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Abstract Wepresent aFourier characterization for the continuous andunitarily invari-
ant strictly positive definite kernels on the unit sphere inCq , thus adding to a celebrated
work of I. J. Schoenberg on positive definite functions on real spheres.
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1 Introduction

Let Sq be the unit sphere in the Euclidean space Rq+1 and · the usual inner product
in Rq+1. Positive definite kernels of the form

K (x, y) = K ′(x · y), x, y ∈ Sq ,

in which K ′ : [−1, 1] → R is continuous, were studied and characterized by Schoen-
berg [21] a long time ago. A kernel as above is positive definite on Sq if, and only if,
the function K ′ has the form
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K ′(t) =
∞∑

k=0

aqk P
q
k (t), t ∈ [0, 1],

in which all coefficients aqk are nonnegative, Pq
k is the Gegenbauer or ultra-spherical

polynomial of degree k associated with the real number (q − 1)/2, as described in
[22], and

∑∞
k=0 ak P

q
k (1) < ∞. Since a kernel K as above is real and symmetric, it is

meaningful to recall that its positive definiteness demands that

n∑

μ,ν=1

cμcνK (xμ · xν) ≥ 0, (1.1)

for all n ≥ 1, any choice of distinct points x1, x2, . . . , xn on Sq and real numbers
c1, c2, . . . , cn .

The kernels in Schoenberg’s class are usually called either zonal or isotropic on Sq ,
since they are invariant with respect to the orthogonal group Oq in Rq+1, in the sense
that

K (Ax, Ay) = K (x, y), x, y ∈ Sq , A ∈ Oq .

The function K ′ is usually called the isotropic part of K .
Schoenberg’s result was complemented many decades later with a characterization

for the strictly positive definite kernels from his class. The term strict is employed
if the inequalities in (1.1) are strict for nonzero scalars c1, c2, . . . , cn . According to
[5,19] (see also [2]), a kernel K from Schoenberg’s class is strictly positive definite
if, and only if, in the series representation for the function K ′, one has:
– (q ≥ 2): aqk > 0 for infinitely many even k and infinitely many odd k.
– (q = 1): a1|k| > 0 for k belonging to a set that intersects every full arithmetic
progression in Z.

The strict positive definiteness of a positive definite kernel is usually required when
interpolation procedures based on the kernel need to be solved. It implies that no mat-
ter howmany points the interpolation procedure uses, the matrices are always positive
definite, in particular, invertible. In statistics language, the strict positive definiteness
of the covariance functions (positive definite kernels) provides invertible kriging coef-
ficient matrices and, therefore, the existence of a unique solution for the associated
kriging system.

Extensions of the results we have described so far, can be found in [8–11] and
references therein.

In this paper, we will consider the analogous problem in Ω2q , the unit sphere in
C
q . In this complex setting, the kernels have the form

K (z, w) = K ′(z · w), z, w ∈ Ω2q ,

with a continuous generating function K ′ : Δ[0, 1] → C. Here, we also employ the
same dot notation to denote the usual inner product inCq ,Δ[0, 1] := {z ∈ C : |z| ≤ 1}
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in the case q ≥ 2 while Δ[0, 1] = Ω2 otherwise. The notion of positive definiteness
now requires that

n∑

μ,ν=1

cμcνK (zμ · zν) ≥ 0, (1.2)

for n ≥ 1, any choice of distinct points z1, z2, . . . , zn on Ω2q and complex numbers
c1, c2, . . . , cn . Strict positive definiteness now demands strict inequalities in (1.2)
whenever the complex numbers cμ are nonzero. These kernels are invariant with
respect to the unitary group Uq in Cq in the sense that

K (Az, Aw) = K (z, w), z, w ∈ Ω2q , A ∈ Uq .

According to [17], a kernel K as in the previous paragraph is positive definite on
Ω2q , q ≥ 2, if, and only if,

K ′(z) =
∞∑

m,n=0

aqm,n R
q−2
m,n (z), z ∈ Δ[0, 1], (1.3)

in which all the coefficients aqm,n are nonnegative, Rq−2
m,n is the disk polynomial of

bi-degree (m, n) associated to the integer q − 2 and normalized so that Rq
m,n(1) = 1

and
∑∞

m,n=0 a
q
m,n < ∞. In the case q = 1, the representation becomes

K ′(z) =
∑

m∈Z
amz

m, z ∈ Ω2, (1.4)

in which all coefficients am are nonnegative and
∑

m∈Z am < ∞. At this point it is
worth mentioning references [14,15,20] for additional information on the harmonic
analysis on Ω2q .

For α > −1, the disk polynomial Rα
m,n of bi-degree (m, n) is given by the formula

Rα
m,n(z) := r |m−n|ei(m−n)θ R(α,|m−n|)

m∧n (2r2 − 1), z = reiθ = x + iy,

in which R(α,|m−n|)
m∧n is the Jacobi polynomial of degreem∧n := min{m, n} associated

to the numbers α and |m − n|, and normalized by R(α,|m−n|)
m∧n (1) = 1. Obviously, Rα

m,n
is a polynomial of degree m in the variable z and of degree n in the variable z. Due to
the orthogonality relations for Jacobi polynomials, the set

{
Rα
m,n : 0 ≤ m, n < ∞}

is
a complete orthogonal system in L2(Δ[0, 1], dwα), where dwα is the positivemeasure
of total mass one on Δ[0, 1] defined by

dwα(z) = α + 1

π

(
1 − x2 − y2

)α

dxdy, z = x + iy.

Earlier studies on disk polynomials are [4,6,14]. Disk polynomials are also known
as generalized Zernike polynomials, since they are natural extensions of the standard
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radial Zernike polynomials used in the characterization of circular optical imaging
systemswith non-uniform pupil functions in Optics [13,16]. Recent references on disk
polynomials are [1,24] and references therein while [23] is a source for applications.

For a function K ′ as in (1.4), it is shown in [19] that the kernel K (z, w) = K ′(z ·w),
z, w ∈ Ω2, is strictly positive definite if, and only if, the set {m : am > 0} from (1.4)
intersects every full arithmetic progression in Z. In view of the previous comments,
our intention here is to prove the following complement:

Theorem 1.1 Let K ′ be a function as in (1.3). The kernel K given by K (z, w) = K ′(z ·
w), z, w ∈ Ω2q , is strictly positive definite if, and only if, the set

{
m − n : aq−2

m,n > 0
}

intersects every full arithmetic progression in Z.

The proof of the theorem will appear in Sect. 3. In Sect. 4, we will point how to
extend the characterization for positive definite kernels of the same nature on the unit
sphere in the complex �2.

2 Technical results

In this section, we describe an asymptotic formula for disk polynomials to be required
in the closing arguments in the proof of the main result of the paper to be presented
in Sect. 3.

Let us formalize the normalization for the Jacobi polynomials we are using here:

R(α,β)
k = P(α,β)

k

P(α,β)
k (1)

, k = 0, 1, . . . ,

in which P(α,β)
k is the standard Jacobi polynomial as explored in [22]. Since the Jacobi

polynomials satisfy the recurrence formula [22, p. 71]

(1 − t)P(α+1,β)
k (t) = 2

2k + α + β + 2

[
(k + α + 1)P(α,β)

k (t) − (k + 1)P(α,β)
k+1 (t)

]
,

we have that

(1 − t)R(α+1,β)
k (t) = 2

2k + α + β + 2

[
(k + α + 1)

P(α,β)
k (1)

Pα+1,β
k (1)

R(α,β)
k (t)

− (k + 1)
P(α,β)
k+1 (1)

Pα+1,β
k (1)

R(α,β)
k+1 (t)

]
.

Recalling that

P(α,β)
k (1) =

(
k + α

k

)
, k = 0, 1, . . . ,
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the previous equality reduces itself to the following recurrence relation for normalized
Jacobi polynomials

(1 − t)R(α+1,β)
k (t) = 2(α + 1)

2k + α + β + 2

[
R(α,β)
k (t) − R(α,β)

k+1 (t)
]
.

In particular, for r ∈ [0, 1), we deduce that

(1−r2)R(α+1,β)
k (2r2 − 1)= α + 1

2k + α + β + 2

[
R(α,β)
k (2r2 − 1) − R(α,β)

k+1 (2r2 − 1)
]
.

If m, n ∈ Z+, β := |m − n| and k := m ∧ n = min{m, n}, then the previous relation
takes the form

(1 − r2)R(α+1,|m−n|)
m∧n (2r2 − 1) = α + 1

m + n + α + 2

[
R(α,|m−n|)
m∧n (2r2 − 1)

−R(α,|m−n|)
(m+1)∧(n+1)(2r

2 − 1)
]
,

where we have used the relation 2m ∧ n + |m − n| = m + n in order to simplify the
equality. Another adjustment leads to

eiθ(m−n)r |m−n|(1 − r2)R(α+1,|m−n|)
m∧n (2r2 − 1)

= α + 1

m + n + α + 2

[
eiθ(m−n)r |m−n|R(α,|m−n|)

m∧n (2r2 − 1)

− eiθ((m+1)−(n+1))r |(m+1)−(n+1)|R(α,|(m+1)−(n+1)|)
(m+1)∧(n+1) (2r2 − 1)

]

for r ∈ [0, 1) and θ ∈ [0, 2π). We are ready to prove the following limit formula for
disk polynomials.

Lemma 2.1 If α > −1, z ∈ Δ[0, 1] and |z| 	= 1, then

lim
m+n→∞ Rα+1

m,n (z) = 0.

Proof Writing z = reiθ , with r ∈ [−1, 1] and θ ∈ [0, 2π) and applying the equality
preceding the lemma in the definition of disk polynomials leads to the following
recurrence formula

(1 − |z|2)Rα+1
m,n (z) = α + 1

m + n + α + 2

[
Rα
m,n(z) − Rα

m+1,n+1(z)
]
, |z| ≤ 1, α > −1.

Due to the normalization adopted for the disk polynomials, we know that |Rα
m,n(z)| ≤

1, m, n ∈ Z+. Hence, if |z| < 1, then

∣∣∣Rα+1
m,n (z)

∣∣∣ ≤ 2

1 − |z|2
α + 1

m + n + α + 2
,

which implies the limit formula in the statement of the lemma. 
�
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Since the definition for the Jacobi polynomials P(α,β)
k demands α > −1, the pre-

vious lemma does not hold for the disk polynomials R0
m,n . Indeed, since

R0
m,n(0) = (−1)mδm,n, m, n ∈ Z+,

the limit limm+n→∞ R0
m,n(0) may not exist while

lim
m+n→∞
m 	=n

R0
m,n(0) = 0.

However, the point z = 0 is the only exception, as we now show.

Lemma 2.2 If z ∈ Δ[0, 1] and 0 < |z| < 1, then

lim
m+n→∞ R0

m,n(z) = 0.

Proof Here, we will employ the Bernstein inequality for Jacobi polynomials recently
proved by Haagerup and Schlichtkrull [12]. For α = 0, it reads

∣∣∣∣∣(1 − t2)1/4
(
1 + t

2

)β/2

R(0,β)
k (t)

∣∣∣∣∣ ≤ C

(2k + β + 1)1/4
, k = 0, 1, . . . , t ∈ [−1, 1],

in whichC is a constant at most 12 and not depending upon k. Replacing t with 2r2−1,
leads to

[
4r2(1 − r2)

]1/4
rβ

∣∣∣R(0,β)
k (2r2 − 1)

∣∣∣ ≤ C

(2k + β + 1)1/4
, k = 0, 1, . . . , r ∈ [0, 1].

It is now clear that

∣∣R0
m,n(z)

∣∣ ≤ 2−1/2C

r1/2(1 − r2)1/4(2m ∧ n + |m − n| + 1)1/4

= 2−1/2C

r1/2(1 − r2)1/4(m + n + 1)1/4
, m, n ∈ Z+, 0 < |z| < 1.

This implies the limit formula in the statement of the lemma. 
�

3 The Proof of Theorem 1.1

In this section, we will assume that q ≥ 2. We begin recalling the notion of antipodal
points on Ω2q : two distinct points z and w over Ω2q are antipodal if |z · w| = 1.
In particular, z and w are antipodal if, and only if, there exists θ ∈ (0, 2π) so that
z = eiθw. Thus, for z ∈ Ω2q fixed, there is a whole Ω2 of points in Ω2q that are
antipodal to z.
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For a finite subset {z1, z2, . . . , zk} of Ω2q , not containing any pairs of antipodal
points, and a subset {θ1, θ2, . . . , θl} of [0, 2π), the enhanced subset of Ω2q generated
by them is the set

{
eiθ1 z1, e

iθ2 z1, . . . , e
iθl z1, e

iθ1 z2, e
iθ2 z2, . . . , e

iθl z2, . . . , e
iθ1 zk, e

iθ2 zk, . . . , e
iθl zk

}
.

For a positive definite kernel K (z, w) = K ′(z ·w), z, w ∈ Ω2q , with K ′ having the
disk polynomial expansion (1.3), the quadratic form (1.2) associated to an enhanced
set as above becomes

k∑

μ,ν=1

l∑

τ,λ=1

cτ
μc

λ
ν K

′ ((
eiθτ zμ

)
·
(
eiθλ zν

))
.

Indeed, since an enhanced set may be thought as a double indexed set, we need to
double index the complex scalars in the quadratic form accordingly. The quadratic
form is zero if, and only if,

k∑

μ,ν=1

l∑

τ,λ=1

cτ
μc

λ
ν R

q−2
m,n

(
ei(θτ −θλ)(zμ · zν)

)
= 0,

whenever (m, n) belongs to the set
{
(m, n) : aq−2

m,n > 0
}
associated to the representa-

tion (1.3) of K ′. Taking into account that disk polynomials are homogeneous in the
sense that

Rα
m,n(e

iθ z) = ei(m−n)θ Rα
m,n(z), m, n ∈ Z+, z ∈ Δ[0, 1], θ ∈ [0, 2π),

the following characterization for strict positive definiteness hold.

Theorem 3.1 Let K ′ be a function as in (1.3). The following assertions are equivalent:
(i) The kernel K (z, w) = K ′(z · w), z, w ∈ Ω2q , is strictly positive definite;
(ii) If k and l are positive integers, {θ1, θ2, . . . , θl} is a subset of [0, 2π) and

{z1, z2, . . . , zk} is a subset of Ω2q , not containing any pairs of antipodal points,
then the only solution {cτ

μ : μ = 1, 2, . . . , k; τ = 1, 2, . . . , l} of the system of
equations

k∑

μ,ν=1

l∑

τ,λ=1

cτ
μc

λ
νe

i(m−n)(θτ −θλ)Rq−2
m,n (zμ · zν) = 0, (m, n) ∈

{
(m, n) : aq−2

m,n > 0
}

,

is the trivial one, that is, all the complex numbers cτ
μ are zero.

Proof One implication is obvious while the other one follows from the fact that the
matrix appearing in the quadratic form (1.2) associated to an enhanced set contains,
as a principal sub-matrix, the matrix in the quadratic form associated to the subset of
Ω2q that generates the enhanced set. 
�
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Theorem 3.2 Let K ′ be a function as in (1.3). If K (z, w) = K ′(z · w), z, w ∈
Ω2q , is strictly positive definite, then the set

{
m − n : aq−2

m,n > 0
}
intersects every full

arithmetic progression in Z.

Proof Assume

{
m − n : aq−2

m,n > 0
}

∩ (NZ + j) = ∅,

for some N ≥ 1 and some j ∈ {0, 1, . . . , N − 1}. We will show that Assertion
(i i) in Theorem 3.1 does not hold when we consider l = N , k = 1, and we take
θτ = ei2πτ/N , τ = 1, 2, . . . , N , while {z1} is an arbitrary unitary subset of Ω2q .
Indeed, the corresponding system in Theorem 3.1-(ii) takes the form

l∑

τ,λ=1

cτ
1c

λ
1e

i2π(τ−λ)(m−n)/N = 0, (m, n) ∈
{
(m, n) : aq−2

m,n > 0
}

,

that is,

l∑

τ=1

cτ
1e

i2πτ(m−n)/N = 0, (m, n) ∈
{
(m, n) : aq−2

m,n > 0
}

.

But, the scalars cτ := e−i2πτ j/N , τ = 1, 2, . . . , N , provides a nonzero solution{
cτ
1 : τ = 1, 2, . . . , N

}
for the system. Indeed, for this choice of the scalars, the system

reduces itself to

l∑

τ=1

ei2πτ(m−n− j)/N = 0, (m, n) ∈
{
(m, n) : aq−2

m,n > 0
}

.

If (m, n) ∈ {(m, n) : aq−2
m,n > 0}, then the integerm−n− j is not divisible by N . Since

ei2π/N is a primitive n-th root of unity, the sum is zero. Thus, K cannot be strictly
positive definite in this case. 
�

Next, we demonstrate a technical result involving general exponentials sums of the
same type of that used in the proof of the previous theorem.

Lemma 3.3 Let z1, z2, . . . , zn be distinct points on Ω2. If c1, c2, . . . , cn are complex
numbers, not all zero, then the set

{
p ∈ Z :

l∑

τ=1

cτ z
p
τ 	= 0

}

contains a full arithmetic progression of Z.
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Proof Assume that at least one cτ is nonzero and consider the complement of the set
quoted in the statement of the lemma in C, that is,

{
p ∈ Z :

l∑

τ=1

cτ z
p
τ = 0

}
.

This set is both a linear recurrence and a proper subset ofZ. According to the Skolem–
Mahler–Lech theorem [7, p. 25], this set is the union of a finite subset of Z and a finite
number of full arithmetic progressions of Z. Therefore, at least one full arithmetic
progression must be a subset of the set in the statement of the lemma. 
�

The next theorem settles the sufficiency part in Theorem 1.1.

Theorem 3.4 Let K ′ be a function as in (1.3). If
{
m − n : aq−2

m,n > 0
}
intersects each

full arithmetic progression in Z, then K (z, w) = K ′(z · w), z, w ∈ Ω2q , is strictly
positive definite.

Proof Assume
{
m − n : aq−2

m,n > 0
}
intersects each full arithmetic progression in Z.

We will apply Theorem 3.1 in order to conclude that K is strictly positive definite.
Let k and l be positive integers, {θ1, θ2, . . . , θl} be distinct angles in [0, 2π) and
{z1, z2, . . . , zk} a subset ofΩ2q containing no pair of antipodal points.Wewill suppose
that the system

k∑

μ,ν=1

l∑

τ,λ=1

cτ
μc

λ
νe

i(m−n)(θτ −θλ)Rq−2
m,n (zμ · zν) = 0, (m, n) ∈

{
(m, n) : aq−2

m,n > 0
}

,

has a nontrivial solution and will reach a contradiction. Without loss of generality,
we can assume that at least one of the scalars c11, c

2
1, . . . , c

l
1 is nonzero. Taking into

account that the inner double sum in the previous equation is

l∑

τ,λ=1

cτ
μc

λ
νe

i(m−n)(θτ −θλ) =
l∑

τ=1

cτ
μe

i(m−n)θτ
∑l

λ=1
cλ
νe

i(m−n)θλ ,

we will consider the set

S :=
{
p ∈ Z :

l∑

τ=1

cτ
1e

ipθτ 	= 0

}
.

Lemma 3.3 asserts that S contains a full arithmetic progression of Z, say NZ + j .

Since
{
m − n : aq−2

m,n > 0
}
intersects each full arithmetic progression in Z, it is clear

that the set
{
m − n : aq−2

m,n > 0
}

∩(NZ + j) must be infinite. Now, we can select

μ0 ∈ {1, 2, . . . , k} and an infinite set Q ⊂
{
m − n : aq−2

m,n > 0
}

∩ (NZ + j) so that
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∣∣∣∣∣

l∑

τ=1

cτ
μ0
ei(m−n)θτ

∣∣∣∣∣ ≥
∣∣∣∣∣

l∑

τ=1

cτ
μe

i(m−n)θτ

∣∣∣∣∣ , μ ∈ {1, 2, . . . , k}, m − n ∈ Q.

It is worth mentioning that

∣∣∣∣∣

l∑

τ=1

cτ
μ0
ei(m−n)θτ

∣∣∣∣∣ ≥
∣∣∣∣∣

l∑

τ=1

cτ
1e

i(m−n)θτ

∣∣∣∣∣ > 0, m − n ∈ Q.

Next, let us denote by Q′ the unbounded set

{(m, n) : m − n ∈ Q\{0}} ∩
{
(m, n) : aq−2

m,n > 0
}

.

Here, we need to consider Q\{0} instead of Q in order to accommodate the unexpected
limit quoted before Lemma 2.2 and, consequently, to be able to handle the case q = 2.
Returning to the original system, but restricting ourselves to Q′, we have that

0 = Rq−2
m,n (zμ0 · zμ0) +

∑

μ	=μ0

∣∣∣
∑l

τ=1 c
τ
μe

i(m−n)θτ

∣∣∣
2

∣∣∣
∑l

τ=1 c
τ
μ0
ei(m−n)θτ

∣∣∣
2 R

q−2
m,n (zμ · zμ)

+
∑

μ	=ν

∑l
τ=1 c

τ
μe

i(m−n)θτ
∑l

τ=1 c
τ
νe

i(m−n)θτ

∑l
τ=1 c

τ
μ0
ei(m−n)θτ

∑l
τ=1 c

τ
μ0
ei(m−n)θτ

Rq−2
m,n (zμ · zν).

Then, we can deduce the main inequality

0 ≥ 1 +
∑

μ	=ν

∑l
τ=1 c

τ
μe

i(m−n)θτ
∑l

τ=1 c
τ
νe

i(m−n)θτ

∑l
τ=1 c

τ
μ0
ei(m−n)θτ

∑l
τ=1 c

τ
μ0
ei(m−n)θτ

Rq−2
m,n (zμ · zν), (m, n) ∈ Q

′
.

Since Q′ is unbounded, the same is true of the set {m+n : (m, n) ∈ Q′}. On the other
hand, since the set {z1, z2, . . . , zk} does not contain pairs of antipodal points, we have
that

|zμ · zν | < 1, μ, ν = 1, 2, . . . , k, μ 	= ν.

Taking into account these two pieces of information and also that

∣∣∣∣∣∣

∑l
τ=1 c

τ
μe

i(m−n)θτ
∑l

τ=1 c
τ
νe

i(m−n)θτ

∑l
τ=1 c

τ
μ0
ei(m−n)θτ

∑l
τ=1 c

τ
μ0
ei(m−n)θτ

∣∣∣∣∣∣
≤ 1, μ 	= ν, (m, n) ∈ Q′,

we can apply Lemmas 2.1 and 2.2, to conclude that
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lim
m+n→∞

∑l
τ=1 c

τ
μe

i(m−n)θτ
∑l

τ=1 c
τ
νe

i(m−n)θτ

∑l
τ=1 c

τ
μ0
ei(m−n)θτ

∑l
τ=1 c

τ
μ0
ei(m−n)θτ

Rq−2
m,n (zμ · zν) = 0, μ 	= ν,

as long as (m, n) ∈ Q′. Therefore, we can return to the main inequality to deduce that
0 ≥ 1 − 1/2, a clear contradiction. 
�

We would like to observe that Theorem 1.1 proved here corrects a wrong argument
developed in the proof of the main Theorem in [18]. There, the reader may also find
some other partial results on positive definiteness and strict positive definiteness of
kernels fitting in the complex setting considered here.

4 The unit sphere in the complex �2

Here, we consider kernels of the form K (z, w) = K ′(z · w), z, w ∈ Ω∞, in which
Ω∞ is the unit sphere in the complex �2, · is the usual inner product of �2 and K ′
is a complex continuous function on Δ[0, 1] = {z ∈ C : |z| ≤ 1}. The concepts
previously introduced for kernels onΩ2q hold true for kernels onΩ∞ modulus obvious
modifications. The positive definiteness of the kernel corresponds to the following
series representation for K ′ [3, p. 171]:

K ′(z) =
∞∑

m,n=0

a∞
m,n R

∞
m,n(z), z ∈ Δ[0, 1], (4.1)

in which all the coefficients a∞
m,n are nonnegative,

R∞
m,n(z) = zmzn, z ∈ Δ[0, 1],

and
∑∞

m,n=0 a
∞
m,n < ∞.

The characterization for strict positive definiteness follows the same pattern of that
in Theorem 1.1.

Theorem 4.1 Let K ′ be a function as in (4.1). The kernel K (z, w) = K ′(z · w),
z, w ∈ Ω∞, is strictly positive definite if, and only if, the set {m − n : a∞

m,n > 0}
intersects every full arithmetic progression in Z.

Proof The necessity part of the theorem goes along the lines of the proof of Theorem
3.2. If we assume that

{
m − n : a∞

m,n > 0
} ∩ (NZ + j) = ∅,

for some N ≥ 1 and some j ∈ {0, 1, . . . , N − 1}, we may consider the points
z1, z2, . . . , zN on Ω∞ given by

zμ := (ei2πμ/N , 0, 0, . . .), μ = 1, 2, . . . , N ,

and the scalars
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cμ = exp(−i2πμj/N ), μ = 1, 2, . . . , N ,

in order to see that

N∑

μ,ν=1

cμcνK
′(zμ · zν) =

∞∑

m,n=0

a∞
m,n

∣∣∣∣∣∣

N∑

μ=1

ei2πμ(m−n− j)/N

∣∣∣∣∣∣

2

= 0,

a contradiction with the strict positive definiteness of the kernel. Since

lim
m+n→∞

∣∣R∞
m,n(z)

∣∣ = lim
m+n→∞ |z|m+n = 0, z ∈ Δ[0, 1], |z| 	= 1,

the proof of Theorem 3.4 can be adapted to hold in the present case, after one verifies
that Theorem 3.1 can be also adapted. Thus, the sufficiency of the condition holds in
this case as well. 
�
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