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Abstract We consider the problem of comparing the volumes of two star bodies in
an even-dimensional Euclidean space R2n = C

n by comparing their cross sectional
areas along complex lines (special 2-dimensional real planes) through the origin.Under
mild symmetry conditions on one of the bodies a Busemann–Petty type theorem holds.
Quaternionic and octonionic analogs also hold. The argument relies on integration in
polar coordinates coupled with Jensen’s inequality. Along the way we provide a crite-
rion that detects which centered bodies are circular. i.e., stabilized by multiplication
by complex numbers of unit modulus. Our goal is to present a Busemann–Petty type
result with a minimum of required background (in the spirit of L. K. Hua’s book on
the classical domains) and, in addition, to suggest characterizations of classes of star
bodies by means of integral geometric inequalities.

Keywords Busemann–Petty problem · Complex cross-sections · Star body · Circular
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Definition Let D be domain in C
n and assume tacitly that all vectors under arrows

belong to C
n . We say that D is a circular domain, with center

−→
0 if the following

holds:

−→z ∈ D, θ ∈ R �⇒ (e
√−1θ )

−→z ∈ D.
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D is said to be circular with center −→c when D − −→c is circular with center
−→
0 .

Thus the origin centered unit ball {�z
∣
∣
∣‖�z‖ = 1} and the standard unit polydisc,

P ≡ {�z
∣
∣
∣ |zi | ≤ 1, i = 1 . . . n},

are both circular.
In the convex geometry literature circular bodies are sometimes said to have Rθ

symmetry. In the functional analysis literature one sometimes speaks of a balanced
set.

Theorem 1 Let D be a star-shaped origin symmetric domain inCn, let G1,n be the set
of 1-dimensional vector subspaces of Cn, that is, the (Grassmannian) set of complex
lines through

−→
0 , and let d� be the standard probability measure on G1,n. Then

(1) vol(D) ≥ 1
n!

∫

�∈G1,n
(area(D ∩ �))n d�.

(2) vol(D) = 1
n!

∫

�∈G1,n
(area(D ∩ �))n d� precisely when D is circular.

Loosely we say that the volume of D dominates the mean of the nth power of cross-
sectional areas of D by lines in G1,n , with equality precisely when D is circular.

This suggests the quest of characterizing all ‘classes’ of bodies by geometric integral
inequalities and identities, where classes, geometric, and integral are left to be made
more precise (not to mention all). For instance, characterizations of centered bodies
in R

n are found in [5,14]. We seek a mapping (functor?) from classes of bodies to
geometric inequalities, perhaps in the spirit of [16], where a parallel is drawn between
mean value properties and differential equations. For some results in this direction see
[3,4,6,9,11,12,17]. As an intermediate goal, onemay aim to characterize the bounded
symmetric hermitian domains or Siegel domains in the style and spirit of L. K. Hua’s
book [8].

It would also be interesting to provide stability estimates. That is, if the inequality
in Theorem 1 is nearly an equality is the body in question nearly circular, perhaps as
measured by some kind of modulus of circularity? For extensive discussions of such
estimates in convex geometry and geometric inequalities see [7,15].

Proof Viewing the ambient space C
n as R

2n , with its unit sphere S2n−1, we can
compute the volume of the region D in polar coordinates. We recall that ρD(ω) :
S2n−1 −→ R, the radial function of D, is defined by

ρD(ω) = max{t ∈ [0,+∞) | tω ∈ D}.

With this notation we have

vol(D) = 1

2n

∫

ω∈S2n−1
(ρD(ω))2n dω,

where dω is the usual surface measure on the sphere S2n−1 induced by the Euclidean
metric. Since multiplication by a phase factor stabilizes the sphere and preserves its
measure,
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∫

ω∈S2n−1
f (ω) dω =

∫

ω∈S2n−1
f (eiθω) dω

for any θ .
Let dθ be the probability measure on the unit circle. Applying Jensen’s inequality

[13] to the convex function x �→ xn on [0,+∞) we obtain

∫

θ∈S1

{(

ρD(eiθω)
)2

}n

dθ ≥
{∫

θ∈S1

(

ρD(eiθω)
)2

dθ

}n

.

With these observations we have

vol(D) = 1

2n

∫

ω∈S2n−1
(ρD(ω))2n dω

= 1

2n

∫

ω∈S2n−1

(

ρD(eiθω)
)2n

dω

= 1

2n

∫

ω∈S2n−1

∫

θ∈S1

(

ρD(eiθω)
)2n

dθ dω

= 1

2n

∫

ω∈S2n−1

∫

θ∈S1

{(

ρD(eiθω)
)2

}n

dθ dω

≥ 1

2n

∫

ω∈S2n−1

{∫

θ∈S1

(

ρD(eiθω)
)2

dθ

}n

dω

= 1

2n

∫

ω∈S2n−1

{
1

π
area(D ∩ �(ω))

}n

dω,

where the inequality is Jensen’s. Notice that equality holds iff ρD(eiθω) = ρD(ω) for
almost all (and hence for all) θ and ω (by continuity), i.e., if and only if D is a circular
region.

This nearly completes the proof, but we stated the Theorem in terms of integration
over the Grassmannian G1,n (with probability measure) and we estimated volume by
integrating over the sphere S2n−1, the Stiefel manifold if you will (with surface area
measure). The two integrals are related by a constant that turns out to be 2n(πn/n!),
[14, p. xxi]. Thus

vol(D) ≥ 1

2n

∫

ω∈S2n−1

{
1

π
area(D ∩ �(ω))

}n

dω

= 1

2n
· 2n · πn

n!
∫

�∈G1,n

{
1

π
area(D ∩ �)

}n

dω

= 1

n!
∫

�∈G1,n

(area(D ∩ �))n d�.

��
Theorem 2 Let A and B be origin-symmetric star bodies inCn with A circular. If for
every complex line � through the origin in Cn we have
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area(A ∩ �) ≤ area(B ∩ �),

then A has smaller or equal volume compared to B.

This is a variation on the classical Busemann–Petty problem [1,2]. It just involves inte-
gration over polar coordinates (adapted to complex geometry) together with Jensen’s
inequality. The general Busemann–Petty problem has a vast literature and its solutions
are powered by the notion of intersection body, introduced by E. Lutwak in the paper
[10], which has played a decisive role in the subject, and for which this result may be
viewed as a small manifestation.

Proof By the previous theorem (statement and proof),

vol(A) = 1

n!
∫

G1,n

(area(A ∩ �))n d�

≤ 1

n!
∫

G1,n

(area(B ∩ �))n d�

≤ vol(B).

��
Note a similar argument allows comparison of bodies K , L in R

4n by cross-sections
along quaterionic lines (assuming K is quaternion-circular, or S3-circular.)

Acknowledgements The author wishes to thank Susanna Dann, David Feldman, Daniel Klain, Erwin
Lutwak, Mehmet Orhon, Larry Zalcman and others for helpful discussions and the referees for suggesting
several improvements in the manuscript.

References

1. Barthe, F., Fradelizi, M., Maurey, B.: A short solution to the Busemann–Petty problem. Positivity 3,
95–100 (1999)

2. Busemann, H., Petty, C.M.: Problems on convex bodies. Math. Scand. 4, 88–94 (1956)
3. Dann, S.: The Busemann–Petty problem in the complex hyperbolic space. Math. Proc. Camb. Philos.

Soc. 155(1), 155–172 (2013)
4. Dann, S., Zymonopoulou, M.: Sections of convex bodies with symmetries. Adv. Math. 271, 112–152

(2015)
5. Gardner, R.J.: Geometric Tomography, 2nd edn. Cambridge University Press, Cambridge (2006)
6. Grinberg, E.: Isoperimetric inequalities and identities for k-dimensional cross-sections of convex bod-

ies. Math. Ann. 291(1), 75–86 (1991)
7. Groemer, H.: Stability of geometric inequalities. In: Gruber, P.M., Wills, J.M., (eds.) Handbook of

Convex Geometry, vol. A, pp. lxvi+735; vol. B: pp. i–lxvi and 737–1438. North-Holland Publishing
Co., Amsterdam (1993). ISBN: 0-444-89598-152-06 (52–00)

8. Hua, L.K.: Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains
(Translations of Mathematical Monographs), vol. 6. American Mathematical Society, Providence
(1979)

9. Koldobsky, A., König, H., Zymonopoulou, M.: The complex Busemann–Petty problem on sections of
convex bodies. Adv. Math. 218, 352–367 (2008)

10. Lutwak, E.: Intersection bodies and dual mixed volumes. Adv. Math. 71(2), 232–261 (1988)
11. Rubin, B.: The lower dimensional Busemann–Petty problem for bodies with the generalized axial

symmetry. Isr. J. Math. 173, 213–233 (2009)



Comparing volumes by concurrent cross-sections of complex… 1301

12. Rubin, B.: Comparison of volumes of convex bodies in real, complex, and quaternionic spaces. Adv.
Math. 225(3), 1461–1498 (2010)

13. Rudin, W.: Real and Complex Analysis, Chapter 3, 3rd edn. McGraw-Hill, New York (1986)
14. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, 2nd edn. Cambridge University Press,

Cambridge (2014)
15. Toth, G.: Measures of Symmetry for Convex Sets and Stability. Universitext. Springer, Cham (2015)
16. Zalcman, L.: Mean values and differential equations. Isr. J. Math. 14, 339–352 (1973)
17. Zymonopoulou, M.: The modified complex Busemann–Petty problem on sections of convex bodies.

Positivity 13(4), 717–733 (2009)


	Comparing volumes by concurrent cross-sections of complex lines: a Busemann–Petty type problem
	Abstract
	Acknowledgements
	References




