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Abstract In this paper, we propose three new matrix versions of the arithmetic–
geometric mean inequality for unitarily invariant norms, which stem from the fact that
the Heinz mean of two positive real numbers interpolates between the geometric and
arithmetic means of these numbers. Related trace inequalities are also presented.
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1 Introduction

Let a, b be positive real numbers and let 0 ≤ t ≤ 1. The arithmetic–geometric mean
inequality can be refined by inserting the Heinz mean between the geometric mean
and the arithmetic mean:

√
ab ≤ atb1−t + a1−t bt

2
≤ a + b

2
. (1.1)
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The inequalities (1.1) are equivalent to the inequalities

(
a

1
2 + b

1
2

)2 ≤ (
at + bt

) (
a1−t + b1−t

)
≤ 2 (a + b) . (1.2)

The inequalities (1.1) and (1.2) have matrix versions. We introduce some notations
regarding their matrix versions: Let A, B be positive semidefinite matrices, 0 ≤ t ≤ 1,
and |||.||| any unitarily invariant norm. Let

ht = At B1−t + A1−t Bt ,

bt = At B1−t + Bt A1−t ,

kt = (
At + Bt) (

A1−t + B1−t
)

,

and

mt =
(
A1−t + B1−t

) 1
2 (

At + Bt) (
A1−t + B1−t

) 1
2
.

Then the matrix versions of the inequalities (1.1) are

2
∣∣∣
∣∣∣
∣∣∣A 1

2 B
1
2

∣∣∣
∣∣∣
∣∣∣ ≤

∣∣∣
∣∣∣
∣∣∣At B1−t + A1−t Bt

∣∣∣
∣∣∣
∣∣∣ ≤ |||A + B|||

which can be stated as

∣∣∣
∣∣∣
∣∣∣h 1

2

∣∣∣
∣∣∣
∣∣∣ ≤ |||ht ||| ≤ |||h1|||. (1.3)

For the usual operator norm, this was proved by Heinz [16] and the generalization to
all unitarily invariant norms was obtained by Bhatia and Davis [7].

Because of the noncommutativity of matrix multiplication, ht is not the same as
bt , and this gives us the ability to see the arithmetic–geometric mean inequality in a
different new way in terms of bt , which is equivalent to the following question.

Question 1.1 Given t ∈ [0, 1] and any unitarily invariant norm |||.|||, is it true that
∣∣∣
∣∣∣
∣∣∣b 1

2

∣∣∣
∣∣∣
∣∣∣ ≤ |||bt ||| ≤ |||b1|||? (1.4)

The second inequality in (1.4) is a question raised byBourin [10]. It has been proved
for the Hilbert–Schmidt norm under the condition 1

4 ≤ t ≤ 3
4 , see [6,11].

Recently, an affirmative answer to Bourin’s question in the trace norm has been
given by the authors [15], where it has been proved that

‖bt‖1 ≤ ‖b1‖1 .
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Moreover, a partial answer to this question in the wider class of unitarily invariant
norms has been given in [15] by proving that

|||Re bt ||| ≤ |||b1|||

and

|||Im bt ||| ≤ |||b1|||.

The inequalities (1.2) have the following matrix versions, which enable us to see
the arithmetic–geometric mean inequality in a different new way in terms of kt .

Question 1.2 Given t ∈ [0, 1] and any unitarily invariant norm |||.|||, is it true that
∣∣∣
∣∣∣
∣∣∣k 1

2

∣∣∣
∣∣∣
∣∣∣ ≤ |||kt ||| ≤ |||k1|||? (1.5)

The first inequality in (1.5) can be stated as

∣∣∣∣
∣∣∣∣
∣∣∣∣
(
A

1
2 + B

1
2

)2∣∣∣∣
∣∣∣∣
∣∣∣∣ ≤

∣∣∣
∣∣∣
∣∣∣(At + Bt) (

A1−t + B1−t
)∣∣∣

∣∣∣
∣∣∣. (1.6)

The inequality (1.6) is a special case of the following more general form for com-
muting positive semidefinite matrices:

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
(
A

1
2
1 B

1
2
1 + A

1
2
2 B

1
2
2

)2
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ ≤ |||(A1 + A2) (B1 + B2)|||, (1.7)

where A1, A2, B1, B2 are positive semidefinite matrices such that A1B1 = B1A1 and
A2B2 = B2A2. The inequality (1.7) is a part of Theorem 3.1 in [4] for the case k = 2,
which has been recently stated and proved by Audenaert for all unitarily invariant
norms (see also [17,19,20]). Note that the inequality (1.6) follows from the inequality
(1.7) by replacing A1, B1, A2, and B2 by At , A1−t , Bt , and B1−t , respectively.

The inequalities (1.2) have other matrix versions, which enable us to see the
arithmetic–geometric mean inequality in a different new way in terms of mt .

Question 1.3 Given t ∈ [0, 1] and any unitarily invariant norm |||.|||, is it true that
∣∣∣
∣∣∣
∣∣∣m 1

2

∣∣∣
∣∣∣
∣∣∣ ≤ |||mt ||| ≤ |||m1|||? (1.8)

The second inequality in (1.8) has been proved in [21]. The first inequality in (1.8)
can be stated as

∣∣∣∣
∣∣∣∣
∣∣∣∣
(
A

1
2 + B

1
2

)2∣∣∣∣
∣∣∣∣
∣∣∣∣ ≤

∣∣∣∣
∣∣∣∣
∣∣∣∣
(
At + Bt) 1

2
(
A1−t + B1−t

) (
At + Bt) 1

2

∣∣∣∣
∣∣∣∣
∣∣∣∣. (1.9)
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The inequality (1.9) is a special case of the followingmore general form for commuting
positive semidefinite matrices:

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
(
A

1
2
1 B

1
2
1 + A

1
2
2 B

1
2
2

)2
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ ≤
∣∣∣
∣∣∣
∣∣∣(A1 + A2)

1
2 (B1 + B2) (A1 + A2)

1
2

∣∣∣
∣∣∣
∣∣∣, (1.10)

where A1, A2, B1, B2 are positive semidefinite matrices such that A1B1 = B1A1 and
A2B2 = B2A2. The inequality (1.10) is a part of Theorem 3.3 in [13] for the case
k = 2, which has been recently stated and proved by the authors for all unitarily
invariant norms in [13] (see also [17,19,20]). Note that the inequality (1.9) follows
from the inequality (1.10) by replacing A1, B1, A2, and B2 by At , A1−t , Bt , and B1−t ,
respectively. This gives an affirmative answer to Question 1.3.

This paper is devoted towards closing some of these remaining open questions.
In Sect. 2, we will prove the following singular value inequality and majorization

relations:

s j
((

At + Bt) (
A1−t + B1−t

))
≤ 2

3
2 s j

((
A2 + B2

) 1
2
)

for j = 1, 2, . . . , n,

s
((

At + Bt) (
A1−t + B1−t

))
≺w 2s (A + B) ,

and

s
(
At B1−t + Bt A1−t

)
≺w 2

1
2 s

((
A2 + B2

) 1
2
)

,

where A and B be positive semidefinite matrices and 0 ≤ t ≤ 1.
Notice that the above singular value inequality andmajorization relations are sharp,

and as a consequence of the secondmajorization relation, we prove the second inequal-
ity in (1.5), i.e., the inequality

|||kt ||| ≤ |||k1|||.

This gives an affirmative answer to Question 1.2.

Remark 1.4 It should be mentioned here that Question 1.1 remains open.

It can be seen that the well-known Heinz inequality and the question of Bourin (i.e.
the second inequality in (1.3) and (1.4), respectively) are equivalent to the following
inequalities:

∣∣∣∣∣∣ApBq + Aq B p
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣Ap+q + B p+q

∣∣∣∣∣∣

and

∣∣∣∣∣∣ApBq + B p Aq
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣Ap+q + B p+q

∣∣∣∣∣∣,
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where A, B are positive semidefinite matrices and p, q are positive real numbers.
In a recent paper [11], and in their investigations of the Lieb–Thirring trace inequali-

ties, and in their attempt to answer Bourin’s question, Hayajneh andKittaneh proposed
the following conjecture for commuting positive semidefinite matrices.

Conjecture 1.5 Let A1, A2, B1, B2 be positive semidefinite matrices such that
A1B1 = B1A1 and A2B2 = B2A2. Then, for every unitarily invariant norm,

|||A1B2 + A2B1||| ≤ |||A1B2 + B1A2|||. (1.11)

An important special case of the inequality (1.11) is the inequality

∣∣∣∣∣∣As B p + Bq At
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣As B p + At Bq

∣∣∣∣∣∣, (1.12)

where A, B are positive semidefinite matrices and s, t, p, q are positive real numbers.
The Hilbert–Schmidt norm version of (1.12) is the inequality

∥∥As B p + Bq At
∥∥
2 ≤ ∥∥As B p + At Bq

∥∥
2 . (1.13)

Recently, the authors [13] proved the inequality (1.13) under the condition that

∣∣∣∣
s

s + t
− 1

2

∣∣∣∣ +
∣∣∣∣

p

p + q
− 1

2

∣∣∣∣ ≤ 1

2
. (1.14)

Replacing A and B by A
1

s+t and B
1

p+q , we see that the inequality (1.13) is equivalent
to saying

∥∥∥AμBν + B1−ν A1−μ
∥∥∥
2

≤
∥∥∥AμBν + A1−μB1−ν

∥∥∥
2

(1.15)

under the condition

∣∣∣∣μ − 1

2

∣∣∣∣ +
∣∣∣∣ν − 1

2

∣∣∣∣ ≤ 1

2
. (1.16)

Consequently, one can infer from the inequality (1.15) and the condition (1.16) that

‖bt‖2 ≤ ‖ht‖2 for
1

4
≤ t ≤ 3

4
.

In [14], the authors also generalized the inequality (1.15) to complex values. In
fact, they proved that the inequality

∥∥∥AwBz + B1−z A1−w
∥∥∥
2

≤
∥∥∥AwBz + A1−wB1−z

∥∥∥
2

(1.17)
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holds for the complex numbers w, z under the condition

∣∣∣∣Re w − 1

2

∣∣∣∣ +
∣∣∣∣Re z − 1

2

∣∣∣∣ ≤ 1

2
. (1.18)

Section 3 is devoted to proving the following reverse-type inequality of (1.17):

∥∥∥AwBz − B1−z A1−w
∥∥∥
2

≥
∥∥∥AwBz − A1−wB1−z

∥∥∥
2

(1.19)

under the condition (1.18).
The special case of the inequality (1.19) when w, z are positive real numbers has

been proved by Alakhrass in [1].
For a comprehensive account on Bourin’s questions and related trace and norm

inequalities, we refer to [3,4,6,8–15,17,19,21], and references therein.

2 Main results

Recall that a matrix norm |||.||| on the space of all complex square matrices of a fixed
order is called unitarily invariant if |||UXV ||| = |||X ||| for all X and for all unitary
matricesU, V . Among familiar examples of unitarily invariant norms are the Schatten
p−norms, denoted by ‖.‖p and defined for 1 ≤ p ≤ ∞ as

‖X‖p = (
tr |X |p) 1

p ,

where |X | = (X∗X)
1
2 . The values p = 1, p = 2, and p = ∞ correspond to the

trace norm, the Hilbert–Schmidt norm, and the spectral (or the usual operator) norm,
respectively.

The generalized Hölder inequality for the Schatten p−norms will be frequently
used in proving our main results. This inequality says that for any matrices X,Y, Z
and any real numbers p, q, r ≥ 1 with 1

p + 1
q + 1

r = 1, we have

|tr (XY Z)| ≤ ‖XY Z‖1 ≤ ‖X‖p ‖Y‖q ‖Z‖r . (2.1)

For more details about the inequality (2.1), see [22, Theorem 2.8].
In this section, we denote the vectors of eigenvalues and singular values of a matrix

A by λ(A) and s(A), respectively. These vectors are obtained by arranging the singular
values and eigenvalues, as well whenever they are real, in a non-increasing order. In
general, for x = (x1, . . . , xn) ∈ R

n , we will write x↓ for the vector obtained by
rearranging the coordinates of x in a non-increasing order.

Let x, y ∈ R
n . We say that x is weakly majorized by y, denoted x ≺w y, if and

only if for k = 1, . . . , n,
∑k

i=1 x
↓
i ≤ ∑k

i=1 y
↓
i .

The Fan dominance principle [5, p. 93] says that for any two matrices X,Y , we
have s(X) ≺w s(Y ) if and only if |||X ||| ≤ |||Y ||| for all unitarily invariant norms. Other
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facts that will be used say that λ (XY ) = λ (Y X) and s (XY ) ≺w s (X) s (Y ), see,
e.g., [5, pp. 11, 94].

The following two lemmas are needed to prove our main results.The first lemma
says that the function f (x) = x2 is matrix convex on R, and the second lemma says
that the function f (x) = xt is matrix concave on [0,∞) for 0 ≤ t ≤ 1. For these
facts, we refer to [5, pp. 113, 115].

The matrices considered here are n × n complex matrices.

Lemma 2.1 Let A and B be Hermitian matrices. Then

(A + B)2 ≤ 2
(
A2 + B2

)
.

Lemma 2.2 Let A and B be positive semidefinite matrices and let 0 ≤ t ≤ 1. Then

At + Bt ≤ 21−t (A + B)t .

Our first main result can be stated as follows.

Theorem 2.3 Let A and B be positive semidefinite matrices and let 0 ≤ t ≤ 1. Then

s
((

At + Bt) (
A1−t + B1−t

))
≺w 2s (A + B) . (2.2)

Proof Since

s
((

At + Bt) (
A1−t + B1−t

))
≺w s

(
At + Bt) s

(
A1−t + B1−t

)
,

it follows that for k = 1, 2, . . . , n, we have

k∑
j=1

s j
((

At + Bt) (
A1−t + B1−t

))

≤
k∑
j=1

λ j
(
At + Bt) λ j

(
A1−t + B1−t

)

≤
k∑
j=1

21−tλtj (A + B) 2tλ1−t
j (A + B) (by Lemma 2.2)

= 2
k∑
j=1

λ j (A + B) .

Thus, we have

s
((

At + Bt) (
A1−t + B1−t

))
≺w 2s (A + B) .

��
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Corollary 2.4 Let A and B be positive semidefinite matrices and let 0 ≤ t ≤ 1. Then
for all unitarily invariant norms, we have

∣∣∣
∣∣∣
∣∣∣(At + Bt) (

A1−t + B1−t
)∣∣∣

∣∣∣
∣∣∣ ≤ 2|||A + B|||. (2.3)

In other words,
|||kt ||| ≤ |||k1|||.

Remark 2.5 The inequality (2.3) is stronger than the second inequality in (1.8).
To see this, recall that if X and Y are matrices such that XY is Hermitian, then
|||XY ||| ≤ |||Re Y X ||| ≤ |||Y X ||| (see, e.g., [18]). Accordingly, |||mt ||| ≤ |||kt ||| for
0 ≤ t ≤ 1. In the same vein, it is readily seen that the inequality (1.10) is stronger
than the inequality (1.7).

Our second main result can be stated as follows.

Theorem 2.6 Let A and B be positive semidefinite matrices and let 0 ≤ t ≤ 1. Then

s j
((

At + Bt) (
A1−t + B1−t

))
≤ 2

3
2 s j

((
A2 + B2

) 1
2
)

(2.4)

for j = 1, 2, . . . , n.

Proof For j = 1, 2, . . . , n, we have

s j
((

At + Bt) (
A1−t + B1−t

))

= λ j

(∣∣∣(At + Bt) (
A1−t + B1−t

)∣∣∣
)

= λ j

((
At + Bt) (

A1−t + B1−t
)2 (

At + Bt)
) 1

2

= λ
1
2
j

((
At + Bt) (

A1−t + B1−t
)2 (

At + Bt)
)

≤ 2
1
2 λ

1
2
j

((
At + Bt) (

A2(1−t) + B2(1−t)
) (

At + Bt)) (by Lemma 2.1)

= 2
1
2 λ

1
2
j

((
A2(1−t) + B2(1−t)

) 1
2 (

At + Bt)2 (
A2(1−t) + B2(1−t)

) 1
2
)

≤ 2λ
1
2
j

((
A2(1−t) + B2(1−t)

) (
A2t + B2t

))
(by Lemma 2.1)

≤ 2
3
2 λ

1
2
j

(
A2 + B2

)
(by Lemma 2.2)

= 2
3
2 λ j

(
A2 + B2

) 1
2

= 2
3
2 s j

((
A2 + B2

) 1
2
)

.

This proves the inequality (2.4). ��
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Using the fact that unitarily invariant norms are increasing functions of singular
values, we have the following immediate consequence of Theorem 2.6.

Corollary 2.7 Let A and B be positive semidefinite matrices and let 0 ≤ t ≤ 1. Then
for every unitarily invariant norm, we have

∣∣∣
∣∣∣
∣∣∣(At + Bt) (

A1−t + B1−t
)∣∣∣

∣∣∣
∣∣∣ ≤ 2

3
2

∣∣∣∣
∣∣∣∣
∣∣∣∣
(
A2 + B2

) 1
2

∣∣∣∣
∣∣∣∣
∣∣∣∣. (2.5)

Remark 2.8 We remark here that the inequality (2.5) also follows form Corollary 2.4.
For Hermitian matrices A, B, we have

|||A + B||| ≤ 2
1
2

∣∣∣∣
∣∣∣∣
∣∣∣∣
(
A2 + B2

) 1
2

∣∣∣∣
∣∣∣∣
∣∣∣∣ ≤ 2

1
2 ||||A| + |B||||. (2.6)

In fact, in view of the matrix monotonicity of the function f (x) = x
1
2 on [0,∞),

the first inequality in (2.6) follows from Lemma 2.1, and the second inequality in (2.6)
can be inferred from [2].

Our third main result can be stated as follows.

Theorem 2.9 Let A and B be positive semidefinite matrices and let 0 ≤ t ≤ 1. Then

s
(
At B1−t + Bt A1−t

)
≺w 2

1
2 s

((
A2 + B2

) 1
2
)

. (2.7)

Proof Let ��

X =
[
At Bt

0 0

]
,Y =

[
B1−t 0
A1−t 0

]
.

Then, using the fact that s (T ) = λ
1
2 (T ∗T ) = λ

1
2 (T T ∗) for every matrix T , we have

s
((

At B1−t + Bt A1−t
)

⊕ 0
)

= s (XY )

≺w s (X) s (Y )

= λ
1
2

((
A2t + B2t

)
⊕ 0

)
λ

1
2

((
A2(1−t) + B2(1−t)

)
⊕ 0

)
.

Thus, for k = 1, 2, . . . , n, we have

k∑
j=1

s j
(
At B1−t + Bt A1−t

)

≤
k∑
j=1

λ
1
2
j

(
A2t + B2t

)
λ

1
2
j

(
A2(1−t) + B2(1−t)

)
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≤
k∑
j=1

2
1−t
2 λ

t
2
j

(
A2 + B2

)
2

1−(1−t)
2 λ

1−t
2
j

(
A2 + B2

)
(by Lemma 2.2)

= 2
1
2

k∑
j=1

λ
1
2
j

(
A2 + B2

)

= 2
1
2

k∑
j=1

s j

((
A2 + B2

) 1
2
)

.

This proves the inequality (2.7). �

Corollary 2.10 Let A and B be positive semidefinite matrices and let 0 ≤ t ≤ 1.
Then for every unitarily invariant norm, we have

∣∣∣
∣∣∣
∣∣∣At B1−t + Bt A1−t

∣∣∣
∣∣∣
∣∣∣ ≤ 2

1
2

∣∣∣∣
∣∣∣∣
∣∣∣∣
(
A2 + B2

) 1
2

∣∣∣∣
∣∣∣∣
∣∣∣∣. (2.8)

3 A reverse-type inequality

We start this section with the following lemma, which will be used in proving our
main result in this section. This lemma has been proved by the authors in [14].

Lemma 3.1 Let A, B be positive semidefinite matrices, and letw, z be complex num-
bers such that

∣∣∣∣Re w − 1

2

∣∣∣∣ +
∣∣∣∣Re z − 1

2

∣∣∣∣ ≤ 1

2
.

Then
∣∣∣tr

(
AwBz A1−wB1−z

)∣∣∣ ≤ tr (AB) .

Using Lemma 3.1, it has been shown in [14] that

∥∥∥AwBz + B1−z A1−w
∥∥∥
2

≤
∥∥∥AwBz + A1−wB1−z

∥∥∥
2

As another application of Lemma 3.1, we obtain the following reverse-type inequal-
ity.

Theorem 3.2 Let A, B be positive semidefinite matrices, and let w, z be complex
numbers such that

∣∣∣∣Re w − 1

2

∣∣∣∣ +
∣∣∣∣Re z − 1

2

∣∣∣∣ ≤ 1

2
.
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Then

∥∥∥AwBz − B1−z A1−w
∥∥∥
2

≥
∥∥∥AwBz − A1−wB1−z

∥∥∥
2
.

Proof We can see that the square of the left-hand side of the desired norm inequality
is equal to

tr
(
Aw+wBz+z − 2Re

(
A1−wB1−z AwBz

)
+ A2−(w+w)B2−(z+z)

)

and the square of the right-hand side is equal to

tr
(
Aw+wBz+z − 2AB + A2−(w+w)B2−(z+z)

)
.

Here, we have used the fact that for all matrices X,Y , ‖X‖2 = (tr X∗X)
1
2 and the

cyclicity of the trace, i.e., tr XY = tr Y X .
Therefore, the desired norm inequality is equivalent to the statement

Re tr
(
AwBz A1−wB1−z

)
≤ tr (AB) . (3.1)

By Lemma 3.1 and the fact that for every matrix X , Re tr X ≤ |tr X |, the inequality
(3.1) holds provided

∣∣∣∣Re w − 1

2

∣∣∣∣ +
∣∣∣∣Re z − 1

2

∣∣∣∣ ≤ 1

2
.

This completes the proof. ��

4 Related trace inequalities

In this section, we obtain trace inequalites related to the norm inequalities presented
in Sect. 2.

Theorem 4.1 Let A and B be positive semidefinite matrices and letS = {z ∈ C : 0 ≤
Re z ≤ 1}. Then

∣∣∣∣tr
((

Az B1−z
)2 +

(
Bz A1−z

)2)∣∣∣∣ ≤ tr
(
A2 + B2

)
(4.1)

for all z ∈ S.
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Proof Let z = x + iy, 0 ≤ x ≤ 1. Then∣∣∣∣tr
((

Az B1−z
)2 +

(
Bz A1−z

)2)∣∣∣∣

=
∣∣∣∣tr

(
Az B1−z

)2 + tr
(
Bz A1−z

)2∣∣∣∣

≤
∣∣∣∣tr

(
Az B1−z

)2∣∣∣∣ +
∣∣∣∣tr

(
Bz A1−z

)2∣∣∣∣

≤
∥∥∥∥
(
Az B1−z

)2∥∥∥∥
1
+

∥∥∥∥
(
Bz A1−z

)2∥∥∥∥
1
(by the inequality (2.1))

=
∥∥∥Az B1−z Az B1−z

∥∥∥
1
+

∥∥∥Bz A1−z Bz A1−z
∥∥∥
1

=
∥∥∥Ax B1−x B−iy Ax Aiy B1−x

∥∥∥
1

+
∥∥∥Bx A1−x A−iy Bx Biy A1−x

∥∥∥
1

≤
∥∥∥Ax B1−x B−iy

∥∥∥
2

∥∥∥Aiy Ax B1−x
∥∥∥
2

+
∥∥∥Bx A1−x A−iy

∥∥∥
2

∥∥∥Biy Bx A1−x
∥∥∥
2
(by the inequality (2.1))

=
∥∥∥Ax B1−x

∥∥∥
2

∥∥∥Ax B1−x
∥∥∥
2

+
∥∥∥Bx A1−x

∥∥∥
2

∥∥∥Bx A1−x
∥∥∥
2

(
since Aiy and Biy are unitary

)

=
∥∥∥Ax B1−x

∥∥∥
2

2
+

∥∥∥Bx A1−x
∥∥∥
2

2

= tr
(
B1−x A2x B1−x

)
+ tr

(
A1−x B2x A1−x

)

= tr A2x B2(1−x) + tr A2(1−x)B2x

≤
(
tr A2

)x (
tr B2

)1−x +
(
tr A2

)1−x (
tr B2

)x

≤ tr A2 + tr B2 (by the inequalities (1.1))

= tr
(
A2 + B2

)
.

This completes the proof. ��
Based on Theorem 4.1, we have the following trace inequality involving bt , which

is related to the second inequality in (1.4).

Corollary 4.2 Let A and B be positive semidefinite matrices and let S =
{z ∈ C : 0 ≤ Re z ≤ 1}. Then

Re tr
(
Az B1−z + Bz A1−z

)2 ≤ tr (A + B)2 (4.2)

for all z ∈ S.
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In other words,

Re tr (bz)
2 ≤ tr (b1)

2

for all z ∈ S.
In particular, if z = t ∈ [0, 1], we have

tr (bt )
2 ≤ tr (b1)

2 .

Proof We can see that inequality (4.2) is equivalent to the statement

Re tr

((
Az B1−z

)2 +
(
Bz A1−z

)2) ≤ tr
(
A2 + B2

)
. (4.3)

Thus, our goal is to show that the inequality (4.3) holds provided z ∈ S. For z ∈ S,
we have

Re tr

((
Az B1−z

)2 +
(
Bz A1−z

)2) ≤
∣∣∣∣tr

((
Az B1−z

)2 +
(
Bz A1−z

)2)∣∣∣∣
≤ tr

(
A2 + B2

)
(by Theorem 4.1) .

Hence, the inequality (4.2) is valid provided z ∈ S. ��
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