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Abstract We provide a characterization in terms of Fatou closedness for weakly
closed monotone convex sets in the space of P-quasisure bounded random variables,
where P is a (possibly non-dominated) class of probability measures. Applications of
our results lie within robust versions the Fundamental Theorem of Asset Pricing or
dual representation of convex risk measures.
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1 Introduction

A fundamental result attributed to Grothendieck ([22, p. 321, Exercise 1]) and based
on the Krein–Smulian theorem characterizes weak*-closedness of a convex subset of
L∞
P := L∞(�,F , P), where (�,F , P) is a probability space, bymeans of a property

called Fatou closedness as follows:
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Theorem 1.1 Let A ⊂ L∞
P be convex. Equivalent are:

(i) A is weak*-closed (i.e. closed in σ(L∞
P , L1

P )).
(ii) A is Fatou closed, i.e. if (Xn)n∈N ⊂ A is a bounded sequence which converges

P-almost surely to X, then X ∈ A.

Note that L∞
P is a Banach lattice (see Sect. 2) and that from this point of view prop-

erty (ii) in Theorem 1.1 equals sequential order closedness ofA which in fact implies
order closedness since L∞

P has the countable sup property, i.e. every nonempty subset
possessing a supremum contains a countable subset possessing the same supremum.
Theorem 1.1 is very useful and often applied in the mathematical finance literature
such as in the classic proof of the Fundamental Theorem of Asset Pricing, see e.g.
[12] or [13], or in the dual representation of convex risk functions, see e.g. [19]. In all
cases the problem is that the norm dual of L∞

P contains undesired singular elements,
whereas in the weak*-duality (L∞

P , σ (L∞
P , L1

P )) the elements of the dual space are
identified with σ -additive measures. However, as the weak*-topology is generally not
first-countable, verifying that some set is weak*-closed is typically quite challenging.
This is where Theorem 1.1 proves helpful.

The aim of this paper is to study the existence of a version of Theorem 1.1 for
the case when the probability measure P is replaced by a class P of probability
measures on (�,F). In general this classP does not allow for a dominatingprobability.
Applications of such a result lie for instance in the field of mathematical finance,
where currently there is much attention paid to deriving versions of the Fundamental
Theorem of Asset Pricing as well as dual representations of convex risk functions in
so-called robust frameworks as studied in [4,6–8,26,28]. These kind of frameworks
have become increasingly popular to describe a decision maker who has to deal with
the uncertainty which arises from model ambiguity. Here the class of probability
models P the decision maker takes into account represents her degree of ambiguity
about the right probabilistic model. If P = {P} there is no ambiguity. In many studies
which account for model ambiguity P in fact turns out to be a non-dominated class
of probability measures, see [6–8,26] and the reference therein.

We will show that there is a version of Theorem 1.1 in a robust probabilistic frame-
work (�,F ,P), see Theorem 3.9. Let

c(A) := sup
P∈P

P(A), A ∈ F ,

denote the capacity generated by P . Under some conditions on the convex set A and
on L∞

c we obtain equivalence between

(WC) A ⊂ L∞
c is σ(L∞

c , cac)-closed,
(FC) A ⊂ L∞

c is Fatou closed: for any bounded sequence {Xn} ⊂ A and X ∈ L∞
c

such that Xn → X P-quasi surely we have that X ∈ A,

where L∞
c and cac are the robust analogues of L∞

P and L1
P given by the capacity c,

respectively, and P quasi sure convergence means Q-almost sure convergence under
each Q ∈ P . The conditions we have to require on A are monotonicity (A = A +
(L∞

c )+) and a property called P-sensitivity. Monotonicity is typically satisfied in
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economic applications, and we show thatP-sensitivity is indeed a necessary condition
to have (WC)⇔ (FC), see Proposition 3.8. If P is dominated, P-sensitivity is always
fulfilled.

Another requirement which is crucial for our proof of (WC)⇔ (FC) is that the dual
space of cac may be identified with L∞

c . This condition is in fact equivalent to the
order completeness of the Banach lattice L∞

c , i.e. the existence of a supremum for any
bounded subset of L∞

c , see Proposition 3.10, and it thus corresponds to aggregation
type results as in [11,27]. If L∞

c is order complete, then the property (FC) equals
sequential order closedness of A. However, order completeness does not imply that
L∞
c possesses the countable sup property, see Examples 3.11 and 3.12, so even under

this condition (FC) does in general not imply order closedness of A.
We also provide a counter example showing that for non-dominated P there is

no proof of (WC) ⇔ (FC) without further requirements such as P-sensitivity, see
Example 3.4. Moreover, we illustrate that many conditions, in particular on P , one
would think of in the first place to ensure (WC) ⇔ (FC), indeed imply that P is
dominated, so we are back to Theorem 1.1. Hence, a further contribution of this paper
is to provide a deeper insight into the fallacies one might encounter when attempting
to extend Theorem 1.1 to a robust case.

The paper is structured as follows: Sect. 2 provides a list of useful notations which
will be used throughout the paper. Section 3 contains the main results of the paper, and
in particular Theorem 3.9 is the robust version of Theorem 1.1. Finally, applications of
Theorem 3.9 in the field of mathematical finance are collected in Sect. 4. Here we do
not assume that the reader is familiar with mathematical finance. However, we try to
keep the presentation concise, referring to the relevant literature for more background
information.

2 Notation

For the sake of clarity we propose here a list of the basic notations and definitions that
we shall use throughout this paper.

Let (�,F) be any measurable space.

(i) ba := {μ : F → R | μ is finitely additive} and ca := {μ : F → R |
μ is σ -additive}. These are both Banach lattices once endowed with the total
variation norm T V and |μ| = μ+ + μ− where μ = μ+ − μ− is the Jordan
decomposition (see [1] for further details).

(ii) ba+ (resp. ca+) is the set of all positive additive (resp. σ -additive) set functions
on (�,F).

(iii) In absence of any reference probability measure we have the following sets of
random variables

L := { f : � → R | f isF-measurable},
L+ := { f ∈ L | f (ω) ≥ 0,∀ω ∈ �},
L∞ := { f ∈ L | f is bounded}.
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In particularL∞ is a Banach space under the (pointwise) supremum norm ‖·‖∞
with dual space ba.

(iv) M1 ⊂ ca+ is the set of all probability measures on (�,F).
(v) Throughout this paper we fix a set of probability measures P ⊂ M1.
(vi) We introduce the sublinear expectation

c( f ) := sup
Q∈P

EQ[ f ], f ∈ L+

and by some abuse of notation we define the capacity c(A) := c(1A) for A ∈ F .
(vii) Let ̂P, ˜P ⊂ M1. ̂P dominates ˜P , denoted by ˜P 
 ̂P , if for all A ∈ F :

sup
P∈̂P

P(A) = 0 ⇒ sup
P∈˜P

P(A) = 0.

We say that two classes ̂P and ˜P are equivalent, denoted by ̂P ≈ ˜P , if ˜P 
 ̂P
and ̂P 
 ˜P .

(viii) A statement holds P-quasi surely (q.s.) if the statement holds Q-almost surely
(a.s.) for any Q ∈ P .

(ix) The space of finitely additive (resp. countably additive) set functions dominated
by c is given by bac = {μ ∈ ba | μ 
 c} (resp. cac = {μ ∈ ca | μ 
 c}). Here
μ 
 c means: c(A) = 0 for some A ∈ F implies μ(A) = 0. When P = {Q}
we shall write baQ or caQ for the sake of simplicity.

(x) We consider the quotient space Lc := L/∼ where the equivalence is given by

f ∼ g ⇔ ∀P ∈ P : P( f = g) = 1.

Weshall use capital letters to distinguish equivalence classes of randomvariables
X ∈ Lc from a representative f ∈ X , with f ∈ L. In case P = {Q} we shall
write L1

Q instead of Lc. It is a well-known consequence of the Radon-Nikodym

theorem ([1, Theorem 13.18]) that caQ may be identified with L1
Q .

(xi) For any f, g ∈ L and P ∈ M1, we write f ≤ g P-a.s. if and only if P( f ≤
g) = 1. Similarly f ≤ g P-q.s. if and only if f ≤ g P-a.s. for all P ∈ P . This
relation is a partial order on L and it also induces a partial order on Lc where
X ≤ Y for X, Y ∈ Lc if and only if f ≤ g P-q.s. for any f ∈ X and g ∈ Y .

(xii) We define L∞
c := L∞

/∼ and endow this space with the norm

‖X‖c,∞ := inf{m | ∀P ∈ P : P(|X | ≤ m) = 1}.

(L∞
c , ‖ · ‖c,∞) is a Banach lattice with the same partial order ≤ as on Lc. Its

norm dual is bac. In case P = {Q} we shall write L∞
Q and ‖ · ‖Q,∞ for the sake

of simplicity. Note that ‖ · ‖c,∞ is never order continuous for any choice of P .

For simplicity of presentation, if there is no risk of confusion, we will follow the
usual convention of identifying random variables in L with the equivalence classes
they induce (in Lc, L∞

c , L1
Q or L∞

Q ) and vice versa.
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3 Towards a robust version of Theorem 1.1

We start by recalling the proof of the non-trivial implication (ii)⇒ (i) of Theorem 1.1:
the idea is to apply the Krein–Smulian theorem which implies that we only need to
show that the sets

CK := A ∩ {X ∈ L∞
P | ‖X‖P,∞ ≤ K }

are weak*-closed for any constant K > 0. Now we could invoke the countable sup
property of L∞

P to find that (ii) implies (i), see e.g. [2, Definition 1.43 and following
discussion]. But as, in the robust setting we envisage, L∞

c typically does not possess
this property (see for instance Examples 3.11 and 3.12), we present an alternative
argument by means of the following inclusion:

i :
(

L∞
P , σ

(

L∞
P , L1

P

))

→
(

L1
P , σ

(

L1
P , L∞

P

))

(3.1)

Note that i is continuous. Now, asA is Fatou closed, i.e. closed under bounded P-a.s.
convergence, it follows that i(CK ) is a closed subset of theBanach space (L1

P , EP [|·|]),
and thus i(CK ) is also weakly (i.e. σ(L1

P , L∞
P )) closed by convexity, so eventually

CK must be weak*-closed by continuity of i .
A natural approach to prove a robust version of Theorem 1.1 is to ’robustify’ the

spaces L1
P and try to repeat the argument above. There are two natural candidates

for this: Let Hc := {X ∈ L | c(|X |) < ∞}, with norm ‖X‖c := c(|X |). Then it is
readily verified that (Hc, ‖ · ‖c) is a Banach lattice. But in the robust case there is also
another candidate, namely Mc := L∞

c
‖·‖c which is also a Banach lattice with the norm

‖ · ‖c. These spaces have recently been studied in the literature, see e.g. [14,26], since
they appear as natural environments to embed financial modelling under uncertainty.
Clearly, L∞

c ⊂ Mc ⊂ Hc ⊂ Lc. Note that the trick with the inclusion (3.1) requires
that the norm dual of L1

P can be identified with L∞
P , so in particular with a subset of

L1
P where in this latter case L1

P is viewed as a representation of caP . Thus the reader
may readily check that we could save the above argument if the norm duals M∗

c and
H∗
c of Mc and Hc, respectively, would satisfy M∗

c ⊂ ca or H∗
c ⊂ ca. The following

Theorem 3.1 shows that this is the case only if P is dominated. To this end, denote by

Z := {(An)n∈N ⊂ F | An ↓ ∅ and c(An) �→ 0}, (3.2)

where An ↓ ∅ means that An ⊃ An+1, An �= ∅, n ∈ N, and
⋂

n∈N An = ∅, the
decreasing sequences of sets on which c is not continuous.

Theorem 3.1 Consider the following conditions:

(i) Z = ∅.
(ii) M∗

c ⊂ ca.
(iii) H∗

c ⊂ ca.

Then (i)⇐⇒ (ii)⇐� (iii).
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In particular, if Z = ∅, then there exists a countable subset ˜P ⊂ P such that
˜P ≈ P , and thus there is a probability measure Q ∈ M1 such that {Q} ≈ P .

Proof (i) ⇒ (ii): By Proposition A.2 for any l ∈ M∗
c there is μ ∈ ca such that

l(X) = ∫

X dμ for all simple random variables X . Moreover, μ ∈ cac, because
c(A) = 0 implies l(1A) = 0, A ∈ F . Since for any X ∈ L∞

c and any n ∈ N by the
usual approximation method from integration theory there is a simple random variable
Xn such that |X − Xn| < 1/n P-q.s., so ‖X − Xn‖c < 1/n, continuity of l and the
dominated convergence theorem yield

l(X) = lim
n→∞ l(Xn) = lim

n→∞

∫

Xn dμ =
∫

X dμ

for all X ∈ L∞
c .We recall that in [14] Proposition 18 the following relationwas shown

Mc = {X ∈ Hc | lim
n→∞‖X1{|X |≥n}‖c = 0}.

Hence, for X ∈ (Mc)+ we have by monotone convergence that

l(X) = lim
n→∞ l(X1{|X |≤n}) = lim

n→∞

∫

X1{|X |≤n} dμ =
∫

X dμ.

Finally, decomposing X ∈ Mc into X+ − X− with X+, X− ∈ (Mc)+ and linearity of
l and the integral shows (ii).

(ii)⇒ (i) and (iii)⇒ (i) follow directly from Proposition A.2
The last statement of this theorem is Proposition A.1. ��

Remark 3.2 Note that Z = ∅ is equivalent to sequential order continuity of ‖ · ‖c.
According to Theorem 3.1, if P is not dominated, then Z �= ∅ and hence the norm
‖ · ‖c on Mc or Hc is not order continuous.

Also note that the converse of the last statement of Theorem 3.1 is not true, i.e.
Z �= ∅ does not imply that P is not dominated. To see this, let An ↓ ∅ and pick a
sequence of probability measures Pn such that Pn(An) = 1 for all n ∈ N, and let
P = {Pn | n ∈ N}. Then, clearly ‖1An‖c = 1 for each n. Hence, ‖ · ‖c is not order
continuous and Z �= ∅ and thus M∗

c �⊂ ca. However, we have that {Q} ≈ P for
Q = ∑∞

n=1
1
2n Pn .

Recall the conditions

(WC) A ⊂ L∞
c is σ(L∞

c , cac)-closed.
(FC) A ⊂ L∞

c is Fatou closed: for any bounded sequence Xn ⊂ A and X ∈ L∞
c

such that Xn → X P-q.s. we have that X ∈ A.

It is easily verified that always (WC)�⇒ (FC) since any boundedP-q.s. converging
sequence also converges in σ(L∞

c , cac) to the same limit. However, there is in general
no proof of (FC) �⇒ (WC) even if A is convex, and also requiring monotonicity of
A, i.e. A+ (L∞

c )+ = A, in addition is not sufficient:
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Theorem 3.3 LetA ⊂ L∞
c be convex and monotone. Without further assumptions on

P or A, there exists no proof of (FC)⇒ (WC).

The proof of Theorem 3.3 is given by the following Example 3.4 where we give a
counter-example of (FC)�⇒ (WC) assuming the continuum hypothesis. So under the
continuum hypothesis (FC) �⇒ (WC) is indeed wrong. Note that as the continuum
hypothesis does not conflict withwhat one perceives as standardmathematical axioms,
there is of course no way to prove (FC) �⇒ (WC) even if we do not believe in the
continuum hypothesis.

Example 3.4 Consider the measure space (�,F) = ([0, 1],P([0, 1]), where
P([0, 1]) denotes the power set of [0, 1]. Assume the continuum hypothesis. Banach
and Kuratowski have shown that for any set I with the same cardinality as R there is
no measure μ on (I,P(I )) such that μ(I ) = 1 and μ({ω}) = 0 for all ω ∈ I ; see for
instance [16, Theorem C.1]. It follows that any probability measure μ over (�,F)

must be a countable sum of weighted Dirac-measures, i.e. μ = ∑∞
i=1 aiδωi where

ai ≥ 0,
∑n

i=1 ai = 1, ωi ∈ �, i ∈ N. (Recall that for ω ∈ � and A ∈ F : δω(A) = 1
if and only if ω ∈ A and δω(A) = 0 otherwise.) Indeed, let μ ∈ M1, and let

S := {ω ∈ � | μ({ω}) > 0}.

Then S can at most be countable (consider the sets Sn := {ω ∈ � | μ({ω}) > 1/n},
n ∈ N, and note that S = ⋃

n∈N Sn). Now suppose that μ([0, 1] \ S) > 0, then as
[0, 1] \ S has the same cardinality as [0, 1], this implies the existence of an atom for
the measure μ restricted to [0, 1] \ S, i.e. there exists ω̂ ∈ [0, 1] \ S such that

1

μ([0, 1] \ S)
μ({ω̂}) > 0.

This clearly contradicts the definition of S.
Let P := {δω | ω ∈ [0, 1]} be the set of all Dirac measures. Then

c(|X |) = sup
ω∈[0,1]

|X (ω)|,

so it turns out that L∞
c = Mc = Hc = L∞. Hence, (L∞

c )∗ = M∗
c = H∗

c = ba, and,
as c(A) = 0 is equivalent to A = ∅, we also have that cac = ca. Consider the set

C := {1A | ∅ �= A ⊂ [0, 1] is countable},

and letA be the convex closure ofC under boundedP-q.s. convergence of sequences.
Then 1 /∈ A: Indeed, any X = ∑n

i=1 ai1Ai , ai ≥ 0,
∑n

i=1 ai = 1, 1Ai ∈ C , in the
convex hull of C satisfies 0 ≤ X ≤ 1AX where AX := ⋃n

i=1 Ai is countable. Let
Xk be any sequence in the convex hull of C , then 0 ≤ Xk ≤ 1B , k ∈ N, where
B := ⋃

k∈N AXk is countable. Hence, Xk(ω) = 0 for all ω ∈ [0, 1] \ B, so 1 /∈ A.
Now consider the family G of all countable subsets of [0, 1] directed by A ≤ B if
and only if A ⊂ B. Consider the net {1A | A ∈ G} ⊂ C . Then for any probability
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measure μ there is A ∈ G (namely A = S) such that for all B ∈ G with B ≥ A we
have

∫

1B dμ = 1 = ∫

1 dμ. Thus 1 lies in the σ(L∞
c , cac)-closure of A.

In order to make the presentation simpler, we did not require monotonicity of A
so far, but the same arguments as above show that if A is the convex closure of
−C + (L∞

c )+ under bounded P-q.s. convergence of sequences, which is convex and
monotone, then −1 /∈ A but −1 is an element of the σ(L∞

c , cac)-closure of A.

A consequence of Theorem 3.3 is that we need to ask for additional properties on
A in order to have (FC)⇐⇒ (WC).

3.1 P-sensitivity, ca∗
c = L∞

c , and (FC) ⇐⇒ (WC)

A simple property on A which allows to prove (FC) ⇐⇒ (WC) is to require that
the convex set A ⊂ L∞

c behaves as in the dominated case, i.e. there is a reference
probability P ∈ P such thatA is closed under bounded P-a.s. convergence. Under this
assumption the whole issue can be reduced to Theorem 1.1. Clearly, this assumption
is too strong. However, it gives the idea of theP-sensitivity property we will introduce
in the following.

Given a probability Q ∈ M1 such that {Q} 
 P we define the linear map jQ :
L∞
c → L∞

Q by Q( jQ(X) = X) = 1, i.e. jQ(X) is the equivalence class in L∞
Q such

that any representative of jQ(X) and any representative of X are Q-a.s. identical.
As caQ (which can be identified with L1

Q) is a subset of cac, we deduce that jQ :
(L∞

c , σ (L∞
c , cac)) → (L∞

Q , σ (L∞
Q , L1

Q)) is continuous.

Definition 3.5 A setA ⊂ L∞
c is called P-sensitive if there exists a setQ ⊂ M1 with

Q 
 P such that

jQ(X) ∈ jQ(A) for all Q ∈ Q implies X ∈ A

or equivalently

A =
⋂

Q∈Q
j−1
Q ◦ jQ(A).

The set Q will be called reduction set for (A,P).

Remark 3.6 Suppose that P is dominated. Then the Halmos Savage lemma (see [23],
Lemma7) guarantees the existence of a countable subclass {Pi }∞i=1 such that {Pi }∞i=1 ≈

P . Let P = ∑ 1
2i
Pi . Then P ≈ {P}, so the space L∞

c can be identified with L∞
P .

Hence, in that case any set A ⊂ L∞
c is automatically P-sensitive with reduction set

Q = {P}.
Example 3.7 The set A of Example 3.4 is not P-sensitive. Since c(A) = 0 implies
that A = ∅, any set of probabilitiesQ ⊂ P satisfiesQ 
 P . Let Q ∈ M1 be arbitrary
and S := {ω ∈ [0, 1] | Q({ω}) > 0} such that Q = ∑

ω∈S aωδω with aω > 0 and
∑

ω∈S aω = 1. Then 1S ∈ A by definition of A and thus 1 ∈ jQ(A), or to be more
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precise, 1 and 1S form the same equivalence class in L∞
Q . Since Q ∈ M1 was arbitrary,

we have 1 ∈ ⋂

Q∈Q j−1
Q ◦ jQ(A). As we know that 1 /∈ A, the setA is notP-sensitive.

Indeed P-sensitivity is a necessary condition for (FC)⇐⇒ (WC).

Proposition 3.8 Any convex set A ⊂ L∞
c which is σ(L∞

c , cac)-closed (i.e. satisfies
(WC)) is P-sensitive.

Proof If A = ∅ or A = L∞
c , the assertion is trivial. Now assume that A �= ∅ and

A �= L∞
c . As A is σ(L∞

c , cac)-closed and convex, the function

ρ(X) := δ(X | A) :=
{

0 if X ∈ A
∞ else

, X ∈ L∞
c ,

is convex and σ(L∞
c , cac) lower-semicontinuous. Hence, by the Fenchel–Moreau

theorem (see [18, Proposition 4.1]) there exists a dual representation of ρ, i.e.

ρ(X) = sup
μ∈Q

{∫

X dμ − ρ∗(μ)

}

where Q := {μ ∈ cac | ρ∗(μ) < ∞} is a convex set and

ρ∗(μ) := sup
X∈A

∫

X dμ, μ ∈ cac.

A �= L∞
c implies Q � {0} and therefore,

A=
⋂

μ∈Q

{

X ∈ L∞
c |

∫

X dμ≤ρ∗(μ)

}

=
⋂

μ∈Q\{0}

{

X ∈ L∞
c |

∫

X dμ ≤ ρ∗(μ)

}

.

Let Q̃ := { |μ|
|μ|(�)

| μ ∈ Q \ {0}} ⊂ M1 and note that Q̃ 
 P since Q ⊂ cac.
Consider

X ∈
⋂

Q∈Q̃
j−1
Q ◦ jQ(A).

Fix Q ∈ Q̃ and ν ∈ Q such that Q = |ν|
|ν|(�)

. Then, jQ(X) ∈ jQ(A), i.e. there is
Y ∈ A such that jQ(X) = jQ(Y ). Noting that X = jQ(X) and Y = jQ(Y ) under ν,
it follows that

∫

X dν =
∫

jQ(X) dν =
∫

jQ(Y ) dν =
∫

Y dν ≤ ρ∗(ν),

where the inequality follows from Y ∈ A. Since Q ∈ Q̃ was arbitrary, we conclude
that indeed

∫

X dμ ≤ ρ∗(μ) for all μ ∈ Q, and hence that X ∈ A. This shows that
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⋂

Q∈Q j−1
Q ◦ jQ(A) ⊂ A. The other inclusion

⋂

Q∈Q j−1
Q ◦ jQ(A) ⊃ A is trivially

satisfied, so we have that A is P-sensitive with reduction set Q̃. ��
The following Theorem 3.9 gives conditions under which (FC) ⇐⇒ (WC) for a

convex setA ⊂ L∞
c . Besides P-sensitivity we have to require that the norm dual ca∗c

of (cac, T V ), where T V denotes the total variation norm on cac, may be identified
with L∞

c . Clearly any X ∈ L∞
c may be identified with a continuous linear functional

on cac by

cac � μ �→
∫

X dμ, (3.3)

so we always have L∞
c ⊂ ca∗c . However, ca∗c = L∞

c is obviously a very strong
condition which we will characterize in Proposition 3.10 in terms of order closedness
of L∞

c .

Theorem 3.9 Suppose that ca∗c = L∞
c and let A ⊂ L∞

c be convex and monotone
(A+ (L∞

c )+ = A). Equivalent are

(i) A satisfies (WC).
(ii) A is P-sensitive and satisfies (FC).

Proof We already know that (WC) implies (FC) and P-sensitivity. Now assume that
A isP sensitive and satisfies (FC). Since ca∗c = L∞

c , by the Krein–Smulian theorem it
is sufficient to show that CK := A∩ {Z ∈ L∞ | ‖Z‖c,∞ ≤ K } is σ(L∞

c , cac)-closed
for every K > 0. Let Q be a reduction set for (A,P) and fix any K > 0 and Q ∈ Q.

Consider the continuous inclusion

i : (L∞
Q , σ (L∞

Q , L1
Q)) → (L1

Q, σ (L1
Q, L∞

Q )).

In a first step we show that CQ,K := i ◦ jQ(CK ) is ‖ · ‖Q := EQ[| · |]-closed in L1
Q ,

because being convex it then follows that CQ,K is σ(L1
Q, L∞

Q )-closed and therefore

jQ(CK ) is σ(L∞
Q , L1

Q)-closed by continuity of i . To this end let (Yn)n∈N ⊂ CQ,K and

Y ∈ L1
Q such that ‖Yn−Y‖Q → 0, and without loss of generality wemay also assume

that Yn → Y Q-a.s. Note that Y is necessarily bounded by K . Choose Xn ∈ CK such
that Yn = jQ(Xn) for all n ∈ N and X ∈ L∞

c such that Y = jQ(X). Consider now
the set

F := {ω ∈ � | Xn(ω) → X (ω)}

(by the usual abuse of notation, in the definition of F we still write Xn and X for
arbitrary representatives of the equivalence classes Xn and X ). By monotonicity ofA
we have that ˜Xn := Xn1F+K1Fc ∈ CK for all n ∈ N, and ˜Xn → X1F+K1Fc =: ˜X
P-q.s. Consequently ˜X ∈ CK and since Q(F) = 1 we have Y = jQ(X) = jQ(˜X) ∈
CQ,K . Hence, jQ(CK ) is σ(L∞

Q , L1
Q) closed.

By continuity of jQ , the preimage j−1
Q ◦ jQ(CK ) is σ(L∞

c , cac)-closed, and as also
{X | ‖X‖c,∞ ≤ K } is σ(L∞

c , cac)-closed, we conclude that

AQ,K := j−1
Q ◦ jQ(CK ) ∩ {X | ‖X‖c,∞ ≤ K } ⊃ CK
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and finally also
⋂

Q∈Q AQ,K are σ(L∞
c , cac)-closed. Clearly,

⋂

Q∈Q AK ,Q ⊃ CK .
If we can show

⋂

Q∈Q AQ,K ⊂ CK , then we are done, because then
⋂

Q∈Q AQ,K =
CK , and thus CK is σ(L∞

c , cac)-closed. To this end, let X ∈ ⋂

Q∈Q AQ,K . Then
jQ(X) ∈ jQ(A) for any Q ∈ Q and therefore X ∈ A by P-sensitivity. Moreover by
definition of AK ,Q we also have ‖X‖c,∞ ≤ K . ��

Note that Theorem 3.9 proves the so-called C-property introduced and discussed
in [5] for convex and monotone sets.

Let D ⊂ L∞
c . Recall that a supremum of D is a least upper bound of D, that is

an X ∈ L∞
c such that Y ≤ X for all Y ∈ D, and any Z ∈ L∞

c such Y ≤ Z for
all Y ∈ D satisfies X ≤ Z . The supremum of D is denoted by ess supY∈DY . This
notation is commonly used in probability theory and it is inspired by the tradition of
identifying random variables with the equivalence classes they induce. Indeed for a
set of random variables in L∞, a supremum in the P-q.s. order is only essentially
unique—thus called essential supremum (ess sup)—in the sense that the equivalence
class generated by it in L∞

c is unique.

Proposition 3.10 ca∗c = L∞
c if and only if L∞

c is order complete, i.e. there exists a
supremum for any norm bounded set D ⊂ L∞

c .

Proof Suppose that L∞
c is order complete. Then L∞

c is in particular alsomonotonically
complete in the sense of [25, Definition 2.4.18]. Thus [25, Theorem 2.4.22] applies
which yields ca∗c = L∞

c .
In order to prove that ca∗c = L∞

c implies the existence of a supremum for any
norm bounded set D ⊂ L∞

c , we recall that ca and thus also cac is an AL-space ([1,
Theorem 10.56]), so ca∗c is an AM-space ([1, Theorem 9.27]). In particular ca∗c is
order complete. Here, the order ≥∗ on ca∗c is given by l ≥∗ 0 if and only if l(μ) ≥ 0
for all μ ∈ (cac)+, and a set S ⊂ ca∗c is order bounded from above if there is h ∈ ca∗c
such that h − l ≥∗ 0 for all l ∈ S. Any norm bounded D ⊂ L∞

c is order bounded
from above in ca∗c , because Kμ(�)− ∫

X dμ ≥ 0, μ ∈ (cac)+, for a constant K > 0
which is an upper bound of the norm on D, so (μ �→ Kμ(�)) ∈ ca∗c is an upper
bound with respect to ≥∗. Thus there is a least upper bound of D viewed as a subset
of ca∗c . Now suppose that ca∗c can be identified with L∞

c . Then this least upper bound
of D may be identified with an element in X ∈ L∞

c , that is

∫

X dμ ≥
∫

Y dμ for all μ ∈ (cac)+ and all Y ∈ D.

Considering measures μ of type 1AdP for P ∈ P and A ∈ F shows that X ≥ Y for
all Y ∈ D, and μ �→ ∫

X dμ being the least amongst the upper bounds of D in the
≥∗-order implies that X is a supremum of D. ��
Example 3.11 In this example we fix a measure space (�,F) and an uncountable
family P = {Pσ }σ∈� of probability measures. Consider the enlarged sigma algebra
F� = ⋂

σ∈� Fσ where Fσ is the Pσ completion of F , and notice that any Pσ

uniquely extends to F� . Assume that there exists a family of sets {�σ }σ∈� ⊂ F�

such that for any σ ∈ �, Pσ (�σ ) = 1 and P σ̃ (�σ ) = 0 for σ̃ �= σ . In this case it is
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easily seen that any norm bounded set D ⊂ L∞
c (�,F�) admits a supremum given

by

ess supY∈DY =
∑

σ∈�

j−1
Pσ (ess supY∈D jPσ (Y ))1�σ .

Note that ess supY∈D jPσ (Y ) in L∞
Pσ is well-defined for every σ ∈ �. Also notice

that ess supY∈DY is Fσ -measurable for any σ ∈ � and therefore is also F�-
measurable. Therefore L∞

c (�,F�) = ca∗c (�,F�).Notice that, as� is not countable,
L∞
c (�,F�) does not possess the countable sup property, think for instance of the

essential supremum of the set {1�σ | σ ∈ �}. We refer to [11] for a deeper study of
this example and applications to mathematical finance.

Example 3.12 Recall Example 3.4. Clearly any norm bounded set D ⊂ L∞
c = L∞

admits an essential supremum which is simply given by ω �→ supY∈D Y (ω). Hence
ca∗ = ca∗c = L∞ by Proposition 3.10. This holds without the continuum hypothesis,
but is also easily directly verified using the continuum hypothesis: Let l ∈ ca∗c and
define X (ω) = l(δω), ω ∈ [0, 1]. Then by linearity, for all μ ∈ ca it follows that
l(μ) = ∑

ω∈S aωl(δω) = ∫

X dμ where S := {ω ∈ [0, 1] | μ({ω}) > 0} and
aω = μ({ω}), ω ∈ S. Moreover, it is also readily verified that in this case L∞

c does
not have the countable sup property.

4 Applications of Theorem 3.9

4.1 Dual representation of (quasi-) convex increasing functionals

In this section we provide a dual representation of (quasi-) convex increasing func-
tionals. Such results are key in the study of robustness of financial risk measures.
An exhaustive introduction to the dual representation of convex risk measures can
be found in [19] (see also [15] for the quasiconvex case and [10] for recent develop-
ments). To the best of our knowledge, in presence of model uncertainty, the only result
available in the literature is [6, Theorem 3.1] which is obtained for the closure of the
space of continuous functions under the norm ‖ · ‖c.
Definition 4.1 A function f : L∞

c → (−∞,∞] is
• quasiconvex (resp. convex) if for every λ ∈ [0, 1] and X,Y ∈ L∞ we have

f (λX+(1−λ)Y ) ≤ max{X,Y } (resp. f (λX+(1−λ)Y ) ≤ λ f (X)+(1−λ) f (Y )).
• τ -lower semicontinuous (l.s.c.) for some topology τ on L∞

c if for every a ∈ R the
lower level set {X ∈ L∞

c | f (X) ≤ a} is τ -closed.
• P-sensitive if the lower level sets {X ∈ L∞

c | f (X) ≤ a} areP-sensitive for every
a ∈ R.

The following Lemma provides a huge class of P-sensitive functions.

Lemma 4.2 Consider a function f : L∞
c → [−∞,∞] such that

f (X) = sup
P∈Q

fP ( jP (X)), (4.1)
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for some Q ⊂ M1 and fP : L∞
P → [−∞,∞]. If Q 
 P then f is P-sensitive with

reduction set Q.

Proof From representation (4.1) we automatically have

{X ∈ L∞
c | f (X) ≤ a} =

⋂

P∈Q
{X ∈ L∞

c | fP ( jP (X)) ≤ a}.

As {X ∈ L∞
c | fP ( jP (X)) ≤ a} = j−1

P ◦ jP {X ∈ L∞
c | fP ( jP (X)) ≤ a}, we

conclude that f is P-sensitive with reduction set Q. ��
Theorem 4.3 Assume that ca∗c = L∞

c . Let f : L∞
c → (−∞,∞] be a quasiconvex

(resp. convex), monotone non-decreasing ( X ≤ Y P-q.s. implies f (X) ≤ f (Y )) and
P-sensitive function. The following are equivalent:

(i) f is σ(L∞
c , cac)-lower semi continuous.

(ii) f has the Fatou property: for any bounded sequence (Xn)n∈N ⊂ L∞
c converging

P-q.s. to X ∈ L∞
c we have f (X) ≤ lim infn→∞ f (Xn).

(iii) For any sequence (Xn)n∈N ⊂ A and X ∈ L∞
c such that Xn ↑ X P-q.s. we have

that f (Xn) ↑ f (X).
(iv) f admits a bidual representation which in the quasiconvex case is

f (X) = sup
P∈cac∩M1

R (EP [X ], P) , X ∈ L∞
c ,

with dual function R : R × cac → (−∞,∞] given by

R(t, μ) := sup
t ′<t

inf
Y∈L∞c

{

f (Y ) |
∫

Y dμ = t ′
}

;

and in the convex case the dual representation is

f (X) = sup
μ∈(cac)+

{∫

X dμ − f ∗(μ)

}

, X ∈ L∞
c ,

where the dual function f ∗ : cac → (−∞,∞]) is given by

f ∗(μ) := sup
Y∈L∞c

{∫

Y dμ − f (Y )

}

.

In addition, if f (X + c) = f (X) + c for every X ∈ L∞
c and c ∈ R then f is

necessarily convex and

f (X) = sup
P∈cac∩M1

{

EP [X ] − f ∗(P)
}

, X ∈ L∞
c .
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Proof According to Theorem 3.9 (i) holds if and only if (ii) is satisfied.
(ii)⇒ (iii) is due to

f (X) ≤ lim inf
n→∞ f (Xn) ≤ f (X)

where the last ineqaulity follows frommonotonicity. Conversely (iii)⇒ (ii) follows by
considering Yn := ess infk≥n Xk and noting that Yn ↑ X P-q.s. and f (Yn) ≤ f (Xn);
see also [19, Lemma 4.16].

In the convex case (i) ⇔ (iv) is Fenchel’s Theorem (see [18, Proposition 4.1])
together with monotonicity (see [21, Corollary 7]).

In the quasiconvex case showing (i) ⇒ (iv) is a consequence of the Penot-Volle
duality Theorem (seeAppendixB) and togetherwithmonotonicity (see [9, Lemma8]),
and (iv) ⇒ (i i i) follows from the monotone convergence theorem and the definition
of R. ��

4.2 Fundamental Theorem of Asset Pricing

Pricing theory in mathematical finance is based on the Fundamental Theorem of Asset
Pricing, which roughly asserts that in a market without arbitrage opportunities (the
so-called no-arbitrage condition) discounted prices are expectations under some risk-
neutral probability measure. This characterisation is essential to develop a pricing
theory for financial instruments which are not traded in the market. In the classical
dominated framework on some probability space (�,F , P) the risk-neutral proba-
bility measures are martingale measures for the discounted price process which are
equivalent to the reference probability P , see [13] for a detailed review and related
literature. Also note that the no-arbitrage condition is necessary and sufficient the
existence of an economic equilibrium, see e.g. [24].

It is well understood that the Fundamental Theorem of Asset Pricing in a classical
dominated framework is highly related to duality arguments. There are also robust
approaches applying duality, see e.g. [4] based on an extended order dual space,
the so-called super order dual introduced in [3]. However, most recent studies of
robust Fundamental Theorems of Asset Pricing do not use duality arguments given
the difficultieswe outlined in this paper, see e.g. [7]. However, under the conditions that
we have derived in Sect. 3 we will see that it is possible to reconcile the Fundamental
Theorem of Asset Pricing, the Superhedging Duality, and duality theory on the pair
(L∞

c , cac) using the well-known arguments.
Throughout this section we assume that ca∗c = L∞

c holds true. We consider a
discrete time market model with terminal time horizont T ∈ N, and trading times
I := {0, . . . , T }. The price process is given by aP-q.s. bounded R

d -valued stochastic
process S = (St )t∈I = (S j

t )
j=1,...,d
t∈I on (�,F), and we also assume the existence of a

numeraire asset S0t = 1 for all t ∈ I . Moreover, we fix a filtration F := {Ft }t∈I such
that the process S is F-adapted. Denote by H the class of R

d -valued, F-predictable
stochastic processes, which is the class of all admissible trading strategies. Let

C := {

X ∈ L∞
c | X ≤ (H • S)T P-q.s. for some H ∈ H}
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where

(H • S)t :=
t

∑

k=1

d
∑

j=1

H j
k (S j

k − S j
k−1)

is the payoff of the self-financing trading strategy at time t ∈ I \ {0} with initial
investment (H • S)0 = 0 given by the predictable process H = (Ht )t∈I\{0}. In this
framework the no-arbitrage condition (NA(P)) was introduced by [7] as given by the
following definition.

Definition 4.4 The described market model is called arbitrage-free, if it satisfies the
no-arbitrage condition

NA(P) (H • S)T ≥ 0 P-q.s. implies (H • S)T = 0 P-q.s..

Note that NA(P) is equivalent to C ∩ (L∞
c )+ = {0}.

Lemma 4.5 Under N A(P) if C is P-sensitive then C is σ(L∞
c , cac)-closed.

Proof [7, Theorem 2.2 ] shows that under N A(P) the cone C is closed under P-q.s.
convergence of sequences and therefore C satisfies (FC). We remark that [7, Theorem
2.2] holds in full generality without the product structure on the underlying probability
space assumed in [7]. Therefore applyingTheorem3.9wededuce thatC isσ(L∞

c , cac)-
closed. ��

Suppose that C isP-sensitive. As C is a σ(L∞
c , cac)-closed convex cone, the bipolar

Theorem yields

C = C00 =
{

Y ∈ L∞
c | ∀Q ∈ C01 : EQ[Y ] ≤ 0

}

where C01 := C0 ∩M1 =
{

μ ∈ C0 | μ(1�) = 1
}

and C0 :=
{

μ ∈ cac | ∀X ∈ C :
∫

X dμ ≤ 0

}

. (4.2)

Notice that since C ⊃ −(L∞
c )+ then μ ∈ (cac)+ for every μ ∈ C0 which explains C01 .

Lemma 4.6 C01 is the set of all martingale measures dominated by the capacity c, that
is

C01 = {Q 
 P | S is a Q-martingale}

Proof The proof is well-known and straightforward, so we just give the basic argu-
ments: indeed choose any Q ∈ {Q 
 P | S is a Q-martingale}, and let X ∈ C and
H ∈ H such that X ≤ (H •S)T P-q.s. Then EQ[X ] ≤ EQ[(H •S)T ] = (H •S)0 = 0
since ((H • S)t )t∈I is a Q-martingale (using generalized conditional expectations, see
[7, Appendix]). Thus Q ∈ C01 .

If Q ∈ C01 then EQ[(H • S)T ] = 0 for any H ∈ H and by choosing appropriate

strategies in H such as H j
t = 1A for A ∈ Ft−1, Hi

t = 0 for i �= j and Hs = 0 for
s �= t one verifies that Q is a martingale measure for S.
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Theorem 4.7 (First Fundamental TheoremofAsset Pricing) SupposeC isP-sensitive.
The following are equivalent:

(i) N A(P)

(ii) C01 ≈ P
Moreover, the Superhedging Duality holds, that is for any X ∈ L∞

c the minimal
superhedging price

π(X) := inf {x ∈ R | ∃H ∈ H s.t. x + (H • S)T ≥ X P-q.s.}

satisfies
π(X) = sup

Q∈C0
1

EQ[X ]. (4.3)

Proof (i) ⇒ (ii): Clearly, c(A) = 0 implies supQ∈C0
1
Q(A) = 0 as C01 ⊂ cac. Let

B ∈ F such that Q(B) = 0 for all Q ∈ C01 . Thus 1B ∈ C by (4.2), so 1B = 0 in L∞
c

by N A(P), i.e. c(B) = 0.
(ii)⇒ (i): let H ∈ H such that (H •S)T ≥ 0P-q.s. Then Q{(H •S)T ≥ 0} = 0 for

every Q ∈ C01 , because (H • S)t is a Q-martingale with expectation 0, and therefore
(H • S)T = 0 P-q.s.

As for the SuperhedgingDuality note that clearlyπ(X) ≤ ‖X‖c,∞ since 0 ∈ H, and
as C01 �= ∅ (C �= L∞

c ) it follows that π(X) > −∞. Moreover, by (4.2) we have for any
y ∈ R that X− y ∈ C if and only if 0 ≥ supQ∈C0

1
EQ[X− y] = −y+supQ∈C0

1
EQ[X ]

which proves (4.3). ��

A Auxiliary results for Theorem 3.1

Recall the set Z defined in (3.2).

Proposition A.1 If Z = ∅, then there exists a countable subset ˜P ⊂ P such that
˜P ≈ P . The latter implies that there is a probability measure Q ∈ M1 such that
{Q} ≈ P .

Proof We claim that for each ε > 0, there exists P1, . . . , Pn ∈ P and δ > 0 such
that Pi (A) < δ for all i = 1, . . . , n implies that for all P ∈ P we have P(A) < ε.
Suppose this is not the case. Then there exists ε > 0 such that for any P1 ∈ P there
is A1 ∈ F and P2 ∈ P satisfying

P1(A1) < 1/2 and P2(A1) ≥ ε.

Then there also exists A2 ∈ F and P3 ∈ P such that

P1(A2) < 1/4, P2(A2) < 1/4 while P3(A2) ≥ ε.
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Continuing this procedure we find sequences (An)n∈N ⊂ F and (Pn)n∈N ∈ P such
that

Pi (An) <
1

2n
, i = 1, . . . , n, and Pn+1(An) ≥ ε.

Consider N := ⋂

n∈N
⋃

k≥n Ak . Then Pi (N ) = 0 for each i ∈ N, because for all
n > (i − 1)

Pi (N ) ≤
∞
∑

k=n

Pi (Ak) ≤ 1

2n−1 .

Hence, replacing the above sequence An by Bn := An \ N , n ∈ N, we still have

Pi (Bn) <
1

2n
, i = 1, . . . , n, and Pn+1(Bn) ≥ ε.

Now let En := ⋃

k≥n Bk , n ∈ N. It follows that En ↓ ∅. However, for each n ∈ N

c(En) ≥ Pn+1(En) ≥ Pn+1(Bn) ≥ ε

which contradicts Z = ∅.
Now let δn > 0 and let P(n)

1 , . . . , P(n)
m(n) ∈ P be such that for all P ∈ P it holds

P(A) < 1/n whenever P(n)
i (A) < δn for all i = 1, . . . ,m(n). Define

μ :=
∞
∑

n=1

m(n)
∑

i=1

1

2n
1

2i
P(n)
i .

Then μ ∈ ca+, and μ(A) = 0 implies that P(n)
i (A) = 0 for all i = 1, . . . ,m(n) and

n ∈ N. Eventually this implies that for all P ∈ P we have P(A) < 1/n for all n ∈ N,
hence P(A) = 0. Thus

˜P := {P(n)
i | i ∈ {1, . . . ,m(n)}, n ∈ N} and Q := 1

μ(�)
μ

satisfy the assertion. ��
Proposition A.2 Let (B, ‖ ·‖) be a Banach lattice of (equivalence classes of) random
variables on (�,F) containing all simple random variables such that the order ≤ on
B satisfies 0 ≤ 1A ≤ 1A′ whenever A ⊂ A′ for A, A′ ∈ F . If B∗ ⊂ ca, in the sense
that every l ∈ B∗ is of type

l(X) =
∫

X dμ, X ∈ B,

for some μ ∈ ca, then ‖1An‖ → 0 (n → ∞) for all (An)n∈N ⊂ F such that An ↓ ∅.
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Conversely, if ‖1An‖ → 0 (n → ∞) for all (An)n∈N ⊂ F such that An ↓ ∅, then
for every l ∈ B∗ there is a μ ∈ ca such that l(Y ) = ∫

Y dμ for all simple random
variables Y .

Proof Suppose that B∗ ⊂ ca and let (An)n∈N ⊂ F such that An ↓ ∅. Then 1An →
0 with respect to σ(B, B∗) since every element in B∗ corresponds to a σ -additive
measure. Hence,

0 ∈ co{1An | n ∈ N}

where the closure is taken in the σ(B, B∗)-topology. As the closed convex set in the
σ(B, B∗)-topology and in the norm topology coincide, we have that there is a sequence
of convex combinations

ck :=
m(k)
∑

i=1

ai (k)1Ani (k)
, k ∈ N,

where ai (k) ∈ R and n1(k) ≤ n2(k) ≤ . . . ≤ nm(k)(k) for all k ∈ N such that
‖ck‖ → 0 for k → ∞. Moreover, since 0 ∈ co{1An | n ≥ N } for any N ∈ N, we may
assume that n1(k) ≤ n1(k+1) for all k ∈ N. However, ck ≥ 1Ak where Ak = Anm(k)(k),
because An ⊃ An+1 for all n ∈ N. Thus, as ‖ · ‖ is a lattice norm, the subsequence
1Ak converges to 0 in norm and hence also 1An converges to 0 in the norm topology
(again due to An ⊃ An+1 for all n ∈ N).

Finally suppose that ‖1An‖ → 0 (n → ∞) for all (An)n∈N ⊂ F such that An ↓ ∅.
Then for any l ∈ B∗, the set function

μ(A) := l(1A), A ∈ F ,

is σ -additive. By linearity of l we deduce that l(X) = ∫

X dμ for all simple random
variables X . ��

B Penot–Volle duality theorem

Theorem B.1 (see e.g. [20, Theorem 1.1]) Let L be a locally convex topological
vector space, L ′ be its dual space and f : L → R := R∪{−∞}∪{∞} be quasiconvex
and lower semicontinuous. Then

f (X) = sup
X ′∈L ′

R(X ′(X), X ′) (B.1)

where R : R×L ′ → R is defined by

R(t, X ′) := inf
ξ∈L

{

f (ξ) | X ′(ξ) ≥ t
}

. (B.2)
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