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Abstract In this paper we give a matrix version of Handelman’s Positivstellensatz
(Handelman in Pac JMath 132:35–62, 1988), representing polynomial matrices which
are positive definite on convex, compact polyhedra. Moreover, we propose also a
procedure to find such a representation. As a corollary of Handelman’s theorem, we
give a special case of Schmüdgen’s Positivstellensatz for polynomial matrices positive
definite on convex, compact polyhedra.
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1 Introduction

Let R[X ] := R[X1, . . . , Xn] be the ring of polynomials in the variables X1, . . . , Xn

with real coefficients. Denote by Δn the standard n-simplex in R
n , which is defined

by

Δn :=
{
x = (x1, . . . , xn) ∈ R

n|xi ≥ 0,
n∑

i=1

xi = 1

}
.

Pólya [9] proved in 1928 that for a homogeneous polynomial f ∈ R[X ], if f (x) >

0 for every x ∈ Δn , then there exists a sufficiently large number N such that all
coefficients of the polynomial (X1 + · · · + Xn)

N · f are positive.
Powers and Reznick [10] gave an explicit bound for the number N , and applied it

to give a constructive version of Handelman’s Positivstellensatz. More explicitly, let
P ⊆ R

n be a convex, compact polyhedron with non-empty interior, bounded by linear
polynomials L1, . . . , Lm ∈ R[X ]. By choosing the sign of the Li ’s, we may assume
that

P = {
x ∈ R

n|Li (x) ≥ 0, i = 1, . . . ,m
}
. (1)

Theorem 1 (Handelman’s Positivstellensatz [4]) For a polynomial f ∈ R[X ], if
f (x) > 0 for all x ∈ P, then f can be represented as

f =
∑

|α|≤M

fαL
α1
1 . . . Lαm

m

for some M ∈ N and fα ≥ 0 for all α = (α1, . . . , αm) ∈ N
m such that |α| ≤ M.

Krivine [6] provedHandelman’s Positivstellensatz for a special polyhedron.Moreover,
one can find a generalization of this Positivstellensatz in [11, Theorem 5.4.6] (or [8,
Theorem 7.1.6]). A bound for the number M was given by Powers and Reznick [10],
using the bound for the number N in Pólya’s Positivstellensatz.

Theorem 1 yields the following consequence.

Corollary 1 For a polynomial f ∈ R[X ], if f (x) > 0 for all x ∈ P, then f can be
represented as

f =
∑

e=(e1,...,em )∈{0,1}m
f 2e L

e1
1 . . . Lem

m ,

where fe ∈ R[X ] and deg( f 2e ) ≤ M.

This corollary is a special case of Schmüdgen’s Positivstellensatz [14] for convex,
compact polyhedra which includes an explicit bound on the degrees of sums of squares
coefficients f 2e .

Schmüdgen’s Positivstellensatz has many important applications, especially in
solving polynomial optimization problems and moment problems for compact semi-
algebraic sets. Therefore, as a special case of Schmüdgen’s Positivstellensatz,
Handelman’s theorem for polynomials plays an important role in application.



Handelman’s Positivstellensatz for polynomial matrices… 451

A matrix version of Pólya’s Positivstellensatz was given by Scherer and Hol [13],
with applications e.g. in robust polynomial semi-definite programs. Schmüdgen’s
theorem for operator polynomials has been discovered by Cimpric̆ and Zalar [3].
Positivstellensätze for polynomial matrices have been studied by some other authors,
see for example in [1,2,7,12]. The main aim of this paper is to give a version of Han-
delman’s Positivstellensatz for polynomial matrices with an explicit degree bound.

We need to introduce some notations. For t ∈ N
∗, let Mt (R) denote the ring of

square matrices of order t with entries from a commutative unital ring R. Denote by
St (R) the subset of Mt (R) consisting of all symmetric matrices.
In this paper we consider mainly R to be the ring R[X ] of polynomials in n variables
X1, . . . , Xn with real coefficients. Each element A ∈ Mt (R[X ]) is a matrix whose
entries are polynomials from R[X ], called a polynomial matrix. Each element A ∈
Mt (R[X ]) is also called amatrix polynomial, because it can be viewed as a polynomial
in X1, . . . , Xn whose entries from Mt (R). Namely, we can write A as

A =
d∑

|α|=0

AαX
α,

where α = (α1, . . . , αn) ∈ N
n , |α| := α1 + · · · + αn , Xα := Xα1

1 . . . Xαn
n , Aα ∈

Mt (R), d is the maximum over all degree of entries of A, and it is called the degree
of the matrix polynomial A. To unify notation, throughout the paper each element of
Mt (R[X ]) is called a polynomial matrix.
For any polynomial matrix A ∈ Mt (R[X ]) and for any subset K ⊆ R

n , by A � 0
(resp. A � 0) on K we mean that for any x ∈ K , the matrix A(x) is positive
semidefinite (resp. positive definite), i.e. all eigenvalues of the matrix A(x) are non-
negative (resp. positive).
For any polynomial matrices A, B ∈ Mt (R[X ]), the notation A � B on K means
that A − B � 0 on K .

Suppose that we have a convex, compact polyhedron P ⊆ R
n with non-empty

interior, bounded by linear polynomials L1, . . . , Lm ∈ R[X ], defined by (1). Let
F ∈ St (R[X ]) be a polynomial matrix of degree d > 0. Assume F � 0 on P . The
main result of this paper is presented in Theorem 3 which is a matrix version of
Handelman’s Positivstellensatz, stating that there exists a number N0 such that for all
integer N > N0 the polynomial matrix F can be written as

F =
∑

|α|=N+d

FαL
α1
1 . . . Lαm

m ,

where Fα ∈ St (R) are positive definite scalar matrices with |α| = N + d.
Themain idea in the proof of this theorem inherits fromPowers andReznick [10], using
a matrix version of Pólya’s Positivstellensatz [13] and the continuity of eigenvalue
functions of the polynomial matrix F on the entries of F (by [16, Theorem 1]). As a
corollary of this theorem, we give a special case of Schmüdgen’s Positivstellensatz
for polynomial matrices positive definite on convex, compact polyhedra. Furthermore,
we give a procedure to find such a representation for the polynomial matrix F.
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2 Representation of polynomial matrices positive definite on simplices

In this section we consider a simple case where P is an n-simplex with vertices
{v0, v1, . . . , vn} and let {L0, L1, . . . , Ln} be the set of barycentric coordinates of P ,
that is, each Li ∈ R[X ] is linear and

X =
n∑

i=0

Li (X)vi ,

n∑
i=0

Li (X) = 1, Li (v j ) = δi j . (2)

Let F ∈ St (R[X ]) be a polynomial matrix of degree d > 0. We can express F as

F(X) =
∑
|α|≤d

AαX
α,

where Aα ∈ Mt (R).
Let us consider the Bernstein–Bézier form of F with respect to P:

F̃d(Y ) := F̃d(Y0, . . . ,Yn) :=
∑
|α|≤d

Aα

(
n∑

i=0

Yivi

)α (
n∑

i=0

Yi

)d−|α|
. (3)

It is easy to see that F̃d(Y ) ∈ St (R[Y ]) is a homogeneous polynomial matrix of degree
d. Moreover, it follows from the relations (2) that

F̃d(L0, . . . , Ln) = F(X).

Following Scherer and Hol [13], for each multi-index α = (α1, . . . , αn) ∈ N
n , let us

denote

α! := α1! . . . αn !; Dα := ∂
α1
1 . . . ∂αn

n .

With these notations, we can re-write F as

F(X) =
∑
|α|≤d

DαF(0)

α! Xα.

With the spectral norm ‖·‖, following Scherer and Hol [13], we define

C(F) := max|α|≤d

‖DαF(0)‖
|α|! . (4)

Using these notations, we have the following representation of polynomial matrices
which are positive on simplices.
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Theorem 2 Let P ⊆ R
n be an n-simplex given as above and F ∈ St (R[X ]) a

polynomial matrix of degree d > 0. Assume that F � λIt on P for some λ > 0. Let

C := C(F̃d). Then for each N >
d(d − 1)

2

C

λ
− d, F can be represented as

F =
∑

|α|=N+d

FαL
α0
0 . . . Lαn

n ,

where each Fα ∈ St (R) is positive definite.

Proof Let us denote by Δn+1 the standard simplex in R
n+1, i.e.

Δn+1 =
{

(y0, . . . , yn) ∈ R
n+1|yi ≥ 0,

n∑
i=0

yi = 1

}
.

Since F(x) � λIt for all x ∈ P , the Bernstein–Bézier form F̃d of F with respect to P
satisfies

F̃d(y0, . . . , yn) � λIt ,∀(y0, . . . , yn) ∈ Δn+1.

Then it follows from Pólya’s theorem for polynomial matrices [13, Theorem 3], that

for each N >
d(d − 1)

2

C

λ
− d,

(
n∑

i=0

Yi

)N

F̃d(Y ) =
∑

|α|=N+d

FαY
α0
0 . . . Y αn

n , (5)

where each Fα ∈ St (R) is positive definite. Substituting Yi by Li on both sides of (5),
noting that

F̃d(L0(X), . . . , Ln(X)) = F(X) and
N∑
i=0

Li (X) = 1,

we obtain the required representation for F. 
�

3 Representation of polynomial matrices positive definite on convex,
compact polyhedra

Throughout this section, let P ⊆ R
n be a convex, compact polyhedron with non-

empty interior, given by (1). By [15], there exist positive numbers ci ∈ R such that∑m
i=1 ci Li (X) = 1. Replacing each Li by ci Li we may assume that

m∑
i=1

Li (X) = 1. (6)
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Moreover, it is easy to check that for each i = 1, . . . , n, there exist real numbers
bi j ∈ R, j = 1, . . . ,m such that

Xi =
m∑
j=1

bi j L j (X).

Let us consider the n × m matrix B := (bi j )i=1,...,n; j=1,...,m . Then for X =
(X1, . . . , Xn) and L = (L1, . . . , Lm), we have XT = B · LT . In other words, we
have

X = L · BT . (7)

Denote R[Y ] := R[Y1, . . . ,Ym], and consider the ring homomorphism

ϕ: R[Y ] → R[X ], Yi 
−→ Li (X),∀i = 1, . . . ,m.

It follows from (6) that
∑m

i=1 Yi − 1 ∈ Ker(ϕ). Hence we may assume that the ideal
I := Ker(ϕ) is generated by polynomials R1(Y ), . . . , Rs(Y ) ∈ R[Y ],

I := Ker(ϕ) = 〈R1(Y ), . . . , Rs(Y )〉 ,

where
∑m

i=1 Yi − 1 is one of the Ri ’s.
Note that the homomorphism ϕ induces a ring homomorphism

Mϕ :Mt (R[Y ]) −→ Mt (R[X ]), G = (gi j (Y )) 
−→ (ϕ(gi j (Y ))).

Lemma 1 The homomorphism Mϕ is surjective, and

I := Ker(Mϕ) = 〈R1(Y )It , . . . , Rs(Y )It 〉 ,

where It denotes the identity matrix inMt (R[Y ]).
Proof For each g(X) = ∑

|α|≤d aαXα ∈ R[X ], denote

g̃(Y ) :=
∑
|α|≤d

aα(Y · BT )α

(
m∑
i=1

Yi

)d−|α|
∈ R[Y ]. (8)

It is clear that g̃ is homogeneous of degree d. Moreover ϕ(g̃(Y )) = g(X). Hence ϕ is
surjective. Then the surjectivity of Mϕ follows from that of ϕ.

On the other hand, G = (gi j (Y )) ∈ Ker(Mϕ) if and only if gi j ∈ Ker(ϕ) for all
i, j = 1, . . . , t . Hence for each i, j = 1, . . . , t we have

gi j (Y ) =
s∑

k=1

ai jk(Y )Rk(Y ), for some ai jk(Y ) ∈ R[Y ].
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Then G can be written as

G =
s∑

k=1

RkAk =
s∑

k=1

(RkIt )Ak,

where Ak = (ai jk(Y )) ∈ Mt (R[Y ]) for each k = 1, . . . , s. It is equivalent to the fact
that G ∈ 〈R1It , . . . , RsIt 〉 . The proof is complete. 
�

Let F = ( fi j ) ∈ St (R[X ]) be a polynomial matrix of degree d > 0. Denote
F̃ := ( f̃i j ) ∈ St (R[Y ]), where each f̃i j is defined by (8), which is a homogeneous
polynomial of degree d.

Assume λ(F) is an eigenvalue function of F. It follows from [16, Theorem 1]
that λ(F) is a continuous function on fi j (X), i, j = 1, . . . , t . That is, there exists a

continuous function Λ: Rt×t → R such that λ(F) = Λ( fi j (X)). Denote λ̃(F)(Y ) :=
Λ( f̃i j (Y )), which is actually an eigenvalue function of the polynomial matrix F̃.

Denote R(Y ) := ∑s
i=1 R

2
i (Y ). With the notations given above, we have the fol-

lowing useful lemma.

Lemma 2 Let F = ( fi j ) ∈ St (R[X ]) be a polynomial matrix of degree d > 0. Let
λ(F) is an eigenvalue function of F. If λ(F) > 0 on P, then there exists a sufficiently
large constant c such that λ̃(F) + cR > 0 on the standard m-simplex Δm. More
explicitly, this holds for c > −m1/m2, wherem1 is theminimumof λ̃(F) onΔm andm2

is the minimum of the polynomial R on the compact set Δm ∩ {y ∈ R
m |λ̃(F)(y) ≤ 0}.

Proof The proof goes along the same lines as the proof of [10, Lemma 4], using
continuity of the function λ̃(F). 
�

Applying this lemma, we have

Lemma 3 LetF = ( fi j ) ∈ St (R[X ]) be a polynomial matrix of degree d > 0. Denote
F̃ := ( f̃i j ) ∈ St (R[Y ]). Assume F � 0 on P. Then there exists a sufficiently large
constant c such that F̃ + cRIt � 0 on the standard m-simplex Δm.

Proof Since F is positive definite on P , its eigenvalue functions λk(F), k = 1, . . . , t ,
are positive on P . It follows from Lemma 2 that for each k, there exists a sufficiently

large constant ck such that λ̃k(F)+ck R is positive onΔm . Let c := maxk=1,...,t ck . Then

λ̃k(F) + cR is positive on Δm for each k = 1, . . . , t . Note that, λ̃k(F), k = 1, . . . , t ,
are eigenvalues of the polynomial matrix F̃. Moreover, the eigenvalues of the matrix

F̃ + cRIt are λ̃k(F) + cR, k = 1, . . . , t . It follows that F̃ + crIt is positive definite on
Δm . The proof is complete. 
�

Note that F := F̃ + cRIt need not be homogeneous. However, by homogenization
F by

∑m
i=1 Yi , we obtain a homogeneous polynomial matrix of the same degree as F.

More explicitly, if we express F as

F =
∑

|β|≤d

FβY
β, Fβ ∈ St (R),
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then its homogenization by
∑m

i=1 Yi is

F
h =

∑
|β|≤d

FβY
β

(
m∑
i=1

Yi

)d−|β|
. (9)

F
h
is a homogeneous polynomial matrix of degree d. Moreover, Mϕ(F

h
) = F, and F

h

is positive definite on Δm .
Now we can state and prove the following matrix version of Handelman’s Posi-

tivstellensatz.

Theorem 3 Let P, F, F, F
h
be given as above, with F positive definite on P. Assume

that F
h � λIt on Δm for some λ > 0. Let d := deg(F) and C := C(F

h
). Then for

each N >
d(d − 1)

2

C

λ
− d, F can be represented as

F =
∑

|α|=N+d

FαL
α1
1 . . . Lαm

m , (10)

where each Fα ∈ St (R) is positive definite.

Proof Firstly, applying the matrix version of Pólya’s Positivstellensatz given in [13,

Theorem 3] for F
h
, observing that d = deg(F

h
). Then, applying Mϕ , using the fact

that Mϕ(F
h
) = F and ϕ(

∑m
i=1 Yi ) = 1. 
�

As a summary, we formulate the construction given above as a procedure to find a
representation for the polynomial matrix F = ( fi j ) ∈ St (R[X ]) positive definite on a
convex, compact polyhedron P ⊆ R

n as follows:

(1) Following [4] to find positive constants ci ∈ R such that
∑m

i=1 ci Li (X) = 1. Con-
structing the ci ’s comes down to find a positive solution to an under-determined
linear system.

(2) Solving the system of equations

Xi =
m∑
j=1

bi j Li (X), i = 1, . . . , n,

to find the matrix B = (bi j )i=1,...,n; j=1,...,m .
(3) Using (8) to find f̃i j , i, j = 1, . . . , t .
(4) Using Gröbner bases to find a basis {R1, . . . , Rs} for the kernel Ker(ϕ) of the ring

homomorphism ϕ.
(5) Following the proof ofLemma3 tofind a sufficiently large c such that F̃+cRIt � 0

on Δm .
(6) Using (9) to construct the homogenization F

h
of F := F̃ + cRIt .

(7) Following the proof of Lemma 4 below to find the positive number λ such that

F
h
(y) � λIt for all y ∈ Δm .
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Lemma 4 Let K ⊆ R
m be a non-empty compact set, and G ∈ St (R[Y ]). Then there

exists a number c ∈ R such that

G(y) � cIt , for all y ∈ K .

In particular, if G(y) � 0 for all y ∈ K, then we can choose a number c > 0 such
that G(y) � cIt , for all y ∈ K .

Proof Let λ1(G), . . . , λt (G) be (real-valued) eigenvalue functions of the polynomial
matrix G ∈ St (R[Y ]). It follows from [16, Theorem 1] that λi (G) are continuous
functions. Since K is compact, let

ci := min
y∈K λi (G)(y), i = 1, . . . , t.

Denote c := mini=1,...,t ci . Since eigenvalue functions of G − cIt are λi (G) − c,
i = 1, . . . , t , it follows from the definition of c that

λi (G)(y) − c ≥ λi (G)(y) − ci ≥ 0

for all y ∈ K and for all i = 1, . . . , t . This implies that G(y) � cIt , for all y ∈ K . 
�

(8) Using the formula (4) to find the number C := C(F
h
).

(9) Find a number N >
d(d − 1)

2

C

λ
− d.

(10) Find thematrix coefficients of the polynomialmatrix (
∑m

i=1 Yi )
NF

h ∈ St (R[Y ]),
substituting Yi by Li (X), we obtain the desired representation for F.

We illustrate the procedure given above by the following example which is
computed explicitly using MATLAB Version 7.10 (Release 2010a) and its add-on
GloptiPoly 3 discovered by Henrion et al. [5].

Example 1 Let us consider the unit square centered at the origin

P :=
{
(x, y) ∈ R

2|L ′
1 = 1 + x ≥ 0, L ′

2 = 1 − x ≥ 0,

L ′
3 = 1 + y ≥ 0, L ′

4 = 1 − y ≥ 0
}

.

Choosing c1 = c2 = c3 = c4 = 1

4
, we have

∑4
i=1 ci L

′
i (x, y) = 1. Therefore,

consider

L1 := 1

4
+ 1

4
x, L2 := 1

4
− 1

4
x, L3 := 1

4
+ 1

4
y, L4 := 1

4
− 1

4
y ∈ R[x, y],

we have
∑4

i=1 Li = 1.
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It is easy to see that the matrix B =
[
2 −2 0 0
0 0 2 −2

]
satisfies the equation

B · [L1 L2 L3 L4]
T = [x y]T .

Let ϕ: R[y1, y2, y3, y4] → R[x, y] be the ring homomorphism defined by ϕ(yi ) :=
Li (x, y), i = 1, 2, 3, 4. Using any monomial ordering in R[y1, y2, y3, y4]we can find
a Gröbner basis for the kernel Ker(ϕ) of ϕ:

{R1, R2} :=
{
y1 + y2 − 1

2
, y3 + y4 − 1

2

}
.

Consider R := R2
1 + R2

2.
Now we consider the polynomial matrix

F :=
[−4x2y + 7x2 + y + 3 x3 + 5xy − 3x

x3 + 5xy − 3x x4 + x2y + 3x2 − 4y + 6

]
.

Eigenvalue functions of F are

λ1(F) = 6x2 − 4x2y − 4y + 6; λ2(F) = x4 + x2y + 4x2 + y + 3.

For any (x, y) ∈ P we have λi (F)(x, y) ≥ 2, i = 1, 2. Hence F(x, y) � 2I2 for every
(x, y) ∈ P .
With the matrix B considered above, using the formula (8), we find f̃i j , i, j = 1, 2,
and then we obtain the polynomial matrix F̃ = ( f̃i j ). We can compute exactly the
eigenvalue functions λ1(̃F) and λ2(̃F) of F̃ which satisfy

min
Δ4

λ1(̃F) = 1, min
Δ4

λ2(̃F) = −2.

Moreover, minΔ4∩{λ2 (̃F)≤0} R(y1, y2, y3, y4) = 0.125. Thus we can choose

c > − −2

0.125
= 16, namely, c = 17,

for which F := F̃ + cRI2 � 0 on Δ4.
Homogenizing F by

∑4
i=1 yi we obtain a homogeneous polynomial matrix F

h =
( fi j

h
). Then we compute exactly the eigenvalue functions of the matrix F

h
which

satisfy

min
Δ4

λ1(F
h
) = 1.9706, min

Δ4
λ2(F

h
) = 1.5294.

It follows that F
h � 1.5294 I2 on Δ4, and put λ := 1.5294.
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Using the formula (4), we can find the number C := C(F
h
) = 1044

24
= 87

2
.

Therefore, choosing N = 167, the polynomial matrix (y1 + y2 + y3 + y4)167F
h
has

positive definite coefficients.

Find the matrix coefficients of the polynomial matrix (y1 + y2 + y3 + y4)167F
h ∈

St (R[y1, y2, y3, y4]), substituting yi by Li (x, y), we obtain the desired representation
for F.

As a consequence of Theorem3,we obtain the followingmatrix version of Schmüd-
gen’s Positivstellensatz for convex, compact polyhedra.

Corollary 2 Let P, F, F, F
h
be given as above, with F positive definite on P. Assume

that F
h � λIt on Δm for some λ > 0. Let d := deg(F) and C := C(F

h
). Then for

N >
d(d − 1)

2

C

λ
− d, F can be represented as

F =
∑

e=(e1,...,em )∈{0,1}m
(FT

e Fe)L
e1
1 . . . Lem

m , (11)

where Fe ∈ Mt (R[X ]) and the degree of each sum of squares FT
e Fe does not exceed

N + d.

Proof The proof follows directly from Theorem 3, with the observation that any
positive definite matrix Fα ∈ St (R) can be written as

Fα = GT
α Gα,

where Gα ∈ Mt (R) is a non-singular matrix. 
�
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