I with ‖ f ‖I < 1.
We have that

‖ f ‖I = inf {‖ f + g‖ : g ∈ I} ,

and, therefore, there exists g ∈ I such that ‖ f + g‖ < 1. Thus, ‖T̂ ( f + I)‖ =
‖T̂ 1( f + g)‖ ≤ ‖T ‖. Only the uniqueness of the extension T remains to be checked.
But this follows from the uniqueness of the extension to FBL(L), because if T̂ ◦φ = T ,
then T̂ ◦ π ◦ u = T , where π : FBL(L) −→ FBL(L)/I is the quotient map.
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584 A. Avilés, J. D. Rodríguez Abellán

We have proven that F = FBL(L)/I together with φ above, satisfy Definition 1.1.
To make this representation more concrete, let us recall the description of the free
Banach lattice FBL(A) generated by a set A, as given in [2, Corollary 2.9]. For
every x ∈ A, consider the evaluation map δx : [−1, 1]A −→ [−1, 1], and for every
f : [−1, 1]A −→ R, define

‖ f ‖ = sup

{
n∑

i=1

∣∣ f (x∗
i )
∣∣ : n ∈ N, x∗

1 , . . . , x
∗
n ∈ [−1, 1]A, sup

x∈A

n∑

i=1

∣∣x∗
i (x)

∣∣ ≤ 1

}

.

It is easy to check that the set H of all functions f with ‖ f ‖ < ∞ is a Banach lattice,
when endowed with this norm and with the pointwise operations. The free Banach
lattice FBL(A) can be taken to be the Banach lattice generated by the functions δx
inside H . The function u would be u(x) = δx .

3 Distributivity

A latticeL is said to be distributive if the two operations∧ and∨ distribute each other.
That is, a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) for
all a, b, c ∈ L. For a lattice L, let L̃ = φ(L) be the image of L inside FBL〈L〉. The
following proposition collects some well known facts and observations:

Proposition 3.1 For a lattice L the following are equivalent:

(1) L is distributive,
(2) L is lattice-isomorphic to a subset of a Boolean algebra,
(3) L is lattice-isomorphic to a bounded subset of a Banach lattice,
(4) The canonical map φ : L −→ FBL〈L〉 is injective.
Proof The equivalence of (1), (2) and (3) is well known, see [5, Theorem II.19] for
1 ⇒ 2, [6, Theorem 1.b.3] for 2 ⇒ 3 and [7, Proposition II.1.5] for 3 ⇒ 1. It is
obvious that (4) implies (3). If (3) holds, then we have a bounded injective lattice
homomorphism T : L −→ X for some Banach lattice X . Using Definition 1.1, there
is T̂ such that T̂ ◦ φ = T . Since T is injective, φ is injective and therefore (4) holds.

��
Proposition 3.2 FBL〈L〉 = FBL〈L̃〉. More precisely, if F with φ is the free Banach
lattice over the lattice L, then F with the inclusion map is the free Banach lattice over
the lattice L̃.

The proof is immediate from Definition 1.1. The conclusion of these observations
is that the most natural case in which to consider FBL〈L〉 is when L is distributive,
and that the case of general L reduces to the distributive case in a natural easy way.
Still, we find that it may be useful to state the results for any lattice L. Two more facts:

Proposition 3.3 Every lattice-homomorphism x∗ : L −→ [−1, 1] factors through L̃.
That is, there exists y∗ : L̃ −→ [−1, 1] such that x∗ = y∗ ◦ φ.
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Proof Find a Banach lattice homomorphism of norm atmost one x̂∗ : FBL〈L〉 −→ R

with x∗ = x̂∗ ◦ φ, as in Definition 1.1. Take y∗ = x̂∗|
L̃
. ��

Proposition 3.4 Every finitely generated sublattice of a distributive lattice is finite.

Proof This is a well known fact, see [3, Lemma III.3]. ��

4 The Banach lattice FBL〈L〉 as a space of functions
This section is devoted to the proof of Theorem 1.2. Let FBL∗〈L〉 be the Banach
lattice described in that theorem. By Propositions 3.2 and 3.3, both FBL〈L〉 and
FBL∗〈L〉 remain unchanged if we change L by L̃. So we can assume along this
section that L is distributive. Since we already know that FBL(L)/I is the free
Banach lattice over the lattice L, what we have to do is to find a Banach lattice
isometry S : FBL(L)/I −→ FBL∗〈L〉 such that S(δx + I) = δ̇x .

We know that FBL(L) = lat
‖·‖ {δx : x ∈ L} ⊂ R

[−1,1]L , where

‖ f ‖ = sup

{
n∑

i=1

∣∣ f (x∗
i )
∣∣ : n ∈ N, x∗

1 , . . . , x
∗
n ∈ [−1, 1]L, sup

x∈L

n∑

i=1

∣∣x∗
i (x)

∣∣ ≤ 1

}

,

and recall that FBL∗〈L〉 = lat
‖·‖∗ {δ̇x : x ∈ L

} ⊂ R
L

∗
, where

‖ f ‖∗ = sup

{
n∑

i=1

∣∣ f (x∗
i )
∣∣ : n ∈ N, x∗

1 , . . . , x
∗
n ∈ L

∗, sup
x∈L

n∑

i=1

∣∣x∗
i (x)

∣∣ ≤ 1

}

.

For every function f : [−1, 1]L −→ R, consider its restriction R( f ) = f |L∗ . It
is clear that the function R commutes with linear combination and the lattice oper-
ations and that ‖R( f )‖∗ ≤ ‖ f ‖. Moreover, R(δx ) = δ̇x for every x ∈ L. From
this, we conclude that if f ∈ FBL(L), then R( f ) ∈ FBL∗〈L〉, and we can view
R : FBL(L) −→ FBL∗〈L〉 as a Banach lattice homomorphism of norm 1. More-
over, since L∗ consists of lattice homomorphisms, R vanishes on the ideal I that we
defined at the beginning of this section. Thus, we have aBanach lattice homomorphism
of norm at most one

RI : FBL(L)/I −→ FBL∗〈L〉

given by RI( f + I) = R( f ) for every f + I ∈ FBL(L)/I. What we want to prove
is that RI is an isometry. That is, we have to show that

‖ f ‖I ≤ ‖ f |L∗‖∗

for every f ∈ FBL(L), where ‖ f ‖I = inf{‖ f + g‖ : g ∈ I}.
First, suppose that L = {0, . . . , n − 1} = n is finite. De Pagter and Wickstead

showed that in this case, FBL(L) consists exactly of all the positively homogeneous
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586 A. Avilés, J. D. Rodríguez Abellán

continuous functions on [−1, 1]L = [−1, 1]n . Here, positively homogeneous means
that f (r x) = r f (x) whenever r is a positive scalar. Moreover, if we consider the
boundary ∂[−1, 1]n , and the Banach lattice of continuous functions C(∂[−1, 1]n),
the restriction map P : FBL(L) −→ C(∂[−1, 1]n) is a Banach lattice isomorphism
(it is not however, an isometry: the norm of FBL(L) is transferred to a lattice norm
that is equivalent to the supremum norm).

A closed ideal in a lattice of continuous functions on a compact space always
consists of the functions that vanish on a certain closed set. Thus, there exists a closed
set S ⊂ ∂[−1, 1]n such that

I = { f ∈ FBL(L) : f |S = 0} .

In fact, the points of S must be those where f vanish for all f ∈ I, or equivalently,
for all generators f of I:

S = {
(ξx )x∈L ∈ ∂[−1, 1]n : ξx ∨ ξy = ξx∨y, ξx ∧ ξy = ξx∧y, x, y ∈ L

}

= L
∗ ∩ ∂[−1, 1]n .

Now fix f ∈ FBL(L), and let us prove that ‖ f ‖I ≤ ‖ f |L∗‖∗. Remember that

‖ f |L∗‖∗ = sup

{
m∑

i=1

∣∣ f (x∗
i )
∣∣ : m ∈ N, x∗

1 , . . . , x
∗
m ∈ L

∗, sup
x∈L

m∑

i=1

∣∣x∗
i (x)

∣∣ ≤ 1

}

,

and

‖ f ‖I = inf {‖g‖ : g ∈ FBL(L), f ∼I g} .

Given k ∈ N, let

S+
k =

{
x∗ ∈ ∂[−1, 1]n : d(x∗, S) <

1

k

}

and

S−
k =

{
x∗ ∈ ∂[−1, 1]n : d(x∗, S) ≥ 1

k

}
.

Since S and S−
k are disjoint closed subsets of ∂[−1, 1]n , by Urysohn’s lemma we

can find a continuous function 1̃k : ∂[−1, 1]n −→ [0, 1] such that 1̃k(S) = 1 and
1̃k(S

−
k ) = 0.

Define fk = P−1(1̃k f |S) ∈ FBL(L) be the positively homogeneous extension of
1̃k f |S to the cube [−1, 1]n . Then fk ∈ FBL(L), and moreover, since fk |S = f |S , we
have that fk ∼I f for every k. Therefore, it is enough to prove that for a given ε > 0,
there exists k ∈ N such that ‖ fk‖ ≤ ‖ f |L∗‖∗ + ε.
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The free Banach lattice generated by a lattice 587

We have that

‖ f |L∗‖∗ = sup

{
m∑

i=1

∣∣ri f (x∗
i )
∣∣ : x∗

1 , . . . , x
∗
m ∈ S, r1, . . . , rm ∈ R,

sup
x∈L

m∑

i=1

∣∣ri x∗
i (x)

∣∣ ≤ 1,

}

‖ fk‖ = sup

{
m∑

i=1

∣∣ri fk(x∗
i )
∣∣ : x∗

1 , . . . , x
∗
m ∈ ∂[−1, 1]n, r1, . . . , rm ∈ R,

sup
x∈L

m∑

i=1

∣∣ri x∗
i (x)

∣∣ ≤ 1

}

.

Notice that the scalars r1, . . . , rm ∈ R that appear in these formulas always satisfy∑m
i=1 |ri | ≤ n. This is because for every i we can find ξi ∈ L with x∗

i (ξ) = ±1, and
then,

m∑

i=1

|ri | =
∑

ξ∈L

∑

ξi=ξ

∣∣ri x∗
i (ξ)

∣∣ ≤
∑

ξ∈L
1 = n.

The function f is bounded and uniformly continuous on [−1, 1]n , so we can pick
k ∈ N satisfying the following two conditions:

(1) For all x∗, y∗ ∈ [−1, 1]n, if d(x∗, y∗) ≤ 1

k
, then

∣∣ f (x∗) − f (y∗)
∣∣ < ε/2n.

(2)
Mn2

n + k
<

ε

2
, where M = max{| f (y∗)| : y∗ ∈ [−1, 1]n}.

By the definition of S+
k , given x∗

i ∈ S+
k , there exists y

∗
i ∈ S such that d(x∗

i , y∗
i ) ≤ 1

k .
When x∗

i ∈ S, we can take y∗
i = x∗

i . In this way, we can estimate any sum in the
supremum that gives ‖ fk‖ as follows:

m∑

i=1

∣∣ri fk(x∗
i )
∣∣ =

∑

x∗
i ∈S+

k

∣∣ri fk(x∗
i )
∣∣+

∑

x∗
i ∈S−

k

∣∣ri fk(x∗
i )
∣∣

=
∑

x∗
i ∈S+

k

∣∣ri fk(x∗
i )
∣∣ ≤

∑

x∗
i ∈S+

k

∣∣ri f (x∗
i )
∣∣

≤
∑

x∗
i ∈S+

k

∣∣ri f (y∗
i )
∣∣+

∑

x∗
i ∈S+

k

|ri |
∣∣ f (x∗

i ) − f (y∗
i )
∣∣

≤
∑

x∗
i ∈S+

k

∣∣ri f (y∗
i )
∣∣+ n

2ε

∑

x∗
i ∈S+

k

|ri |
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588 A. Avilés, J. D. Rodríguez Abellán

≤
∑

x∗
i ∈S+

k

∣∣ri f (y∗
i )
∣∣+ ε

2
.

We have estimated a sum in the supremum that gives ‖ fk‖ by something that looks
very much like a sum in the supremum that gives ‖ f |L∗‖∗. Still, in order to have a
sum in that supremum we would need that supx∈L

∑ |ri f (y∗
i )| ≤ 1. This is not the

case, but we will get it after a small perturbation. For x ∈ L,

∑

x∗
i ∈S+

k

∣∣ri y∗
i (x)

∣∣ ≤
∑

x∗
i ∈S+

k

∣∣ri x∗
i (x)

∣∣+
∑

x∗
i ∈S+

k

|ri |
∣∣y∗

i (x) − x∗
i (x)

∣∣

≤
∑

x∗
i ∈S+

k

∣∣ri x∗
i (x)

∣∣+ 1

k

∑

x∗
i ∈S+

k

|ri |

≤ 1 + n

k
.

Thus, the scalars r̃i = ri
1+n/k and the elements y∗

i , for every i with x∗
i ∈ S+

k , are
as required in the supremum that gives ‖ f |L∗‖∗. Coming back to our estimate of the
sum in the sup of ‖ fk‖:

m∑

i=1

∣∣ri fk(x∗
i )
∣∣ ≤

∑

x∗
i ∈S+

k

∣∣ri f (y∗
i )
∣∣+ ε

2

≤
∑

x∗
i ∈S+

k

∣∣r̃i f (y∗
i )
∣∣+

∑

x∗
i ∈S+

k

∣∣(ri − r̃i ) f (y
∗
i )
∣∣+ ε

2

≤ ‖ f |L∗‖∗ +
(
1 − 1

1 + n/k

) ∑

x∗
i ∈S+

k

∣∣ri f (y∗
i )
∣∣+ ε

2

= ‖ f |L∗‖∗ + n

n + k

∑

x∗
i ∈S+

k

∣∣ri f (y∗
i )
∣∣+ ε

2

≤ ‖ f |L∗‖∗ + Mn

n + k

∑

x∗
i ∈S+

k

|ri | + ε

2

≤ ‖ f |L∗‖∗ + Mn2

n + k
+ ε

2
≤ ‖ f |L∗‖∗ + ε,

as we needed to prove. This finishes the proof of Theorem 1.2 in the case when L is
finite. Before getting to the infinite case, we state a lemma.

Lemma 4.1 Let L be a distributive lattice and F0 ⊂ L be a finite subset. Then, there
exists a finite sublattice F1 ⊂ L such that for every latticeM and every lattice homo-
morphism y∗ : F1 −→ M there exists a lattice homomorphism z∗ : L −→ M such
that z∗|F0 = y∗|F0 .
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The free Banach lattice generated by a lattice 589

Proof We start with a claim: If M is a finite lattice and x∗ : F0 −→ M is a function
which is not the restricion of any lattice homomorphism z∗ : L −→ M, then there
exists a finite sublattice F1[x∗] ⊂ L that contains F0 and such that x∗ is not the
restriction of any lattice homomorphism y∗ : F1[x∗] −→ M.

Proof of the claim: For every finite subset F ⊂ L that contains F0, consider the set

KF = {z∗ : L −→ M : z∗|F0 = x∗,
z∗(a ∧ b) = z∗(a) ∧ z∗(b), for all a, b ∈ F,

z∗(a ∨ b) = z∗(a) ∨ z∗(b), for all a, b ∈ F.}

Since every finitely generated sublattice of a distributive lattice is finite, the negation
of the claim above implies that KF �= ∅ whenever F is finite. It is easy to check that
KF is a closed subset of ML (with the product topology of the discrete topology on
M). We also have that

⋂
KFi ⊃ K⋃Fi for any F

1, . . . ,Fk . Thus, the sets of the form

KF form a family of closeds subsets of ML with the finite intersection property. By
compactness, there exists z∗ : L −→ M that belongs to all sets KF. But then, z∗ is
a lattice homomorphism with z∗|F0 = x∗ in contradiction with the hypothesis of the
claim.

Once the claim is proved, we return to the proof of the Lemma. First, let us notice
that we can suppose that F0 is a finite sublattice of L and that M is finite. The first
assumption is becausewe can pass to the sublattice generated byF0, and remember that
every finitely generated distributive lattice is finite. The second assumption is because
we can consider the restriction of y∗ onto its range. Let us say that two surjective lattice
homomorphisms x∗

1 : F0 −→ M1 and x∗
2 : F0 −→ M2 are equivalent if there exists

a lattice isomorphism φ : M1 −→ M2 such that φ ◦ x∗
1 = x∗

2 . Clearly, there are only
finitely many equivalence classes of such surjective lattice homomorphisms, so let
C = {x∗

1 , x
∗
2 , . . . , x

∗
p} be a finite list that contains a representative of each equivalence

class. Let C′ be the smallest list made of all the x∗
i ∈ C that are not the restriction

of any lattice homomorphism z∗ : L −→ Mi . We can construct then F1 to be the
sublattice of L generated by F0 and by all the F1[x∗

i ] for x∗
i ∈ C′. ��

Now, we consider the case whenL is infinite. Again, we fix g ∈ FBL(L), and have
to show that ‖g‖I ≤ ‖g|L∗‖∗.

For this proof it will be convenient to explicitly indicate the domain of the evaluation
functions, so we write δLx : [−1, 1]L −→ R for the function δLx (x∗) = x∗(x). We can
suppose that g can be written as g = P(δLx1 , . . . , δ

L
xn ) for some x1, . . . , xn ∈ L, where

P is a formula that involves linear combinations and the lattice operations ∧ and ∨.
This is because this kind of functions are dense in FBL(L), that was generated by
the functions δLx as a Banach lattice. Let F0 = {x1, . . . , xn} and let F1 be the finite
sublattice of L provided by Lemma 4.1. For any set A such that F0 ⊂ A ⊂ L, we
consider

gA = P(δAx1 , . . . , δ
A

xn ) : [−1, 1]A −→ R

Claim X: If A ⊂ B and x∗ ∈ [−1, 1]B, then gB(x∗) = gA(x∗|A).

123



590 A. Avilés, J. D. Rodríguez Abellán

Proof of the claim This is easily checked by induction on the complexity of the expres-
sion P . If P is just a variable P(u1, . . . , un) = ui , then we have the fact that
δBxi (x

∗) = x∗(xi ) = δAxi (x
∗|A). And it is trivial that if the claim is satisfied by P

and Q, it is also satisfied for P ∧ Q, P ∨ Q and any linear combination of P and Q.
This finishes the proof of the claim. ��

Let I1 be the ideal of FBL(F1) generated by the elements of the form δ
F1
x∨y −δ

F1
x ∨

δ
F1
y and δ

F1
x∧y − δ

F1
x ∧ δ

F1
y . By the finite case that we already proved, we have that

∥∥∥gF1
∥∥∥I1

≤
∥∥∥gF1 |F∗

1

∥∥∥∗ .

Thus, it is enough to prove that ‖g‖I ≤ ∥∥gF1
∥∥I1 and that

∥∥∥gF1 |F∗
1

∥∥∥∗ ≤ ‖g|L∗‖∗.

Let us see first that
∥∥∥gF1 |F∗

1

∥∥∥∗ ≤ ‖g|L∗‖∗. We have that

∥∥∥gF1 |F∗
1

∥∥∥∗ = sup

{
m∑

i=1

∣∣∣gF1(y∗
i )

∣∣∣ : m ∈ N, y∗
i ∈ F

∗
1, sup

x∈F1

m∑

i=1

∣∣y∗
i (x)

∣∣ ≤ 1

}

,

‖g|L∗‖∗ = sup

{
m∑

i=1

∣∣g(z∗i )
∣∣ : m ∈ N, z∗i ∈ L

∗, sup
x∈L

m∑

i=1

∣∣z∗i (x)
∣∣ ≤ 1

}

.

We take a sum
∑m

i=1

∣∣gF1(y∗
i )
∣∣ and we will find a sum

∑m
i=1

∣∣g(z∗i )
∣∣ like in the

second supremum with the same value. Consider

M = {(y∗
1 (x), . . . , y

∗
m(x)) : x ∈ F1} ⊂ [−1, 1]m .

Notice that, since each y∗
i is a lattice homomorphism, the set M is a sublattice

of Rm and we have a lattice homomorphism y∗ : F1 −→ M given by y∗(x) =
(y∗

1 (x), . . . , y
∗
m(x)). Also, since we are assuming that the y∗

i are as in the supremum
above, we have that

∑m
i=1 |ξi | ≤ 1 whenever (ξ1, . . . , ξm) ∈ M. We are in a position

to apply Lemma 4.1, and we find a lattice homomorphism z∗ : L −→ M ⊂ [−1, 1]m
such that z∗|F0 = y∗|F0 . Write z∗(x) = (z∗1(x), . . . , z∗m(x)), so that we have
z∗1, . . . , z∗m ∈ L

∗. Since the range of z∗ is inside M, we have that
∑m

i=1

∣∣z∗i (x)
∣∣ ≤ 1

for all x ∈ L. Finally, using Claim X above

m∑

i=1

∣∣g(z∗i )
∣∣ =

m∑

i=1

∣∣∣gL(z∗i )
∣∣∣ =

m∑

i=1

∣∣∣gF0(z∗i |F0)
∣∣∣ =

m∑

i=1

∣∣∣gF0(y∗
i |F0)

∣∣∣ =
m∑

i=1

∣∣∣gF1(y∗
i )

∣∣∣ ,

as required.
Now, we prove the remaining inequality ‖g‖I ≤ ‖gF1‖I1 . In this proof, it will be

useful to use a subindex on norms to indicate in which free Banach space these norms
are calculated. Remember that

‖g‖I = inf
{‖ f ‖FBL(L) : f ∈ FBL(L), f − g ∈ I} ,
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The free Banach lattice generated by a lattice 591

‖gF1‖I1 = inf
{
‖h‖FBL(F1) : h ∈ FBL(F1), h − gF1 ∈ I1

}
,

where

‖ f ‖FBL(L) = sup

{
m∑

i=1

∣∣ f (z∗i )
∣∣ : m ∈ N, z∗i ∈ [−1, 1]L, sup

x∈L

m∑

i=1

∣∣z∗i (x)
∣∣ ≤ 1

}

,

‖h‖FBL(F1) = sup

{
m∑

i=1

∣∣h(y∗
i )
∣∣ : m ∈ N, y∗

i ∈ [−1, 1]F1 , sup
x∈F1

m∑

i=1

∣∣y∗
i (x)

∣∣ ≤ 1

}

.

Thus, the question is if given h ∈ FBL(F1) such that h − gF1 ∈ I1, there exists
f ∈ FBL(L) such that f − g ∈ I and ‖ f ‖FBL(L) ≤ ‖h‖FBL(F1).
For every h : [−1, 1]F1 −→ R, we consider e(h) : [−1, 1]L −→ R given by

e(h)(z∗) = h(z∗|F1). It is clear that e(δF1x ) = δLx , and e preserves linear combinations,
the lattice operations and ‖e(h)‖FBL(L) = ‖h‖FBL(F1). Thus, we can view e as a
Banach lattice homomorphism e : FBL(F1) −→ FBL(L) that preserves the norm.

Now, we see that f = e(h) is what we are looking for. It only remains to check
that f − g ∈ I. We know that h − gF1 ∈ I1, which is the ideal generated by

{
δ
F1
x∨y − δF1x ∨ δF1y , δ

F1
x∧y − δF1x ∧ δF1y : x, y ∈ F1

}
.

Therefore, e(h) − e(gF1) is in the ideal generated by

{
e
(
δ
F1
x∨y − δF1x ∨ δF1y

)
, e
(
δ
F1
x∧y − δF1x ∧ δF1y

)
: x, y ∈ F1

}
.

=
{
δLx∨y − δLx ∨ δLy , δLx∧y − δLx ∧ δLy : x, y ∈ F1

}
.

Notice that e(gF1) = g by Claim X above. So we conclude that e(h) − e(gF1)
= f − g ∈ I as required.

5 Chain conditions on the free Banach lattice of a linear order

Throughout this section L is a linearly ordered set, which is a particular case of a
lattice, and FBL〈L〉 = FBL∗〈L〉 is the free Banach lattice generated by L, in the
concrete form described in Theorem 1.2. From now on, for x ∈ L, we will denote the
evaluation maps as δx : L∗ −→ R instead of δ̇x , as we do not need to distinguish it
anymore from other evaluation maps. A Banach lattice X satisfies the countable chain
condition (ccc), if whenever { fi : i ∈ I } ⊂ X are positive elements and fi ∧ f j = 0
for all i �= j , then we must have that |I | is countable. This section is devoted to the
proof of the following result:

Theorem 5.1 For L linearly ordered, FBL〈L〉 has the countable chain condition if
and only if L is order-isomorphic to a subset of the real line.
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592 A. Avilés, J. D. Rodríguez Abellán

We first state a couple of lemmas:

Lemma 5.2 For a linearly ordered set L the following are equivalent:

(1) L is order-isomorphic to a subset of the real line.
(2) L is separable in the order topology, and the set of leaps {(a, b) ∈ L

2 : [a, b] =
{a, b}} is countable.

(3) For every uncountable family of triples

F = {{xi1, xi2, xi3} : xi1, xi2, xi3 ∈ L, xi1 < xi2 < xi3, i ∈ J
}

there exist i �= j such that xi1 ≤ x j
2 ≤ xi3 and x j

1 ≤ xi2 ≤ x j
3 .

Proof The equivalence of (1) and (2) is easy and is well known folklore, cf. [8, Corol-
lary 3.1]. Assume now (2) and let us prove (3). Take a countable dense subset D ⊂ L

that contains all the leaps
{
(a, b) ∈ L

2 : [a, b] = {a, b}} ⊂ D. Let f : F −→ D2

be the map given by f (xi1, x
i
2, x

i
3) = (d1, d2), where dk is an element of D such that

xik < dk < xik+1 if such an element exists, and dk = xik otherwise, when x
i
k, x

i
k+1 ∈ D

form a leap. Since F is uncountable and D2 is countable, there exists an uncountable
F0 ⊆ F such that f |F0 is constant. Any pair of distinct elements i, j ∈ F0 is as
required because we can interpolate xuk ≤ dk < xv

l . Let us prove now that (3) implies
(2). First, let us see that the set of leaps is countable. Let us say two leaps (a, b) and
(a′, b′) are equivalent if there exist c0 < c1 < · · · < cp finitely many elements of
L such that each (ck, ck+1) is a leap and either c0 = a and cp = b′, or c0 = a′ and
cp = b. It is clear that each equivalence class of leaps is countable. So if there were
uncountably many leaps, we could find an uncountable family G = {{xi1, xi2} : i ∈ J }
of nonequivalent leaps xi1 < xi2. We can asume that xi2 is never the maximum of L and
we choose an arbitrary xi3 > xi2. Applying (3) to the familyF = {{xi1, xi2, xi3} : i ∈ J }
, we could find i ≤ j such that xi1 ≤ x j

2 and x
j
1 ≤ xi2. But when we have two nonequiv-

alent leaps, one has to be strictly to the right of the other, so either x j
2 < xi1 or x

i
2 < x j

1 ,
a contradiction. Now we prove that L is separable. Using Zorn’s lemma, we can find
a maximal family F that fails the property stated in (3). This family must be then
countable. Let D be the set of all elements of L that either appear in some triple of
the family F or are one of the two sides of a leap. We know now that D is countable.
Let us check that it is dense. Take a nonempty open interval (a, b) ⊂ L. If the interval
(a, b) is finite, then all its elements are parts of leaps, so it intersects D. Suppose that
(a, b) is infinite but does not intersect D. Then if we pick a < x1 < x2 < x3 < b,
then the triple {x1, x2, x3} could be added to F , in contradiction with its maximality.

��
We notice that the use of triples in Lemma 5.2 is essential. The analogous property

of condition (3) for couples instead of triples would be that for every uncountable
family F = {{xi1, xi2} : xi1 < xi2} there are i �= j such that xi1 ≤ x j

2 and x j
1 ≤ xi2. A

connected Suslin line has this weaker property but it does not embed inside the real
line.
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Lemma 5.3 Let L ⊂ M be two linearly ordered sets. Then FBL〈L〉 is isomorphic to
a closed sublattice of FBL〈M〉.
Proof Let i : L −→ M be the inclusion map. It is easy to construct a lattice homo-
morphism (in this case, this is just a nondecreasing function) u : M −→ L such that
u ◦ i = idL. Using the universal property of Definition 1.1, we can find Banach lattice
homomorphisms ı̂ : FBL〈L〉 −→ FBL〈M〉 and û : FBL〈M〉 −→ FBL〈L〉 such
that

∥∥ı̂
∥∥ = ∥∥û

∥∥ = 1 and û ◦ ı̂ = idFBL〈L〉. This gives the desired result. In fact, the
closed sublattice is 1-complemented. ��

We prove now Theorem 5.1. A first obervation is that, in this case,

L
∗ = {

x∗ : L −→ [−1, 1] : u ≤ v ⇒ x∗(u) ≤ x∗(v)
}
.

We endow L
∗ with the pointwise topology. If a function f : L∗ −→ R belongs to

FBL〈L〉, then it is continous. This is because the functions δx are continuous, and the
property of being continous is preserved under all Banach lattice operations (including
limits, because every limit in FBL〈L〉 is a uniform limit).

A basis for the topology of L∗ is given by the sets of the form

U (x1, I1, . . . , xn, In) := {
x∗ ∈ L

∗ : x∗(xi ) ∈ Ii for all i = 1, . . . , n
}
.

for x1, . . . , xn ∈ L and I1, . . . , In open intervalswith rational endpoints.Write Ii < I j
if sup(Ii ) < inf(I j ), and consider the family

W = {U (x1, I1, . . . , xn, In) : x1 < x2 < · · · < xn, I1 < I2 < · · · < In} .

This is not a basis anymore. But since L
∗ consists of nondecreasing functions, it is

clear thatW is a π -basis. That means that every nonempty open subset of L∗ contains
a nonempty open subset fromW .

Let us suppose that L is a subset of the real line, and we prove that FBL〈L〉 is ccc.
Let D ⊂ L be a countable dense subset of L that contains all element that are part of
a leap, D ⊃ {a, b : [a, b] = {a, b}}. Observe that in this case

W0 = {U (d1, I1, . . . , dn, In) ∈ W : d1, d2, · · · , dn ∈ D} .

is also a π -basis of L∗. This is because for every U (x1, I1, . . . , xn, In) ∈ W , we can
interpolate d−

1 ≤ x1 ≤ d+
1 ≤ d−

2 ≤ x2 ≤ d+
2 ≤ · · · ≤ d−

n ≤ xn ≤ d+
n with d±

k ∈ D,
and then

U (d−
1 , I1, d

+
1 , I1, . . . , d

−
n , In, d

+
n , In) ⊂ U (x1, I1, . . . , xn, In).

Take an uncountable family of positive elements G ⊂ FBL〈L〉. For each f ∈ G there
exists V f ∈ W0 such that V f ⊂ {x∗ ∈ L

∗ : f (x∗) > 0}. Notice that f ∧ g �= 0
whenever V f ∩ Vg �= ∅. Since G is uncountable andW0 is countable, there are plenty
of pairs f , g such that in fact V f = Vg . This finishes the proof that FBL〈L〉 is ccc
whenever L embeds in the real line.
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594 A. Avilés, J. D. Rodríguez Abellán

We may notice that we proved a property stronger that the ccc: If a linear order L
embeds into the real line, then FBL〈L〉 is σ -centered. That means, we can decompose
the positive elements into countably many pieces in such a way that every finite
infimum inside each piece is nonzero.

Nowwe turn to the proof that ifL does not embed into the real line, then FBL〈L〉 is
not ccc.We are going to prove it first under the extra assumption thatL has amaximum
M and a minimum m. We fix an uncountable family of triples F that fails property
(3) in Lemma 5.2. For every i ∈ J consider

hi = 0 ∨
(
δxi1

∧
(
δxi2

− δxi1
− 0.4 δM

)
∧
(
δxi3

− δxi2
− 0.4 δM

))
.

Let us see that these elements of FBL〈L〉 witness the failure of the ccc. Obviously
hi ≥ 0. First, we fix i and we check that hi > 0. For this, define x∗ : L −→ [−1, 1]
by

x∗(x) =
⎧
⎨

⎩

0.1 if x < xi2,
0.55 if xi2 ≤ x < xi3,
1 if xi3 ≤ x .

We have that hi (x∗) = 0∨ (0.1 ∧ (0.55 − 0.1 − 0.4) ∧ (1 − 0.55 − 0.4)) = 0.05, so
hi �= 0.

Now, we prove that hi ∧h j = 0 for i �= j . Suppose on the contrary that hi ∧h j > 0.
Then, there exists x∗ ∈ L

∗ such that hi (x∗) ∧ h j (x∗) > 0. Then

x∗(xi1) > 0, x∗(x j
1 ) > 0,

x∗(xi2) − x∗(xi1) > 0.4 x∗(M),

x∗(xi3) − x∗(xi2) > 0.4 x∗(M),

x∗(x j
2 ) − x∗(x j

1 ) > 0.4 x∗(M),

x∗(x j
3 ) − x∗(x j

2 ) > 0.4 x∗(M).

Remember that property (3) of Lemma 5.2 fails, and therefore either x j
2 /∈ [xi1, xi3] or

xi2 /∈ [x j
1 , x j

3 ]. For example, say that xi2 < x j
1 (all other cases are analogous). Then,

combining the fact that x∗ is nondecreasing with the above inequalities, we get that

x∗(M) > x∗(M) − x∗(xi1)
≥ x∗(x j

3 ) − x∗(xi1)
= x∗(x j

3 ) − x∗(x j
2 ) + x∗(x j

2 ) − x∗(x j
1 )

+x∗(x j
1 ) − x∗(xi2) + x∗(xi2) − x∗(xi1)

> 1.2 x∗(M),

a contradicition because x∗(M) ≥ x∗(xi1) > 0.

The proof of the case when L has a maximum is over. Let
←−
L be the linear order

whose underlying set is the same as L, but with the reverse order. It is easy to check
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that the map 	 : FBL〈L〉 −→ FBL〈←−L 〉 given by 	( f )(x∗) = − f (−x∗) is an
isomorphism of Banach lattices with 	(δx ) = δx for all x ∈ L. Thus, FBL〈L〉 and
FBL〈←−L 〉 are isomorphic, so we will have that L embeds into the real line whenever
FBL〈L〉 is ccc and L has a minimum. The case when L has neither a maximum nor a
minimum remains. In that case, we just pick an arbitrary element a ∈ L and consider
L1 = {x ∈ L : x ≤ a} and L2 = {x ∈ L : x ≥ a}. By Lemma 5.3, if FBL〈L〉 is
ccc then both FBL〈L1〉 and FBL〈L2〉 are ccc. But L1 and L2 have a minimum and a
maximum respectively, so by the cases that we already proved, we conclude that both
L1 and L2 embed into the real line. This implies that L embeds into the real line, as
required.

6 Linear structure of a line in its free Banach lattice

In this section, L is again a linearly ordered set, and FBL〈L〉 its free Banach lattice,
in the form of Theorem 1.2, with embedding φ : L −→ FBL〈L〉 given by φ(x) = δx .
Wewill show that in this case, the linear combinations of the copy ofL inside FBL〈L〉
behave similarly to the summing basis of c0. More precisely:

Proposition 6.1 Let L be a linearly ordered set. Then, for every u1 < . . . < um ∈ L

and a1, . . . , am ∈ R we have that

∥∥∥∥∥

m∑

i=1

ai si

∥∥∥∥∥
∞

≤
∥∥∥∥∥

m∑

i=1

aiδui

∥∥∥∥∥
∗

≤ 6

∥∥∥∥∥

m∑

i=1

ai si

∥∥∥∥∥
∞

,

where si = (1, 1, . . . , 1︸ ︷︷ ︸
i

, 0, 0, 0, . . .) ∈ c0.

Proof Let T : L −→ c0 be the map given by

T (x) =
{
s1 if x < u2;
sk if uk ≤ x < uk+1 for any k ≥ 2.

Clearly, T is a bounded and increasing map. Let T̂ : FBL〈L〉 −→ c0 be its
extension as in Definition 1.1. Since ‖T̂ ‖ ≤ 1, we have that ‖T̂ (

∑m
i=1 aiδui )‖∞

≤ ‖∑m
i=1 aiδui ‖∗, where T̂ (

∑m
i=1 aiδui ) = ∑m

i=1 ai si . This proves the first
inequality in the proposition.

For f ∈ FBL∗〈L〉 we have that

‖ f ‖∗ = sup

{
n∑

i=1

∣∣ f (x∗
i )
∣∣ : n ∈ N, x∗

1 , . . . , x
∗
n ∈ L

∗, sup
x∈L

n∑

i=1

∣∣x∗
i (x)

∣∣ ≤ 1

}

≤ 2 sup

{∣∣∣∣∣

n∑

i=1

f (x∗
i )

∣∣∣∣∣
: n ∈ N, x∗

1 , . . . , x
∗
n ∈ L

∗, sup
x∈L

n∑

i=1

∣∣x∗
i (x)

∣∣ ≤ 1

}

.
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This is because

n∑

i=1

| f (x∗
j )| =

∣∣∣∣∣∣∣

∑

f (x∗
j )>0

f (x∗
j )

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

∑

f (x∗
j )<0

f (x∗
j )

∣∣∣∣∣∣∣
.

Therefore

∥∥∥∥∥

m∑

i=1

aiδui

∥∥∥∥∥
∗

≤ 2 sup

⎧
⎨

⎩

∣∣∣∣∣∣

n∑

j=1

m∑

i=1

ai x
∗
j (ui )

∣∣∣∣∣∣
: n ∈ N, x∗

1 , . . . , x
∗
n ∈ L

∗, sup
x∈L

n∑

j=1

∣∣x∗
i (x)

∣∣ ≤ 1

⎫
⎬

⎭

= 2 sup

⎧
⎨

⎩

∣∣∣∣∣∣

m∑

i=1

ai (
n∑

j=1

x∗
j )(ui )

∣∣∣∣∣∣
: n ∈ N, x∗

1 , . . . , x
∗
n ∈ L

∗, sup
x∈L

n∑

j=1

∣∣x∗
i (x)

∣∣ ≤ 1

⎫
⎬

⎭

= 2 sup

{∣∣∣∣∣

m∑

i=1

ai x
∗(ui )

∣∣∣∣∣
: x∗ ∈ L

∗
}

.

On the other hand,

3

∥∥∥∥∥

m∑

i=1

ai si

∥∥∥∥∥
∞

= sup

{∣∣∣∣∣
z∗
(

m∑

i=1

ai si

)∣∣∣∣∣
: z∗ ∈ 3Bc0∗

}

= sup

{∣∣∣∣∣

m∑

i=1

ai z
∗(si )

∣∣∣∣∣
: z∗ ∈ 3B
1

}

.

Given x∗ ∈ L
∗, if we define z1 = x∗(u1) and zk = x∗(uk) − x∗(uk−1) for every

k ≥ 2, then z∗ = (z1, z2, z3, . . .) ∈ 3B
1 , and z∗(si ) = x∗(ui ) for all i = 1, . . . ,m.
Combining all these facts, we get the second inequality in the proposition. ��
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